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HAUSDORFF APPROXIMATIONS AND VOLUME OF TUBES OF
SINGULAR ALGEBRAIC SETS

SAUGATA BASU, ANTONIO LERARIO

ABSTRACT. We prove bounds for the volume of neighborhoods of algebraic sets, in the eu-
clidean space or the sphere, in terms of the degree of the defining polynomials, the number of
variables and the dimension of the algebraic set, without any smoothness assumption. This
generalizes previous work of Lotz [16] on smooth complete intersections in the euclidean space
and of Biirgisser, Cucker and Lotz [7] on hypersurfaces in the sphere, and gives a complete
solution to [5, Problem 17].

1. INTRODUCTION

In this paper we deal with the following basic problem: given a real algebraic set Z of
dimension m, defined in R™ or in S™ by polynomials of degree bounded by ¢, estimate the
volume of the set of points in the ambient space which are inside a ball of radius o > 0 and are
at distance at most € > 0 from Z.

The study of the volume of neighborhoods of algebraic sets has a long history, see for instance
[3,7,9,10, 11, 12, 15, 16, 21], and it has fundamental algorithmic implications, e.g. for estimating
the size of ill-conditioned inputs in numerical analysis (see the monograph [5]). In fact, one of
our main motivations for this study is to give a positive answer to [5, Problem 17], see Section
1.1 below.

The problem stated above is studied in [16] in the case Z is a smooth complete intersection in
R™, and in [7] in the case Z is a hypersurface (possibly singular) in the sphere S™. Here we will
prove bounds with no smoothness assumption and no restriction on the dimension of Z. More
precisely, our first result is the following theorem, which deals with the case the ambient space
is R™, and generalizes [16, Theorem 1.1] to the singular case (see Theorem 3.2 below for a more
detailed statement). In this context it is natural to state the result in probabilistic terms.

Theorem 1.1. Let F C R[X,...,X,] be a finite set of polynomials with degrees bounded by §
and Z C R™ be their common zero set. Assume dimg(Z) < m. Given p € R™ and o > 0 let
x € B(p,0) be a uniformly distributed point'. Then, for every e > 0

(1.1) P (dist(z, Z) < &) < 4 (4%6) (1 N «45+1>) |
o o
and, if € < m,
4 n—m
(1.2) P (dist(z, Z) < ¢) < 46( 7;56) |

Basu was supported in part by the NSF grant CCF-1910441.
1Here we turn the ball B(p, o) into a probability space using the Lebesgue measure normalized by the volume
of the ball itself.
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As one can see from (1.2), the codimension ¢ > n — m of the algebraic set Z plays a key role
in these estimates: it is crucial (especially for algorithms) that the dependence of the bound, for
fixed ¢, is polynomial in n (the reader should think that ¢ is fixed, n and 0 are large, € > 0 is
small and o > 0 is of order O(1)).

The fact that a quantitative estimate of this type, as a function of the various ingredients, is
possible at all follows from Weyl’s Tube Formula [20], which is the main tool used in the smooth
case. It is intuitively clear that, as ¢ — 0, the desired bound should be of the order O(e"~™),
but an inductive limit argument using [20] on the singular points stratification of Z is delicate,
and the bounds depend on the complexity of the stratification.

Instead here we propose a different approach: to approximate the set Z with a family of
algebraic sets {Z; };~0 which converges in the Hausdorff metric to Z, and such that for all ¢ > 0
the set Z; is a smooth complete intersection of dimension m, defined by polynomials of degree
bounded by 26. This last condition ensures that one can apply Weyl’s Tube Formula to each
Zy, and produce a good quantitative bound for the volume of tubes; the Hausdorff convergence
Zy — Z allows to infer bounds on the volume of tubes also as ¢ — 0. Notice again the subtlety
on the role of the codimension of Z: every real algebraic set Z = Z({Py,..., P,},R")? can be
defined by a single polynomial @ := >, P?, and the sets {Q = t} for ¢t > 0 small enough are
smooth complete intersections converging to Z inside any ball, but they are all hypersurfaces (i.e.
they don’t have the same dimension of Z, unless Z is also a hypersurface). Our construction
of the family {Z;};~¢ is more refined, and involves instead polar varieties, following [1]. We
present this idea in Theorem 2.10 below, which is our main technical result, and which may be
of independent interest.

Remark 1.2. There is an alternative approach to the above problem, using the theory of multi-
dimensional variations, introduced by Vitushkin [19, 18] and developed by Comte and Yomdin
[22]. Using this approach we can get the following bound (see Remark 3.3 below):

P (dist(z, Z) < €) < nr T 2 S pl(n + 1)1AT <n—2m> (2&) <1+M> 7
g (o)

which has the same “shape” as (1.1), but has a dependence in n which is exponential (this
should be no surprise, given the greater generality of [22], which deals with definable sets.). It is
not clear if our technique can be extended to the definable setting, the main obstacle being the
extension of the definition of polar varieties and their properties coming from complex algebraic
geometry.

In the case the ambient space is the sphere, we prove the following theorem, which generalizes
[5, Theorem 21.1] and makes it sensitive to the codimension of Z (again, see Theorem 4.20 for
a more detailed statement).

Theorem 1.3. Let P C R[Xy,...,X,] be a finite set of homogeneous polynomials of degree
bounded by § and Z C S™ be their common zero set. Assume dimg(Z) < m. Given p € S™ and
o >0 let x € B(p,o) be a uniformly distributed point. Then, for every e > 0

3 . n—m . m
(1.3)  P(dist(z,2) <) < 2e (1 + 8”) (m) (1 +(Snd+86+1) Smg)

15 sino sin o

2For the rest of the paper, given a family P of polynomials, we denote by Z(P, X) their common zero set,
where X will be R™ or S™.
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In particular, if sine < (8”53_+":~_1)7”,
873 8ndsine\" "
P(dist(z,Z2) <e)<2e |1+ — | | ————
(dist(z,2) <) < 6<+15)<sina>

We observe that the previous bound (1.3) has a shape which is similar to [6, Theorem 1.3],
where the case of a complex algebraic subset of CP” is discussed. The strategy for the proof is
the same as for Theorem 1.1: we use Theorem 2.10 to approximate Z by complete intersections
{Zt}+>0 of the same dimension as Z and with degree bounded by 24, then we apply an estimate
for the case of complete intersections and pass this estimate to the limit as ¢ — 0. Compared
with the affine case (where we could use the bound for Z; proved by Lotz in [16]) there is an extra
step in the spherical case: here we also need to produce the bound for the case of nonsingular
complete intersections. While the strategy of proof is similar to [16, 7], via integral geometry,
there are some needed modifications. We deal with this in Section 4.1.

1.1. Condition Numbers of Real Problems with High Codimension of Ill-Posedness.
In this section we show how to interpret the previous result to give a solution to [5, Problem
17]. Recall first the following [5, Definition 2.32].

Definition 1.4. Let a,b € S™. We define:
dsin(a,b) :=sinb € [0, 1],

where 6 € [0, 7] is the angle between a and b.

If now ¥ C S™ is a symmetric cone (i.e. ¥ = =), following [5, Chapter 21] one can define
the conic condition number % : S™ — R by

1
€(a) = ——.
(a) dsin(a7 Z)

In this context, for u € [0, 1], we denote by
Bgin(a,u) = {dsin(a, ) < u} = Bgn(a,arcsinu) U Bgn(—a, arcsin u).

Next theorem is a generalization of [5, Theorem 21.1], which corresponds to the case m =n — 1
(the proof is given in Section 4.3).

Theorem 1.5. Let € be a conic condition number with set of ill-posed inputs ¥. Assume that
Y is contained in an algebraic set Z C S™ defined by homogeneous polynomials of degree bounded
by & and of dimension dimg(Z) < m. Then for all0 < u <1 and for all t > w:

sup P {€(x) >t} <2 <1+ 8”3> (m)nm

a€eSnm TE€Bsin(a,u) 15 ut

In particular (take w = 1), for all t > m(8nd + 85 + 1),

P{¢(z) >t} < 2 (1 + 817:) (87;5)”%.
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1.2. Structure of the paper. The rest of the paper is organized as follows. In Section 2, we
prove some basic results on Hausdorff limits of semialgebraic subsets of R™. In particular, in
Proposition 2.5 we give a description of the Hausdorff limit of a one—parameter semialgebraic
family of bounded semi-algebraic subsets of euclidean space. We use this in Proposition 2.7
and relate it to limits of bounded semialgebraic sets defined over non-Archimedean extensions
of R, in order to utilize certain results proved in [1]. These results are then used to prove
an approximation result (cf. Theorem 2.10) which is a key technical result of the paper. In
Section 3, we prove Theorem 3.2 after introducing some preliminary results, including a bound
proved by Lotz in the non-singular case (cf. Theorem 3.1). In Section 4, we treat the spherical
case. We first prove an analog of Theorem 3.1 in the spherical case (cf. Theorem 4.17). We then
prove Theorems 1.3 and 1.5.

2. HAUSDORFF APPROXIMATIONS

2.1. Metric geometry.
Notation 2.1. We will mostly be dealing with three metric spaces:

(A) The euclidean space R™ with the standard metric: distgn(a,b) = |la —b|| Va,b € R™.

(B) The sphere S™ < R™"! with the riemannian metric induced by the ambient space.
The distance between two points a,b € S™ equals the length of the shortest geodesic on
the sphere joining them: distgn(a,b) = arccos{a,b). The diameter of the sphere for this
metric is 7.

(C) Since the antipodal map = — —z is an isometry of the sphere, the riemannian metric
on the sphere descends to a riemannian metric on RP™. The distance distgp= ([a], [0])
between two points [a], [b)] € RP™ equals the length of the shortest geodesic on the the
projective space joining them. The projective space is locally isometric to the sphere,

but its diameter is 5

When the metric space X is clear from the context, we denote simply by dist(z,y) the distance
between two points x,y € X and, for r > 0, by B(z,r) the closed ball of radius r around
x € X. In the above cases the metric comes from a riemannian structure on X. The riemannian
structure induces a volume density wx and we denote by “w(dx)” integration with respect to
this density. For a Borel set A C X we denote its volume by vol(A) := [, wx (dz).

Definition 2.2. Let X be a metric space and C' C X be a closed subset. For ¢ > 0 we denote
by Ux (C,e) the e-neighborhood of C' in X:

Ux(Cre) = {x € X |dist(x,C) < e} = | | B(x,e).
zeC
(We will omit the subscript and simply write U(C,e) when the ambient space X is clear from
the context.) If {Ct}iso is a family of closed sets in X, we will write “lim;_,q Cy = Cy” if there
is a closed set Cy C X such that for every € > 0 there exists t. > 0 such that for all 0 < ¢t < ¢,
Ct Q ux(CmE) and CO g UX(Ct,E).

This means that the family {C}};so converges to Cy in the Hausdorff metric. The notation
“lim;—,0 C¢ 2 C” means that the family {C}}s~o converges to some closed set Cy C X and that
Cy 2 C (analogously for the notation “lim;_,q Cy € C”).

Theorem 2.3. Let X be a metric space. Let C C X be a closed set and {C}}i~o be a family of
closed sets such that there exists a closed set B C X with the property that:

lim (C, N B) 2 CNB.
t—0
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Then, for every T > 0 there exists t; > 0 such that for all 0 < t < t, and for all p € X and
o,e > 0 such that B(p,o +¢) C B, we have:

(21) UX(C,E)QB(]?,O') QUX(Ctvg—i_T)mB(pva)'
Proof. By assumption, the Hausdorff limit inside B of the family {C; N B};~( contains BN C
and therefore, given 7 > 0 there exists ¢, > 0 such that for all 0 < t < ¢,:
(2.2) C’ﬁBQtlin% (C:NB) CUs(CyNB,7) CUx(CyN B, 7).
—

Observe now that for every o, > 0 and = € X such that B(p,o0 +¢) C B, we have the
following inclusion:

Z/[X(Cﬂg)mB(an) QUX(CHB,E)

In order to prove this inclusion, we notice that for every point x € Ux(C,e) N B(p,o) there
exists z € C such that dist(z, z) < e. Since x € B(p, o) then, by triangle inequality, dist(p, z) <
dist(p, ) +dist(x, z) < o+¢ and z € B(p,o+¢) C B. Therefore for every « € Ux (C,e)NB(p, o)
there exists z € C'N B such that dist(z, z) < e and x € Ux(C' N B, e).

Now, given 7, > 0 and t < t,, we also have the inclusion:
(2.3) Ux(CNB,e) CUx(Ct,e+ 7).
In fact, by (2.2), for every € > 0 we have:
Ux(C N B,e) (2%) Ux(Ux(CeNB,T),e) CUx(Cy N B,e+ 1) CUx(Ct,e + 1),

and (2.3) follows.

Therefore, for every 7 > 0 there exists t, > 0 such that for every o, > 0 and z € X such
that B(p,o +¢) C B and for all 0 < t < t, we have:

(2.4) U(Cye) N B(p,o) CU(Cte+ 7).
Intersecting both sides of (2.4) with B(p, o) gives (2.1). O

The following lemma is elementary, but it will be useful in the sequel.

Lemma 2.4. Let {Cihiso be a family of closed sets in RP™ converging to some closed set
Cy :=limy_,g Cy. Denoting by q : S™ — RP"™ the covering map, we have:

lim ¢~ (Cy) = ¢~ *(Co).

t—0

Proof. We observe first that for every closed set Y C RP™ and for ¢ < 7 we have:

(2.5) g (Urpn (Y, €)) = Usn (g1 (Y), ).

Let us write the condition that Cy = lim;_,o Cy: for every € > 0 there exists . > 0 such that for
all 0 <t < t.:

(2.6) Ct - U]an (Co,&) and OO - Z/Ian(Ct,e).

Applying ¢~*(-) to both the inclusions in (2.6), and using (2.5), gives precisely the condition for
the convergence limy_,o ¢~ *(Cy) = ¢~ 1(Cp). O
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2.2. Hausdorff limits of semialgebraic sets. In this section we give a simple description of
Hausdorff limits in the semialgebraic world, and related it to the notion of limits of bounded
semialgebraic sets defined over non—Archimedean extensions of R

Proposition 2.5. Let B C R" be a bounded semialgebraic set and A C B x (0,00) be a
semialgebraic set. Denoting by p1 : B x [0,00) — B the projection on the first factor and
by p2 : B x [0,00) — [0,00) the projection on the second factor, define for every t > 0 the set

Ap = pi(py (D) N A).
Let clos(A) C clos(B) x [0,00) be the closure of A and set Ag := p1(py ' (t) Nclos(A)). Then

tlgl’(l) At = A().

Proof. We need to prove that for every € > 0 there exists t. > 0 such that for all 0 < t < t. we
have:

(2.7) Ay CU(Ag,e) and Ao CU(A4e).
We prove the two inclusions (2.7) separately, arguing by contradiction.

Assume first that there exists € > 0 such that for every n > 0 there exist 0 < t,, < % and
at, € Ay, such that for every ag € Ay

(2.8) dist(ag, a,) > €.

Then, up to subsequences, since ¢, — 0 and B is bounded, we can assume that (a;,,t,) —
(ap,0) € clos(A). This means a;, — ag € Ao, which contradicts (2.8) and proves the first
inclusion in (2.7) (notice that we did not use the semialgebraic hypothesis for this inclusion).

As for the other inclusion, assume again by contradiction that there exists € > 0 such that
for every n > 0 there exists 0 < ¢, < % and ag, € Ap such that for all a;, € A, we have
dist(ag,n,at,) > €. Up to subsequences, we can assume ag , — ag € Ay, and therefore for every
n > 0 there is 0 < t,, < L such that for every a;, € A;

(2.9) dist(ag, at,) > €.

Now we use the semialgebraic hypothesis: by the Curve selection Lemma [2, Theorem 3.19]
there exists a semialgebraic arc v : [0,0) — clos(A) C clos(B) x [0,00) such that y(s) € A
for all s € (0,0) and v(0) = ag. Let us write v(s) = (a(s),t(s)), then the function t(s) is also
semialgebraic and we may assume that it is injective for 0 < s < ¢’, for some 0 < §' < 6. In
particular for every n > 0 there is s,, € (0,¢') such that a;, = a(sy,) € A, and a(s,) — ag,
which contradicts (2.9)%. O

Notation 2.6. Denote by R({) the field of algebraic Puiseux series with coefficients in R, which
coincide with the germs of semi-algebraic continuous functions (see [2, Chapter 2, Section 6
and Chapter 3, Section 3]). An element x € R(() is bounded over R if |x| < R for some
0 < R € R. The subring R((), of elements of R(¢) bounded over R consists of the Puiseux series
with non-negative exponents. We denote by

A i ROy = R”

the ring homomorphism which maps 3, a;(*/? to ao.

3The Curve Selection Lemma is used to construct a sequence a¢,, € A, converging to ag. Without this we
would only be able to construct a sequence ay, still converging to ag but with ¢/, < t,, (remember that in the
quantifiers we have “...for every n > 0 there exists t, > 0...”) For instance, if one takes as A the graph of the

function ¢ +— sin (%), we see that the first inclusion is still true, what fails is the second one.
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Let now S C R(¢)™ be a semialgebraic set defined by a formula ¢ with constants in R[] such
that for some 0 < R € R we have |s| < R for all s € S. Then, for every ¢t € R, we denote by
Ai(¢) C R™ the semialgebraic set defined by the formula obtained from ¢ replacing ¢ by ¢. Note
that for ¢ > 0 small enough A;(¢) C B(0, R).

Proposition 2.7. Let ¢ be a first order formula with constants in R[] such that for some
R eR,R >0 we have |s| < R for all s such that ¢(s). Then:

A (fr € RIO™ | 6(2)}) = lim Ac(9).

Proof. Let S = {z € R(¢)™| ¢(x)}. Tt is proved in [2, proof of Proposition 12.43] that
Ac(S) = clos ({(z,t) € RF 1z € A(S), t > 0}) N (R* x {0}).

The proposition now follows from Proposition 2.5. O

2.3. Hausdorff approximation by complete intersections.

Notation 2.8. Let Xi,...,X, be linear coordinates on R™. Given G € R[X,...,X,] and
0 < k <n, we denote by Crg(G) the set of polynomials

oG oG
Crk(G) = {G, aix_l, ey 87)(]6

We will denote by Cr?(G) the corresponding set

aGh oGh
CI‘Z(G) = {G’h,a)(l,...7 0X } C R[X07,Xn]
p

of homogenized polynomials.

}CR[Xl,...,Xn].

The following proposition is proved in [1].

Proposition 2.9. Let Q,G € R[Xy,...,X,] be polynomials of even degree, such that deg(G) >
deg(Q) and G is non—negative. Define the polynomial:

D(Q,G.¢) = (1-0)Q — (G e R{()[X1,..., Xn].

For a generic choice of the linear coordinates® X, ..., X, on R™ the following is true. For every
0<k<nand0< R € R:

A¢ (Z(Cri(Def(Q, G, Q) R(()")) = Z(Q,R") N B(0, R).
Proof. This is proved in [1, Proposition 3.4]. O

We are now ready to prove the main technical result of this section.

Theorem 2.10 (Hausdorfl approximation by complete intersections). Let P C R[Xo, ..., X,]
be a finite set of homogeneous polynomials such that maxpep deg(P) < d.

(A) Let y € RP™ and denote by H ~ RP"! the hyperplane H := y*. Let also V :=
Z(P,RP™\ H) C R™ and assume that dimg V' < m. Then there exists a one parameter
family of real algebraic sets {Vi}i=o and to > 0 such that for every 0 < t < to the set

Vi is a nonsingular complete intersection in R™ defined by n — m affine polynomials of
degree bounded by 2d, and such that for every ball B(0, R) in R™ with R > 0:

(2.10) lim (V; 0 B(0, R)) = V N B(0, R).

4These coordinates are called “good for Q” in [1].
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(B) Let Z = Z(P,S™) C S™ and assume that dimg(Z) < m. Then there exists a one
parameter family of real algebraic sets {Z}i~o and to > 0 such that for every 0 < t <ty
the set Zy is a nonsingular complete intersection in S™ defined by n — m homogeneous
polynomials of degree bounded by 2d and such that:

lim Z, D Z.
t—0

Proof. Let us prove part (A). Up to a linear change of coordinates we can assume that H =
{Xo = 0}. We denote by

Q= Z P2|X0:1 e RIXy,... 7Xn]S2d'
pep

Observe that Z(Q,R™) = Z(P,RP™\ H) = V. Let now G € R[Xq,...,Xp]2q such that G > 0
and such that for every 0 < k < n the set CrZ(G) defines a smooth complete intersection in CP™
(and therefore also in RP™). Such polynomial G exists by [1, Proposition 2.22].

Up to a linear transformation in R™, we can assume that the coordinates are such that
Proposition 2.9 can be applied. We define now as above the polynomial

D(QaG7C) = (1 - C)Q - CG € R<C>[Xla s 7Xn]7
and the algebraic sets:

V(C) i= 7 (Crh 1 (D(Q. G ), P(RI)™))
and

V<C> =7 (Crn—m—l(D(Qa Ga g))v R<C>n) )

where P(R(¢)™*1) denotes the n—dimensional projective space over the field R(¢). For R > 0 we
introduce the following first order formulas with coefficients in R[(]:

5 = (CrZ—m—l(D(Qa G, C))(Xo, s 7Xn) = O)

¢ = (Crn*mfl(D(Qv G, C))(Xla EER) Xn) = 0)

¢R = (Crn—’m—l(D(QaG)C))(le'"aXn):O A X12++X721SR2)

Notice that V{(¢) = {[y] € P(R({)"T!) | d(y)} and V() = {z € R(()" | #(z)}. Using the conven-
tion introduced in Notation 2.6, we define for ¢ > 0:

Vii=M(g) and V;:= A(9).

Observe now that the set
¥ ={t € C |V, is not a non-singular complete intersection in CP"}

is a Zariski closed constructible subset of C (using [2, Theorem 4.102]) whose complement con-
tains 1. Therefore C\ X is nonempty and Zariski open, hence it is cofinite in C. This implies
that there exists to > 0 such that for all 0 < ¢t < ¢y the set V; C RP” is a nonsingular com-
plete intersection defined by n — m homogeneous polynomials of degree bounded by 2d, and in
particular so is V;. Moreover, by construction we also have:

VinB(0,R) = Ai(¢r) and VN B(0,R) =X ({z € R(Q)" [¢r(z)}),

where the right-hand side identity follows from Proposition 2.9. The Hausdorff limit (2.10)
follows now from Proposition 2.7.
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Let us now prove part (B). We first prove a projective version of the statement. More precisely,
let V := Z(P,RP") and pick a hyperplane H ~ RP"~! such that

(2.11) clos (V\H)=V.

The generic hyperplane H has this property (to see this it is enough to take a stratification
V= U%_;5; into smooth strata and to pick a hyperplane H transversal to all strata). Observe
now that the construction from part (A), applied to V := Z(P,RP™ \ H), actually yields the
existence of a family of projective algebraic sets {Vt}t>0 and tg > 0 such that for 0 < t < ¢y
each V, is a smooth complete intersection in projective space defined by n — m homogeneous
polynomials of degree bounded by 2d (and then the family {V;};~¢ for part (A) is obtained by
letting V; = V; \ H). We will prove that:

(2.12) limV, D V.

t—0

Using now part (A) of the statement, we see that for every B(0, R) C R" ~ RP" \ H:
(2.13) lim (VinB(0,R)) = lim (V; N B(0,R)) =V NB(0,R)=VnNB(,R).

Let us remark that the first limit is performed in the Hausdorff metric induced by the ambient
space (B(0, R), distgpn) and the second one by (B(0, R), distg~), but the two limits are equal
because the Hausdorff convergence on compact sets does not depend on the metric, but just on
the topology [17, Proposition 2.4.14]. Equation (2.13) tells that every v € V' \ H also belongs to
limtﬁo Vt, i.e.

(2.14) limV,; D V.

t—0

On the other hand, let 7 € V'\ V' C H. Then, because of (2.11), we can apply the Curve selection
Lemma [2, Theorem 3.19] and get the existence of a semialgebraic arc « : [0, 7) — RP” such that
7(0,7) C V and 4(0) = ©. Since lim;_,o V; is closed and 7(s) € lim;_,q V; for every s € (0, 7),
then also 7 = y(0) € lim;_,o V. This implies that

t—0

which, together with (2.14), proves (2.12).

Let us now go back to the spherical version. Denote by ¢ : S™ — RP"™ the covering map and
set Z; := q~ (V). We apply now Lemma 2.4 to the family {V;};~o and, using (2.12), we get:
1 =N -1 = -1 i Vv D) RYavs — .
lim Z, = lim g™ (V) = ¢ Qg% Vt) 2q (V)=2Z

This proves part (B) of the theorem. O

3. THE AFFINE CASE

The next result is proved in [16] and gives a way for estimating the volume of tubes around
nonsingular complete intersections.

Theorem 3.1 (Lotz). Let V be the zero set in R™ of polynomials Py, ..., P, of degree at most d.
Assume that V is a smooth complete intersection of dimension m =n — c. Let x be a uniformly
distributed point in a ball B(p, s) of radius s around p € R™. Then for every r >0

m n 2dr n—m-+ti N\ m—i
. i < < —_— - .
(3.1) P(dlst(x,V)_r)_z;;(n_mH)( - ) (1+8)



10 SAUGATA BASU, ANTONIO LERARIO

We use this result as a tool for proving next theorem, which deals with the case of algebraic
sets in R™, with no regularity assumption. Notice that the result has the same shape of (3.1),
except for a doubling of the degree.

Theorem 3.2. Let F C R[X,...,X,] be a finite set of polynomials with degrees bounded by &
and let V-.C R™ be their common zero set. Assume dimg(V) < m. Given p € R"” and o > 0 let
x € B(p,o0) be a uniformly distributed point. Then for every e > 0:

i n 46\ g\m—i
. i < < —_— — .
(3.2) IP’(dlst(aaV)£)4§(n_m+i)<g) (1+U)
In particular:

(3.3) P (dist(z, V) < &) < 4 (4”5€)n_m (1 + M>m,

g g

(md, ’Lf€ < m,

(3.4) P (dist(z, V) < €) < de (4n5€)n_m .

g

Proof. Let us first reduce to the situation in the hypothesis of Theorem 2.10 (this is just a
technical step). Let P C R[Xp, ..., X,] be the finite set of polynomials obtained by homogenizing
the polynomials from F; notice that the degrees of the elements from P are still bounded by 6.
Denote by y := [1,0,...,0] € RP", H := {Xy # 0} = y* and consider the affine chart

¢ :RP"\ H —» R",

i — (2 Tn
given by ¢([xo,...,2,]) = (wé,..., mo).

Since V = Z(P,RP™\ H) has dimension at most m, we are in the position of applying part
(A) of Theorem 2.10: we get a one parameter family of real algebraic sets {V;}+~0 and o > 0
such that for every 0 < t < tg the set V; is a nonsingular complete intersection in R™ defined by
n —m polynomials P, ..., P, € R[X1,...,X,] of degree bounded by 20.

Fix ,0 > 0 and pick R > 0 such that B(p,e + o) C B(0, R). The family {V;};>0 that we
obtained applying Theorem 2.10 satisfies:
tlgr(l) (V;NnB(0,R)) =V NB(O,R).

We are now in the position of using Theorem 2.3 with the choices X =R", C' =V, C; = V; and
B = B(0, R). For every 7 > 0 there exists t. > 0 such that for all 0 < t < ¢,:

(3.5) UWV,e)N B(p,o) CUVi,e+7)NB(p, o).
Therefore, using (3.5), for every 7 > 0 and for 0 < ¢ < min{t,,t,} we can bound the probability
in the statement by:

P (dist(z,V) < ¢) = VOI(UV(X&Z; f)()p, 7
vol(U(Vz, e +7) N B(p, o))
- vol(B(p, 0))
=P (dist(x,V;) <e+7).
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Since for t < min{¢,,to} the set V; is a nonsingular complete intersection defined by n —m
polynomials of degree bounded by 24, we can use Theorem 3.1 (with the choices d = 2§, r = e+7
and s = o) and get:

P(dist(m,%)§s+7)§4§:( n )(M@W)n_mH(HiT)m_i.
1=0

n—m-+1i o
Together with (3.6), this proves that for every €,0,7 > 0

P (dist(z, V) <€) <4é (n_;+i> <45(ea+7)>”m+i <1+ s;T)mi.

Letting 7 — 0 in the right hand side of the previous equation gives (3.2).

In order to get (3.3) we first estimate:
(2 5 gt () o)
n—m-+i ln/L (n—m+d!\ i)~ i
<pmem T
Using this estimate we obtain

stz S () (5) (2

=0

4 <4n55) <1+ (45+1)6> .
g g

, then (1 + M) < (1 + %)m < e and (3.4) follows. O

o

If moreover € < m
Remark 3.3. Let us compare the bounds from the previous theorem with the bounds that one
can get using the work of Comte and Yomdin [22]. More precisely, for a bounded definable set
V C R™ one defines M(V,e) as the minimal number of e-balls needed to cover V, so that if
V C Ui, B(wi,e) then U(V,e) C U/_, B(z;,2¢) and

vol(U(V,€)) < (2¢)"vol(B(0,1))M(V,e).
If V is definable and of dimension m, then [22, Corollary 5.7] proves that:

M(V A B(O,R),¢) < a(n) " Bons(V)vol(Bg: (0, 1)) ( f) ,
=0

where By ,—;(V) = supy bo(V N L) and the supremum is over all the affine planes L C R™ of
dimension n — i. The constant a(n) can be estimated, using [22, Theorem 3.5], by

a(n) < nw%2"+%n!(n + 1)!%.

(This comes after some long computations that we do not reproduce here.) When V is of
dimension m, defined by polynomials of degree bounded by &, we have By ,—;(V) < (28)" "
Using these bounds, and setting ¢ = n — m, one can show that the probability in (3.3) can be
estimated by:

P (dist(z, V) < &) < nr“7 2" Enl(n + 1)13T (g) <25€> (1 + @‘5“)5) .
g g
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4. THE SPHERICAL CASE

4.1. Preliminaries. Given a smooth submanifold M <— S™ of dimension m, we denote by T'M
its tangent bundle and by N'M the unit normal bundle of M in S™, i.e.

NM :={(z,v) € M x R"* v L T, M, ||v|] =1} 25 M,

where p1(x,v) = x. The metric on N'M comes by restricting the fiberwise standard metric of
M x R"™, and similarly for TM. In this way for every z € M the fiber N1 M is isometric to the
standard unit sphere S?~ ™1,

Letting £ be the orientation line bundle® on M, wys € Q™ (M, E) the volume density of M
and 2 € M the variable in M, we denote the integration with respect to wys by “wps(dz)”. We
denote by © € Q"""Y(N1M, E) the global angular density, i.e. the density that restricts to
the volume density of N1 M ~ S"~™~! for every x € M. Letting § € S"~™~! be the variable on
the sphere, we denote the integration with respect to the volume density ©|n,ar by “©,(d6)”.
A volume density on N'M is defined by

(4.1) wytpr = pi(war) A O.
We denote the integration with respect to this density by “wnipr(dv)”. We remark that,
when dealing with a density wy € Q™(M, E), given vectors vy,...,v, € T,M, the condi-

tion |w(v1,...,vm)| = 1 is well defined (however the “sign” of the density is not, unless the
orientation bundle E is trivial and a trivialization has been chosen).

For every * € M and v € N}M we denote by L,(v) : T,M — T, M the Weingarten map of
M in S™ in the direction of v. For i = 0,...,m we define the functions v; : N'M — R by:

m

det(1 —tLy(v)) = > _t'hi(v).

i=0
Remark 4.1. In the sequel we will use the following fact from differential geometry. Let L be a
smooth manifold of dimension ¢ and wy, be a density on it. Given an embedding ~ : L — R"*1
the /—dimensional volume of the image v(L) can be written as

VOl(’y(L)):/LP(y)wL(dy)’

where the function p : L — R is computed as follows. For every point y € L we pick a
basis {v1,...,vs} of T,L such that |wr(vy,...,v¢)| = 1 and we consider the matrix J,y :=

[dyyv1, ..., dyyve]. Then:
p(y) = /det (JyyTJy7).

Definition 4.2. Let M < S™ be a smooth manifold of dimension m, possibly with boundary,
and A C M\ OM be an open set. For every integer 0 < i < m we define I, : A — R by

@)= [ Jui(0)]6.(a0)
N1M
The i—th total absolute curvature of A C M \ OM is defined by:

K| (A) = /A L) wn (dz) = / (s (1) Jwys s ().

NiM
(The right hand side equality follows from (4.1).)

5The reader unfamiliar with the notion of density can assume that M is orientable and read this paragraph
simply substituting the word “density” with the word “form”. We refer to [4, Chapter 1, §7 | for more details.
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Definition 4.3. For every pair (k,n) of natural numbers with k& < n we define the function
Ik [0,00) = R by

min{e, %}
(4.2) Joo=1 and J, () ;:/ (sin8)" 1 (cos 6)"*d6.
0
(Note the extremum of integration in the definition of the function J, ; for k > 0.)

Let us recall some useful properties of the functions J,, j.

Lemma 4.4. For 0 < 0,6 < 5 and p € S™, we have the following properties:

(A) Jni(e) < @ for k # n.
(B) Jyn(e) < $vol(S™)(sine)™.

(C) vol(B(p, o)) = vol(S™1)J, (o) > vol(Sn—1) o),
Proof. These are reformulations in our notation of [5, Lemma 2.31], [5, Lemma 2.34] and [5,
Lemma 20.6] respectively. O

Definition 4.5. Let M < S™ be a smooth manifold, possibly with boundary, and A C M\ oM
be an open set. For ¢ > 0, we denote by T (A4,¢) the e-tube of A in S™, i.e. the set of points
p € S™ such that there exists a geodesic of length at most € on S™, joining p with A and meeting
A orthogonally. If we we denote by exp : T'S™ — S™ the riemannian exponential map, and by
N¢A C NA C TS™ the set of vectors in N A of norm at most ¢, for small enough € > 0 we have:

T(A,e) =exp(N°A).
Remark 4.6. The function J, ; play the analogues of polynomials for the spherical version of
Weyl’s Tube Formula. More precisely, given a smooth compact manifold M — S™, of dimension
m and codimension ¢ = n — m, possibly with boundary, and an open set A C M \ 9M, there
exists g9 > 0 such that for all 0 < & < g9 we have [20]:
m
vol(T(4,¢)) = Z In,c+i(€)
i=0

i (V)wnrp(dv).
N'M

Since 1);(v) is a homogeneous polynomial of degree i, its integral on N} M vanishes for s odd. The
integral [y, ¥i(v)wniar(dr) is usually denoted by K;(M) and called i-th curvature integral.

4.1.1. Volume of tubes and curvature integrals. We prove now a sequence of useful lemmas,
relating the volume of tubes and the total absolute curvatures.

Lemma 4.7. Let M — S™ be a smooth manifold, possibly with boundary, of dimension m and
codimension ¢ =n —m. Let A C M\ OM be an open set. For every 0 <e < T:

VOl(T(A,2)) 3 Jneri()| Kil (A).

=0

Proof. This is simply an adaptation of [16, Theorem 3.1] to the spherical case. We prove the
case € < 5; the case ¢ = 5 follows easily by a limit argument.

Consider the density r"~™ 1dr A© on NM and the map ¢ : NM ~ N'M x (0,00) — S™
defined by
plv) +rv

V,T) 1= eXpP,(,)(1v) = —.
o(v,r) Pp() (1) 1+ r2)h
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The Jacobian of the map ¢ is computed in [20] and can be used to compute the pull-back of the
volume density wgn under :

det(1 —rL,
QD*(WS”) — ‘ e(( ;) n+(1 ))|rn7m71dr A©.
1+7r)

The image of ©|n14x(0,tane) contains T(A,e) and by the change of variables formula, since the
set of critical values of ¢ has measure zero:

vol(T(A, £)) < / | det(1 — TLH(I ) =1, A ©(dv)
N'Ax(0,tane) (1+T’2)

/ ‘ZZ 0T¢z+1 ’ r T 1d7’/\@(d1/)
N1Ax(0,tane) 1+7‘2)

/ sz )| A O(dv)

N1Ax(0,tane) ;—

</ <1+m>"> ([, wriometan)

In,c+i ()| K| (A).

I IN

2 10 S

S
I
o

O

Definition 4.8. For n € N we denote by O(n) C R™*"™ the orthogonal group, with the induced
riemannian structure, and by “dg” the integration with respect to the corresponding volume
density. If f: O(n) — R is a measurable function we define

1
geg(n)f(g) = W /O(n) f(g)dg.

Lemma 4.9. Let M — S™ be a smooth manifold, possibly with boundary, of dimension m and
codimension ¢ =n —m. Let A C M\ OM be an open set. Then for every 0 < i < m we have:

1
wir (3) |
K;(M) = - 2 - E K (Mng-S" ),
(M) T (2=E0) T (225 geo(n1) ( g )
Proof. This is simply a restatement of [5, Theorem A.59] in our notation. O

Lemma 4.10. Let M < S™ be a smooth manifold, possibly with boundary, of dimension m and
codimension ¢ =n —m. Let A C M\ OM be an open set. Then for every 0 < i < m we have:

70 (3)
I (m—2i+1) T (n—72n+z) gEO(71+1)

(4.3) [KG|(M) <2 [K|(M g - S,

Proof. This is an adaptation of [16, Theorem 3.3] to the spherical case. One denotes by A
and A_ the set of points in A where I; is positive and negative, respectively. Then |K;|(A) =
|Ki(A)| + | K (A2)| < 2|K;(A)|. The inequality (4.3) follows now from Lemma 4.9. O
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4.1.2. The gauss map.

Definition 4.11. Let Y < S™ be a smooth manifold and N'Y be its unit normal bundle.
Observe that N'Y = {(y,v) € S" x S"|y € Y,v € (T,Y)+} C S" x S™. We denote by

Yy ::p2‘N1Y : N Y —» S™
the restriction of the projection on the second factor and call it the Gauss map of Y.

Proposition 4.12. Let Y < S™ be a smooth semialgebraic manifold of dimension i. Let
v =7y : N'Y — 8" be the corresponding Gauss map. Consider the set O, 4 = {h € O(n +
D |yhh-S1}.5 Then O, 4 C O(n+ 1) has full measure and:

IK:|(Y) < vol(S"~1)
2 h€O,m

Proof. Let p; : N'Y — Y and py : N'Y — S™ be the projections onto the two factors (recall
that vy = p2). Pick a point (y,v) € N'Y C Y x S™ and write

(44) T(yﬂ,) ~ TyY D Wy,
where W,, C N,)Y is the orhtogonal complement of Rv in N, Y and with d(, ,)p1 the orthogonal
projection to T},Y" and d(,,,)p2 the orthogonal projection to W,,.

Pick orthonormal bases {v1,...,v;} for T,Y and {ws,...,wy—1-4, v} for N, Y, so that, us-
ing the identification (4.4), the list {v1,...,v;,w1,...,wy—;—1} is an orthonormal basis for
T(yyl,)NlY. In particular:

lwnty (V1 -5 Vi W1 W) = 1,
where wy1y = piwy A O is the density defined in (4.1).

We show now that for every v € N'Y we have:

i ()] = \Jdet ()T T

where J, )7 is the matrix [(d(, ,)7)v1, - -, (d(yﬂ,))’yv,-, (deyv))yw1, .-, (diyv))YWn—i—1] (i-e. the
columns of J, )7 are the coordinate vectors of the images under dy, )y of the chosen basis
elements). To this end, observe first that, since d(, ,)p2 is the orthogonal projection to W,

(dymywj =w; Yj=1,...,n—i—1.

In order to compute (d(y,,)Y)v;, for j = 1,...,4, we take a curve ¢ : (—¢,€) — N'Y such that
¢(0) = (y,v) and ¢(0) = v;. Notice that v(t) := pa(c(t)) defines a normal field on Y along c
and with v(0) = v. In particular, denoting by L, (v) : T,Y — T,Y the Weingarten map in the
direction of v, we have :

d d
(e 7)vs = 5 (p2(c(t))) o = 7 () lio = Var(t)|,_g = Ly(¥)v;.
This shows that the matrix (J(yw)'y)TJ(y,l,)'y has the following shape:

Ty Tgwmr) = (%‘%) ;

where Q;; = vI' L, (v)T L, (v)v;. In particular, as claimed:

(4.5) Vet (T )T Tiyyy) = | det(Ly ()] = [i(v)].

6Given a map v : A — B between smooth manifolds and a submanifold S < B, the symbol “y M S” stands
for “y is transversal to S”, i.e. im(dey) + Ty (2)S = Ty(q)B for every x € A such that y(z) € S.
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Observe that if E C N'Y is such that v|g is an embedding, using Remark 4.1, we get:
[ 1oy (@) = vol, (0 (E).
E

Since Y is semialgebraic, so are N'Y and 7 and we can partition N'Y = E; U E, into
semialgebraic pieces such that rk(d,y) = n — 1 for v € Fy and rk(d,y) <n —2 for v € E5. By
(4.5) we have |[¢);] =0 on E5 and therefore:

KA = [ W@l @) = [ oy (@),

Using again the semialgebraic assumptions, we can partition F; = (|_|?:1 El,j) U Ey o into

semialgebraic pieces such that for every j = 1,...,a the set £y ; < N'Y is a smooth submanifold
of dimension n — 1, v|g, ; is an embedding, and E) o is of dimension smaller then or equal to
n — 2 (and in particular it has measure zero). Then

[ i@y = > [, Wity

- Zvolnq(’y(ELj)) = (*).
J=1

Since y(F; ;) is a submanifold of S™ of dimension n — 1, we have the kinematic identity [13]:

vol(v(E1 5))

(4.6) E # (’Y(El,j) Nh- Sl) =2 vol(§n—1)

heO(n+1)

Using (4.6) we can continue with

2. vol(S§mt
(=3 ") g BNk

2 heO(n+1)

j=1

a n—1
) ; %heg(@# (7|17:11,j(h ' Sl))
- \ml(imheo%+1)# (7|511\E°’1 (k- Sl))
- "Ol(in_l)hegw# (7|511\E0:1(h . Sl)>
< VOl(gn_l)heo%m# (- 59)
< %ﬂ sup # (v H(h-SY)).

heOn

Motivated by the previous result we introduce the following definition.

Definition 4.13. Let M — S™ be a smooth manifold of dimension m. For every 0 <i < m let
Omam:={9€O0(n+1)|Mthg-S"™} and for every g € Opr s consider the set Oy 4 = {h €
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O(n+1)|varng.gn—m+i h h-S'}. We define:

Bi(M):= sup sup #(7 nmai (B Sl)
( ) €011 heOy 1 Mng-S +i ( )

Before proving next result, we will need the following technical lemma.
Lemma 4.14. Let B(p,0) C S™ be a ball with o > 0. Then
oT (n+1)

(=) T (5)

P (g . Snim%?i N B(p, 0') 7é @) = Jn,m—i(a)'

Proof. Let ¢ =n — m. Observe first that
P(Q'SC""iﬂB(p,U) £ (g)) :P(SCHQB(g_l p, o) # @) :P<Sc+imB(g.p70-) £ (z)) ,

since g~ € O(n+1) is still uniformly distributed. Denoting by ¢ = span{p} C R"*1, we see that
g - £ is a uniformly distributed one dimensional linear space and, denoting by 0 < 61 (¢, W) < 7
the first principal angle between ¢ and a (c + i + 1)-dimensional linear space W, for ¢ < 7 we
get:

P (SN B(gp, o) #0) =P (61(g - LR <o) .
The density p(6) of 6, is computed in [8, Theorem 3.2] and it is given by:
oI (ntl
p(e) = T neriErlQF) m—1
(=) T ()

(cos §)“T(sin @)~~~ 1,

Integrating this function between 0 and o gives the desired probability in the case o < 3:
n—m-+1 7 2r (n+1)
(4.7) P(g-S N B(p,o) #0) :/O p(0)do = T (=) T () Jnm—i(0)-

If ¢ > %, then P (g- 5" N B(p,0) # 0) = 1. Recall now that we have defined Jy, ;m—i(0) =

fmin{m%}

0 (cos §)¢ti(sin @)"~¢~*~1. In particular, since

2F(n+1) T
3 Jn,m—i =) =1
F(%ﬂﬂ)p(mj) (2)

then (4.7) is still valid for o > 7. O

Proposition 4.15. Let M — S™ be a smooth manifold of dimension m, p € S™, 0 > 0 and
A C M\ OM be an open set contained in B(p,o). Then for every 0 <e < T :

e n—1 )
VoI(T(4,2)) < vol(5" ) 3 (7)1 = 0t VsV,
i=0
Proof. Let us set a;(n,m) := r(m—:f ;‘(%"—m“)' Using the above results we have:

m

vol(T <Y Tneti(@)|Ki|(A) (Lemma 4.7)
=0

(4.8)

\ /\

neti(€)ai(n,m K;|[(Ang-Sn—mte Lemma 4.10
23 i ) KNGS )
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Observe now that, by Proposition 4.12,

Ki|(Ang. S+ < YUS) qup 4 (yarng.se )L - 1))
g€O(n+1) geO(n+1) 2 heO, g
vol(Sn—1 i
(49) < YD) g (B (g- 5 1 Blpyo) £ 0).

- 2

The probability on the right hand side of (4.9) is computed in Lemma 4.14 (which has no
restriction on o > 0, using the convention (4.2)). Substituting (4.9) into (4.8) we get:

VOI(T(A,&‘)) < VOl(Snil)zai(nam) (n 772L£z+ 3 ( ) Jn,cqy(e) n,m— z( )Bz( )
=0

The inequality in the statement follows from the identity:

4.1.3. The spherical algebraic case: degree estimates. Next lemma estimates the quantities 3;(2)
defined in Definition 4.13 in the case Z C S™ is a smooth complete intersection.

Lemma 4.16. Let Z be the zero set of homogeneous polynomials Py, ..., P. of degree at most d
in S™. Assume that Z is a non-singular complete intersection of dimension m = n — c. Then
for every i =0,...,m we have:

Bi(Z) < 2(4d)"~ ™+

Proof. Let X, ..., X, be linear coordinates on R™™! such that Pi,...,P. € R[Xy,...,X,].
Moreover, since we are interested in an upper bound on (;(Z), we can assume without loss of
generality that the polynomials Pi,..., P, defining Z are of the same degree d. The tangent
bundle T'S™ is embedded in the tangent bundle TR™*! which is trivial, and we denote by
Yo, ..., Y,, the coordinate functions corresponding to the basis (a—?{o, ceey 6X ) of ToR"! ~
R+,

Following Definition 4.13, for an element g € Oz n(n + 1), the set Z N g - S"~™* % can be
described by (4.10) and

P=- =P =0,
Lo=-=Lpn_i-1=0,
intersected with S™, where the L;’s are generic linear forms in Xy, ..., X,,.

By making a linear change in the X;, we may assume that L; = X;,0<j<m —i— 1.
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With this choice of coordinates, the normal bundle NZ < T.S™ — TR"*! can be described
as projection to TR™ 1, of the solutions to the set of equations,

Xo==Xpn i1=0,
(4.10) P =--=P. =0,
. OP;
,Z )\j aX’H’L7’L - Ym_i7
j=1
(4.11)
. 0P
ANi—L =Y,
2 igx, = Y
Jj=1
intersected with S™ x R“t"*+1 where A, ..., A, are Lagrangian variables. Notice that the above

equations imply via the Euler identity that
XoYo+ -+ XY, =0,
and hence YOC%(0 4+ -+ Ynaixo is constrained to belong to the tangent space of S™.
We have to bound the cardinality of ’ygégsn,mﬁ(h -8 for h € Oy m(n + 1). Being zero—

dimensional, we can assume (up to making another linear change of coordinates X,,_,, ..., Xp)
that fygég_ gn-m+i(h - S') has an empty intersection with the hyperplane X,, = 0.

Now, we can take h-S! to be the intersection of S™, with n — 1 hyperplanes defined by generic
linear forms in Yy, ..., Y}, which after another linear change in coordinates we can assume to be
Ys,...,Y,.

With the above assumptions, using Definition 4.11, the pull-back of - S' under VZng-Sn—mti,
for h € Ogm(n + 1), can be described by (4.10), (4.11) and

Yo= =Y, =0.
intersected with S™ x R¢*™*1 and projected to the first factor.

Homogenizing (4.11) with respect to X,,, we obtain the following system of bi-homogeneous
equations,

(4.12) b =--=PF =0,
Xo=+=Xm_i-1=0,
- op;
by J Xd_lym,i
Z JaXm—i n ’
j=1
. 0P
by J _ d—1 ;
Z JaXn Xn Ya
j=1
-}/—2 T e e s T Yn = 0.
These equations are homogeneous of degree at most d in (Xo, ..., X,), and homogeneous of
degree at most 1 in (Yp,...,Yn, A1,...,Ac). Also, using the fact Xg =+ = X;,_jp1 = Yo =

- =Y, =0, the above equations define a zero—dimensional subvariety of CP*~ ™% x CPct!.
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Using Kouchnirenko’s Theorem [14] the number of non-degenerate roots of this system in
CPn~™+i x CP*! is bounded by

(TL - (m - Z) +c+ 1)' . V017L—(m—i)+c+1(d . An—(m—i) X AC+1)7
where for p > 0, A, denotes the p-dimensional simplex in R? (i.e. with vertices the origin and
the standard basis vectors). Noting that
1

vol, (&) = =

we obtain that the number of non-degenerate roots of this system in CP"~™%¢ x CPt! is
bounded by

n—(m-—1i)+c+1) . 2c+1i+1 R
dn m-+1 — dn m-+1
n—(m—1))(c+1)! c+1
(n—( M(e+1)
< 220+idn—m+i
< 22(c+i)dc+i
< (4d)c+i.

This gives a bound for the number of real projective solutions of the system of equations in
(4.12). The lemma follows after noting that S™ is a double covering of RP™ which gives the
extra factor of 2. 0

4.1.4. The spherical case: smooth complete intersections. Next theorem is the spherical analogue
of Theorem 3.1.

Theorem 4.17. Let Z be the zero set of homogeneous polynomials Py, ..., P, in S™ of degree at
most d. Assume that Z is a smooth complete intersection of dimension m =n — c. Let x be a
uniformly distributed point in a ball B(p, s) of radius 0 < s < T around p € S™. Then, for every
0<r<Z:

=T>=3

1 n 4 L2 n—m x m
P(dist(z, Z) <7) <2 (1 + 2 (25 )> ( nd“”) (1 + (dnd + 4d + 1)5””") .

sin s sin s

sin s

(4nd+4d+1)m’

P(dist(z, Z) < 1) < 2¢ (1 N Vol(S”)) (4ndsmr>n—m

2 sin s

In particular, if sinr <

Remark 4.18. The bounds from the statements that we put in the Introduction follow from:

vol(S™)  wvol(S%) 8 4
= = — < 2 .
Ty > T =
Since vol(S™) — 0 as n — oo, for large n the reader might want to keep using the bound from

the previous statement (similarly for Theorem 4.20 and Theorem 1.5).

Proof. Let Z < S™ be a complete intersection defined by polynomials P, ..., P. whose degrees
are bounded by d. Let r, s > 0 such that Z i B(p, s + r), denote by Z' = Z N B(p, s + r) and
define:

Ag=2'\0Z" and A, =07
‘With this choice we have
UZ,r)NB(p,s) CT(Ag,r) UT(A1,r),
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and consequently

vol@(Z,r) N B(p,s)) _ vol(T(Ag,r))  vol(T(Au,7))
vol(B(p, s)) ~ vol(B(p,s))  vol(B(p,s))

We apply now Proposition 4.15 (which has no constraints on o > 0) for estimating both sum-

mands of (4.13), with the choice 0 = s+, ¢ = r and A = Ap, A;. For j = 0,1, using the

properties from Lemma 4.4 and setting (r + s)’ := min{r + s, 5}, we get:

vo . m—1—j n— gin rr)—mtiti L
1§T<A]7 DIPR E (m 1 ><><Sm<r+syw—l-wi(m—m

(4.13) P(dist(z, Z) < 1) =

vol(B(p,s)) ~ Jun(s) = —i—j) n—m+i+j
1 wvol(S™), . )
4.14 "B, _i(m — j,d).
(4.14) AN R ($in7)" B j(m — j, d)
Setting now v, = (1 + %), using (4.14) we get
vol(T (4;,7)) Un -1 (sinp)n—mtits P )

41 < e m=i=j 8. (m — j, d).
(4.15) vol(B(p,s)) ~— Jnn(s) ; m—i—j/ n—m+i+j (sin(r+ ') Bi(m = j,d)

Let us write now:

n—1 1 m—j (mn—_zi ) n—m1+i+' m—j i
(4.16) )= ST < (Dt
m—i—j)n—m-+i+j i (m,J) i

(2

and, using Lemma 4.16, let us estimate
(417) ﬂz(m _ j7 d) < 2(4d)n—m+i+j.
Using (4.16) and (4.17) into (4.15) we get

vol(T (4;,7)) 2v,, “Im -3 il L iy o
) < n—m-+j n—m-+i+J (o nm—i—j 4 n—m-+i+j
olBp,) = Tun(s) ; ; n (sinr) (sin(r + s)") (4d)
=T 207{ )n"_m+j_1(4d)”_m+j(sin )" (4d sinr + sin(r + s)’)mfj
n,n\S

20,

S Gin S)nn"_m"'j (4d)"™ =™ (sin )" ~™ T (4d sinr + sin(r + s)')m_j ,

where in the last inequality we have used Lemma 4.4.

From this we see that

vol(T (Ao, 7)) . vol(T(Ay,7)) < 20,0 (4d)" ™ (sin )™
vol(B(p, s)) vol(B(p,s)) — (sin s)»
- (4dsinr + sin(r + s)" + ndd(sinr))
_ 20, N (4d) ™ (sin )™
(sin s)™
“((n+ 1)4dsinr + sin(r + s))

. n—m . . I\ m
<%, (4ndsmr) ((n+1)4dsmr+sm(r+s) ) _ ).

m—1

(4dsinr + sin(r + s)")

(4dsinr + sin(r + s))" "

sin s sin s sin s
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We observe now that for every 0 < 7,5 < 7 we have sin(r +s)" < sinr +sins (Lemma 4.19) and

therefore:
() = 20, (n4dsinr>"_m ((n+ 1)4dsinr N sins—l—sinr)m

sin s sin s sin s
nddsinr\"" sinr\"™

(4.18) <20 ( ——— 14 (dnd +4d+1)—

sin s sin s
This proves the first part of the statement.

If now sinr < %, then
. m 1 m
(4.19) (1+ (4nd + 4d + 1)?”) < <1+ ) <e
sin s m

and the second part follows from (4.18). O

It remains to prove the lemma that we used in the proof.

Lemma 4.19. For every 0 <r,s < g we have sin (min{r + s, %}) < sinr +sins.
Proof. If r +5 < 3, then

sin (mln {r + s, 5}) =sin(r + s) =sinrcoss +sinscosr < sinr + sin s.

Ifr—&—szg,sayrzg—s,then

in (min {r 45,3 }) =sin () =1
S |mins<r S, B = Sin D) =

= (sins)? + (cos s)? < sin s 4 cos s

0<sin s,cos s<1
=sin s + sin (g — s) <sins+sinr.
O
4.2. The general spherical case. We are now ready to give the proof of the bound for the
general case in the sphere.

Theorem 4.20. Let P C R[Xo,...,X,] be a finite set of homogeneous polynomials of degree
bounded by 6 and Z C S™ be their common zero set. Assume dimg(Z) < m. Given p € S™ and
o >0 let x € B(p,o) be a uniformly distributed point. Then, for every e > 0

P<dist(w,Z)<s><2<1+V°1(QS )> (8”581“) <1+(8n6+85+1)s.m€)

sino sino

: Lo sin o
In particular, if sine < Bnot8sF D

P(dist(z, Z) < ¢e) < 2e <1 i V01(25 )) <8n5sm5>

sin o

Proof. The proof is similar to the proof of Theorem 3.2. Let 0 <& < 7§ (the case ¢ = 7 follows
by a limit argument).

By part (B) of Theorem 2.10 there exists a one parameter family of real algebraic sets {Z; }+>0
in the sphere S™ and tg > 0 such that for all 0 < t < ¢y the set Z; is a complete intersection
defined by homogeneous polynomials Py, ..., P, _,, of degree bounded by 2§ and such that:

lim Z; O Z.
t—0
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Applying Theorem 2.3 with the choices X = B = S™ and {Ci}1>0 = {Zi}i>0, for every
0 <7 < 5 — ¢ there exists t; > 0 such that for all ¢ < ¢;:
U(Z,e) N B(p,o) CU(Zy,e +7) N B(p, o).

Therefore for every ¢ < min{tg, ¢, } we can apply Theorem 4.17 to the set Z;, with the choices
d=26,r=c+7< 7 and s =o0:

P(dist(z, 2) < ) < 2 (1 ; VOl(S”) <8”5 sine + T>>”m <1 (864864 1)5“1(5”)m

2 sin o sin o

Letting 7 — 0 on both sides we get the first part of the result; the second part follows now
arguing as in (4.19). O

4.3. Proof of Theorem 1.5.

Proof. Using the fact that ¥ C V we see that

(G) >t} C {dist(x,Z) < 1}.

arcsin ¢

For a € S™ and 0 < u < 1, let us write By, (a,u) = B(a,arcsinu) U B(—a, arcsinu), so that:

vol ({€(z) >t} N Bgin(a,u))

ven (o (6@ 2t = vol (Bum (a, 1))

vol ({€(z) >t} N B(a,arcsinu)) + vol ({€'(x) > t} N B(—a, arcsinu))
2vol (B(a, arcsin u))

_ vol ({dist(z, Z) < —L—1} N B(a, arcsinu))

(4.20) -

arcsin ¢

vol (B(a, arcsin u))

In the last step we have used the fact that ¥ = —X, which in particular implies that the two
summands in the numerator of (4.20) are equal. The result is now just a reformulation of
Theorem 4.20. O
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