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Several recent studies have employed item response theory (IRT) to rank incorrect responses to
commonly used research-based multiple-choice assessments. These studies use Bock’s nominal response
model (NRM) for applying IRT to categorical (nondichotomous) data, but the response rankings only
utilize half of the parameters estimated by the model. We present a mathematical argument for why this
practice of using half of the NRM parameters when ranking responses is appropriate based on the primary
question of multiple-choice tests: How can we use students’ responses to test items to estimate their overall
knowledge levels? We provide additional motivation for this practice by recognizing the similarities
between Bock’s NRM and the probability function of the canonical ensemble with degenerate energy
states. As physicists often do, we exploit these mathematical similarities to gain new insights into the
meaning of the IRT parameters and a richer understanding of the relationship between these parameters and

student knowledge.
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I. INTRODUCTION

Item response theory (IRT) are mathematical models
used to link examinees’ responses to items on a test to a
latent trait (students’ ability or overall knowledge), via item
response functions. IRT models assume that the latent trait
(student’s ability) is unknown but organized on a con-
tinuum, with the goal to use students’ responses on a test to
measure students’ latent trait and determine their position
on the latent trait continuum. IRT has become a popular
method for analyzing data from multiple-choice research-
based assessment instruments, with the latent trait €
interpreted as a student’s overall understanding of the topic
being tested (e.g., force and motion) [1-12]. Traditionally,
IRT analyses model the probability of a correct response to
an item as a function of item properties (such as item
difficulty) for students with different latent trait values.

One of the most common and basic IRT models is the
two-parameter logistic (2PL) model, which defines the
probability that a student will answer a particular item j
correctly as a function of two item parameters, based on the
student’s latent trait 0
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where b; and a; are the IRT difficulty and discrimination
parameters for item j, respectively. The difficulty (location)
parameter is the point on the latent scale with median
probability. The discrimination (slope) parameter deter-
mines the rate at which the probability of choosing the
correct answer changes given ability levels. Thus, items
with high discrimination can be used to better map
students’ ability along the latent continuum.

The 2PL model may be reparametrized as

ea./0+dj

Pj(llg) 1 + 4i9+d;

(2)

by defining d; = —a;b; [13]. In the psychometric litera-
ture, a; in Eq. (2) is often referred to as the “slope”
parameter, and d; is often referred to as the “intercept”
parameter due to the exponent a;0 + d; being a linear
function of 6.

Item response theory models have become popular tools
in test development and assessing students’ knowledge
[1,4-6,9,14-20]. Ding and Beichner elevated awareness of
IRT analyses by including them among a suite of methods
for analyzing multiple-choice data more deeply than had
been traditionally done in physics education research [2].
Wang and Bao used a three-parameter logistic model (3PL,
including a “guessing” parameter) to analyze data from the
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Force Concept Inventory (FCI) [21] and showed that the
IRT latent trait is somewhat correlated with overall test
score [3]. Stewart et al., Yang et al, and Eaton and
Willoughby have used multidimensional 2PL. models to
examine the substructure of tests such as the FCI and Force
and Motion Conceptual Evaluation (FMCE) [22] using
both exploratory and confirmatory factor analyses [7,8,23].

In 1972, Bock introduced the polytomous IRT nominal
response model (NRM) to analyze responses to items with
two or more nominal unordered categories [24]. Bock’s
NRM expresses “the probability that a subject of ability 8
will respond to item j in category k” as

e“k,j€+dk,j

Pj(k|9) = W’ (3)
i=1€¢" '

where the summation in the denominator is performed over
all n response options for a given item j [24]. Unlike IRT
models for dichotomously scored items that treat all
incorrect response options as being equally incorrect by
grouping them into a single category, Bock’s NRM treats
each response separately. The calculation of @ in the NRM
incorporates which incorrect responses students select,
thereby acknowledging that different incorrect responses
may indicate different levels of understanding. The a; ; and
dy ; parameters estimated using the NRM are determined
for each response option & for a given item j, and do not
have the same interpretation as in the dichotomously
scored models [25,26]. Additionally, the set of {ay. jrd, j}
parameters must include anchoring conditions to be
able to uniquely determine the parameter values (e.g.,
ag; =dy; =0, V j) [24]; therefore a single a; ; or dy ;
value cannot be considered high or low without comparison
to the entire set of values for that item [27].

Since Bock’s NRM does not assume ordered response
categories, it can be used to empirically rank response
categories where ordering of responses is of interest, and
parameter values can be used to rank responses based on
their relationship to the latent trait € [25]. Ranking all
responses to multiple-choice items can have many benefits
for representing students’ understanding of the material
being tested, especially students who choose different
incorrect responses before and after instruction. These
rankings could be used to assign partial credit for responses
that are not completely correct [11]. They could also be
used in other analyses, such as transition matrices and
consistency plots, which show how students change their
responses to test items from pre- to postinstruction without
explicitly assigning scores [28,29]. Well-established rank-
ings of responses could inform interpretations of test results
by showing whether students selected better, equivalent, or
worse responses after instruction than they did before.

The use of a;; parameters estimated by the NRM for
ordering and comparing item responses based on their
relationship to the latent trait € is well established in the

psychometric literature. This is based on the idea that a
higher value of a; ; indicates a response that is more closely
correlated with higher values of the latent trait and, there-
fore, better than a response with a lower value [30]. Wainer,
Sirecki, and Thissen presented an argument for ordering
responses based on the a; ; parameters by using the odds
ratio between two different response options [31]. Bock
and Moustaki paraphrased this work by stating that,
“increasing @ implies greater probability of response in a
higher category rather than lower if and only if the [a; ]
parameter of the higher category is greater than that of the
lower” [30]. This is consistent with the interpretation of the
ay,; parameters in other works, but the rationales focus on
comparisons between pairs of response options rather than
ranking the set of all responses to an item [24,32,33].

Smith, Louis, Ricci, and Bendjilali used an IRT nested-
logit model that combines the 2PL with the NRM to
analyze and rank incorrect response options to FMCE items
based on the a; ; parameters [10]. Suh and Bolt developed
the 2PL-NRM nested-logit model to analyze an item using
the 2PL to determine the probability of selecting the correct
response, and using the NRM to determine the relative
probability of selecting each of the incorrect responses [34].
Eaton, Johnson, and Willoughby also used the 2PL-NRM
to rank incorrect responses to FCI items, and suggested a
method for assigning partial credit based on the a;
parameters [11].

In this paper, we provide new insights into why the
ordering of the a; ; values from the NRM may be used as a
proxy for ordering the “correctness” of each response
option. In Sec. II, we provide a new mathematical rationale
for ordering responses using a; ; as a proxy for correctness
under certain assumptions. In Sec. III, we propose an
analogy between the NRM and a well-known physical
model: the canonical ensemble with degenerate energy
states. Thinking about IRT parameters and variables in
terms of familiar quantities like energy and temperature
provides conceptual insight that augments the purely
mathematical arguments in Sec. II. We show that the
ay; parameter may be considered analogous to the
“energy” of response k, with the correct response consis-
tently having the highest energy. The physical interpreta-
tion of NRM parameters has been briefly introduced by
Smith et al. in the supplemental material of Ref. [10]. In the
current work, we develop this further by providing addi-
tional details about the analogy and exploring how we can
extend it by considering quantities analogous to thermo-
dynamic variables, such as average energy.

II. MATHEMATICAL RATIONALE FOR USING
IRT PARAMETERS TO RANK RESPONSES

The IRT probability expressions in Egs. (1)—(3) center on
modeling the probability of a student selecting a particular
response, given the value of their latent trait. In practice,
however, the goal of testing is to use the responses students
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TABLE L.

The set of a; ; and d; ; parameters for item 14 of the FMCE calculated from our dataset. These values are the average of

10 000 repeated analyses with randomly generated starting values. The final row is the fraction of our dataset that gave each response:
Ny ; is the number of students who chose response & for item j, and N is the total sample size (22 263).

A B C D E F G H
Q.14 -0.35 -2.07 -2.10 -3.28 1.73 —2.58 -2.34 0.77
dy 14 3.97 0.31 0.98 -2.04 1.14 —1.89 -2.10 0.32
Nis/N 0.585 0.035 0.075 0.013 0.243 0.007 0.005 0.021

select to determine their overall understanding of the test
material. It is, therefore, useful to consider the probability
of a student having a particular value of the latent trait 6,
given their selected responses to test items.

A. Bock’s nominal response model and Bayes’ formula

Bayes’” formula provides a method for determining our
desired probability of a student’s latent trait € given a
specific response k to item j,

P;(kl0)P(0)

where P;(k|@) is the NRM probability function from
Eq. (3), P(0) is the probability distribution of the latent
trait 6, and P;(k) is the probability that a student will select
response k to item j independent of 6.

Equation (3) may be used to rewrite Eq. (4) as

e j0+dy
P;(0]k) =

;1:1 ea"-f9+d"'j : <5)

A theoretical distribution for P;(k) is not known; however,
because this does not depend on 6, it does not affect the
shape of P;(6|k) but only the scale. A common choice for
P(6) is the standard normal distribution, with a mean of
zero and a standard deviation of 1 [33].

B. An example from the FMCE

We can use a large dataset to determine the response-
specific set of parameters {ay ;. d;} using IRT NRM
analyses. We may then use these parameters to explore how
the selection of each response option for a particular item
relates to the probability that a student has a particular
level of understanding 6. As an illustrative example, Table I
shows the parameter values for each response option for
item 14 on the FMCE. The data used to determine these
parameters consisted of a combination of 22263 pretest
and post-test responses from 14200 students. Of these,
6336 response sets were obtained from the PhysPort
DataExplorer database [35], 6912 response sets were
collected via the Learning About STEM Student
Outcomes (LASSO) website [36], and 952 response
sets were collected at four different colleges and univer-
sities from across the U.S. All IRT analyses were

performed using the MIRT package in the R computing
environment [37-39].

To get a sense of the variability in the estimated
parameter values of the model, we used the MIRT function’s
option to generate random values for the initial parameter
estimates (GenRandomPars = TRUE), and we repeated the
analysis of each dataset 10000 times [40]. The values in
Table I are the average values of model parameters using
these 10 000 runs.

Figure 1 shows the category characteristic curves
(CCCs) for item 14 derived from Eq. (3), which shows
P14(k|@), the probability of selecting a particular response,
given a student’s latent trait 6. As expected, the probability
of selecting the correct response E is a monotonically
increasing function of @ that asymptotically approaches 1: a
higher level of understanding is always associated with a
higher probability of choosing the correct response. The
most common response is A, shown by higher probabilities
than any other responses over the middle range of @ values,
and the least common responses are F and G. Response D is
notable for having a distinctly negative slope for all values
of 0, indicating that the probability of choosing response D
is inversely related to students’ overall understanding. For a
given value of 6, the CCCs represent the probability of
selecting a particular response category for an item. Thus,
given 6, the probabilities add to 1.

1.00
0.751

0.501

P(KI6)

0.25

0.004

FIG. 1. IRT category characteristic curves showing the prob-
ability of selecting a particular response for item 14 of the FMCE,
given a students’ latent trait €. Curves were generated from
Eq. (3) using the {a; 14.d; 14} parameters from Table L
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FIG. 2. Probability distributions for a student having a par-
ticular value of 6, given that they chose one of the response
options to item 14 on the FMCE. Curves were generated from
Eq. (5) using the parameters from Table I, and assuming a
standard normal distribution for P(@) and values of P4 (k) that
normalize the probability distribution.

Using parameter estimates from Table I, and assuming a
standard normal distribution for P(@), Fig. 2 shows the
probability density P;,4(0]k) from Eq. (5) for each response
to item 14 on the FMCE, i.e., the probability of a student
having a value of the latent trait 6, given that they chose a
particular response k. As expected, the probability distri-
bution of @ given the correct response option E, P 4(6|E),
peaks at higher values of 6 than any other distribution, with
a mode at 6 ~ 1.2. This means that students who choose
response E are more likely to have higher understanding of
the topic being measured by the test item than students who
choose any other response. Conversely, students who select
response D are more likely to have lower values of € than
students who choose any other responses, with the peak of
the P14(0|D) distribution occurring around 6 ~ —1.7.

Comparing Fig. 2 and Table I shows us that the order of
the central peaks of each P 4(6|k) follows the order of the
set of {a; 14} values. The order of the set of {a; 4} as
displayed in Table I in decreasing order is E, H, A, B, C, G,
F, and D. The same analysis was performed for the
remaining items on the FMCE and found that the order
of the modes of the @ distributions for each response
category follows that same order of the a;; values
estimated by the nominal response model (data not shown).
Examining the order of modes of the P;(6|k) using the
FMCE data for each response category supports the idea of
using the a, ; parameters to rank incorrect responses.

C. Relating parameter values to the probability
density of the latent trait

To further explore the relationship between the value of
a, and the location of the maximum of P(6|k), we use
Eq. (5) to identify the location of the peak for each curve
0 ,«- For simplicity of notation, we have removed the label
“j” from the following expressions with the understanding

that parameter values are specific for each item. At the
peak, the slope of each curve must be zero:

oP(0|k)
90

=0 (6)

0k

The derivative of the expression in Eq. (5) is

OP(0|k)

_ P'(0)
o = POIK) [

P(6)

+ak—iarP<r|e>], )

where the summation index in the last term has been
changed to r to avoid confusion with the undetermined
index k. (Additional details of this mathematical derivation
are included in the Supplemental Material [41].) The last
expression of Eq. (7) is the (weighted) average value of a,
as a function of 6. Equation (7) can be rewritten as

OP(0]k)
0

P'(0)
P(9)

= P(6]k)

+ar = (ar) |- (8)

Putting the results from Eq. (8) into Eq. (6) yields the
relationship

P,(epk>

ag + P(6,) - <ar>(9,,k) =0, )
= @) = g (10

To explore the behavior of (a,) ), consider the derivative
of (a,) (g with respect to 6.

da, 0 (I a,enttd:
ég> = % (r 1 ;L: eai9+d,»> (11)
= {a7) ) = (@) (12)

= ((a, - <‘1r>(9))2>. (13)

This is the variance of a, as a function of 6, which
must be positive. (Additional details of this mathematical
derivation are included in the Supplemental Material [41]).
This implies that (a,) ) is a monotonically increasing
function of .

Most IRT models developed for educational testing
purposes assume that the latent trait has a standard normal
distribution for the purposes of estimating the model
parameters [42—44]. Under this assumption of normality,

P'(0)
P(0)

= -0, (14)
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and Eq. (10) becomes

ax = (a,),,) + Opi- (15)
This implies that higher locations of the peak value 6, are
directly associated with higher values of a;. Given that
higher peak 0, values are associated with higher levels of
understanding (and vice versa), this provides a mathemati-
cal argument for using the a; parameters as a proxy
measure of students’ understanding. This, in turn, justifies
using the a; parameters to rank responses.

Figure 2 shows us that the distribution of each P4(60|k)
is fairly broad. Consequently, a student’s response to a
single item provides an imprecise measurement of 6. In
order to increase this precision, a student’s responses to
many items should be considered together: generally, the
maximum likelihood method is used to estimate a student’s
ability 0 using the IRT model and student responses to test
items. This is consistent with common practice, in that
multiple-choice assessments typically contain many items
for measuring student knowledge and understanding.

III. A PHYSICIST’S INTERPRETATION
OF THE PARAMETERS IN THE NOMINAL
RESPONSE MODEL

In the previous section, we presented a mathematical
argument showing that the a; parameters from Bock’s
NRM are associated with a level of understanding repre-
sented by the latent trait 8, further supporting the use of the
a; parameters to rank item responses for polytomous data.
In this section, we present an interpretation of these
parameters by analogy to common thermodynamic sys-
tems, allowing us to better understand the relationship
between a; and 0. We also provide an argument for why the
d; parameters are not useful for ranking response options.

A. The canonical ensemble

We begin our physical analogy by recognizing that the
denominator of the NRM probability expression in Eq. (3)
can be considered a partition function. This denominator
acts as a normalizing factor that is independent of the
selected response k but ensures that the sum of the
probabilities over all response options is unity for every
value of #. One of the simplest physical systems that
involves partition functions is the canonical ensemble,
which describes a generic thermodynamic system that
has a fixed temperature and variable energy. Additional
details for why we have chosen the canonical ensemble for
our analogy rather than another model can be found in the
Supplemental Material [41]. The probability of the system
being in a particular microstate m may be written as

e_Em/kBT
P(m|T) = SN o E T (16)
r=1

TABLE 1II. Macrostates for a paramagnet with three distin-
guishable spin-1/2 particles in a magnetic field of strength H.
Each spin has a magnetic moment with magnitude y. For the
microstates, 1 indicates that the spin is aligned with the field H
(spin up), and |, indicates that the spin is antialigned (spin down).

Net magnetization Energy Degeneracy Microstates
+3u —3uH 1 (N
N
+u —uH 3 N1
M
W
—H +uH 3 i
W
—3u +3uH 1 N
or
e Enl
P(m|p) = SN o (17)

where the summation in the denominator is performed over
all N accessible microstates of the system, and kp = 1.38 x
10723 J/K is Boltzmann’s constant. Equation (17) is
expressed in terms of the commonly used temperature
parameter = 1/kgT.

The model of the probability of a system being in a
particular microstate in equations Eqgs. (16) and (17) looks
very similar (but not identical) to the IRT NRM presented
in Eq. (3). In order to define a useful analogy between the
two models, we can investigate similarities in the behavior
of systems that are described by either the NRM or the
canonical ensemble. To illustrate these similarities, we will
use a paramagnetic system consisting of several noninter-
acting spin-1/2 particles in an external magnetic field H.
Each particle can be either aligned with the field (spin up)
or antialigned with the field (spin down). Any particle that
is spin up has a positive magnetization +x and a negative
energy —uH, where p is the magnitude of the magnetic
moment of the particle. Conversely, particles that are spin
down each have negative magnetization —u and positive
energy +uH. Table II shows the properties of the four
macrostates of a paramagnet consisting of three distin-
guishable spin-1/2 particles, along with the associated
microstates (defined by spin configuration). The proba-
bility of a paramagnetic system being in a particular
microstate can be modeled using Egs. (16) and (17), where
the partition function in the denominators has eight terms
for the 3-spin paramagnet: one for each of the microstates
shown in Table II. We can also rewrite Eq. (17) to, instead,
express the probability of the system being a in a particular
macrostate k as
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gke_Ek/}

n -Ep°’
i=19i€ s

P(k|p) = (18)

where g¢; is the degeneracy of (a.k.a., the number of
microstates associated with) macrostate k, and n is the
total number of macrostates.

In the following sections, we relate the physical quan-
tities in Eqs. (16)—(18) with the NRM variables in Eq. (3)
by considering the behavior of the 3-spin paramagnet at
low temperatures, as well as the implications of the
negative sign in the canonical ensemble, which is con-
spicuously absent in the NRM.

B. The low-temperature limit

Consider the behavior of the canonical ensemble in the
extremes of the continuous variable 7. Equation (16)
exhibits the well-known phenomenon that the state with
the lowest energy (a.k.a. the ground state) has the highest
probability in the low-temperature limit because the sum-
mation in the denominator is dominated by the term
associated with the lowest-energy state as T — 0.

Similarly, one response dominates the probability dis-
tribution of the NRM in Eq. (3) in an extreme limit of 4, but
in this case the limit is reversed: the probability of a student
selecting the response with the highest a; value (i.e., the
correct response) approaches one as € — +oo. This can be
seen in Fig. 1 with the probability of the correct response E
nearly reaching one at & = 3 for item 14 on the FMCE. The
similarity between the canonical ensemble and the NRM is
that, at an extreme value of the continuous quantity (7 or 6)
the probability of one particular value of the discrete
quantity (E; or a;) approaches one, with the probabilities
of all other values of the discrete quantity (necessarily)
tending to zero. The difference is that in the canonical
ensemble the lowest value of E; dominates the probability
as T — 0, and in the NRM the highest value of a;
dominates the probability as 6 — +oo.

To address one of these differences, we may use Eq. (17)
or (18) with the temperature parameter $. In this case, the
low-temperature limit occurs at f# — +o0; therefore, the
lowest value of E; dominates the probability distribution as
f — o0, which is more similar to the behavior of the
NRM. We can now say that 8 is analogous to the temper-
ature parameter f, and that a; is analogous to the system
energy E,, or E; [45]. Rewriting the NRM probability from
Eq. (3) as

edk eaké'

P(k|0) = d; g0

,? (19)

1€

highlights the similarities with Eq. (18) by separating an
exponential term that includes € from one that does not.
Equation (19) also shows that the exponential term e% has a
mathematical similarity to g, in Eq. (18); however, as we

discuss more fully below (see Sec. III G), we do not make a
direct connection between d; and g.

C. Negative temperature

As 6 — +o0 in the NRM, the probability of the highest-
ay response tends toward one. Conversely, as @ — —oo, the
probability of the lowest-a; response tends toward one
(e.g., the curve for response D is a monotonically decreas-
ing function in Fig. 1). These properties of the NRM
suggest that, to complete our analogy, we need to consider
both positive and negative values of the temperature
parameter, and we need to be able to define values of
for which the highest-energy state is most probable.
Mathematically, the highest-energy state must dominate
the probability distribution as f — —oo, which is the same
as T — 0.

To better understand the notion of negative temperature,
consider the definition of temperature,

where U is the average thermodynamic energy of the
system, S is the entropy of the system, and {V, N, ...} are
any other extensive quantities of the system that are held
fixed. If T <0, then a decrease in entropy S must be
accompanied by an increase in average energy U (and vice
versa). Purcell and Pound experimentally created a system
with negative temperature by preparing a lithium flouride
crystal system with a very low (positive) temperature in the
presence of a magnetic field, and then rapidly reversing
the direction of the field [46]. Before the field reversal, the
system had most particles aligned with the field and was in
a state with an average energy near the minimum value and
a very low entropy. Immediately after the field reversal, the
spins that had previously been aligned with the field were
then antialigned, creating a state with a very large (and
positive) average energy, but still a very low entropy. From
this point, allowing some particles to switch orientation to
be aligned with the field simultaneously increased the
entropy of the system while decreasing its average
energy, resulting in a negative temperature. Hakonen and
Lounasmaa also discussed this phenomenon, stating,
“A negative temperature describes a state with population
inversion where the higher energy levels have more
particles than the lower levels” [47]. This population
inversion means that negative (absolute) temperatures
may be thought of as actually being “higher” than positive
infinity with “the average energy per system [being]
larger... than the mid-energy of the available levels” [46].

According to deBoer, the “hottest” systems are at
p — —oo, and the “coldest” systems are at ff — —+oo
[48]. If we consider the largest positive values of 6—
associated with the highest levels of understanding of the
tested topic—to be analogous to the hottest systems, then
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FIG. 3. Probability distributions for the 3-particle spin-1/2

paramagnet as a function of the temperature parameter —f. The
horizontal axis has been scaled by uH to obtain a dimensionless
quantity. Because of the negative sign, colder temperatures are on
the left and hotter temperatures are on the right. Macrostates are
labeled by the net magnetization.

we must associate the latent trait @ with the negative
of the temperature parameter —f. Likewise, the largest
negative values of #—associated with the lowest levels of
understanding—are analogous to the coldest systems.
Figure 3 shows the probability distributions for the four
macrostates of the 3-particle spin-1/2 paramagnet as a
function of —f (scaled by uH to create a dimensionless
quantity). There are many similarities between the prob-
ability curves for the canonical ensemble in Fig. 3 and the
NRM curves in Fig. 1: the curve associated with the highest
E, or a; value approaches one on the right side of the plot,
the curve associated with the lowest E; or a; value
approaches one on the left side of the plot, and the curves
with neither the highest nor the lowest E; or a; values each
have a maximum at a single value of —f or 6, respectively.

D. Summarizing the analogy

We are now in a position to propose an analogy between
the IRT NRM and the canonical ensemble:

60— —p, (21)
ap — Ek' (22)

In this interpretation, each student may be thought of as a
knowledge reservoir with a specific “temperature” (related
to 0). Each item on an assessment is a system that has
various macrostates identified with the specific response
options, and each of these macrostates has an associated
“energy” a;. Each “item system” interacts with the student
reservoir, and the probability of finding the system in each
of its macrostates depends on the energy of each macro-
state, as well as the temperature of the student.

The process of administering a test can then be seen as
indirectly measuring the temperature of the reservoir (the
knowledge level of the student) by directly measuring the

macrostates of multiple systems (responses to items) that
are all in thermal contact with the same reservoir (student)
[49]. The connection between the kth macrostate and
student knowledge is determined by the a; and d; param-
eters for each item. Treating individual incorrect responses
as being representative of different values of 8 provides a
much more precise estimate of each student’s actual level of
understanding than does treating all incorrect responses as
being equivalent by scoring items dichotomously.

The biggest difference between the probability distribu-
tions for the paramagnet shown in Fig. 3 and the IRT
probability distributions in Fig. 1 is that the IRT plots are
not symmetric about any particular value of 6. The
symmetry of Fig. 3 is due to the fact that the energy
values of the macrostates for the paramagnet are evenly
spaced with AE = 2uH for adjacent energy levels. The a;
energy values are not necessarily evenly spaced, and both
the range of a; values and the differences between adjacent
levels may be different for each item.

Our analogy includes a connection between parameters
associated with the various macrostates of a system (£ and
ay), as well as a connection between quantities related to the
system’s surrounding environment (—f and ). One piece
that is missing from our analogy is a connection between the
other macrostate-specific parameters: d; in the NRM, and g,
in the canonical ensemble. Comparing Egs. (18) and (19)
shows that the quantity e serves a similar mathematical
function as g, acting as a statistical weight for the expo-
nential term containing the energy parameter; however, it
would be inappropriate to consider e% analogous to degen-
eracy. In fact, the concept of degeneracy cannot be defined
within this analogy. We discuss this limitation of our analogy
in more detail is Sec. III G.

E. Ranking responses by energy

Considering the values of the energy of each macrostate
in the canonical ensemble is necessary for distinguishing
between different temperature regimes. If lower energy
states are more probable than higher energy states, then the
temperature is positive; if higher energy states are more
probable than lower energy states, then the temperature is
negative. Because negative temperatures are considered
hotter than positive temperatures, the higher energy states
are associated with hotter temperatures, and the lower
energy states are associated with colder temperatures. In
our IRT analogy, this means that higher values of g, are
associated with higher understanding, and lower values of
a, are associated with lower understanding, which is
exactly consistent with the psychometric literature
[30,31] and our mathematical arguments in Sec. II [50].
The probability of the highest-a; response (the correct
response) approaches one as € — +o0, and the probability
of the lowest-a; response approaches one as € — —co. In
the 3-spin paramagnet example, we order the macrostates
according to their energies; likewise, in the NRM it makes
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FIG. 4.

(b)

(a) Average energy U for the three-particle spin-1/2 paramagnet, plotted as a function of the temperature parameter —f. All

axes have been scaled to obtain dimensionless quantities. The dotted lines show the energy value for each macrostate, labeled by
magnetization. (b) The IRT equivalent of average energy U, plotted as a function of the latent trait & for item 14 of the FMCE. The

dotted lines show the a; ;4 energy value for each response option.

sense to order the response options according to their a;
values.

We can also see the impact of the g, values in Fig. 1. At
the lowest values of @ shown (0 = -3, left side of Fig. 1)
the response with the lowest a; value is the most probable:
ap = —3.28. As @ increases, the probability of selecting
response D declines sharply. The curves for responses F
and G appear to have maxima at or near the left edge of the
plot, and those probabilities also decline with 8 > —3; this
is consistent with the values of ap = —2.58 and a5 =
—2.34 being the next lowest. The curves for responses A, B,
and C all have distinctly positive slopes at § = —3, but,
while the probabilities for B and C start declining for
6 =z -2, the probability of selecting response A increases
until #~0. This is consistent with a, > ap~ac
(ay, = —0.35, ag = -2.07, ac = —2.10). Finally, although
the curves for responses E and H have very small slopes at
0 = -3, we can see that the probabilities of each of these
increase for higher values of §. The probability of selecting
response H does not peak until € = +1.5—consistent with
H having the second-highest a; value, ay = +0.77. The
correct response E has the highest a; value (ap = +1.73),
and, of course, its probability curve increases over the
entire range of @, asymptotically approaching one. Based
on these a; values, we would rank the responses to item 14
asE> H> A> B C> G> F>D.

Given that students in our analyses are in the range —3 <
6 < 43 (with 0 scaled to have a mean of 0 and a standard
deviation of 1), and the fact that FMCE items have up to
nine response options, we rarely see the probability of the
lowest-a;, option go above 0.8 in our IRT plots for any item,
but in all cases the probability of the correct response
approaches unity at 6 = +3.

In order to justify our analogy between the IRT NRM
and the canonical ensemble, we have applied the somewhat
unfamiliar context of negative absolute temperature; how-
ever, the end result of our analogy does not require a

thorough understanding of negative temperatures. The
main result is the association of the a; parameter with
energy. As mentioned above, by interpreting a; as the
energy of response k, the a; values may be used to rank the
responses to each item; this is consistent with the results of
our mathematical arguments in Sec. II.

F. Extending the analogy

Having a well-defined analogy between the NRM and
the canonical ensemble also allows us to define a quantity
analogous to the thermodynamic average energy U of a
system. The average energy for the canonical ensemble is
simply the weighted average of the energy of each macro-
state of the system at a given temperature,

—ﬁEkPucm ZEk( g"ege'“_,;[) 23)

Figure 4(a) shows a plot of the average energy of the
3-particle spin-1/2 paramagnet as a function of the negative
of the temperature parameter —f. At the coldest temper-
atures, the average energy approaches the value of the
lowest-energy macrostate: lim_g_,_o, U = =3uH. As tem-
perature increases, the average energy smoothly increases
until, at the hottest temperatures, it approaches the value of
the highest-energy macrostate: lim_s_, |, U = +3uH.
With our thermodynamic interpretation, the (a,) ) term
in Eq. (10) from Sec. II C can be interpreted as the average
energy of the item “system” at a given value of 6,

a0+d;

1 e
= (W> (24)

k=1

Unm(0) = (ax) (9)

Figure 4(b) shows an example plot of U, (0) for item
14 of the FMCE. As expected, The average NRM energy
Uym(6) is a monotonically increasing function of the
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temperature parameter 6, which is exactly what we found in
Eq. (13). At the extremes of the € distribution (either
positive or negative), the probability is dominated by a
single response (see Fig. 1). As with the paramagnet
example, the average energy in each of these limits then
becomes the a; value for that specific response. For large
positive values, the correct response E dominates the
probability, and for large negative values, this is the
response D, which has the lowest a; value.

Jim Uy (6) = ag4 = +1.73, (25)
— 400
lim Uy (0) = ap 14 = —3.28. (26)

6——0

Figure 4(b) also contains dotted lines showing the a;
energy value for each of the response options to item 14.
The value of § where the average energy U, crosses each
dotted line is the same as the value of 8 for which each IRT
probability curve is maximized in Fig. 1. This suggests that
the location of the maximum of each IRT curve may also be
used to rank responses to an item.

G. Limitations of the analogy

As mentioned in Sec. III D, our analogy does not provide
a complete connection between the d; parameter in the
NRM and the degeneracy g, in the canonical ensemble.
These parameters can be compared mathematically—
the quantity e% and g, both act as a statistical weight—
but the meaning of these parameters is quite different.
To explore this more, consider the zero point for the
continuous quantities € and f. A situation in which the
temperature parameter f = 0 represents infinite temper-
ature (T — *o0). In this high-7" limit, all microstates are
equally probable, and the probability of a given macrostate
depends only on the degeneracy

Gk
=1 9i

limP(K|f) ~ (27)

A similar limit can be taken for Eq. (19) to obtain the
probability of choosing a response k given an average
ability 0 = 0,

edk

Sogeh

However, the meaning of the & = 0 case is very different
from the = 0 case. In IRT analyses, the zero point for € is
an arbitrary choice, and choosing an anchoring value and a
scale for € is an important aspect of both performing and
interpreting IRT analyses [51]. As mentioned in Sec. II, a
common choice in IRT analyses is to set the mean of the 6
distribution for a given population to zero, and the standard
deviation to one.

P(k|0) = (28)

Consider the effect of choosing a different anchor and
scale such that the distribution of the rescaled quantity 8* is
assumed to have a mean of ¢, and a standard deviation of y.
This can be accomplished by defining

0" =y0 +e. (29)
This rescaled latent trait would result in different sets of
parameters {a;,d;} as well. We can express these new

parameters in terms of the original parameters by express-
ing the probability function from Eq. (3) in terms of 6*:

eak9+dk
P(k|6) = S gadid, (30)
i=1
(0 =e)/7-+d,
= (31)

;_1:1 e“[(e* —e)/r+d;

Each exponent may be rewritten by distributing the 1/y
factor to explicitly show which terms include 6* and which
do not.

1
%(9* —€)+dk :—akG*—fak—i—dk. (32)
/4 4 /4
We can now define new parameters
1
a, = —ay, (33)
/4
€
d;; = dk — —day, (34)
such that
. o0 +d;

Under this rescaling, the a; energy parameters are simply
stretched by a factor of 1/y. This is equivalent to expressing
energy in different units (e.g., ergs vs joules): the relative
order and spacing of the set of {aj } is the same as it was for
{a;}. Therefore, rankings of responses defined by {a;}
would be the same as those defined by {a, }, and the shape
of a plot of (a;) would be exactly the same as Fig. 4(b),
with only the values on the axes changing. Each d}
parameter, however, is shifted from d; by an amount that
depends on the value of the associated a; parameter for that
response. As such, responses with high a, values will be
shifted differently from responses with low a; values.
Depending on the choice of ¢, this could result in the
order of the set of {d;} values being completely different
than the order of the set of {d;} values.

For example, in Fig. 1, the @ distribution is scaled to have
a mean of zero. The values of the probability curves at
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6 = 0 give us information about the relative distribution of
d; values: response A is the most probable (by far), so d is
the highest; responses C and E are about equally probable;
responses B and H are also about equally probable, but
lower than C and E; responses D, F, and G are so low that
they are difficult to distinguish. This is consistent with the
dy 4 valuesin Table I: dy > de~dp > dg~dy > dp > dp=x
dg. If, however, we rescale 8* by setting € = 2, then all of
the values on the horizontal axis in Fig. 1 will increase by
two; therefore, the location of 6 = —2 in Fig. 1 will be the
new zero point for 8*. At this location, response C is the
most probable, and responses A and D are approximately
equal, followed closely by response B. This would suggest
an order for the {d;} of dj. > d} = d}, > dy > d}. > dj; >
dy, = dj;. This order is clearly very different from what is
shown in Table I, highlighting the fact that the order of the
set of {d;} parameter values is not invariant under trans-
lation of . This provides a strong rationale for ignoring the
d; parameters when ranking responses.

As with all analogies, there are some features of
the reference model that are not applicable to the target
model. The shifting of the order of the {d;} values
highlights the fact that the concepts of microstates and
degeneracy are not applicable to the NRM: the degeneracy
of a macrostate in the canonical ensemble could never be
affected by an arbitrarily defined reference value. This
suggests that thermodynamic quantities that rely on those
concepts (e.g., entropy) do not have analogs in the NRM.
This disconnect hinges on the meaning of negative values
in the NRM and the canonical ensemble. White Brahmia
et al. describe the many different physical interpretations of
negative quantities [52]. The model of temperature defined
in Eq. (20) establishes a distinct difference between positive
and negative values of f: negative energy microstates are
more probable in systems with f > 0, and vice versa for
systems with # < 0. In contrast, there is nothing inherently
different about positive and negative values of @ because 6
is defined relative to an arbitrary reference. Though
mathematically similar, this difference in the meaning of
negative quantities is crucial to recognize when applying
our analogy between the canonical ensemble and the NRM.
The useful similarity between the models is that higher
values of 6 represent greater knowledge or understanding,
just like higher values of —f represent hotter systems, and
lower values of @ represent less knowledge or under-
standing, just like lower values of —f represent colder
systems.

Equation (20) provides a theoretical definition of 7" (and,
by extension, f3), but no such definition exists for 6. In
practice, this means that an underlying distribution for 6
must be assumed within a population to be able to estimate
item parameters, and then calculate the latent trait for each
student. Conversely, macrostate parameters in the canonical
ensemble may often be defined by theoretical models of
microstates (like those shown in Table II). Even when a

specific physical model is not known for a given system,
the temperature of a system (and its surroundings) may
often be measured directly; therefore, there is no need to
assume an underlying distribution of temperatures within a
collection of thermodynamic systems.

We believe strongly that the analogy that we have
developed throughout Sec. III is very useful for relating
responses to test items to macrostates of a physical system,
but we think it is important to acknowledge the limitations
of this analogy. Not all properties of systems described by
the canonical ensemble are applicable to the NRM. We
believe that the strongest feature of the analogy is the
interpretation of the a; parameter as the energy associated
with a particular response option, and higher-energy states
(responses with higher a;) being associated with hotter
systems (students with higher values of ¢). We do not
attempt to define a theoretical definition of € similar to
Eq. (20), nor do we attempt to define what might be
equivalent to a “microstate” in the NRM. Care must be
taken when extending this analogy to ensure that all claims
are well justified.

IV. CONSIDERATIONS FOR APPLYING
IRT ANALYSES

There are several aspects of IRT analyses that must be
considered before applying any of the methods described
above. These considerations do not directly affect our
results, but they are important for anyone who may want
to apply our results to their own work. One consideration
for using the NRM to rank responses to multiple-choice
items is the need for fairly large datasets to be able to obtain
reliable estimates of the parameter values. A general
guideline is to have at least 10 response sets for every
parameter being calculated [53]: this would be a minimum
data set of 7220 respondents for the FMCE and 3000 for the
FCI, which is significantly higher than typical classes. In
order to apply the results of our work in typical classroom
settings, the IRT parameter values would first need to be
established using a large representative dataset. The param-
eters could then be used to identify higher and lower
incorrect responses for use in analyzing smaller datasets for
instructional or research purposes.

Another consideration is that all items on the test must
function properly: that is, increasing the latent trait  must
result in an increased probability of choosing the correct
response for all items. In practice, items on well-designed
tests tend to function properly, but it is conceivable that a
single misplaced item could have a correct response that is
anticorrelated with the correct responses to the other items
on the test. Any analyses of such items should be subject to
scrutiny. Additionally, assessments like the FMCE and FCI
have been shown to be multidimensional, suggesting that
they are simultaneously measuring understanding of sev-
eral different topics [7,8]. A unidimensional test (or subset
of items) may be necessary to uniquely define rankings.
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Ideally, a ranking of responses for each item could be
determined that is consistent across multiple datasets and
be shown to be independent of student population. These
rankings could then be applied to analyze data from any
student population to measure and represent student under-
standing and learning in more nuanced ways than are
available with traditional dichotomous scoring methods.

V. CONCLUSIONS

We have presented a mathematical argument for using
the a; parameters from Bock’s nominal response model for
ranking responses to multiple-choice items based on the
relationship between the a; parameter and the value of 6
that maximizes the conditional probability of 6 given a
response option k. This conditional probability distribution
expresses the overall goal of using multiple-choice assess-
ments: using students’ chosen responses to determine their
overall knowledge and understanding of the tested material.
We also presented an analogy between Bock’s NRM and
the probability of a system being in a particular macrostate
at a given temperature for the canonical ensemble that
shows a direct correspondence between the a; parameter
and the energy of a system with fixed temperature. Both the
mathematical argument and the physical interpretation
support the claims of Wainer et al, and Bock and
Moustaki that the value of the @; parameter may be used
to rank the incorrect responses, with a higher a; value
indicating a response that is more closely related with
higher values of the latent trait  and, therefore, better than
a response with a lower a;, value [30,31]. These arguments
also support the results of Smith, Louis, Ricci, and
Bendjilali [10], and Eaton, Johnson, and Willoughby
[11] who both used the a; parameters in the nested-logit
2PL-NRM to rank incorrect responses.

Our physical analogy also highlights the need to consider
differences in parameters rather than their absolute values.
In systems with a finite number of macrostates, no value of
energy can be defined as universally high or low. The zero
point of the energy scale can be arbitrarily set without
changing any of the mathematical or physical relationships.
As such, the a; parameters must be compared within each
item to determine which are higher and lower. A single
parameter value is meaningless without the context of the
other parameter values for the same item. Additionally,
parameter values cannot be directly compared between
items, just as the energies of the macrostates of a para-
magnetic system in an external field H cannot be directly
related to the energies of the macrostates of a similar system
in an external field of strength 3H. Both of these systems
would have macrostates with energies +3uH, but they
would be very different: in the original system with
magnetic field H, the £3uH macrostates each have one

associated microstate with all spins in the same direction,
but in the 3H-field system the +3uH macrostates would
each have three associated microstates that each have 1 or 2
spins in each direction.

The physical analogy presented above may also be used
to interpret the process of administering a multiple-choice
test. By administering a test like the FMCE, instructors and
researchers typically want to measure a student’s overall
understanding of a particular topic, which is represented by
the IRT person parameter 6. Using the physical analogy
from Sec. III we can think of each student as a thermal
reservoir, and the process of testing as a way of (indirectly)
measuring temperature. Each item on the test can be
considered a system with a set of states (response options),
with the correct response option corresponding to the
macrostate with the highest energy value. A student
responding to an item is analogous to placing the item
system in thermal contact with that student’s thermal
knowledge reservoir: there will be an associated probability
of the system being found in each macrostate, related to
energy of the states (mitigated by a statistical weight), and
the temperature of the student reservoir. Measuring the
macrostates of multiple different item systems in contact
with the same student reservoir (e.g., using 47 items on the
FMCE) allows us to indirectly measure its temperature
(knowledge) based on the macrostate of each system.
Dichotomous scoring is akin to only measuring whether
or not each system is in its highest-energy macrostate. This
gives an imprecise measure of temperature. Measuring
energy for each macrostate provides a more complete
picture of the temperature of the student reservoir; there-
fore, treating incorrect responses as having different values
based on their energy could provide more complete
information about each student’s level of understanding.

IRT analyses of large datasets serve the purpose of
identifying the energy associated with each response to
each item. Once these parameters are well established, they
can be used to inform more detailed measurements of
students’ knowledge and understanding by considering all
responses rather than just those that are correct. Additional
research will be required to establish the full set of energy
values for both correct and incorrect responses, and to
relate these energy values to a useful metric for representing
students’ levels of knowledge and understanding.
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