This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Resilient Cooperative Adaptive Cruise Control for
Autonomous Vehicles Using Machine Learning

Srivalli Boddupalli™, Graduate Student Member, IEEE, Akash Someshwar Rao,
and Sandip Ray ™, Senior Member, IEEE

Abstract— Cooperative Adaptive Cruise Control (CACC) is a
fundamental connected vehicle application that extends Adaptive
Cruise Control by exploiting vehicle-to-vehicle (V2V) communi-
cation. CACC is a crucial ingredient for numerous autonomous
vehicle functionalities including platooning, distributed route
management, etc. Unfortunately, malicious V2V communications
can subvert CACC, leading to string instability and road acci-
dents. In this paper, we develop a novel resiliency infrastruc-
ture, RACCON, for detecting and mitigating V2V attacks on
CACC. RACCON uses machine learning to develop an on-board
prediction model that captures anomalous vehicular responses
and performs mitigation in real time. RACCON-enabled vehicles
can exploit the high efficiency of CACC without compromising
safety, even under potentially adversarial scenarios. We present
extensive experimental evaluation to demonstrate the efficacy of
RACCON.

Index Terms— Connected and autonomous vehicles, V2X com-
munication, anomaly detection, security.

I. INTRODUCTION

ECENT years have seen proliferation of electronics and

software in automotive systems targeted towards increas-
ing autonomy. Autonomous features hold the promise of dra-
matically increasing transportation efficiency and road safety
by reducing and eventually eliminating human errors [29].
However, an undesired side-effect is the increased vulnerabil-
ity of Connected and Autonomous Vehicles (CAVs) to cyber-
security threats. Recent research has shown that it is possible,
even straightforward, to mount cyber-attacks that compro-
mise a vehicle and control its driving functionality [11],
[22], [26], [27]. Increasing dependence of critical vehicular
operations on communication with the external world will
exacerbate this situation by creating larger attack surfaces.
This increases the attacker’s ability to compromise the vehicle
causing catastrophic impact. Consequently, the proliferation
and even adoption of CAVs depends critically on our ability
to mitigate such attacks.
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An important feature of autonomous vehicles is the abil-
ity to interact with other vehicles (V2V), the transportation
infrastructure (V2I), and devices connected to the Internet
(V2IoT). Vehicular communications, collectively referred to
as V2X, form a key constituent of several emergent appli-
cations including platooning, cooperative route management,
intersection management, cooperative collision detection, etc.
Unfortunately, V2X also enables a large class of adversar-
ial opportunities: an adversary can easily create disruption
by manipulating communicated messages through mutation,
misdirection, or jamming. For example, in platooning, the
adversary may cause an accident by simply sending misleading
acceleration directive while braking [12].

In this paper, we develop an infrastructure for systematically
integrating resiliency against communication attacks on V2V
applications. Our focus is a fundamental application of vehic-
ular communications: Cooperative Adaptive Cruise Control
(CACC). CACC is an extension of Adaptive Cruise Control
(ACC); Adaptive Cruise Control (ACC) uses RADAR/LIDAR
measurements to derive relative velocity and headway from
the vehicle in front. Additionally, CACC also accounts for the
preceding vehicle’s (intended) acceleration. The acceleration
is communicated through V2V messages, typically as Dedi-
cated Short Range Communication (DSRC) [39] or Cellular
Vehicle-to-Everything standard (C-V2X) [41]. CACC is a
key component of several connected car applications such as
vehicle platooning, cooperative on-ramp merging, etc. Attacks
on CACC can disrupt traffic movement, cause catastrophic
accidents, and bring down the transportation infrastructure.

Our framework, RACCON (for “Resilient Cooperative
Adaptive Cruise Control”), is a real-time anomaly detection
and mitigation system for communication attacks on CACC.
The key idea is to use machine learning (ML) to develop
an on-board prediction model for estimating the response of
the following vehicle given normal (benign) patterns of V2V
input messages. This enables the detection of anomalies in
the vehicle’s responses resulting from potentially malicious
communications. RACCON involves two cooperative com-
ponents: (1) an on-board architecture installed in vehicles
participating in CACC that enables the follower vehicle (also
called ego vehicle) to perform real-time anomaly detection and
mitigation; and (2) an offline cloud-based infrastructure for
construction of prediction models.

The paper makes several important contributions. First,
unlike related approaches that focus on detection of CACC
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TABLE I
GLOSSARY OF NOTATIONS

Term Definition

& Ego vehicle

P Preceding vehicle

K, Acceleration constant (0.66)

K, Velocity constant (0.99s71)

K, Position constant (4.08s~2)
Dmax Maximum deceleration constant (8m.s~2)
Gmin Lower bound on space gap (1.0m)

Tg/(‘lp Constant time headway for ACC (1.2s for [5])
Constant time headway for CACC (0.55s for [S])

Jup

Ysa fe Target safe gap
ag Desired acceleration for ACC
al Desired acceleration for CACC
ap Instantaneous Acceleration of P
tgap or THW  Instantaneous time headway
agmd Predictor output (anomaly detection)
ag*’t Response estimatior output (mitigation)

attacks (see Section II-C), RACCON represents the first
framework that also enables real-time resiliency. Second, our
framework provides high flexibility through attack-agnostic
defense against an elaborate set of adversaries in the con-
nected car ecosystem, including man-in-the-middle (MITM)
attack, wormhole attack, Sybil, Denial-of-Service (DoS), etc.
RACCON is oblivious to the underlying V2X communication
technology, i.e., DSRC vs C-V2X.

It also accounts for the natural differences in communication
patterns among a variety of driving scenarios, road conditions,
etc. Finally, our work represents the most comprehensive
experimental evaluation to date on vulnerabilities in CACC,
impact of attacks on target vehicles, and the quality of
resiliency provided by the security architecture. In addition
to showcasing confidence in our approach, we believe the
experimental framework will serve as a roadmap for evaluation
of resiliency in other CAV applications.

The remainder of the paper is organized as follows.
Section II provides relevant background on CACC. We intro-
duce RACCON in Section III and explain its design con-
straints. Section IV presents details of the RACCON architec-
ture and implementation. A unique contribution of the paper is
the extensive evaluation performed to demonstrate the efficacy
of RACCON. Sections V through IX explain our experimental
results and conclude in Section X.

II. BACKGROUND AND RELATED WORK

We begin with some preliminaries on ACC and CACC to
provide the relevant background. The description here (and in
the rest of the paper) makes use of several notations for specific
parameters. We list the notations in Table I for convenience.

A. ACC and CACC Overview

Adaptive Cruise Control (ACC) enables a vehicle £ to auto-
matically adjust acceleration and closely follow its preceding
vehicle P, while maintaining a safe space gap gqafe. Most
ACC implementations target a constant time headway; the goal
is to compute ag such that £ takes at least time Tgap to reach
the same position as P, where Tgap is a design constant. The
safe space gap ggafe is a function of Tgap, the maximum
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Fig. 1. CACC Overview. Acceleration is provided by V2V. Instantaneous g
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Fig. 2. CACC On-board Architecture. Acceleration Computation Mod-
ule (COMP) computes desired acceleration. Actuation control module (ACM)
computes braking pressure and motor torque.

deceleration capability of £, and the velocities vg and
vp. Vehicle £ computes its desired acceleration ag using (1)
the inter-vehicle distance g and velocity op of the preceding
vehicle P measured by RADAR/LIDAR; and (2) the velocity
ve and acceleration ag of £ measured by on-board sensors.
Cooperative Adaptive Cruise Control (CACC) extends ACC
by using the intended acceleration ap of P in the computation
of ag. Vehicle P communicates ap through V2V messages
(Fig. 1). Both ACC and CACC operate in two modes. If g >
8safe» they operate in gap control mode, where £ follows P
as closely as possible; if g < gqafe, they switch to collision
avoidance mode and uses maximum deceleration DZ'@X. The
use of the preceding vehicle’s acceleration enables CACC to
maintain a shorter time headway (THW) than ACC, resulting
in a more efficient roadway utilization.

max
D¢

B. CACC Architecture and a Representative Implementation

Fig. 2 shows an on-board CACC architecture.! While
low-level details vary, all implementations constitute two
components: Acceleration Computation Module (COMP) com-
putes the desired acceleration ag of the host vehicle &;
Actuation Control Module (ACM) manipulates motor output
torque or braking pressure to enforce the desired acceleration.

RACCON is oblivious to the underlying CACC implementa-
tion. However, for our evaluation we use representative CACC
(and ACC) implementations by Amoozadeh et al. [5] shown
below. The safe space-gap ggafe is computed through Equation
1 while Equations 2 and 3 represent the controller operation for
computing the desired acceleration under ACC and CACC sys-
tems, respectively. K,, K,, and K, are acceleration, velocity,

ICACC is often conflated with decentralized connected vehicle platooning.
While CACC is a two-vehicle application, platooning, in general, is a
multi-vehicle car-following application (and can use various communication
paradigms besides CACC) [6], [7], [15], [20], [32]. The scope of this research
is confined to V2X security of CACC. Security of general platoon systems
is out of scope of this paper. However, recent work [8] shows how to extend
some of the ideas discussed here to certain platooning implementations.
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and position constants.

Y- 02
8safe = 0-1vg + 2D§1ax - 2D£1ax + Gmin M
ag = —KaD%1aX + Ky (vp — vg)
+K,(g —ve Tgap — Gmin) @)

ag = Kqap + K, (vp —vg) + Ko(g — nggCap — Gin)
(3)

Amoozadeh et al. specify K, = 0.66, K, = 0.99s~1,
K¢ =4.08572, Gin = lm, Tghp = 1.25, and Tgyp = 0.55s,
as listed in Table I. We use these numbers in the evaluation

of RACCON.

C. Related Work

Over the last decade there have been several high-profile
papers showing sophisticated security compromises of auto-
motive systems [11], [22], [27]. With the emergence of
CAVs, there has been research on secure cooperative appli-
cations such as platooning, intersection management, col-
lision avoidance, lane merge and turn conflict warning,
etc. [10], [12], [21]

Several techniques have been proposed to capture malicious
vehicular nodes disseminating misinformation in a vehicular
ad-hoc network (VANET). Ganesan et al. [14] proposed an
anomaly detection technique that exploits the natural redun-
dancy and the correlation among the measurements from het-
erogeneous on-board sensors and the vehicular communication
messages received. However, such a redundancy may not be
available in emerging CAVs due to the inherent limitations
in sensor technologies and the associated cost considera-
tions. Gyawali et al. [17] developed a decentralized cooper-
ative misbehavior detection system (MDS) using machine
learning to capture falsified position attacks. Each vehicle is
equipped with this MDS and broadcasts its detection result
to all the vehicles in its vicinity. Based on the aggregate
results, a misbehaving vehicle is evicted. Golle et al. [16]
proposed an attack detection and correction technique using a
combination of parsimony assumptions (an attack involving a
few malicious nodes is more likely than an attack that requires
collusion between a large number of nodes) and on-board
sensors to thwart Sybil attacks and the like. Raya et al. [34]
also propose a misbehavior detection system and an eviction
methodology using certificate-based authentication in addition
to consolidating the detection results from all the vehicles.
Misbehaving vehicles are evicted based on majority voting.
However, consensus-based anomaly detection systems relying
on cross-validating data from various vehicles are not suitable
for CACC where with two participating vehicles. Furthermore,
these techniques propose eviction of the misbehaving vehicle
as a mitigation measure which is ineffective for real-time
autonomous driving application where the victim vehicle must
continue making driving decisions even in presence of anom-
alies.

ML-based anomaly detection has been applied to a number
of automotive security problems. Taylor er al. [36] present
anomaly detection of attacks on CAN bus by monitoring

the historical packet timing. Miiter er al. [28] present an
entropy-based anomaly detection for securing in-vehicle net-
works. Weber et al. [42] present an on-line detector based
on machine learning for capturing anomalies in automotive
CAN communication. Additionally, Vatanparvar er al. [40]
present a GAN-based detection and recovery approach for
automotive control systems against cyber-physical adversaries
and demonstrate their solution on battery monitoring system.
ML-based techniques have also been applied for detecting
certain CACC anomalies as described below.

Since CACC serves as a foundation of several CAV appli-
cations, significant attention has been given towards security
of CACC. Abdo et al. [2] present a survey on application level
communication attacks on CACC and their adverse impacts
on the target vehicles. Liu er al. [25], Parkinson et al. [30]
and AbdAllah et al. [1] discuss the challenges in CACC
security and provide research directions. Biron et al. [3] and
Dutta et al. [13] use approaches based on control theory to
detect and correct adversarial sensor-based attacks on CACC.
Heijden et al. [38] propose a misbehavior detection mechanism
based on subjective logic, to validate the position information
exchanged between vehicles. Nunen et al. [39] propose a
control-theoretic model-predictive approach to deal with
short communication failures and packet dropouts in CACC.
Among machine learning approaches, Alotibi ef al. [4]
propose a real-time detection mechanism for platoons,
in the context of a compromised leader reporting falsified
acceleration values to the following vehicles. lorio et al. [18]
propose a misbehavior detection approach for injection attacks
on CACC, based on correlation between various vehicular
motion parameters. Jagielski et al. [19] discuss detection of
attacks that compromise communication or manipulate the
on-board sensor readings, through physics-based constraints
and machine learning. Levi et al. [24] present an event-based
anomaly detection technique for connected vehicles using
Hidden Markov Models. Tiwari et al. [37] describe attack
features that are undetectable at individual time instances but
can be detected from sequential data.

In spite of extensive research, we are not aware of any pre-
vious solution addressing detection of the spectrum of attacks
explored for RACCON. Control-theoretic approaches require
a detailed functional model of the adversarial action. Each
attack type (e.g., flooding, jamming, etc.) requires a different
detailed adversary model. In contrast, training of ML models
in RACCON depends only upon benign V2V communication
data. RACCON’s attack-agnostic defense is effective against
the entire spectrum of V2V adversaries. On the other hand,
related ML-based approaches have only been evaluated under
a specific subset of attacks, e.g., linear or sinusoidal mutation
attacks on acceleration values [4], [19].

III. INTRODUCTION TO RACCON
A. RACCON Usage Model

The usage model of RACCON envisions it as a vehicular
service for connected vehicles. A vehicle can subscribe to the
service only if it includes RACCON on-board architecture (see
Section IV). We refer to the subscribing vehicle as the ego
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vehicle,”“E”; all our evaluations are done from the perspective
of an ego vehicle. When enabled, RACCON collects normal
behavior data during £’s operation. Data from all vehicles with
RACCON installed is periodically uploaded to a trusted cloud
server for progressively refining ML models used by the on-
board hardware; £ periodically updates the on-board system
by downloading the latest ML models. The communication
with cloud is performed when £ is connected to Internet
through a trusted network, e.g., when stationary at the owner’s
residence; on-road connectivity with cloud is not necessary.
During driving operation, if CACC is engaged in &, the
on-board hardware automatically detects anomalies in V2V
communication from the preceding vehicle, and performs
mitigation.

B. Design Considerations

A unique feature that distinguishes RACCON from related
ML approaches for anomaly detection in CACC is real-time
resiliency. For our solution to be viable, a number of design
constraints must be satisfied.

o Basic safety: ML-based solutions can only provide a
“high probability” guarantee on prediction accuracy. Con-
sequently, it is critical that the RACCON mitigation
generates decisions that are safe (under the assumed
threat model), i.e., do not increase the risk of accident
in response to a detected anomaly.

o Flexibility: The solution should work without modifica-
tion, for the entire adversarial spectrum. Hence, control-
theoretic solutions that require detailed customized mod-
els of adversarial functionalities are infeasible.

o Limited Computation and Real-time Requirements: The
security system should operate within the computational
constraints of an automotive platform and meet real time
requirements of CACC application.

o Small Data Problem and Machine Learning Attacks: Any
ML-based prediction system requires a significant amount
of training data. Significant attack data does not exist
in real life, a phenomenon we refer to as the small
data problem. It is critical for the prediction system to
be accurate in the presence of limited anomaly data.
Furthermore, the system must be robust against detector
subversion, i.e., attacks targeted specifically to fool the
prediction system (see Section VIII).

RACCON addresses the resource constraints and real-time
requirements by separating the training of ML models
from on-road prediction. A key observation is that the
computation-intensive component of machine learning is train-
ing predictor models; once a model is created, detection
can be performed within the limited resources of automotive
ECUs. Our system includes a cloud-based methodology for
training prediction models, while the on-board architecture
is responsible for collecting data and performing real-time
prediction. We ensure basic safety by introducing a plausibility
checker which guarantees that RACCON’s mitigation cannot
compromise safety due to V2V anomalies. To address the
small data problem, we observe that while labelled anom-
alous/malicious data is limited, data on normal behavior is typ-
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ically plentiful. Consequently, we train prediction algorithms
to learn normal behavior model (NBM), i.e., the response of
£ to normal (benign) pattern of V2V communications rather
than anomalous behavior. The on-board anomaly detector then
calculates the degree of deviation from NBM as a measure of
the anomaly. Finally, for ensuring resiliency under detection
subversion attacks, we systematically fine-tune the detection
threshold to capture minute anomalies that have a perceptible
effect on the safety or efficiency of the target vehicle. As a
result, stealthy attacks that indeed subvert the detection system
fail to cause any adverse impact on the vehicle.

C. Threat Model

Given our focus on V2V, our threat model assumes that
the attacker can tamper with arbitrary V2V messages. This
includes mutation, denial of delivery, masquerading as a
different vehicular or infrastructure entity, message fabrication,
etc. Our framework is oblivious to the source of the attack: it
can be a rogue preceding vehicle, a compromised ego vehicle
infrastructure component, or an intermediate networking com-
ponent, e.g., denial of message delivery is possible by compro-
mising the software/hardware component of the ego vehicle or
interfering with the communication protocol. We assume that
the RACCON on-board system in the ego vehicle, as well as
the Actuation components it controls, are not compromised.
We also assume that the sensory inputs to the ego vehicle are
not corrupted.” Note that in addition to malformed/dropped
V2V communication messages, the threat model includes well-
formed V2V message (i.e., obeying the underlying DSRC/C-
V2X protocol) with a payload different from the ground truth.
For instance, a rogue vehicle accelerating at 0.5ms~> can
cause a collision by continuously sending legal V2V messages
reporting false acceleration values larger than 0.5ms ™2 for a
sustained period of time. Messages with such corrupted pay-
loads cannot be discarded by simple structural/linting checks
of compliance with the underlying protocol.

IV. RACCON IMPLEMENTATION

Fig. 3 shows the high-level architecture of RACCON.
It includes a cloud component for off-line ML-training and
an on-board infrastructure for real-time resiliency. A key
insight is that since on-board architecture of most CACC
implementations follows the “template” from Fig. 2, it is
possible to develop a streamlined resiliency architecture by
systematically augmenting the template with resiliency com-
ponents. RACCON adds three such components: (1) Anomaly
Detector; (2) Mitigator; and (3) Data Collector.

A. Anomaly Detector

Anomaly detector checks at each instant ¢ whether the
response ag(t) of the COMP module of CACC deviates from
the expected normal behavior; any such deviation is captured

2There has been significant research showing how vehicular sensors can
be compromised [3], [4], [13], [31]. Nevertheless, since the modalities of
compromising sensors and V2V are different, it is reasonable in the context
of detecting V2V anomalies to assume that the sensory inputs are trusted.
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Algorithm 1 RACCON

Algorithm 2 Mitigation

1: procedure RACCON(a;;zV, op, g, gap)
22 ap < ap

3:  if V2V communication is lost then

4: no_comm < TRUE

pred

5. ag’ < Predictor() predictor invoked

6: ag < AccelComp(ap,vp,ve, gap)

7. anmly_flag < Comparator(ag, ag’ )

8: ag <« Mitigator(anmly_flag, no_comm)
9:  throttle, braking < ActuationControl(ag)
10:  DataCollector()

11:  return throttle, braking

as an anomaly to be passed on to Mitigator. The detection
comprises the following two modules.

1) Predictor is a machine learning model that is
trained offline. It estimates predicted acceleration value
agred (t) in real time, taking the same input parameters
as COMP. Predictor can capture contextual/conditional
anomalies, in addition to point anomalies.

2) Comparator computes the deviation between the pre-
dicted value agr“’(t) and ag(t); if the deviation is
beyond a pre-defined threshold, it is detected as an
anomaly. The detection threshold is a function of driving
conditions and typical velocities of vehicles in a driving
environment (See Section VIII).

Remark 1: One can ask why we need an ML model for
the Predictor. After all, since the sequence of velocity values
of the preceding vehicle is accessible to RACCON and these
values are obtained from sensory data which are trusted in our
threat model, one can imagine that it is possible to simply use
this sequence to compute a projected acceleration to replace
the corrupted decision. However, our analysis shows that is
not the case. Acceleration values are in fact highly contextual,
i.e., the same preceding sequence can result in a very different
next value depending on a number of environmental factors.
For instance, a preceding vehicle acceleration value of 2ms~>
may be within the normal range in a highway setting on a
clear day, given its velocity is S0mph. The same acceleration
value given this velocity may very well be anomalous in a
city environment. Therefore, it is critical to capture the unique
context accurately to detect anomalous acceleration values in
different driving environments. Furthermore, anomalies caused
by minute deviations from dynamic normal reference can have
significant impact on safety and efficiency. Purely deterministic
predictor based on kinematics rules is not sufficient to capture
such minute and contextual anomalies. An ML-based predictor
addresses these issues by learning the multi-variate non-linear
distribution of the ego vehicle’s acceleration as a function of
carefully crafted feature set that can accurately capture the
context.

1: procedure MITIGATOR(anmly_flag, no_comm)

2. if (anmly_flag and no_comm are FALSE) then
3: operate in normal mode

4: ag < ag

5. else

6: mitigation mode

7: sensor_sampling_frequency < Fy,x

8: op, gap < vy, gap™™

9: ap < (vp(t) —op(t —1))/0T

10: ag < AccelComp(ap,vp,ve, gap)

11: ag' < RespEst(vp,vg, gap)

12: ag < Plausibility(ag', ag, vp, gap, D" )

13: return ag

14: procedure PLAUSIBILITY(ag', ag, vp, gap, D;g“x)
15: e, (¢

gap?® "gap

< GetTGap(ag', ag, vp, gap, D3 )

16 if 1< > TC & 1 <t & ¢ < TA then
gap gap gap gap gap gap

17: ag < ag corrected CACC output applied
18:  elseif r' >T¢ & t*' <T" then

cap sap cap cap
19: ag < ag' Response Estimator output applied
20:  else
21: ag < ag degrade to ACC

22: return ag

B. Mitigator

For each anomaly captured by the detector, Mitigator com-
putes an alternate response overriding the CACC controller
response ag, to neutralize any potential adversarial impact.
Mitigator comprises the following components.

1) Response Estimator is a pre-trained machine learning
model analogous to Predictor, that generates an esti-
mated acceleration agSt. However, unlike Predictor (and
indeed, COMP), it uses only trusted sensory inputs, e.g.,
relative velocity and position of £ and P.

2) Plausibility Checker ensures that Response Estimator’s
output does not compromise the safety of £, even under

attack.
Algorithm 2 describes the Mitigator functionality. In the

absence of anomaly, sensory inputs are typically sampled at a
lower rate F,ormal- When Mitigator is invoked to handle an
anomaly (lines 7 through 10), the sensor sampling frequency
is switched to a higher value Fmax to generate more accurate
sensory data. 3

The anomalous ap received and ag computed using that
value, are discarded. Instead, ag is calculated approximately
using the rate of change in the velocity of the P from
the previous time step. Lines 14 through 21 describe the

30ne of the advantages of utilizing V2V communication for perception
is to overcome the limitations of sensor systems such as limited accuracy
and higher response times. In some emergent vehicles, ranging sensors are
being designed to be sampled at flexible rates: in the presence of V2V,
sensors sampling can be switched to a lower value Fyorma) Which can be
significantly lower than the maximum rated value Fmax. RACCON includes
optimizations that can exploit such flexibility if available, thereby reducing
incurred computation cost.
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Fig. 3. (a) Vehicle Enabled with RACCON resiliency (b) RACCON On-board Architecture - Blocks with dotted-line boundaries introduced for resiliency.

plausibility checker functionality; it accounts for the worst
case for safety, e.g., sudden halt of P. The resultant Igap is
computed for the scenario where agSt and corrected ag were
applied. The plausibility checker then determines the optimal
choice out of aSSt and the corrected ag that is both safe and
efficient. If it fails to find such a value, the system falls back
to conservative ACC. Consequently, THW never reaches value

less than minimum safe threshold Tgap.

C. Data Collector

The Data Collector collects on-road driving data, which is
aggregated and periodically communicated to the cloud for
improving the ML models (see below). The collected data
includes (1) inputs to the CACC controller, e.g., preceding
vehicle acceleration, inter-vehicle space headway, and the
velocities of the two vehicles; (2) the acceleration value
computed by the COMP module of CACC in response to
these inputs; and (3) an “anomaly flag” to indicate whether
the response is classified as an anomaly by RACCON.

D. Off-Line Cloud Infrastructure

The ML components of RACCON (Predictor and Response
Estimator) are trained offline on trusted cloud servers and
updated periodically, as new on-road CACC data is made
available from the Data Collector modules of different vehicles
subscribing to the RACCON service. We assume that these
communications cannot be corrupted. This is viable in prac-
tice since we do not require real-time communication with
the cloud. Data can be transferred from the vehicles when
a trusted connection to the cloud is available. RACCON-
enabled vehicles securely download the latest instances of
trained Predictor and Response Estimators along with a list of
anomaly thresholds for different driving environments, prior
to CACC engagement in untrusted operating conditions.

V. RACCON SIMULATION SETUP AND EVALUATION
METHODOLOGY

A unique aspect of our work is the extensive experimental
evaluation of RACCON. In addition to showing the viability
of RACCON itself, we believe our experiments provide a
roadmap for evaluation of resiliency in other connected vehic-
ular applications as well.
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Specifications

Attack/Benign
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prec_vehicle
trajectory

ego_vehicle
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Data
Visualization
Module

Naive
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trajectory

ego_vehicle
trajectory

prec_vehicle
trajectory

Attack
Specifications

Fig. 4. Data Generation and Attack Orchestration Flow.

A. Simulation Setup and Data Generation

One of our key evaluation goals is to demonstrate the
efficacy of RACCON under diverse, realistic driving environ-
ments. Programming realistic driving environments as an eval-
uation testbed is a non-trivial exercise. Consequently, rather
than using a traditional simulation environment such as Matlab
or Simulink, we use a physical research simulator, we use a
physical research simulator RDS1000® [35] as our simulation
platform in concert with a software system replicating CACC
COMP controller functionality described in Section II-A.
Fig 4 represents the data generation and attack orchestration
on our customized simulation platform. Physical research
simulators enable flexible configuration of various terrains,
weather conditions, and environmental parameters, and usually
provides pre-configured realistic simulation of lighting, visibil-
ity, and road traction attributes. For our experiments, we used
24 driving environments as a cross-product of the following
parameters: (i) Road terrain (highway, suburban and urban);
(ii) Weather (clear, windy, snowy, rainy); and (iii) Time of day
(day, night). The set of parameters (terrain, weather, and time
of day) are typically used to analyze (human) driving patterns
in the context of safety and congestion analysis [29]. Each of
the 24 datasets corresponds to about 15 minutes of driving time
and constitutes approximately 90, 000 samples collected at a
frequency of 100Hz. The data collected provides the preceding
vehicle trajectory; ego vehicle trajectory is computed using the
COMP controller from Section II-A. We aggregate data from
all environments to create a global dataset, which is split 80-
20 into training and test data. To enable reproducibility of
our experiments, all the data generated from the simulation
platform are available publicly through our project website [9].
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Fig. 5.  RACCON Design and Evaluation Flow.

B. Summary of Experiments

Design and evaluation of CAV application resiliency must
address a variety of orthogonal facets. Note that within the
broad umbrella of ML-based resiliency, the number of archi-
tectural parameters available for a security designer to tweak
is dauntingly large. This includes the choice of ML model,
anomaly threshold, adversary classifications, etc. In addition
to evaluating the quality of infrastructure, the methodology
must enable systematic estimation of these design parameters.
Following is an overview of the experiments performed to
design and evaluate RACCON. Fig. 5 presents the three stages
of experiments involved: (i) Data Validation, (ii) Parameter
tuning, and (iii) Resiliency evaluation. We elaborate on the
experiments in Sections VI through Section IX.

1) Data Validation: For our conclusions to be meaningful,
it is critical that the data we use is realistic. We validate
that the vehicular driving patterns reflected in our simu-
lation data conform to real-world patterns from a public
dataset. (Section VI)

2) Parameter Tuning: Implementing Predictor and
Response Estimator functionalities requires selecting
and tuning the appropriate ML architecture. We develop
a systematic evaluation methodology to address this
problem. (Section VII) Additionally, a key factor in
the effectiveness of RACCON is the identification of
anomaly threshold, i.e., the extent of deviation from
normal behavior pattern that would be classified as
a potential threat. Selecting an appropriate threshold
involves balancing the trade-off between maximizing
attack detection accuracy and minimizing false
alarms.We present a series of experiments to achieve
this balance. At the end of this stage, an approximate
range for optimal threshold is determined which is
further fine-tuned in the next stage. We further fine-tine
the threshold to enable robustness against detection
subversion attacks (Section VIII).

3) Resilience Evaluation: Finally, our evaluation shows
the robustness of RACCON against various V2V attacks
including collision-causing and efficiency degradation
attacks. Various representative instances of known N-day
attacks are also orchestrated on RACCON in our analy-
sis (Section IX).

C. Attack Taxonomy and Orchestration Methodology

One critical challenge in evaluating RACCON is to
devise an evaluation strategy to comprehensively cover the

attack space. Previous works focused on specific attack
instances, e.g., Biron et al. [3] target jamming and flooding
attacks, and Jagielski er al. [19] focus on specific muta-
tion attacks. Such evaluation does not provide adequate
evidence of resiliency against other potentially unknown
attacks.

We address this problem by developing a comprehensive
taxonomy of V2V attacks on CACC (Fig. 6) that is used
to systematically navigate the attack space. The taxonomy
is inspired by threat modeling approaches in hardware and
system security [33], but adapted for V2V adversaries. The
idea is to represent a V2V attack through three features, viz.,
stealth, operation, and impact. This feature combination forms
a holistic characterization of any attack under the RACCON
adversary model. In particular, since the adversary is confined
to V2V communications, the only choices for the adversary are
to (1) mutate an existing message, (2) fabricate a new message,
and (3) prevent the delivery of a message. Correspondingly,
since the message payload constitutes the preceding vehicle’s
acceleration, the impact of an attack can be to (1) increase
the probability of collision (by reporting a lower than actual
acceleration value), (2) reduce efficiency through an increased
headway (by reporting a higher than actual acceleration value),
or (3) creating instability (e.g., through random mutation of
the actual value). We refer to deviations by a positive bias as
collision attacks and deviations by a negative bias as efficiency
degradation attacks. Note that the taxonomy is oblivious to
the mechanics of the attack (e.g., man-in-the-middle, rogue
vehicle, hardware-software modules of the ego vehicle, etc.),
but only considers the effect on V2V messages. For instance,
delivery prevention operation accounts for jamming, flooding,
channel subversion, etc., each of which can be carried out
through a variety of ways. Table II shows how the taxonomy
accounts for different well-known attacks. The focus on attack
characteristics rather than the mechanics enables a compre-
hensive classification of V2V attacks.

We used the taxonomy above to develop a systematic attack
orchestration framework. Attacks are represented as 3-tuples,
representing the three features identified in the taxonomy.
Delivery prevention attacks are realized through intermittent
or absent communication. Mutation and fabrication attacks are
realized through fake acceleration messages that deviate from
ground truth. We consider four different ways for generating
fake accelerations:

ap™ = alf*“ £ b @
ap™ = alh"e £ bt 5)
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TABLE II

REPRESENTATIVE N-DAY ATTACK INSTANCES. ALL RELEVANT COMBINATIONS OF THE OPERATION, FREQUENCY AND IMPACT FEATURES FOR EACH
ATTACK MECHANISM INDICATED BY “v"”

Attack Attack Origin Operation Frequency Impact
Mechanism Preceding Vehicle MITM Mutation Fabrication Delivery Prevention Discrete Cluster Continuous Collision  Efficiency degradation — String Instability
Message falsification v v v v v v v v v
DoS (Jamming) v v v v v v
DoS (Flooding) v v v v v v v v v v
Masquerade v v v v v v v v v
Replay v v v v v v v
Misdirection v v v v v v
Communication Attacks g W . .
E
on CACC £ o M w "
Operation Stealth Impact i — /
(Frequency) £ /N \ e .
) ) ) § o0 00 ol - 20| ) —
%—oz -02 -02 -02 \ _J
= Mutation | Discrete = Collision h [ 5 h 8 5 h s 5 h 8 \5/
Attacks Time (s) Time (s) Time (s) Time (s)
~ g ~ g ~ g () (b) © (@
- Flnjbegtlc;p/ - g[ttmir | Sttnbn'ﬁt Fig. 7. Correlation Between Simulated Data and HighD. Each plot indicates
abrication acks nstability correlation between the acceleration trajectory of an arbitrary vehicle in HighD
~ g h - h g and the simulated vehicle.
Delivery Continuous Efficiency
| Prevention 7| Attacks | Degradation P . . T .
& driving in German highways. The length of individual vehi-
cle trajectories is approximately 15 seconds. We compare
Fig. 6. Taxonomy of Communication Attacks on CACC. acceleration patterns of similar length trajectories collected
from the simulator. Fig. 7 shows sample comparisons for four
fake true 4 pin(f1) ) vehicles from HighD data. The results clearly indicate that the
a: =a sin . . .
7; . P acceleration patterns from the simulator correlate closely with
ap"™ = ap" £ random (7)  HighD data.

Equation (4) represents a constant bias added to the ground
truth. Equations (5) and (6) represent linear and sinusoidal
time-varying biases, respectively. Given a specific combination
of attack features (e.g., discrete mutation attack with collision
as targeted impact), the framework permits attack impact sim-
ulation. We use THW (7gap) as a natural measure to quantify
the risk of collision or the extent of efficiency degradation.
An erratic change in 7gap can also potentially indicate string
instability in the traffic.

VI. DATA VALIDATION

A key challenge with using simulator data is to ensure that
it is realistic. Unfortunately, there is no available repository
of sufficient real-world driving data across different driving
scenarios. Indeed, the lack of available real-world data is
the reason why we rely on simulated data in the first place.
To address this problem, we observe that while sustained data
over a period of time is unavailable, there are datasets that
provide short-duration driving patterns. These snippets can
then be used to corroborate data obtained from the simulator
under similar driving conditions.

We carried out this experiment with HighD dataset [23]
that provides trajectory data corresponding to real vehicles

VII. ML MODEL SELECTION

Viability of RACCON critically depends on the presumption
that the ML components Predictor and Response Estimator can
accurately capture anomalous communication and mitigate the
adverse effects We can formulate the ML regression problem
for these components in two ways: (i) stateless prediction
and (ii) time-series prediction. Cumulatively, these result in
a prohibitively large space ML architecture choices. It is
important to navigate this space systematically and converge
to an optimal architecture. The ML model must address two
orthogonal requirements: (1) avoid false alarms for benign
messages and (2) accurately classify malicious messages
as anomalous. Furthermore, it must be possible to perform
real-time prediction under the computation and storage con-
straints of automotive systems. Finally, since driving patterns
vary according to driving conditions, we must determine
whether each driving environment requires a customized ML
model.

A. Identifying ML Architecture

Since detecting malicious activity essentially involves iden-
tifying anomalous behavior, it is imperative that the model

Authorized licensed use limited to: University of Florida. Downloaded on February 03,2022 at 05:11:10 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BODDUPALLI et al.: RESILIENT COOPERATIVE ADAPTIVE CRUISE CONTROL FOR AUTONOMOUS VEHICLES 9
0.75
—— Ground Truth 0.2
—~ 050 —— TDNN —_
N 0o
¢ 025 %
E E 2
5 0.00 50
1%} o
< —0.25 < _04 —— Ground Truth
: —— TDNN
-0.50
0 1000 2000 3000 4000 5000 6000 7000 8000 0 2500 5000 7500 10000 12500 15000 17500 20000
0.75 0.2
—~ 0.50 —_
N 0o
< 025 $
£ E
5 0.00 5 02
O )
< —0.25 < —— Ground Truth
—0.4 —— FNN
—-0.50
0 1000 2000 3000 4000 5000 6000 7000 8000 0 2500 5000 7500 10000 12500 15000 17500 20000
075 —— Ground Truth 0.2
— 050 —— Random Forest Regressor —
N N
h 0.0
< 025 4
£ £ i
o 000 T 02 Ld
1% 1)
< —0.25 < —— Ground Truth
—0.4 —— Random Forest Regressor
-0.50
0 1000 2000 3000 4000 5000 6000 7000 8000 0 2500 5000 7500 10000 12500 15000 17500 20000
Time (0.01) Time (0.01)
(2) (b)
Fig. 8. Prediction of TDNN, FNN and Random Forest in Benign Environments. (a) Highway-Day-Windy. (b) City-Night-Snow.

TABLE III
ARCHITECTURE AND TRAINING HYPER-PARAMETERS FOR ML MODELS

Model Architecture Hyper-parameters Training Hyper-parameters
No of Hidden Layers 1 No of Training Epochs 20

FNN No of Hidden Units 15 Feature Scaling Minmax
Hidden Layer Activation ReLU* Learning Algorithm SGD*
Window Length 10 No of Training Epochs 20

TDNN  No of Hidden Units 15 Feature Scaling Minmax
Hidden Layer Activation ReLU* Learning Algorithm SGD*

SVM Kernel rbf Feature Scaling Minmax
Regularization 100 Epsilon 0.1

RE No of trees 100 Minimum Sample Split 2

Maximum Depth 10 Split Criteria Gini Index
No of LSTM Layers 1 No of Training Epochs 20

LSTM  LSTM Units 50 Feature Scaling Minmax
Activation function tanh Learning Algorithm Adam

*SGD: Stochastic Gradient Descent
*ReLU: Rectified Linear Activation

learns NBM (i.e., estimating the normal behavior of CACC
controller) accurately for effective performance in adversar-
ial settings. Furthermore, efficiency of a resiliency solution
depends primarily on the prediction accuracy under benign
scenarios, since most of the messages encountered by vehi-
cles in field are likely benign. Our methodology entails the
following steps to determine the appropriate ML architecture
from a potentially large candidate set.

1) Find a set of candidate architectures that can satisfy
automotive resource constraints.

2) Discard candidates that do not provide acceptable pre-
diction accuracy under benign conditions.

3) Of the remaining candidates, select the architecture with
highest accuracy under malicious conditions.

In our evaluations, our candidate set included five architec-
tures: Random Forest Regressor (RF), Support Vector Machine

(SVM), and Feed-forward Neural Network (FNN) are exam-
ined for stateless prediction; Univariate Time Delayed Neural
Network (TDNN) and Multivariate Long Short-Term Mem-
ory (LSTM) network are examined for time-series prediction.
Architectures more sophisticated than LSTM were estimated
to be too complex, given the constraints of automotive systems.
The architectural details of each ML model considered are
presented in Table III. For these candidates, we apply a
two-step triage process based on prediction accuracy in benign
environment. In the first step, we compute the Mean Absolute
Error (MAE) in prediction, under six different driving envi-
ronments, for each ML architecture. This provides a “coarse”
evaluation of accuracy and facilitates identification of a small
subset of candidates (Table IV ). Clearly RF, TDNN, and
FNN show much better accuracy than SVM and LSTM.
In the next step, we examine them more closely to identify
any local “kinks”. Fig. 8 plots the accuracy of Predictor
in two different environments. Note that RF is ineffective
in capturing minute variations in acceleration (indicated by
several flat lines in prediction). This behavior can be attributed
to the fact that the RF regressor ignores minute variations in
the data as noise. Since tracking such variations is critical
for accurate anomaly detection, RF is discarded as a viable
candidate.

Remark 2: One can ask about the completeness of the can-
didate set itself. Our choice is governed by the desire to choose
representatives including traditional ML models as well as
deep learning models, with the over-arching requirement that
the models must be light-weight to facilitate deployment on
automotive on-board platforms. Our results essentially suggest
that a traditional ML model may not be sufficient while a
simple deep learning model is adequate. However, our goal is
not to advocate a specific ML model. Rather; for a specific
underlying CACC controller and given a set of candidate
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Fig. 9. Distribution Box-plots of Detection metrics vs Anomaly Threshold for 24 Driving Environments. Plots (a) through (c) show the distribution of recall,
precision and fl-score under a sinusoidal attack. Plot (d) shows the distribution of false positive percentage in benign conditions.

MEAN ABSOLUTE ERROR IN THE PREDICTION OF EGO VEHICLE ACCEL-

TABLE IV

ERATION UNDER S1X DIFFERENT TEST DRIVING ENVIRONMENTS

Test ML Model
Environment

RF FNN LSTM TDNN SVM

HW-Day-Windy  0.040 0.021 0.155 0.007 0.440
HW-Day-Snow 0.149 0.177 1.640 0.027 1.057
HW-Night-Clear 0.101 0.116 0985  0.021 0.787
SU-Night-Snow  0.075 0.089 1.166  0.010 0.510
SU-Night-Windy  0.199 0.310 1.130  0.035 0.364
City-Night-Windy 0.062 0.073  0.201 0.010  0.987

models, we propose going through the steps described to
systematically identify the optimal architecture.

FNN and TDNN are further examined under simulated
attacks to determine anomaly detection and mitigation efficacy.
In each attack, malicious acceleration values are generated by
adding a bias (constant or sinusoidal) to the ground truth.
Clearly, FNN performs significantly better than TDNN in
mitigating attacks, as indicated by the resultant THW values
in Table V. Based on these results, FNN is determined as
the appropriate ML architecture for the RACCON detection
system.. *

VIII. THRESHOLD SELECTION

RACCON resiliency depends on the choice of the anom-
aly threshold: a threshold higher than optimal may lead to
reduced detection accuracy, while a lower threshold may lead
to increased false alarms in detection. High degree of false
alarms results in inefficient invocation of RACCON’s Plausi-
bility checker. Although plausibility checking computation is
lightweight, the cumulative overhead can become significant
since on-road vehicles operate mostly under benign condi-
tions. An optimal threshold would enable safety as well as
efficiency under adversarial scenarios while incurring minimal
performance overhead in benign conditions. Our threshold
estimation methodology works in three stages:

1) Identify an acceptable threshold range for adversarial
scenarios.

4We believe the better performance of FNN over TDNN is due to the
stateless design of the CACC controller. The stateless FNN model captures the
context well and approximates the controller behavior while time-dependant
regression models learn spurious temporal dependencies making them inef-
fective in detecting anomalous inputs.

2) Compute an approximate threshold value within the
range by accounting for performance overhead under
benign conditions.

3) Fine-tune the value to optimize for detection subversion
attacks.

A. Computing Acceptable Threshold Range

We use three detection metrics: recall, precision, and
fl-score, to estimate the quality of resiliency under attacks.
A high precision value reflects smaller percentage of false
alarms while a high recall reflects smaller percentage of unde-
tected anomalies. A high f1-score (computed as the harmonic
mean of recall and precision) indicates a combination of
high precision as well as recall. We prioritize recall over
precision since it is important to capture any anomaly that can
possibly cause an undesired impact. Fig. 9(a), (b), and (c) show
the distribution box-plots of the three detection metrics over
all 24 environments. The evaluation is carried out under a
clustered sinusoidal attack corrupting about 25% of the V2V
messages. This attack is representative since it includes charac-
teristics of both discrete and continuous attacks, and incorpo-
rates both positive and negative biases within the same attack
instance. Note that recall degrades as the anomaly threshold
increases from 0.1 to 0.5. The best recall values (close to 1)
are observed for thresholds in the range 0.1-0.2; however, the
corresponding precision values are only 0.25-0.35, indicating
higher number of false alarms. Consequently, f1-scores reach
an optimal value (~ 0.4) for smaller values of the threshold
(0.05-0.25) but decrease as the threshold increases.

Remark 3: Observe from Fig. 9 that the fl-score boxes
are not tightly packed around the mean, implying that the
optimal anomaly threshold (based on fl-score) can vary
across environments. Consequently, RACCON supports on-the-
fly adjustment of threshold based on the current environment,
using parameters from maps (e.g., location, terrain, etc.),
ambient weather, and clocks.

B. Performance Overhead in Benign Conditions

Fig. 9(d) illustrates the distribution of false positives under
benign conditions for thresholds ranging 0.1-0.5. Since larger
thresholds result in low recall (see above), values larger than
0.5 are disregarded. As with fl-score, thresholds in the range
0.05-0.25 have a high variance, indicating fluctuation with
changing driving environment. The optimal anomaly threshold
is selected by balancing the trade-off between better coverage
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TABLE V
RESULTANT THW FOR TDNN AND FNN PREDICTORS UNDER FOUR DIFFERENT ATTACKS

Time Cluster Attack (Bias:1.5) Cluster Attack (Bias:-0.8) Continuous Attack (Bias:0.1) Continuous Attack (Bias:sin(0.05t))
Headway FNN TDNN Naive CACC FNN TDNN Naive CACC FNN TDNN Naive CACC FNN TDNN  Naive CACC
THW < 0.55s 0%  30.85% 80.64% 0% 0% 0% 0%  63.22% 63.22% 0%  20.47% 21.14%
THW: {0.55 — 0.75s} 100% 65.81% 19.36% 100%  55.89% 34.24% 100%  36.78% 36.78% 100%  77.97% 78.86%
THW >0.75s 0% 3.34% 0% 0%  44.11% 65.76% 0% 0% 0% 0% 1.56% 0%
TABLE VI

ANOMALY THRESHOLD AND SUBVERSION DETECTABILITY UNDER ATTACKS OF VARYING STEALTH FACTOR

. Subversion Detectability Index
Anomaly False Positives

Threshold Benign Condition Continuous (Tolerable bias: 0.04) Cluster (Tolerable bias: 0.1) Discrete (Tolerable bias: 5.0)
Min. constant bias  Min. sinusoidal bias Min. constant bias Min. sinusoidal bias Min. constant bias Min. sinusoidal bias
0.25 0% 0.35 0.25sinft 0.4 0.35sinft 0.5 3sinft
0.2 2.96% 0.3 0.2sinft 0.3 0.3sinft 0.35 1sinft
0.18 10.74% 0.3 0.2sinft 0.3 0.3sinft 0.35 0.35sinft
0.15 11.91% 0.01 0.01sinft 0.03 0.02sinft 0.25 0.25sinft
0.13 21.2% 0 0 0.0001 0.0001sinft 0.01 0.01sinft
0.12 58.1% 0 0 0 0 0 0
TABLE VII

RESILIENCY EVALUATION UNDER COLLISION ATTACKS

Spurious communication: Linear function of ground truth

Continuous Attack (linear bias= 0.3t) Cluster Attack (constant bias= +0.8) Discrete Attack (constant bias= +2.0)
RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC
THW < 0.55s 0% 0% 84.54% 0% 0% 73.83% 0% 0% 0%
THW: {0.55 — 0.75s} 100% 54.01% 15.46% 100% 51.13% 26.17% 100% 55.28% 100%
THW >0.75s 0% 45.99% 0% 0% 48.86% 0% 0% 44.72% 0%
Collision No No Yes No No Yes No No No

Spurious Communication: Sinusoidal function of ground truth

Continuous Attack (bias= 0.5sin(0.02t)) Cluster Attack (bias= 0.8sin(0.03t)) Cluster Attack (bias= sin(0.05t))
RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC
THW < 0.55s 0% 0% 33.03% 0% 0% 12.60% 0% 0% 3.81%
THW: {0.55 — 0.75s} 100% 54.64% 66.97% 100% 54.81% 87.40% 100% 53.94% 96.19%
THW >0.75s 0% 45.36% 0% 0% 45.19% 0% 0% 46.06% 0%
Collision No No Yes No No No No No No
TABLE VIII

RESILIENCY EVALUATION UNDER EFFICIENCY DEGRADATION ATTACKS

Spurious communication: Linear function of ground truth

Continuous (linear bias= -0.3t) Cluster (constant bias= -0.8) Discrete (constant bias= -2.0)
RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC
THW < 0.55s 0% 0% 0% 0% 0% 0% 0% 0% 0%
THW: {0.55 — 0.75s} 100% 55.42% 21.55% 100% 55.25% 18.85% 100% 54.83% 100%
THW >0.75s 0% 44.58% 78.45% 0% 44.75% 81.15% 0% 45.17% 0%
Maximum THW 0.65s 1.56s 1.79s 0.65s 1.55s 1.54s 0.65s 1.54s 0.70s
Spurious Communication: Sinusoidal function of ground truth
Continuous Attack (bias= -0.5sin(0.02t)) Cluster Attack (bias= -0.8sin(0.03t)) Cluster Attack (bias= -sin(0.05t))
RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC RACCON Degrade ACC Naive CACC
THW < 0.55s 0% 0% 0% 0% 0% 0% 0% 0% 0%
THW: {0.55 — 0.75s} 100% 54.67% 79.97% 100% 54.14% 94.01% 100% 54.49% 98.35%
THW >0.75s 0% 45.33% 20.03% 0% 45.86% 5.99% 0% 45.51% 1.65%
Maximum THW 0.65s 1.56s 0.83s 0.65s 1.55s 0.79s 0.65s 1.54s 0.75s

under attack conditions and minimal overhead in benign (recall close to 1 and precision close to 0.4). We eliminate
conditions. thresholds less than 0.1 to keep the false positives below

As an example, we obtain the optimal threshold for the 30%, refining the range to 0.13-0.25. This is fine-tuned after
environment Highway-Day-Windy as follows. First, we deter- evaluation under detection subversion to obtain the optimal
mine the ballpark range 0.1-0.25 that gives the best fl-score choice 0.15 (Section VIII).
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C. Threshold Fine-Tuning: Detector Subversion

The fact that RACCON is an ML-based framework can
make it vulnerable to adversaries subverting the learning and
prediction systems themselves. Such adversaries can create
anomalous data that is nevertheless accepted as normal by the
detector, thereby bypassing any mitigation against the attack.
We call these attacks detector subversion.

Obviously, a very low selection of anomaly threshold can
ensure high robustness against detector subversion. However,
recall from Section VIII that a low anomaly threshold can
result in high false alarms. Consequently, we fine-tune the
threshold value within the ballpark range obtained from
Section VIII, balancing the trade-off. We use the following
parameters in our analysis.

e Tolerable Bias: This is the maximum bias added to the
ground truth, beyond which there is a perceptible impact
on the target vehicle’s safety or efficiency.

o Subversion Detectability Index: This is the minimum bias
added to ground truth, that can be successfully captured
by the detection system.

o False Positives in Benign Conditions: This is the per-
centage of normal communication messages, incorrectly
tagged as anomalies by RACCON in benign operating
conditions.

The goal is to determine the optimal anomaly threshold which
enables the detection of every attack beyond the tolerable bias,
while keeping the number of false positives small.

Table VI presents results for threshold choices for a repre-
sentative driving environment, Highway-Day-Windy. We deter-
mined the approximate optimal threshold range for this envi-
ronment to be 0.12-0.25 previously. To fine-tune for resiliency
under detector subversion, we determine the tolerable bias for
attacks of varying stealth factor; note that it is much smaller
for a continuous attack (0.04) than a discrete attack (5.0). For
optimal threshold, the subversion detectability index should
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Fig. 11.
-0.06t). (c) Discrete Attack (constant bias -2.5).

be less than the tolerable bias for each class of attack. The
highlighted row shows the optimal choice of the anomaly
threshold (0.15), since it has the minimum fraction of false
positives out of all the choices providing acceptable subversion
detectability.

IX. RACCON RESILIENCY EVALUATION

We performed extensive evaluation of RACCON resiliency
using our flexible attack orchestration framework. Note
that related work on detecting V2V compromises (see
Section II-C) does not include real-time mitigation; the only
implied mitigation entails degrading to ACC (conservative
controller action relying only on the trusted sensor systems).
To provide a fair evaluation of RACCON, we compare it
with (1) Naive CACC with no resiliency; and (2) CACC
that degrades to ACC as mitigation. One way to view this
evaluation is as a comparison between two extremes for safety-
compromising attacks: the naive CACC controller is efficient
but at the cost of safety, while degradation to ACC provides
safety guarantee but at a significant efficiency cost (since ACC
headway is much larger than CACC). The goal of RACCON

RACCON Resiliency under Sample Efficiency Degradation Attacks. (a) Continuous Attack (constant bias -0.1). (b) Cluster Attack (linear bias

is to enable optimal efficiency while guaranteeing safety,
by maintaining THW in the range 0.55-0.75s.

A. Collision and Efficiency Degradation Attacks

Tables VII and VIII show the numerical results for evalu-
ation under six representative collision and efficiency attack
scenarios. Figs. 10, 11 and Fig. 12 provide visual represen-
tation of RACCON mitigation. We showcase attacks that are
impactful yet hard to detect due to small biases or infrequent
malicious activities. In each table, we present a comparison
between RACCON, mitigation degrading to ACC, and naive
CACC with no resiliency. Tabular entries indicate the amount
of time (as percentages of total driving time) during which the
vehicle experiences THW values falling within a certain range.
Based on these results we make the following observations.

o Collision Attacks: RACCON successfully mitigates the
collision attacks, maintaining THW within the optimal
range of 0.55-0.75s at all times. CACC without any
resilience results in unsafe headway of less than 0.55s,
and eventually, collision in some cases. Degrading to

Authorized licensed use limited to: University of Florida. Downloaded on February 03,2022 at 05:11:10 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

1.0

Prec Acc (ms”™-2)
.CI> o o
wv o w

|
Lo
o

-1.5

Predictor Deviation
[ N w ey w ()}
o o o o o o

o

1.4}

1.2

1.0

Time Headway

(a)

(b)

| —— True Prec_Acc — True Prec_Acc -2
—— Malicious Prec_Acc 2 —— Malicious Prec_Acc
—— Predictor Deviation 1001 predictor Deviation
---- Anomaly Threshold ---- Anomaly Threshold 120
80
100
60 80
60
40
40
0
2 20
0 T 1 t 1 T 0
———— THW in Benign Conditions 14F -—-- THW in Benign Conditions
Naive CACC under attack —— Naive CAC(; .und.er attack 1.25
— RACCON Mitigation 12l RACCON Mitigation Loo
1.0 M
0.50
0.8
0.25
0.6 A Ap—aC 0.00
2500 5000 7500 10000 12500 2500 5000 7500 10000 12500
Time (0.01s) Time (0.01s)

—— True Prec_Acc
—— Malicious Prec_Acc

—— Predictor Deviation
---= Anomaly Threshold

L | | L L

---- THW in Benign Conditions
—— Naive CACC under attack
—— RACCON Mitigation

5000 7500 10000 12500
Time (0.01s)

2500

(©)

Fig. 12.  RACCON Resiliency under Sample Sinusoidal Attacks. (a) Continuous Attack (bias sin(0.1t)). (b) Cluster Attack (bias -2sin(0.3t)). (c¢) Continuous
Attack (bias 2.5sin(0.2t)).

TABLE IX

RESILIENCY EVALUATION UNDER RANDOM MUTATION AND DELIVERY PREVENTION ATTACKS

Random Mutation Attacks

Continuous (random bias=-2.0,2.0)

Cluster (random bias=-2.0,2.0)

Discrete (random bias=-2.0,2.0)

RACCON  Degrade ACC Naive CACC RACCON Degrade ACC  Naive CACC  RACCON Degrade ACC  Naive CACC
THW < 0.55s 0% 0% 0% 0% 0% 0% 0% 0% 0%
THW: {0.55 — 0.75s} 100% 54.07% 100% 100% 55.69% 100% 100% 55.20% 100%
THW >0.75s 0% 45.93% 0% 0% 44.31% 0% 0% 44.80% 0%
Max THW 0.65 1.54 0.73 0.65 1.55 0.65 0.65 1.54 0.65
Delivery Prevention Attacks
Intermittent (frequency= 0.2Hz, duration=1.5s) Intermittent (frequency= 0.1Hz, duration=2s) Intermittent (frequency= 0.2Hz, duration=>5s)
RACCON Degrade ACC Naive CACC RACCON Degrade ACC  Naive CACC  RACCON Degrade ACC  Naive CACC
THW < 0.55s 0% 0% 0% 0% 0% 0% 0% 0% 3.29%
THW: {0.55 — 0.75s} 100% 54.86% 100% 100% 54.88% 100% 100% 54.92% 96.71%
THW >0.75s 0% 45.14% 0% 0% 45.12% 0% 0% 45.08% 0%
Max THW 0.65 1.54 0.65 0.65 1.54 0.65 0.65 1.54 0.66

ACC prevents collisions, but THW is above 0.75s for

over 40% of the attack duration.

« Efficiency Degradation Attacks: With RACCON, the

maximum THW is around 0.65s. Without resilience,
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Fig. 13. RACCON Resiliency under Random Mutation and Delivery Prevention Attacks: Comparison between RACCON and naive CACC with no resiliency,
in terms of resultant THW; (a) Continuous Attack (random bias -1.5, 1.5); (b) Cluster Attack (random bias -2.0, 2.0); (c¢) Intermittent communication.

THW reaches 1.8s. Degrading to ACC also results in
THW as high as 1.5s.

Remark 4: In addition to the evaluations above, it would
have been compelling to provide a direct comparison of
RACCON with related work. Unfortunately, as mentioned
in Section II-C, we are aware of no other research that
targets real-time resiliency of CACC against V2V attacks.
In particular, related approaches [4], [19] to anomaly detec-
tion do not include mitigation approaches, and implicitly
assume degradation to ACC as a potential mitigation. Nev-
ertheless, we thought it illustrative to compare RACCON
with anomaly detection algorithms of Jagielski et al. [19] and
Alotibi et al. [4]. To achieve this, we orchestrated 9 different
sinusoidal attacks as described in their work. Fig 12 and
Tables VII and VIII show that RACCON resiliency effectively
mitigates both collision-causing and efficiency degrading sinu-
soidal attacks by maintaining safe and efficient time headway
during the entirety of each attack instance. Note that the

implicit mitigation of degrading to ACC, on the other hand,
would result in a significant loss in efficiency by increasing
THW to the ACC values (e.g., 1.2s from 0.55s).

B. Random Communication and Delivery Prevention Attacks

We also studied effects of random message mutation and
delivery prevention (Table IX and Fig. 13). These attacks have
much less impact than Collision and Efficiency Degradation
attacks. A critical aspect of resiliency evaluation is to ensure it
does not incur high mitigation overhead. Both RACCON and
naive CACC maintain fgap within the ideal range at all times;
however, degrading to ACC incurs significant efficiency loss.

C. N-Day Attacks

Attacks orchestrated in Sections IX-A and IX-B systemati-
cally cover the taxonomy discussed in Section V-C. Since our
taxonomy comprehensively represents the whole V2V attack
spectrum, it is established from our evaluation results that
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Fig. 14. RACCON Resiliency under Representative N-day Attacks. (a) MITM Attack with continuous sinusoidal bias. (b) Flooding Attack with cluster

random bias. (c) DoS Attack with intermittent communication.

RACCON is robust against any arbitrary V2V attack under
the threat model, including both known (N-day) and unknown
(0-day) attacks. Nevertheless, it is illustrative to directly eval-
uate RACCON against some known attacks. In this section,
we consider three well-known attacks, e.g., Man-in-the-Middle
(MITM), Denial-of-Service (DoS) through Jamming, and DoS
through Flooding.

o MITM Attack: We instantiate an MITM adversary that
mutates the preceding vehicle acceleration values by
adding a continuous sinusoidal bias, using the function
0.8 sin 0.05¢.

o DoS through Jamming: We implement a DoS attack
in which the adversary jams the communication channel,
preventing delivery of (legitimate) V2V messages. The
channel is jammed for 2 seconds once every 20 seconds.

o DoS through Flooding:. The adversary floods the com-
munication channel with fabricated packets that interfere

with delivery of legitimate communication. We add fab-
ricated packets in bursts, once every 10 seconds, for a
duration of 2 seconds.

Fig. 14 illustrates RACCON mitigation efficacy under these
attacks. It maintains Igap close to ideal at all times, while
CACC without resiliency results in 7gap of less than 0.55s
for MITM. Mitigation based on fallback to ACC results in
significant efficiency degradation for the jamming attack.

X. CONCLUSION AND FUTURE WORK

We have presented what we believe is the first compre-
hensive resiliency framework for CACC against V2V attacks.
Our work uses machine learning to predict the ego vehicle’s
responses, and capture communication anomalies in real-time,
based on deviation between the predicted and actual responses.
We also developed a robust real-time mitigation technique
that can effectively nullify the adverse effects of anomalous
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communication. A unique feature of this mitigation is to
guarantee safety while preserving efficiency. Unlike systems
that degrade to ACC in response to an anomaly, our solution
enables the target vehicle to safely engage in CACC even
under attack. We have also developed one of the most com-
prehensive experimental frameworks for resiliency evaluation,
based on a taxonomy of adversaries capturing the entirety of
the V2V attack spectrum. Our experiments clearly demonstrate
the viability of RACCON as a means for providing resiliency
in CACC under V2V attacks.

A unique aspect of RACCON is real-time resiliency, con-
trasting with related works that target offline detection. This
requirement has guided several components of RACCON’s
design and evaluation. First, while all related ML-based anom-
aly detection approaches focus on identifying discrepancies
in controller inputs, RACCON is designed to monitor the
controller’s response. This permits RACCON to correct the
erroneous response appropriately and minimize the impact
of anomalous (and potentially malicious) inputs on the ego
vehicle. Second, the need for resiliency requires us to deter-
mine the severity of the attack: an attack is impactful and
needs mitigation if it results in the ego vehicle performing
an unsafe or inefficient action. This requirement has also
led to the understanding of the trade-offs between stealth
and impact, e.g., clustered and continuous attacks are more
impactful (and less stealthy) than discrete attacks. Third,
real-time requirements together with resource constraints of
automotive platform force consideration of trade-off between
accuracy and computation efficiency of ML models. Finally,
the trade-off between robustness and performance has guided
our methodology for anomaly threshold computation.

We should note however that RACCON is not a panacea.
In particular, there are inherent challenges in adopting any
ML-based solution. Careful data collection and processing
required for ML-model training is resource-consuming and
data availability is limited. We have demonstrated how to
address these challenges through: (i) customized simulation
platform based on physical automotive simulator for realistic
data collection and (ii) effective evaluation mechanisms based
on a comprehensive attack taxonomy derived from the adver-
sary model.

In future work, we will explore extension of RACCON
to other connected car applications. We will also augment
RACCON with existing techniques for additionally detecting
sensor attacks, resulting in more robust CACC.
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