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Abstract
Context

Validation of models of Land Use and Cover Change often involves comparing maps of simulated and reference change. The
interpretation of differences between simulated and reference change depends on the characteristics of the process being studied. Our
paper focuses on validation of models of one-way land change processes that spread in space.

Objectives

Our objective is to develop a method for validation of one-way land change models, such that the method provides objective
information about the spatial distribution of errors.

Methods

Using distance analysis on reference data, we build a baseline model for comparison with simulations. We then simultaneously compare
the four maps of reference at initial time, reference at final time, simulation at final time, and baseline at final time. We also use Total
Operating Characteristic curves and multiple-resolution map comparison. We illustrate the methods with a simulation of forest insect
infestations.

Results

The methods give insights concerning the reference data, as well as to information concerning the spatial distribution of misses, hits,
and false alarms with respect to initial points of infestations. The new methods reveal that the simulations underestimated change near
initial points of spread.

Conclusions

The spatial distribution of errors is a topic of land change models that deserves attention. For models of one-way, geographically-
spreading processes, we recommend that validation should distinguish between near and far allocation errors with respect to initial
points of spread.
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Introduction

Validation of land change models

Modelling is a major theme of the Land Use and Land Cover Change (LUCC) science (Lambin et al. 2006 ; de Sousa-Neto et al. 2018).
Models are useful tools in science and policy applications, but before they can be used, their credibility should be evaluated (Pontius Jr et
al. 2004, 2008 ; Pérez et al. 2013). Validation is an important step in the process of evaluation of any model. According to Rykiel (1996),
“validation is a demonstration that a model within its domain of applicability possesses a satisfactory range of accuracy consistent with
the intended application of the model”. Measuring a model’s accuracy and deciding a satisfactory level have been subjects of debate and
disagreement in the scientific community (Verburg et al. 2006). Examples of intended uses of a model are to project future pathways of
change and to run tests to understand processes of change and quantify our knowledge about them (Lambin et al. 2006 ; Brown et al.
2012). It 1s essential to consider model objectives when validating the model (Batty and Torrens 2005 ; Brown et al. 2012, 2013 ; National

Research Council 2014 ; van Vliet et al. 2016). LUCC literature recommends development of four classes of model testing methods:

sensitivity analysis to test variation of model results with changing model parameters, uncertainty analysis to test variation of stochastic
model results without changing model parameters, structural validation for models built with the aim of understanding change processes,
and pattern validation for models aiming at prediction of future changes (Brown et al. 2013 ; National Research Council 2014). The latter
category usually employs techniques of map comparison (Pontius Jr 2000 ; Foody 2004 ; Hagen-Zanker 2006 ; White 2006 ; Brown et al.
2013 ; National Research Council 2014). This category of validation methods is further classified into two groups: tests of erroneous
composition of land classes i.e. quantity disagreement, and tests of erroneous configuration of land classes i.e. allocation disagreement
(Pontius Jr and Millones 2011 ; van Vliet et al. 2016). A review of 114 models in land change literature found that the most common
validation approach among them was location accuracy (van Vliet et al. 2016).

Definitions

Multiple disciplines apply techniques of map comparison and model validation—some examples are urban growth (Pijanowski et al.
2005 ; Chen and Pontius Jr 2010), landscape ecology (Paudel and Yuan 2012 ; Cushman et al. 2017), forestry (Rollins et al. 2004 ),
agriculture (Li et al. 2012), conservation (Hermoso et al. 2018), and remote sensing (Foody 2004 )—with each discipline using its own

terminology. In order to avoid confusion about meanings of the terms used throughout the text, we define them in this section.

The basis of the analyses described in this paper is the contingency table, also known as the confusion matrix or the error matrix. This
table summarises the comparison of two binary maps of change. Generally, in model validation, one of the maps shows the change
simulated by the model, and the other shows the reference change for comparison. The professional convention is that the rows of the
contingency table indicate the simulation change, and the columns indicate the reference change. The value of each cell of the table is
the count of units, e.g., pixels, with that cell’s row category in simulation and its column category in reference. The sum of values in a
row of the contingency table equals the quantity of the respective category in the simulation. Likewise, the sum of values in a column of
the contingency table equals the quantity of the respective category in the reference. Finally, the sum of all cells of the contingency table
equals the total count of units, e.g. pixels, in the study area. It is also possible to divide all values in the table by this total count, which is

what Fig. 1 shows. Then, the values will be proportions of the study area, and their total will be 1.
Fig. 1

Outline of a contingency table

Reference

Change Persistence

Change Hits False alarms
Simulation

Persistence | Misses Correct rejections

Sum Prevalence | 1 — Prevalence

Figure 1 shows the layout of a contingency table with two categories: Change and Persistence. The terms Hits, Misses, False Alarms

and Correct Rejections are used in this text. For clarification, they are defined in Table 1.
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Definitions
Term Definition ‘
Hits Cases where change is simulated correctly. Also known as true positives
Misses Cases where reference change is simulated as persistence. Also known as false negatives
False Alarms Cases where reference persistence is simulated as change. Also known as false positives
Correct Rejections Cases where persistence is simulated correctly. Also known as true negatives

The above terms are defined as proportions, and sum to 1. In this case, the proportion of area of reference change (hits + misses) is called
Prevalence. However, it is equally justifiable to define the terms of Table 1 as size. In that case, their sum is the total size of the study

area, and the size of area of reference change (hits + misses) is referred to as Abundance. In this study, we use various tools of analysis.
Our main and concluding analysis is better interpreted when the components of map comparison are described as proportions of the
study area. Still, one of our other analyses uses a tool that calculates respective areas of those components. Describing each analysis, we
clarify how it interprets components of map comparison. More detailed explanation about the contingency table can be found in several
references, such as Pontius Jr and Parmentier (2014 ) in LUCC modelling literature, and Congalton (2004 ) in remote sensing literature.

Scope and objectives

The scope of this paper is the validation of models of land change with a single transition and spatiotemporal dependency. Within this
scope, we present a method for assessment of strengths and weaknesses of models in comparison with a baseline. In this section, we first
describe the above-said scope. Then, we explain the reason for using baselines in model assessment. Next, we highlight challenges and
problems of using baselines. Finally, we define the objective of the paper with respect to the above-said challenges and problems.

We begin by describing the scope. A single transition is a one-way change between two land classes. This means that the subset of land
change models within the scope of this study includes binary models of processes of change that are one-way during the study time

interval. Beyond the scope of this study, in models that involve gain of several classes, or in models that involve simultaneous gain and
loss of the same class in different parts of the study area, correct prediction of change is more challenging (Pontius Jr et al. 2018), and

model assessment is accordingly more complicated. Figure 2 demonstrates a hypothetical example, which shows an important difference

between models within the scope of this study and models beyond the scope of this study. Figure 2 shows that for models beyond the

scope of this study, even if a place appears unchanged, it may have undergone change several times. As such, assessment of models
beyond the scope of this study involves an additional challenge in interpretation of maps of change. In contrast, the definition of scope of
this study involves a simplifying assumption regarding land classes and transitions. Note that an implication of the assumption of one-way
change is that the study area will be the region that was unchanged at the beginning of the time interval of validation of the model, as this
region is the only candidate for change during the simulation.

Fig. 2

Implications of reversibility and irreversibility in interpretation of assessment data: a in a one-way process, a change of stateclass during the
study period can be identified by comparing reference data at the beginning and end of the periedtime interval; b in a reversible process,
change of stateclass may happen during the study pertedtime interval without a trace in the reference data at the beginning and end of the

pertodtime interval

Change happened, and it is visible at t2
|

Al B

Time
tl t2
(a)
Change happened, but it is not visible at t2
L] l 1
A B A A Time

tl t2

(b)

Another assumption that we make in defining the scope of this study is spatiotemporal dependency. Spatiotemporal dependency occurs

when places influence and are influenced by their surrounding neighborhoods. This is an implication of the first law of geography (Tobler
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applications within the scope of this study are forest fires (Gaudreau et al. 2016), forest insect infestations (Perez et al. 2016),
deforestation (Pontius Jr 2018), urban expansion (Pijanowski et al. 2005), and spread of contaminations (Di Gregorio et al. 1997). These

examples, like many other phenomena in geography and landscape ecology, involve spatiotemporal dependency. Moreover, the process of
change in each of these examples is one-way.

The combination of spatiotemporal dependency and one-way change has an implication about the above applications: it implies that these
applications involve neighborhoods where change spreads. In the above applications, there are places which, at the beginning of the study
time interval, can transmit the phenomenon to their surroundings. In other words, the phenomenon is present in those places at the
beginning of the study. Throughout this paper, we refer to these places as the initial points of spread. For example, in applications such as
forest fires or forest insect infestations, initial points of spread are places that underwent change immediately before the beginning of the
study, such that at the start of the study, fire or insects were present in those places. In other applications such as deforestation, urban
expansion, or soil contamination, initial points of spread are on the border between the unchanged and changed zones. In any case, the
modeler can define the initial points of spread based on the nature of the studied phenomenon. We use the idea of initial points of spread
in our methods.

Having described the scope of the study, we now explain the rationale and issues regarding the use of baselines in model assessment. It is
desirable to identify strengths and weaknesses of models. However, strength and weakness are relative terms, and they make sense when
they are expressed in a comparison of two or more things. It is a known approach of model assessment to compare the results of the model
with another model as a baseline, also known as a benchmark (van Vliet et al. 2016). This comparison reveals whether the performance of
the model is better or worse than the baseline. The use of baselines in assessment of LUCC models is not rare; in fact, in their review of
114 modeling works in LUCC literature, van Vliet et al. (2016) reported that 30% of the studied works involved baselines or benchmarks.
Two questions need to be addressed before a baseline model can be used for assessment: (1) how to define the baseline model, and (2)
how to compare the baseline model with the simulation. Regarding the first question, the modeler defines the baseline according to
common sense and the particularities of the subject of study. For models within the scope of this paper, we define the baseline using the
idea of neighborhoods around initial points of spread. We discuss this matter in detail in the methods section. Regarding the second
question, some works in land change literature assess the baseline model in the same way that the simulation is assessed, and then
compare the results of the two assessments (Pontius Jr et al. 2007 ; Pontius Jr 2018). This approach reveals useful information. For
example, it answers questions such as: Does the simulation make more Hits than the baseline? Which model makes more False Alarms?
Which model makes more Misses?

Although the above-said approach provides useful information for model assessment, it has a shortcoming, as it cannot answer more
detailed questions such as: How many of the Hits of the simulation are also Hits of the baseline? How many of the Hits of the simulation
are missed by the baseline? How many of the Hits of the baseline are missed by the simulation? Answering these questions reveals useful
details about strengths and weaknesses of the model with respect to the baseline. For example, Hits of the simulation that are missed by
the baseline show relative strength of the simulation with respect to the baseline. Moreover, for models within the scope of this paper, we
want objective information about where the errors occur with respect to initial points of spread. To that end, we are interested in finding
answers to questions such as: How much of the model s correct predictions of change are near initial points of spread? What is the
dominant type of error far from initial points of spread? Does the model underestimate or overestimate change near or far from initial
points of spread? These questions are not answered by existing methods of model assessment, and we address them in this paper.

Considering the above, the objectives of this study are: (1) to present a method for building a baseline model for applications within the
scope of this study; and (2) to present a method for comparing a simulation with a baseline, in such detail that the comparison of the
simulation and baseline provides answers to the questions raised in the previous paragraph. We demonstrate our methods by applying
them to an example case of study, and we discuss the results that our methods reveal about the example case. We also apply existing
methods in the validation of our example case, in order to compare the existing methods with our methods.

Case study

The motivation for this work comes from previous efforts to evaluate a model of forest insect infestations (Harati et al. 2020). The
Mountain Pine Beetle (MPB) is a native wood-boring insect infesting forests of western North America. During the past two decades,
MPB outbreaks have become epidemic and damaged over half of the commercial pine volume in the province of British Columbia (BC),
Canada (Natural Resources Canada 2019). Each summer, the insects fly in search of new hosts to infest. In the earlier years of the
outbreaks, the eastward spread of infestations was limited by the Rocky Mountains, but eventually MPB crossed this natural barrier and
arrived in the neighboring province of Alberta (Natural Resources Canada 2019). Contrary to infestation, which kills trees, are processes
of forest regrowth and succession. However, these processes are much slower than the spread of insect infestations. As such, in our case of
modeling MPB outbreaks in a 6-year pertedtime interval, we assume that the processes of succession did not have enough time to make
any change in infested forests. For this reason, we consider infestation a one-way process of land change.

In previous studies, we developed a model to simulate the spread of the insect in BC (Harati et al. 2020). The predictor variables of the
MPB model were elevation, aspect, slope, surface ruggedness, and sums of surrounding infestations weighted by four different distance
functions, calculated for infestation data of the year of start of simulation and its preceding year. We used various algorithms and
calibration settings to train the model, and used it to predict the spread of infestations from 2008 to 2014, hence producing one simulation
for each algorithm. The scope of the present paper is assessment and validation of two simulations produced by the MPB model, and their
comparison with a third model that is defined as a baseline. Therefore, development of simulation algorithms and adjustment of their
parameters are not within the scope of this paper. Rather, we discuss how we can compare simulation outputs with reference datasets in
order to obtain information that is useful in model assessment.

Methods

Our model assessment approach in this study is to compare the simulation with a baseline. As suggested by Pontius Jr et al. (2007) This s

hould he a hvnerlinked reference. not nlain text.
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we define the baseline as a neighborhood in proximity of initial points of spread. Our baseline model predicts that areas near initial points
of spread will change, and areas far from initial points of spread will not change. In this sense, the baseline model divides the study area

into two strata with respect to proximity to initial points of spread. In the following subsections we describe how we build the baseline
model, and how we compare it with the initial reference, final reference and simulation simultaneously. Through such simultaneous
comparison of four maps, we obtain useful information for model assessment. In addition, to distinguish between our analysis and existing
methods, we note highlights about the existing method of multiple resolution map comparison, which is used for analyzing allocation
errors.

Distance analysis and proximity suitability map

The concept of our proximity suitability map is that places adjacent to initial points of spread are the most suitable candidates for future
changes in the entire study area; in turn, places adjacent to those candidates are the next suitable ones; and so on. In this concept,
suitability decreases as distance from initial points of spread increases. For ease of computation, we use Manhattan distances in making
the proximity suitability map. By overlaying the reference dataset of the end of validation time interval on the map of Manhattan distances
from initial points of spread, we extract information about percentage of reference infestations in various classes of distance from initial
points of spread. This information provides a better insight inte-the-ease-studyconcerning various distances.

Total Operating Characteristic curves

We classify simulation and proximity suitability maps using thresholds. The classified predictions depend on their respective classification
threshold. Such dependency is different for each model. We gain information about the performance of the models by analyzing their
agreement and disagreement with reference data for each classification threshold. We perform and summarize this analysis using the Total
Operating Characteristic (TOC) curve (Pontius Jr and Si 2014).

The TOC curve is a tool for analyzing agreement between the ranked output of a model with a binary reference. In this sense, its overall
aim is similar to that of the Relative Operating Characteristic (ROC) curve. The TOC curve is obtained by connecting points that each
represent a threshold for classification of model output. Corresponding to each threshold, there is a contingency table that summarizes
agreement and disagreement between model output and reference data. Misses, hits, false alarms, and correct rejections for each

classification are directly identified in the TOC curve as shown in Fig. 3. This is because of the way the plot coordinates and axes are

defined. The TOC shows misses, hits, false alarms, and correct rejections as sizes; their sum equals the size of the study area. For each
point of the TOC curve, the horizontal coordinate equals the sum of hits and false alarms of that point’s respective contingency table, and
the vertical coordinate equals hits. Similar to the ROC curve, the Area Under Curve (AUC) of the TOC curve offers a metric to summarise

accuracy. In the TOC plot, a parallelogram bounds all possible TOC curves, as shown in Fig. 3. In this plot, the AUC is the ratio of the

area under TOC curve in the parallelogram to the total area of the parallelogram.
Fig. 3

A hypothetical TOC curve. In this plot, hits, misses, false alarms, and correct rejections are measures of area. Abundance is the area of
reference change

Hits , 7 . . — Abundance
. Misses e 7/ « = Maximum
. /False Alarms L':orrect > m—— [\odel
/ o Rejectiunsf gl U 1) 0= 1)

= = = Minimum

» Hits+False Alarms

To find the threshold for each model, we identify the intersection of its TOC curve with the vertical line, x = Abundance, which is drawn
down from the upper left corner of the parallelogram. On that vertical line, misses and false alarms are equal. Recalling that the sum of
misses and hits is the quantity of reference change, and that the sum of false alarms and hits is the quantity of simulated change, it follows
that at this intersection point, the quantity of change from the start to the end of the validation time interval equals the quantity of change
in the reference data.

The distance threshold that we find for the proximity suitability map using the TOC curve is the key to define near and far with respect to
initial points of spread. This threshold classifies the proximity suitability map into a binary map. That is, in the proximity suitability map,
values less than or equal to that threshold are classified as changed, and other values are classified as unchanged. We use this classified
map as the baseline model.

Three-map comparison at multiple resolutions

In order to assess performance of the models, existing methods compare simultaneously three maps: reference at the beginning of the
validation time interval, reference at the end of the validation time interval, and simulation at the end of the validation time interval. Such
three-map comparison, which is well described in literature (Pontius Jr et al. 2004, 2008), is based on the contingency table of simulated
change versus reference change. In applications with change that is one-way during the validation time interval, places that underwent
change before the beginning of the study are excluded from the study area, as they are no longer candidates for change.

By elasstfringselecting the threshold at the correct quantity of change in suitability maps, we obtain binary maps in which quantification
error is eliminated or minimized. The error that remains in model outputs is of allocation type. This implies that the size of misses equals
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interested in knowing the distances between such pairs of miss and false alarm errors. In comparison of two models whose quantification
error is eliminated, the one whose allocation errors occur in shorter distances performs better. In order to include this consideration in

model assessment, we use the method of three-map comparison at multiple resolutions (Pontius Jr 2002 ; Pontius Jr et al. 2004, 2008,

2011). In this method, fine-resolution maps are coarsened to a given resolution; then, they are compared. Throughout coarsening, several
fine pixels are aggregated in a coarse pixel. In the coarse pixel, information concerning quantities remain, but information concerning

allocation is eliminated. This effect is shown in Fig. 4. If two fine pixels containing a miss and a false alarm are put together in a coarse

pixel, coarse resolution comparisons shows that both the coarsened reference and the coarsened simulation contain one unit of change and
one unit of persistence in the aggregated pixel. As such, through coarsening, for each pair of miss and false alarm errors aggregated in a
larger pixel, the counts of misses and false alarms each decrease by one, and the counts of hits and correct rejections each increase by one.

Fig. 4

A hypothetical example showing reduction of allocation error in coarsening of resolution: (a) two fine-resolution pixels contain a miss and a
false alarm; (b) when aggregated in the same coarse pixel, they indicate a hit and a correct rejection. ‘A’ and ‘B’ are statesclasses

Reference: A A A B AA A,B
1 ) » Time T ) » Time
Simulation: B A A,B

(a) (b)

Four-map comparison and analysis of components of change in partitioned study area

The baseline model divides the study area into two strata: one that is closer to initial points of spread, and another that is furtherfarther
from initial points of spread. For ease of reference, we call them the near and far strata, respectively. The baseline model predicts the near
stratum as changed, and the far stratum as unchanged. These strata are subsets of the study area, such that their union is the entire study
area and their intersection is empty. This stratification is important for us because the near stratum is more suitable than the far stratum for
future change, and we expect that the simulation shows this matterpattern. To assess the model using baseline, we simultaneously compare
the four maps of initial reference, final reference, simulation, and baseline. We call this procedure the four-map comparison.

The four-map comparison is performed by first calculating the difference between the map of reference data at the beginning of the study
and each of the three other maps. After this step, there will be three maps of change from beginning to end of the validation time interval.
The three maps of change are: reference, simulation, and baseline. Next, we note that each of these three maps is a set of pixels, and we
overlap the three sets and note their unions and intersections. Since the scope of our study is limited to models with two statesclasses, the
combination of these three sets can produce up to 8 subsets. For example, the subset of pixels that indicate change in the reference set,
change in the simulation set, and change in the baseline set tretadesis Hits in proximity to the initial points of spread. Other subsets are
interpreted similarly. Of the 8 subsets thus produced, 2 of them include no change in the reference set and no change in the simulation set.
These two are the subsets of Correct Rejections, and we do not include them in the rest of our analysis, as they do not provide any
information about correct or incorrect simulations involving change. The remaining 6 subsets indicate respective areas of Misses, Hits,
and False alarms in the near stratum and in the far stratum.

Our validation method involves (1) defining a proximity baseline and (2) comparing the baseline with simulation and references. A
summary of steps of these two activities is depicted in Fig. 5. Note that for applications where scientists choose a different baseline

instead of the proximity baseline, the steps for comparison of the baseline with simulation and references are the same as those shown in
the figure.

Fig. 5
Flowchart of the proposed validation method including definition of a proximity baseline and use of the baseline in assessment of simulations

Compare baseline with

Define baseline simulation and references
[
Input: / Input:
[ initial reference,

initial reference, /

final reference, ] final reference,
initial points of spread / simulation,
/ baseline
[
v .
Build suitability map Subtract map of initial reference
based on proximity to from other maps
initial points of spread to produce 3 maps of change
Perform TOC analysis,
identify distance threshold, Overlay the 3 maps of change
rlaceifv rravimitu enitahilit rman

© Springer Nature

https://eproofing.springer.com/ePj/printpage_jnls/llonY SbDISbXI9ROBXg3URMdA18-5KxLTgx7JzaXcaXO5mPk6X2IDPVW7EoNSJwViUS7vKIEHrbSCrgwk3tvIOP1_Q90x8s-wwBIrsXfLCjOtOjHSHP8k6h-2VeqeYcah

6/14


http://www.springer.com/

5/30/2021 eProofing
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/ as baseline of the maps of change
Data

We assess a MPB model (Perez et al. 2016) and compare two simulations generated by different algorithms, namely, logistic regression
(LR) and random forest (RF). The simulations predict the spread of MPB infestations in the forests of BC from 2008 to 2014. Each
simulation is analysed in comparison with reference data of the years 2008 and 2014. In addition to the two aforementioned simulations,
we define a baseline model and compare its output with reference datasets and LR and RF simulations.

All model outputs and reference datasets are rasters of the study area. Dimensions of the maps are 4011 rows by 3516 columns-by461++
pixels, with pixel resolution of 400 m. The extent of the study area is from 59°59"27" N 138°54'19” W to 48°59'53" N 114°2'37" W. The
study area is the union of forest areas that were not infested at the beginning of 2008. In other words, areas that were already infested
before 2008 were excluded from analysis because no change would happen in the-state-efthose areas.

Reference datasets are binary, meaning each pixel of reference data is classified as infested or not infested at 2008 or 2014. The two MPB
model outputs are suitability maps for the region that is not infested at 2008. For two pixels in the same suitability map, the one with the
higher value is a more suitable candidate for infestations beyond 2008. The value of a pixel in a suitability map is comparable in terms of
rank with values of other pixels in the same map. It is meaningless to compare the value of a pixel in a suitability map with the value of
the corresponding pixel in the other suitability map because the suitability values are not probabilities.

The baseline model, which is also associated with a suitability map, is built as described in the Methods section. The input required for
this model is the initial points of spread, i.e. places of insects in reference data of 2008, which is also a raster with the same dimensions
and resolution as the other datasets used in this study.

Reference infestation data was obtained from the web portal of BC Ministry of Forests, Lands, Natural Resource Operations and Rural
Development—hereinafter The Ministry (Province of British Columbia 2015). The data was then converted to binary using a threshold.
The Ministry maintains datasets of cumulative MPB attacks based on the Provincial Aerial Overview of Forest Health (Province of British
Columbia 2020). Detection of areas of MPB infestation is based on the fact that patches of trees attacked by the insect, change color in
subsequent years.

Software tools

Our analyses were carried out using packages “raster” (Hijmans 2019), “lulcc” (Moulds et al. 2015, and “TOC” (Pontius Jr et al. 2015)
of the statistical software R (R Core Team 2019). Maps were produced with ArcGIS for Desktop (ESRI 2015). TOC output plot was
produced using TOC Generator software package (Liu 2020).

Results

This section presents the results of applying the methods of the paper on the example case of MPB infestations.

Table 2 shows the distribution of reference changes in various classes of Manhattan distance from the initial points of spread. The median

Manhattan distance to nearest initial point of spread was 3 pixels. This distance corresponds to the 6-year duration, i.e. from 2008 to 2014.
This table includes two noteworthy findings: firstly, in the 6 years of validation time interval 75% of the new infestations occurred within
only 8 pixels (Manhattan distance) from initial points of spread; and secondly, the remaining 25% of new infestations were dispersed as far
as 876 pixels from initial points of spread.

Table 2

Percentiles of shortest Manhattan distances to initial points of spread

Manhattan distance (pixels) Percentile (%)
1 0-6

2 256

3 50-6

8 756

876 1006

TOC curves for two simulations as well as the baseline model are shown in Fig. 6. It can be seen that the baseline model has a higher AUC

than the other two models, and the RF model has a higher AUC than the LR model. At about 2/3 of the maximum height of the plot area,
the TOC curve of the LR model includes a bend that is sharper than the RF curve. To the right of that bend in LR TOC plot, i.e., with lower
suitability thresholds that classify more pixels as infested, changes in threshold cause larger changes in false alarms and smaller changes in
hits compared to the other two models. Using these curves, we also selected the classification thresholds for each of the suitability maps.
Each of these thresholds corresponds to the point on each curve that is under the upper-left corner of the TOC plot parallelogram. In
particular, in our TOC curve analysis, the identified distance threshold for classification of the proximity suitability map was 2 pixels.

Fig. 6
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Figure 7 shows the proximity suitability map, which was calculated based on Manhattan distances to initial points of spread. In addition,

this figure shows the RF and LR suitability maps, which were the input data of our analysis. The RF and LR maps were produced in a
previous study, based on infestation and geographical data (Harati et al. 2020). The maps in this figure are not classified, and each of them

indicates some parts of the study area as more suitable for infestations than other parts of the study area. We used the thresholds obtained in

TOC analysis to classify the maps of Fig. 7. The results of these classifications were binary maps in which each data pixel is infested or

not infested. Figure 8 shows the components of agreement and disagreement with reference data for the classified RF, classified LR, and
baseline. The baseline map was produced by classifying the proximity suitability map using a threshold of 2 pixels. Each of the maps of
Fig. 8 is the result of comparison of maps of reference at 2008, reference at 2014, and the respective model at 2014. The figure shows that
most of the observed and simulated change happened in the northern part of the study area. The figure also shows that all models missed

changes in the northeast of the study area.
Fig. 7
Maps of infestation suitability from 2008 to 2014 for two simulations and a proximity model. Initial points of outbreak are where insects were

at start (2008). Analyses exclude infestations prior to 2008
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Fig. 8

Comparison of maps of reference in 2008, reference in 2014, and prediction in 2014 for two simulations and a baseline model. Initial points of
outbreak are where insects were at start (2008). Analyses exclude infestations prior to 2008
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Figure 9 summarizes the results of three-map comparisons at multiple resolutions for each model. This figure shows area proportions of
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are zero at the coarsest resolution. Baseline has more false alarms than misses, which indicates that the baseline model has more simulated

infestation than reference infestation.

Fig. 9
Multiple-resolution analysis of components of agreement and disagreement between maps of reference in 2008, reference in 2014, and
prediction in 2014
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In Fig. 10 we demonstrate the result of partitioning of the study area using the baseline model. The near and far strata are defined by the
threshold obtained in the analysis of the TOC curve of the proximity suitability map, which was 2 pixels. The baseline model predicts the
near and far strata as infested and not infested, respectively.

Fig. 10

Partition of the study area into near and far strata using the baseline model. Initial points of outbreak are where insects were at start (2008).
Analyses exclude infestations prior to 2008
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Figure 11 shows the components of agreement and disagreement for simulated and reference change in the two strata of the study area that

are defined based on proximity to initial points of spread. These strata are the predictions of the baseline model. The misses, hits, and false
alarms of each model in near stratum are areas that the baseline model predicts as infested. Conversely, misses, hits, and false alarms of
each model in the far stratum are areas that the baseline model predicts as not infested. RF has mere-alloeation—errerfewer hits than LR. The
overall sizes of misses and false alarms of RF are equal. Similarly, the overall sizes of misses and false alarms of LR are equal. In the near
stratum of the study area, RF has more misses than false alarms.

Fig. 11

Components of change in near and far strata of the study area
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Discussion

This section describes the information and insight from the results for the example case of MPB infestations. These descriptions also
include results of existing methods to demonstrate how the new methods complement existing methods by providing information that
would otherwise not be attainable. Afterwards, we discuss the limitations and implications of the methods developed in this study.

Insights about the case of study

The results of distance analysis in Table 2 reveal interesting information about reference data. The fact that the median distance of spread

in 6 years is 3 pixels shows that many new infestations occurred near initial points of spread. This observation suggests it is reasonable to
build the baseline in proximity to initial points of spread. On a different note, it is also worth mentioning that the Manhattan distance to
initial points of spread ranged from 1 to 876 pixels. The upper end of this range is much larger than the lower 75 percent of the values,
which raises questions about the possible cause of such difference. Future studies can analyse this case and assess if such large distance of
MPB spread has been due to, for example, weather and wind conditions, man-made interventions (e.g. MPB piggy-backing on logs
transported to processing plants), or data processing errors.

In the analysis of the TOC curves, it is notable that the proximity suitability map has the highest AUC, which indicates better performance
compared to the other two models. The curves also show that LR is above RF at the correct quantity, which indicates that LR is better than
RF at specifying where few-infestations exist. LR curve is below the others in the right side of the TOC space, which indicates that the
non-LR models are better at assigning low ranking suitability values to pixels where infestation does not occur.

The distance threshold obtained in the analysis of the TOC curve of the proximity suitability map defines the near and far strata of the
study area. In this case, the areas within Manhattan distance of 2 pixels from an initial point of spread are considered the near stratum.
Conversely, the areas with Manhattan distance of more than 2 pixels from an initial point of spread are considered the far stratum. In this
way, the baseline model is built. The baseline model predicts change in all of the near stratum, and no change in the far stratum. In other
words, the baseline model predicts that the near stratum will be completely infested, and the far stratum will not be infested.

Visual inspection of Fig. 8 shows RF and LR simulations missed many changes in the region in the northeast of the study area. This

region is located on the eastern side of the Rocky Mountains. The Rocky Mountains previously served as a natural barrier blocking the
spread of MPB towards the east. However, during the validation time interval, large MPB outbreaks occurred in the northeastern part of

the province. We see in Fig. 8 that the RF and LR models did not predict these outbreaks.

Figure 9 shows that RF and LR models have no quantity error. This is because in the analysis of their TOC curves, classification

thresholds were selected to eliminate quantity error. The figure shows that for the baseline model, the elimination of errors at the coarsest
resolution does not happen completely. The baseline model has some excess false alarms, which means that its quantity error was not
completely removed. This is because the proximity suitability is constructed using Manhattan distances from initial points of spread.
Manhattan distances are expressed as natural numbers, and there are a large number of pixels having the same distance value.
Nevertheless, the selection of the threshold has been set such that the quantification error of the classified result was minimized. That is,
the quantification error for the selected threshold is smaller than the quantification error for any other threshold.

In Fig. 9, as resolutions become coarser, misses and false alarms decrease, and hits and correct rejections increase. A closer look at the

LR plot in Fig. 9 shows that in the coarsening from cell-size 128 to cell-size 256 the curves of errors are steeper than in smaller cell-

sizes. This shows that at this particular resolution, there are suddenly more pairs of miss and false alarm errors that cancel one another. In
the classified LR simulation, the pairs of miss and false alarm errors that are located between 128 and 256 pixels away from one another
are more noticeable than those in shorter distances from one another. This distance interval is an indicator of allocation error of the LR
simulation. Following similar steps with the RF simulation, we find that its respective distance interval is between 256 and 512 pixels.
This means that, compared with the LR simulation, allocation errors in the RF simulation are further away from one another. In other
words, multiple-resolution analysis revealed that the LR model performs better than the RF model in terms of allocation error for that
particular coarsening of resolution.

The four-map comparison provides information that the existing methods do not show. Recall that the four-map comparison includes
reviewing the results of three-map comparison in the two strata defined by the baseline model (#ea#near and fafar strata with respect to
initial points of spread, as shown in Fig. 10). This method reveals new information about performance of the models. Figure 11 shows

the components of change for each model in the study area, as well as their breakdown in the two strata. For each simulation, this figure

summarizes useful information obtained from comparing four maps: reference 2008, reference 2014, respective simulation, and the
l’\ﬂ(‘ﬂ]“ﬂﬂ mr\r]n] T]’\Q FI‘I‘I‘11Y‘Q Y\V‘I’\‘71.AQC I.Y\'Fl'\fmf]f;f\ﬂ nNmn “IL\QYD "1’\13 1 “[;UK‘QU L.;.tﬂ.n“"(‘ f)ﬂl'l &lﬂﬂ&lﬂmﬁ‘f)]ﬂﬂ A]OY“’V\(‘ aro 1.1"\ fl’\ﬂ ™Mamnmn:* l’\l'\“7
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corresponds with the fine-resolution information given by Fig. 9. However, the breakdown of each eelamnbar into #ea#near and far

far strata includes new information that cannot be found from Fig. 9. For one thing, it shows how each of the simulations compares with

the baseline model. Since the baseline model predicts no change in the fa=far stratum, it misses all reference changes in the fea#

far stratum. As such, the #M#sses-Misses of simulations in the fa#far stratum are Mésses-Misses of the baseline model as well. Hi#s-Hits in
the fa#-far stratum show the strength of the LR and RF simulations over the baseline model. On the other hand, LR and RF simulations
also produce false-atarmsFalse Alarms in the fe#far stratum, which the baseline model does not. Similar arguments can be stated about
the near-#ea# stratum. The baseline model predicts change in all of the #ea#near stratum, therefore ttthe baseline model misses nothing
there. #M#sses-Misses of the simulation in the #e&# near stratum are all H##s-Hits of the baseline model, and indicate relative weakness of
the simulation with respect to the baseline model. On the other hand, the baseline model produces more false-atarmsFalse Alarms than the
simulation in the #ea#near stratum.

In the example case of MPB infestations, in addition to comparing the simulations with the baseline model, we can gain insight about the
models by noting how they compare against one another. Beeatse-bothBoth LR and RF simulations are classified such that their
quantification errors are almost eliminated; for each simulation, meaning misses and false alarms in the entire study area are nearly equal.
However, the distribution of these errors in the two strata of the study area is noteworthy. In both simulations, in the near stratum there are
more misses than false alarms; and in the far stratum there are fewer misses than false alarms. This difference means that in both
simulations, in the near stratum the quantity of change is predicted less than in reference data; and in the far stratum the quantity of
change is predicted more than in reference data. In other words, both simulations involve errors of allocating less change than reference to
the near stratum, and allocating more change than reference to the far stratum. Moreover, this error is larger in the RF simulation than in
the LR simulation. The RF model, in comparison with the LR model, has the weakness of underestimating the spread of infestations near
initial points of spread. This useful finding was not evident in previous analyses; rather, it is the result of the additional analysis of
components of change in near and far strata.

Our analysis of allocation errors described in this section depends on the strata defined by the baseline model, which, in turn, are the
result of distance analysis. As such, for a different result of distance analysis from what we calculated, our assessment of the simulations
could be different from what we presented in this section.

Limitations and implications of the study

In this paper we developed methods to assess land change simulation with respect to the baseline that is constructed with common sense.
Our motivation in this study was to give an objective answer to the question of where errors occur. A map of errors, of course, shows
where errors occur. However, the interpretation of maps is subjective (van Vliet et al. 2011). We sought methods to extract objective
information from data that was available in initial reference, final reference, simulation, and baseline maps. Our methods have two
tmplteattonsnew concepts for assessment of land change models: (1) use of near and far strata as defined in this paper for models within
the scope of this study; and (2) simultaneous comparison of the four maps of initial reference, final reference, simulation, and baseline, for
models that are assessed with a baseline.

This paper demonstrated the application of our methods on an example case of forest insect infestations, but the implications of this study
are not limited to this case. The methods of this study can be applied in assessment of a variety of models involving a single transition and
spatiotemporal dependency. Nevertheless, the scope of this paper is one of its limits, as there are a wide range of applications that involve
multiple land classes and reversible transitions, creating more complicated assessment problems. These problems deserve to be addressed

in future works.

An important point to consider about the methods proposed in this paper is that even within the scope of the study, distance from initial
points of spread is not the only factor that may be related to errors. In particular, in phenomena with factors that act along certain vectors,
it is possible to observe patterns that defy the assumption of spread of change in proximity of previously changed places. Examples of
these are the effect of wind on ef-forest fires and forest insect infestations, and the effect of roads on expansion of cities. Fire and insect
infestations can spread rapidly along wind vectors, and urban built areas can spread along roads at a faster pace than what a baseline
model might suggest. Modelers should be mindful of such effects when interpreting results of model assessment methods. It is important
to consider, though, that in such cases if the modelers have a reasonable idea of the other factors that influence the spread of change, they
can include that idea in the construction of the baseline model, so that the baseline model agrees with common sense and is still easy to
understand. Then theyymodelers can use the method of four-map comparison to assess their simulation using the new baseline. In all cases,
the rationale of this paper is to use appropriate baseline models in order to gain insights concerning the performance of simulations. If the
process of change is known to happen along certain vectors, then the baseline model can be constructed as predicting change along those
vectors. If the process of change is known to include a combination of vector effects and proximity effects, then the baseline model can be
constructed by superposition of a vector baseline and a proximity baseline.

Another matter worth mentioning is that the use of Manhattan distance involves some deviation with respect to Euclidean distance. The
calculation of Manhattan distance has a computational advantage over Euclidean distance in applications where maps have a large number
of rows and columns. However, with modern-day hardware and software, calculation of Euclidean distance is feasible for many
applications. Modelers should be mindful of this matter in their assessments. In our case, even though we used Manhattan distance to
build our proximity suitability map, the respeetiveproximity TOC curve had the highest AUC of all models. This curve was remarkably
higher than the random line, which shows that our baseline was much more accurate than a random baseline. The curve was also higher
than the RF curve at all threshold points. We built our baseline as an easy-to-understand model that makes sense, especially more relevant
than a random model, because we know that infestations do not spread randomly. Use of random baselines has been criticized as irrelevant
and/or misleading (Pontius Jr and Millones 2011) This citation should include a hyperlink to the reference, which is already in the list
of references. This citation should not be plain text. Please convert the text into a hyperlink referring to the respective reference.

. The TOC curves indicate that our baseline in this application offered helpful insight. Nevertheless, the building of our baseline involved

simplifications, and with simplifications come inaccuracies.
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Presently, the method of three-map comparison at multiple resolutions serves this purpose. However, analysis done by the multiple
resolution method is dependent on the relative coordinates of pixels with respect to a corner of the map of the study area. This means that

the result of multiple resolution analysis of a map can change especially at coarser resolutions, depending on the reference point for
defining coordinates of map pixels. Our prepesedstrata method in this paper does not depend on a fixed point on the map. Rather, our
analysis is based on the phenomenon under study. This can be the basis for development of new methods for assessment of allocation
error, while avoiding the said problem with multiple resolution analysis. Such methods could be developed by expanding our method to
partition the study area into multiple strata instead of two.

Conclusions

Existing methods for evaluation of allocation error provide information on how far allocation errors are with respect to one another, but not
with respect to referenee-dataa baseline model. Our article addressed the topic of allocation of errors in simulations of a subset of land
change processes with a single transition and neighborhood effects. For applications in this subset, we presented methods to obtain
objective information about where errors occur, by partitioning the study area with a baseline model that is defined through distance
analysis of reference data, and performing a four-map comparison including the baseline model, the simulation, the initial reference, and
the final reference. These methods identify the distribution of misses, hits, and false alarms in the two strata of the study area, which are
defined based on proximity to initial points of spread of the phenomenon. The methods of this paper helped us gain insight concerning the
performance of two example simulation cases, and revealed information that would otherwise be unattainable. We recommend that for a
one-way, geographically-spreading process, model validation should distinguish between errors that are allocated near and far from the
initial points of spread.
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