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Abstract. We prove bounds for the volume of neighborhoods of algebraic sets, in the eu-
clidean space or the sphere, in terms of the degree of the defining polynomials, the number of

variables and the dimension of the algebraic set, without any smoothness assumption. This
generalizes previous work of Lotz [16] on smooth complete intersections in the euclidean space

and of Bürgisser, Cucker and Lotz [7] on hypersurfaces in the sphere, and gives a complete

solution to [5, Problem 17].

1. Introduction

In this paper we deal with the following basic problem: given a real algebraic set Z of
dimension m, defined in Rn or in Sn by polynomials of degree bounded by δ, estimate the
volume of the set of points in the ambient space which are inside a ball of radius σ > 0 and are
at distance at most ε > 0 from Z.

The study of the volume of neighborhoods of algebraic sets has a long history, see for instance
[3, 7, 9, 10, 11, 12, 15, 16, 21], and it has fundamental algorithmic implications, e.g. for estimating
the size of ill–conditioned inputs in numerical analysis (see the monograph [5]). In fact, one of
our main motivations for this study is to give a positive answer to [5, Problem 17], see Section
1.1 below.

The problem stated above is studied in [16] in the case Z is a smooth complete intersection in
Rn, and in [7] in the case Z is a hypersurface (possibly singular) in the sphere Sn. Here we will
prove bounds with no smoothness assumption and no restriction on the dimension of Z. More
precisely, our first result is the following theorem, which deals with the case the ambient space
is Rn, and generalizes [16, Theorem 1.1] to the singular case (see Theorem 3.2 below for a more
detailed statement). In this context it is natural to state the result in probabilistic terms.

Theorem 1.1. Let F ⊂ R[X1, . . . , Xn] be a finite set of polynomials with degrees bounded by δ
and Z ⊂ Rn be their common zero set. Assume dimR(Z) ≤ m. Given p ∈ Rn and σ > 0 let
x ∈ B(p, σ) be a uniformly distributed point1. Then, for every ε > 0

(1.1) P (dist(x, Z) ≤ ε) ≤ 4

(
4nδε

σ

)n−m(
1 +

(4δ + 1)ε

σ

)m
,

and, if ε ≤ σ
(4δ+1)m ,

(1.2) P (dist(x, Z) ≤ ε) ≤ 4e

(
4nδε

σ

)n−m
.

Basu was supported in part by the NSF grant CCF-1910441.
1Here we turn the ball B(p, σ) into a probability space using the Lebesgue measure normalized by the volume

of the ball itself.
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As one can see from (1.2), the codimension c ≥ n−m of the algebraic set Z plays a key role
in these estimates: it is crucial (especially for algorithms) that the dependence of the bound, for
fixed c, is polynomial in n (the reader should think that c is fixed, n and δ are large, ε > 0 is
small and σ > 0 is of order O(1)).

The fact that a quantitative estimate of this type, as a function of the various ingredients, is
possible at all follows from Weyl’s Tube Formula [20], which is the main tool used in the smooth
case. It is intuitively clear that, as ε → 0, the desired bound should be of the order O(εn−m),
but an inductive limit argument using [20] on the singular points stratification of Z is delicate,
and the bounds depend on the complexity of the stratification.

Instead here we propose a different approach: to approximate the set Z with a family of
algebraic sets {Zt}t>0 which converges in the Hausdorff metric to Z, and such that for all t > 0
the set Zt is a smooth complete intersection of dimension m, defined by polynomials of degree
bounded by 2δ. This last condition ensures that one can apply Weyl’s Tube Formula to each
Zt, and produce a good quantitative bound for the volume of tubes; the Hausdorff convergence
Zt → Z allows to infer bounds on the volume of tubes also as t→ 0. Notice again the subtlety
on the role of the codimension of Z: every real algebraic set Z = Z({P1, . . . , Pa},Rn)2 can be
defined by a single polynomial Q :=

∑
i P

2
i , and the sets {Q = t} for t > 0 small enough are

smooth complete intersections converging to Z inside any ball, but they are all hypersurfaces (i.e.
they don’t have the same dimension of Z, unless Z is also a hypersurface). Our construction
of the family {Zt}t>0 is more refined, and involves instead polar varieties, following [1]. We
present this idea in Theorem 2.10 below, which is our main technical result, and which may be
of independent interest.

Remark 1.2. There is an alternative approach to the above problem, using the theory of multi-
dimensional variations, introduced by Vitushkin [19, 18] and developed by Comte and Yomdin
[22]. Using this approach we can get the following bound (see Remark 3.3 below):

P (dist(x, Z) ≤ ε) ≤ nπ
n−1
2 2n+n

2 n!(n+ 1)!
1
2 Γ

(
n−m

2

)(
2δε

σ

)n−m(
1 +

(4δ + 1)ε

σ

)m
,

which has the same “shape” as (1.1), but has a dependence in n which is exponential (this
should be no surprise, given the greater generality of [22], which deals with definable sets.). It is
not clear if our technique can be extended to the definable setting, the main obstacle being the
extension of the definition of polar varieties and their properties coming from complex algebraic
geometry.

In the case the ambient space is the sphere, we prove the following theorem, which generalizes
[5, Theorem 21.1] and makes it sensitive to the codimension of Z (again, see Theorem 4.20 for
a more detailed statement).

Theorem 1.3. Let P ⊂ R[X0, . . . , Xn] be a finite set of homogeneous polynomials of degree
bounded by δ and Z ⊂ Sn be their common zero set. Assume dimR(Z) ≤ m. Given p ∈ Sn and
σ > 0 let x ∈ B(p, σ) be a uniformly distributed point. Then, for every ε > 0

(1.3) P(dist(x, Z) ≤ ε) ≤ 2e

(
1 +

8π3

15

)(
8nδ sin ε

sinσ

)n−m(
1 + (8nδ + 8δ + 1)

sin ε

sinσ

)m
.

2For the rest of the paper, given a family P of polynomials, we denote by Z(P, X) their common zero set,
where X will be Rn or Sn.
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In particular, if sin ε ≤ sinσ
(8nδ+8δ+1)m ,

P(dist(x, Z) ≤ ε) ≤ 2e

(
1 +

8π3

15

)(
8nδ sin ε

sinσ

)n−m
.

We observe that the previous bound (1.3) has a shape which is similar to [6, Theorem 1.3],
where the case of a complex algebraic subset of CPn is discussed. The strategy for the proof is
the same as for Theorem 1.1: we use Theorem 2.10 to approximate Z by complete intersections
{Zt}t>0 of the same dimension as Z and with degree bounded by 2δ, then we apply an estimate
for the case of complete intersections and pass this estimate to the limit as t → 0. Compared
with the affine case (where we could use the bound for Zt proved by Lotz in [16]) there is an extra
step in the spherical case: here we also need to produce the bound for the case of nonsingular
complete intersections. While the strategy of proof is similar to [16, 7], via integral geometry,
there are some needed modifications. We deal with this in Section 4.1.

1.1. Condition Numbers of Real Problems with High Codimension of Ill–Posedness.
In this section we show how to interpret the previous result to give a solution to [5, Problem
17]. Recall first the following [5, Definition 2.32].

Definition 1.4. Let a, b ∈ Sn. We define:

dsin(a, b) := sin θ ∈ [0, 1],

where θ ∈ [0, π] is the angle between a and b.

If now Σ ⊂ Sn is a symmetric cone (i.e. Σ = −Σ), following [5, Chapter 21] one can define
the conic condition number C : Sn → R by

C (a) :=
1

dsin(a,Σ)
.

In this context, for u ∈ [0, 1], we denote by

Bsin(a, u) = {dsin(a, ·) ≤ u} = BSn(a, arcsinu) ∪BSn(−a, arcsinu).

Next theorem is a generalization of [5, Theorem 21.1], which corresponds to the case m = n− 1
(the proof is given in Section 4.3).

Theorem 1.5. Let C be a conic condition number with set of ill–posed inputs Σ. Assume that
Σ is contained in an algebraic set Z ⊂ Sn defined by homogeneous polynomials of degree bounded

by δ and of dimension dimR(Z) ≤ m. Then for all 0 < u ≤ 1 and for all t ≥ m(8nδ+8δ+1)
u :

sup
a∈Sn

P
x∈Bsin(a,u)

{C (x) ≥ t} ≤ 2e

(
1 +

8π3

15

)(
8nδ

ut

)n−m
.

In particular (take u = 1), for all t ≥ m(8nδ + 8δ + 1),

P {C (x) ≥ t} ≤ 2e

(
1 +

8π3

15

)(
8nδ

t

)n−m
.
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1.2. Structure of the paper. The rest of the paper is organized as follows. In Section 2, we
prove some basic results on Hausdorff limits of semialgebraic subsets of Rn. In particular, in
Proposition 2.5 we give a description of the Hausdorff limit of a one–parameter semialgebraic
family of bounded semi-algebraic subsets of euclidean space. We use this in Proposition 2.7
and relate it to limits of bounded semialgebraic sets defined over non-Archimedean extensions
of R, in order to utilize certain results proved in [1]. These results are then used to prove
an approximation result (cf. Theorem 2.10) which is a key technical result of the paper. In
Section 3, we prove Theorem 3.2 after introducing some preliminary results, including a bound
proved by Lotz in the non-singular case (cf. Theorem 3.1). In Section 4, we treat the spherical
case. We first prove an analog of Theorem 3.1 in the spherical case (cf. Theorem 4.17). We then
prove Theorems 1.3 and 1.5.

2. Hausdorff approximations

2.1. Metric geometry.

Notation 2.1. We will mostly be dealing with three metric spaces:

(A) The euclidean space Rn with the standard metric: distRn(a, b) = ‖a− b‖ ∀a, b ∈ Rn.
(B) The sphere Sn ↪→ Rn+1, with the riemannian metric induced by the ambient space.

The distance between two points a, b ∈ Sn equals the length of the shortest geodesic on
the sphere joining them: distSn(a, b) = arccos〈a, b〉. The diameter of the sphere for this
metric is π.

(C) Since the antipodal map x 7→ −x is an isometry of the sphere, the riemannian metric
on the sphere descends to a riemannian metric on RPn. The distance distRPn([a], [b])
between two points [a], [b] ∈ RPn equals the length of the shortest geodesic on the the
projective space joining them. The projective space is locally isometric to the sphere,
but its diameter is π

2 .

When the metric space X is clear from the context, we denote simply by dist(x, y) the distance
between two points x, y ∈ X and, for r ≥ 0, by B(x, r) the closed ball of radius r around
x ∈ X. In the above cases the metric comes from a riemannian structure on X. The riemannian
structure induces a volume density ωX and we denote by “ω(dx)” integration with respect to
this density. For a Borel set A ⊆ X we denote its volume by vol(A) :=

∫
A
ωX(dx).

Definition 2.2. Let X be a metric space and C ⊆ X be a closed subset. For ε ≥ 0 we denote
by UX(C, ε) the ε–neighborhood of C in X:

UX(C, ε) := {x ∈ X | dist(x,C) ≤ ε} =
⋃
x∈C

B(x, ε).

(We will omit the subscript and simply write U(C, ε) when the ambient space X is clear from
the context.) If {Ct}t>0 is a family of closed sets in X, we will write “limt→0 Ct = C0” if there
is a closed set C0 ⊆ X such that for every ε > 0 there exists tε > 0 such that for all 0 < t < tε

Ct ⊆ UX(C0, ε) and C0 ⊆ UX(Ct, ε).

This means that the family {Ct}t>0 converges to C0 in the Hausdorff metric. The notation
“limt→0 Ct ⊇ C” means that the family {Ct}t>0 converges to some closed set C0 ⊆ X and that
C0 ⊇ C (analogously for the notation “limt→0 Ct ⊆ C”).

Theorem 2.3. Let X be a metric space. Let C ⊆ X be a closed set and {Ct}t>0 be a family of
closed sets such that there exists a closed set B ⊆ X with the property that:

lim
t→0

(Ct ∩B) ⊇ C ∩B.
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Then, for every τ > 0 there exists tτ > 0 such that for all 0 < t < tτ and for all p ∈ X and
σ, ε > 0 such that B(p, σ + ε) ⊆ B, we have:

(2.1) UX(C, ε) ∩B(p, σ) ⊆ UX(Ct, ε+ τ) ∩B(p, σ).

Proof. By assumption, the Hausdorff limit inside B of the family {Ct ∩ B}t>0 contains B ∩ C
and therefore, given τ > 0 there exists tτ > 0 such that for all 0 < t < tτ :

(2.2) C ∩B ⊆ lim
t→0

(Ct ∩B) ⊆ UB(Ct ∩B, τ) ⊆ UX(Ct ∩B, τ).

Observe now that for every σ, ε > 0 and x ∈ X such that B(p, σ + ε) ⊆ B, we have the
following inclusion:

UX(C, ε) ∩B(p, σ) ⊆ UX(C ∩B, ε).

In order to prove this inclusion, we notice that for every point x ∈ UX(C, ε) ∩ B(p, σ) there
exists z ∈ C such that dist(x, z) ≤ ε. Since x ∈ B(p, σ) then, by triangle inequality, dist(p, z) ≤
dist(p, x)+dist(x, z) ≤ σ+ε and z ∈ B(p, σ+ε) ⊆ B. Therefore for every x ∈ UX(C, ε)∩B(p, σ)
there exists z ∈ C ∩B such that dist(x, z) ≤ ε and x ∈ UX(C ∩B, ε).

Now, given τ, ε > 0 and t < tτ , we also have the inclusion:

(2.3) UX(C ∩B, ε) ⊆ UX(Ct, ε+ τ).

In fact, by (2.2), for every ε > 0 we have:

UX(C ∩B, ε) ⊆
(2.2)
UX(UX(Ct ∩B, τ), ε) ⊆ UX(Ct ∩B, ε+ τ) ⊆ UX(Ct, ε+ τ),

and (2.3) follows.

Therefore, for every τ > 0 there exists tτ > 0 such that for every σ, ε > 0 and x ∈ X such
that B(p, σ + ε) ⊆ B and for all 0 < t < tτ we have:

(2.4) U(C, ε) ∩B(p, σ) ⊆ U(Ct, ε+ τ).

Intersecting both sides of (2.4) with B(p, σ) gives (2.1). �

The following lemma is elementary, but it will be useful in the sequel.

Lemma 2.4. Let {Ct}t>0 be a family of closed sets in RPn converging to some closed set
C0 := limt→0 Ct. Denoting by q : Sn → RPn the covering map, we have:

lim
t→0

q−1(Ct) = q−1(C0).

Proof. We observe first that for every closed set Y ⊆ RPn and for ε < π
4 we have:

(2.5) q−1 (URPn(Y, ε)) = USn(q−1(Y ), ε).

Let us write the condition that C0 = limt→0 Ct: for every ε > 0 there exists tε > 0 such that for
all 0 < t < tε:

(2.6) Ct ⊆ URPn(C0, ε) and C0 ⊆ URPn(Ct, ε).

Applying q−1(·) to both the inclusions in (2.6), and using (2.5), gives precisely the condition for
the convergence limt→0 q

−1(Ct) = q−1(C0). �
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2.2. Hausdorff limits of semialgebraic sets. In this section we give a simple description of
Hausdorff limits in the semialgebraic world, and related it to the notion of limits of bounded
semialgebraic sets defined over non–Archimedean extensions of R

Proposition 2.5. Let B ⊂ Rn be a bounded semialgebraic set and A ⊆ B × (0,∞) be a
semialgebraic set. Denoting by p1 : B × [0,∞) → B the projection on the first factor and
by p2 : B × [0,∞)→ [0,∞) the projection on the second factor, define for every t > 0 the set

At := p1(p−1
2 (t) ∩A).

Let clos(A) ⊆ clos(B)× [0,∞) be the closure of A and set A0 := p1(p−1
2 (t) ∩ clos(A)). Then

lim
t→0

At = A0.

Proof. We need to prove that for every ε > 0 there exists tε > 0 such that for all 0 < t < tε we
have:

(2.7) At ⊆ U(A0, ε) and A0 ⊆ U(At, ε).

We prove the two inclusions (2.7) separately, arguing by contradiction.

Assume first that there exists ε > 0 such that for every n > 0 there exist 0 < tn ≤ 1
n and

atn ∈ Atn such that for every a0 ∈ A0

(2.8) dist(a0, atn) ≥ ε.
Then, up to subsequences, since tn → 0 and B is bounded, we can assume that (atn , tn) →
(a0, 0) ∈ clos(A). This means atn → a0 ∈ A0, which contradicts (2.8) and proves the first
inclusion in (2.7) (notice that we did not use the semialgebraic hypothesis for this inclusion).

As for the other inclusion, assume again by contradiction that there exists ε > 0 such that
for every n > 0 there exists 0 < tn ≤ 1

n and a0,n ∈ A0 such that for all atn ∈ Atn we have
dist(a0,n, atn) ≥ ε. Up to subsequences, we can assume a0,n → a0 ∈ A0, and therefore for every
n > 0 there is 0 < tn ≤ 1

n such that for every atn ∈ Atn
(2.9) dist(a0, atn) ≥ ε.
Now we use the semialgebraic hypothesis: by the Curve selection Lemma [2, Theorem 3.19]
there exists a semialgebraic arc γ : [0, δ) → clos(A) ⊆ clos(B) × [0,∞) such that γ(s) ∈ A
for all s ∈ (0, δ) and γ(0) = a0. Let us write γ(s) = (a(s), t(s)), then the function t(s) is also
semialgebraic and we may assume that it is injective for 0 < s < δ′, for some 0 < δ′ ≤ δ. In
particular for every n > 0 there is sn ∈ (0, δ′) such that atn := a(sn) ∈ Atn and a(sn) → a0,
which contradicts (2.9)3. �

Notation 2.6. Denote by R〈ζ〉 the field of algebraic Puiseux series with coefficients in R, which
coincide with the germs of semi-algebraic continuous functions (see [2, Chapter 2, Section 6
and Chapter 3, Section 3]). An element x ∈ R〈ζ〉 is bounded over R if |x| ≤ R for some
0 ≤ R ∈ R. The subring R〈ζ〉b of elements of R〈ζ〉 bounded over R consists of the Puiseux series
with non-negative exponents. We denote by

λζ : R〈ζ〉nb → Rn

the ring homomorphism which maps
∑
i∈N aiζ

i/q to a0.

3The Curve Selection Lemma is used to construct a sequence atn ∈ Atn converging to a0. Without this we
would only be able to construct a sequence at′n still converging to a0 but with t′n ≤ tn (remember that in the

quantifiers we have “...for every n > 0 there exists tn > 0...”) For instance, if one takes as A the graph of the

function t 7→ sin
(
1
t

)
, we see that the first inclusion is still true, what fails is the second one.
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Let now S ⊂ R〈ζ〉n be a semialgebraic set defined by a formula φ with constants in R[ζ] such
that for some 0 ≤ R ∈ R we have |s| ≤ R for all s ∈ S. Then, for every t ∈ R, we denote by
Λt(φ) ⊂ Rn the semialgebraic set defined by the formula obtained from φ replacing ζ by t. Note
that for t > 0 small enough Λt(φ) ⊆ B(0, R).

Proposition 2.7. Let φ be a first order formula with constants in R[ζ] such that for some
R ∈ R, R > 0 we have |s| ≤ R for all s such that φ(s). Then:

λζ ({x ∈ R〈ζ〉n |φ(x)}) = lim
t→0

Λt(φ).

Proof. Let S = {x ∈ R〈ζ〉n |φ(x)}. It is proved in [2, proof of Proposition 12.43] that

λζ(S) = clos
(
{(x, t) ∈ Rk+1|x ∈ Λt(S), t > 0}

)
∩
(
Rk × {0}

)
.

The proposition now follows from Proposition 2.5. �

2.3. Hausdorff approximation by complete intersections.

Notation 2.8. Let X1, . . . , Xn be linear coordinates on Rn. Given G ∈ R[X1, . . . , Xn] and
0 ≤ k ≤ n, we denote by Crk(G) the set of polynomials

Crk(G) :=

{
G,

∂G

∂X1
, . . . ,

∂G

∂Xk

}
⊂ R[X1, . . . , Xn].

We will denote by Crhk(G) the corresponding set

Crhk(G) :=

{
Gh,

∂Gh

∂X1
, . . . ,

∂Gh

∂Xp

}
⊂ R[X0, . . . , Xn]

of homogenized polynomials.

The following proposition is proved in [1].

Proposition 2.9. Let Q,G ∈ R[X1, . . . , Xn] be polynomials of even degree, such that deg(G) ≥
deg(Q) and G is non–negative. Define the polynomial:

D(Q,G, ζ) := (1− ζ)Q− ζG ∈ R〈ζ〉[X1, . . . , Xn].

For a generic choice of the linear coordinates4 X1, . . . , Xn on Rn the following is true. For every
0 ≤ k ≤ n and 0 < R ∈ R:

λζ (Z(Crk(Def(Q,G, ζ)),R〈ζ〉n)) = Z(Q,Rn) ∩B(0, R).

Proof. This is proved in [1, Proposition 3.4]. �

We are now ready to prove the main technical result of this section.

Theorem 2.10 (Hausdorff approximation by complete intersections). Let P ⊂ R[X0, . . . , Xn]
be a finite set of homogeneous polynomials such that maxP∈P deg(P ) ≤ d.

(A) Let y ∈ RPn and denote by H ' RPn−1 the hyperplane H := y⊥. Let also V :=
Z(P ,RPn \H) ⊂ Rn and assume that dimR V ≤ m. Then there exists a one parameter
family of real algebraic sets {Vt}t>0 and t0 > 0 such that for every 0 < t < t0 the set
Vt is a nonsingular complete intersection in Rn defined by n −m affine polynomials of
degree bounded by 2d, and such that for every ball B(0, R) in Rn with R > 0:

(2.10) lim
t→0

(Vt ∩B(0, R)) = V ∩B(0, R).

4These coordinates are called “good for Q” in [1].
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(B) Let Z := Z(P , Sn) ⊂ Sn and assume that dimR(Z) ≤ m. Then there exists a one
parameter family of real algebraic sets {Zt}t>0 and t0 > 0 such that for every 0 < t < t0
the set Zt is a nonsingular complete intersection in Sn defined by n −m homogeneous
polynomials of degree bounded by 2d and such that:

lim
t→0

Zt ⊇ Z.

Proof. Let us prove part (A). Up to a linear change of coordinates we can assume that H =
{X0 = 0}. We denote by

Q :=
∑
P∈P

P 2|X0=1 ∈ R[X1, . . . , Xn]≤2d.

Observe that Z(Q,Rn) = Z(P ,RPn \H) = V. Let now G ∈ R[X1, . . . , Xn]2d such that G ≥ 0

and such that for every 0 ≤ k ≤ n the set Crhk(G) defines a smooth complete intersection in CPn

(and therefore also in RPn). Such polynomial G exists by [1, Proposition 2.22].

Up to a linear transformation in Rn, we can assume that the coordinates are such that
Proposition 2.9 can be applied. We define now as above the polynomial

D(Q,G, ζ) = (1− ζ)Q− ζG ∈ R〈ζ〉[X1, . . . , Xn],

and the algebraic sets:

V 〈ζ〉 := Z
(

Crhn−m−1(D(Q,G, ζ)),P(R〈ζ〉n+1)
)

and

V 〈ζ〉 := Z (Crn−m−1(D(Q,G, ζ)),R〈ζ〉n) ,

where P(R〈ζ〉n+1) denotes the n–dimensional projective space over the field R〈ζ〉. For R > 0 we
introduce the following first order formulas with coefficients in R[ζ]:

φ :=
(

Crhn−m−1(D(Q,G, ζ))(X0, . . . , Xn) = 0
)

φ := (Crn−m−1(D(Q,G, ζ))(X1, . . . , Xn) = 0)

φR :=
(
Crn−m−1(D(Q,G, ζ))(X1, . . . , Xn) = 0 ∧ X2

1 + · · ·+X2
n ≤ R2

)
.

Notice that V 〈ζ〉 = {[y] ∈ P(R〈ζ〉n+1) |φ(y)} and V 〈ζ〉 = {x ∈ R〈ζ〉n |φ(x)}. Using the conven-
tion introduced in Notation 2.6, we define for t > 0:

V t := Λt(φ) and Vt := Λt(φ).

Observe now that the set

Σ = {t ∈ C | V t is not a non-singular complete intersection in CPn}

is a Zariski closed constructible subset of C (using [2, Theorem 4.102]) whose complement con-
tains 1. Therefore C \ Σ is nonempty and Zariski open, hence it is cofinite in C. This implies
that there exists t0 > 0 such that for all 0 < t < t0 the set V t ⊂ RPn is a nonsingular com-
plete intersection defined by n−m homogeneous polynomials of degree bounded by 2d, and in
particular so is Vt. Moreover, by construction we also have:

Vt ∩B(0, R) = Λt(φR) and V ∩B(0, R) = λζ ({x ∈ R〈ζ〉n |φR(x)}) ,

where the right–hand side identity follows from Proposition 2.9. The Hausdorff limit (2.10)
follows now from Proposition 2.7.
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Let us now prove part (B). We first prove a projective version of the statement. More precisely,
let V := Z(P ,RPn) and pick a hyperplane H ' RPn−1 such that

(2.11) clos
(
V \H

)
= V .

The generic hyperplane H has this property (to see this it is enough to take a stratification
V = trj=1Sj into smooth strata and to pick a hyperplane H transversal to all strata). Observe
now that the construction from part (A), applied to V := Z(P ,RPn \ H), actually yields the
existence of a family of projective algebraic sets {V t}t>0 and t0 > 0 such that for 0 < t < t0
each V t is a smooth complete intersection in projective space defined by n −m homogeneous
polynomials of degree bounded by 2d (and then the family {Vt}t>0 for part (A) is obtained by
letting Vt = V t \H). We will prove that:

(2.12) lim
t→0

V t ⊇ V .

Using now part (A) of the statement, we see that for every B(0, R) ⊂ Rn ' RPn \H:

(2.13) lim
t→0

(
V t ∩B(0, R)

)
= lim
t→0

(Vt ∩B(0, R)) = V ∩B(0, R) = V ∩B(0, R).

Let us remark that the first limit is performed in the Hausdorff metric induced by the ambient
space (B(0, R), distRPn) and the second one by (B(0, R), distRn), but the two limits are equal
because the Hausdorff convergence on compact sets does not depend on the metric, but just on
the topology [17, Proposition 2.4.14]. Equation (2.13) tells that every v ∈ V \H also belongs to
limt→0 V t, i.e.

(2.14) lim
t→0

V t ⊇ V.

On the other hand, let v ∈ V \V ⊂ H. Then, because of (2.11), we can apply the Curve selection
Lemma [2, Theorem 3.19] and get the existence of a semialgebraic arc γ : [0, τ)→ RPn such that
γ(0, τ) ⊂ V and γ(0) = v. Since limt→0 V t is closed and γ(s) ∈ limt→0 V t for every s ∈ (0, τ),
then also v = γ(0) ∈ limt→0 V t. This implies that

lim
t→0

V t ⊇ V \ V,

which, together with (2.14), proves (2.12).

Let us now go back to the spherical version. Denote by q : Sn → RPn the covering map and
set Zt := q−1(V t). We apply now Lemma 2.4 to the family {V t}t>0 and, using (2.12), we get:

lim
t→0

Zt = lim
t→0

q−1(V t) = q−1
(

lim
t→0

V t

)
⊇ q−1(V ) = Z.

This proves part (B) of the theorem. �

3. The affine case

The next result is proved in [16] and gives a way for estimating the volume of tubes around
nonsingular complete intersections.

Theorem 3.1 (Lotz). Let V be the zero set in Rn of polynomials P1, . . . , Pc of degree at most d.
Assume that V is a smooth complete intersection of dimension m = n− c. Let x be a uniformly
distributed point in a ball B(p, s) of radius s around p ∈ Rn. Then for every r > 0

(3.1) P (dist(x, V ) ≤ r) ≤ 4
m∑
i=0

(
n

n−m+ i

)(
2dr

s

)n−m+i (
1 +

r

s

)m−i
.
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We use this result as a tool for proving next theorem, which deals with the case of algebraic
sets in Rn, with no regularity assumption. Notice that the result has the same shape of (3.1),
except for a doubling of the degree.

Theorem 3.2. Let F ⊂ R[X1, . . . , Xn] be a finite set of polynomials with degrees bounded by δ
and let V ⊂ Rn be their common zero set. Assume dimR(V ) ≤ m. Given p ∈ Rn and σ > 0 let
x ∈ B(p, σ) be a uniformly distributed point. Then for every ε > 0:

(3.2) P (dist(x, V ) ≤ ε) ≤ 4
m∑
i=0

(
n

n−m+ i

)(
4δε

σ

)n−m+i (
1 +

ε

σ

)m−i
.

In particular:

(3.3) P (dist(x, V ) ≤ ε) ≤ 4

(
4nδε

σ

)n−m(
1 +

(4δ + 1)ε

σ

)m
,

and, if ε ≤ σ
(4δ+1)m ,

(3.4) P (dist(x, V ) ≤ ε) ≤ 4e

(
4nδε

σ

)n−m
.

Proof. Let us first reduce to the situation in the hypothesis of Theorem 2.10 (this is just a
technical step). Let P ⊂ R[X0, . . . , Xn] be the finite set of polynomials obtained by homogenizing
the polynomials from F ; notice that the degrees of the elements from P are still bounded by δ.
Denote by y := [1, 0, . . . , 0] ∈ RPn, H := {X0 6= 0} = y⊥ and consider the affine chart

ϕ : RPn \H → Rn,

given by ϕ([x0, . . . , xn]) = (x1

x0
, . . . , xnx0

).

Since V = Z(P ,RPn \H) has dimension at most m, we are in the position of applying part
(A) of Theorem 2.10: we get a one parameter family of real algebraic sets {Vt}t>0 and t0 > 0
such that for every 0 < t < t0 the set Vt is a nonsingular complete intersection in Rn defined by
n−m polynomials P1, . . . , Pn−m ∈ R[X1, . . . , Xn] of degree bounded by 2δ.

Fix ε, σ > 0 and pick R > 0 such that B(p, ε + σ) ⊆ B(0, R). The family {Vt}t>0 that we
obtained applying Theorem 2.10 satisfies:

lim
t→0

(Vt ∩B(0, R)) = V ∩B(0, R).

We are now in the position of using Theorem 2.3 with the choices X = Rn, C = V , Ct = Vt and
B = B(0, R). For every τ > 0 there exists tτ > 0 such that for all 0 < t < tτ :

(3.5) U(V, ε) ∩B(p, σ) ⊆ U(Vt, ε+ τ) ∩B(p, σ).

Therefore, using (3.5), for every τ > 0 and for 0 < t < min{tτ , t0} we can bound the probability
in the statement by:

P (dist(x, V ) ≤ ε) =
vol(U(V, ε) ∩B(p, σ))

vol(B(p, σ))

≤ vol(U(Vt, ε+ τ) ∩B(p, σ))

vol(B(p, σ))
(3.6)

= P (dist(x, Vt) ≤ ε+ τ) .
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Since for t < min{tτ , t0} the set Vt is a nonsingular complete intersection defined by n −m
polynomials of degree bounded by 2δ, we can use Theorem 3.1 (with the choices d = 2δ, r = ε+τ
and s = σ) and get:

P (dist(x, Vt) ≤ ε+ τ) ≤ 4
m∑
i=0

(
n

n−m+ i

)(
4δ(ε+ τ)

σ

)n−m+i(
1 +

ε+ τ

σ

)m−i
.

Together with (3.6), this proves that for every ε, σ, τ > 0

P (dist(x, V ) ≤ ε) ≤ 4
m∑
i=0

(
n

n−m+ i

)(
4δ(ε+ τ)

σ

)n−m+i(
1 +

ε+ τ

σ

)m−i
.

Letting τ → 0 in the right hand side of the previous equation gives (3.2).

In order to get (3.3) we first estimate:(
n

n−m+ i

)
=

n!

m!︸︷︷︸
≤nn−m

i!

(n−m+ i)!︸ ︷︷ ︸
≤1

(
m

i

)
≤ nn−m

(
m

i

)
.

Using this estimate we obtain

P (dist(x, V ) ≤ ε) ≤ 4nn−m
m∑
i=0

(
m

i

)(
4δε

σ

)n−m+i (
1 +

ε

σ

)m−i
= 4

(
4nδε

σ

)n−m(
1 +

(4δ + 1)ε

σ

)m
.

If moreover ε ≤ σ
(4δ+1)m , then

(
1 + (4δ+1)ε

σ

)m
≤
(
1 + 1

m

)m ≤ e and (3.4) follows. �

Remark 3.3. Let us compare the bounds from the previous theorem with the bounds that one
can get using the work of Comte and Yomdin [22]. More precisely, for a bounded definable set
V ⊂ Rn one defines M(V, ε) as the minimal number of ε–balls needed to cover V , so that if
V ⊆

⋃ν
i=1B(xi, ε) then U(V, ε) ⊆

⋃ν
i=1B(xi, 2ε) and

vol(U(V, ε)) ≤ (2ε)nvol(B(0, 1))M(V, ε).

If V is definable and of dimension m, then [22, Corollary 5.7] proves that:

M(V ∩B(0, R), ε) ≤ a(n)

m∑
i=0

B0,n−i(V )vol(BRi(0, 1))

(
R

ε

)i
,

where B0,n−i(V ) = supL b0(V ∩ L) and the supremum is over all the affine planes L ⊂ Rn of
dimension n− i. The constant a(n) can be estimated, using [22, Theorem 3.5], by

a(n) ≤ nπ
n−1
2 2n+n

2 n!(n+ 1)!
1
2 .

(This comes after some long computations that we do not reproduce here.) When V is of
dimension m, defined by polynomials of degree bounded by δ, we have B0,n−i(V ) ≤ (2δ)n−i.
Using these bounds, and setting c = n −m, one can show that the probability in (3.3) can be
estimated by:

P (dist(x, V ) ≤ ε) ≤ nπ
n−1
2 2n+n

2 n!(n+ 1)!
1
2 Γ
( c

2

)(2δε

σ

)c(
1 +

(4δ + 1)ε

σ

)m
.
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4. The spherical case

4.1. Preliminaries. Given a smooth submanifold M ↪→ Sn of dimension m, we denote by TM
its tangent bundle and by N1M the unit normal bundle of M in Sn, i.e.

N1M := {(x, ν) ∈M × Rn+1 | ν ⊥ TxM, ‖ν‖ = 1} p1−→M,

where p1(x, ν) = x. The metric on N1M comes by restricting the fiberwise standard metric of
M × Rn, and similarly for TM . In this way for every x ∈M the fiber N1

xM is isometric to the
standard unit sphere Sn−m−1.

Letting E be the orientation line bundle5 on M , ωM ∈ Ωm(M,E) the volume density of M
and x ∈M the variable in M , we denote the integration with respect to ωM by “ωM (dx)”. We
denote by Θ ∈ Ωn−m−1(N1M,E) the global angular density, i.e. the density that restricts to
the volume density of N1

xM ' Sn−m−1 for every x ∈M . Letting θ ∈ Sn−m−1 be the variable on
the sphere, we denote the integration with respect to the volume density Θ|NxM by “Θx(dθ)”.
A volume density on N1M is defined by

(4.1) ωN1M := p∗1(ωM ) ∧Θ.

We denote the integration with respect to this density by “ωN1M (dν)”. We remark that,
when dealing with a density ωM ∈ Ωm(M,E), given vectors v1, . . . , vm ∈ TxM , the condi-
tion |ω(v1, . . . , vm)| = 1 is well defined (however the “sign” of the density is not, unless the
orientation bundle E is trivial and a trivialization has been chosen).

For every x ∈ M and ν ∈ N1
xM we denote by Lx(ν) : TxM → TxM the Weingarten map of

M in Sn in the direction of ν. For i = 0, . . . ,m we define the functions ψi : N1M → R by:

det(1− tLx(ν)) =

m∑
i=0

tiψi(ν).

Remark 4.1. In the sequel we will use the following fact from differential geometry. Let L be a
smooth manifold of dimension ` and ωL be a density on it. Given an embedding γ : L→ Rn+1

the `–dimensional volume of the image γ(L) can be written as

vol(γ(L)) =

∫
L

ρ(y)ωL(dy),

where the function ρ : L → R is computed as follows. For every point y ∈ L we pick a
basis {v1, . . . , v`} of TyL such that |ωL(v1, . . . , v`)| = 1 and we consider the matrix Jyγ :=
[dyγv1, . . . , dyγv`]. Then:

ρ(y) =
√

det (JyγTJyγ).

Definition 4.2. Let M ↪→ Sn be a smooth manifold of dimension m, possibly with boundary,
and A ⊂M \ ∂M be an open set. For every integer 0 ≤ i ≤ m we define Ii : A→ R by

Ii(x) :=

∫
N1
xM

|ψi(θ)|Θx(dθ).

The i–th total absolute curvature of A ⊆M \ ∂M is defined by:

|Ki|(A) :=

∫
A

Ii(x)ωM (dx) =

∫
N1M

|ψi(ν)|ωN1M (dν).

(The right hand side equality follows from (4.1).)

5The reader unfamiliar with the notion of density can assume that M is orientable and read this paragraph
simply substituting the word “density” with the word “form”. We refer to [4, Chapter 1, §7 ] for more details.
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Definition 4.3. For every pair (k, n) of natural numbers with k ≤ n we define the function
Jn,k : [0,∞)→ R by

(4.2) Jn,0 ≡ 1 and Jn,k(ε) :=

∫ min{ε,π2 }

0

(sin θ)k−1(cos θ)n−kdθ.

(Note the extremum of integration in the definition of the function Jn,k for k > 0.)

Let us recall some useful properties of the functions Jn,k.

Lemma 4.4. For 0 ≤ σ, ε ≤ π
2 and p ∈ Sn, we have the following properties:

(A) Jn,k(ε) ≤ (sin ε)k

k for k 6= n.

(B) Jn,n(ε) ≤ 1
2vol(Sn)(sin ε)n.

(C) vol(B(p, σ)) = vol(Sn−1)Jn,n(σ) ≥ vol(Sn−1) (sinσ)n

n .

Proof. These are reformulations in our notation of [5, Lemma 2.31], [5, Lemma 2.34] and [5,
Lemma 20.6] respectively. �

Definition 4.5. Let M ↪→ Sn be a smooth manifold, possibly with boundary, and A ⊆M \∂M
be an open set. For ε > 0, we denote by T (A, ε) the ε–tube of A in Sn, i.e. the set of points
p ∈ Sn such that there exists a geodesic of length at most ε on Sn, joining p with A and meeting
A orthogonally. If we we denote by exp : TSn → Sn the riemannian exponential map, and by
NεA ⊂ NA ⊂ TSn the set of vectors in NA of norm at most ε, for small enough ε > 0 we have:

T (A, ε) = exp (N εA) .

Remark 4.6. The function Jn,k play the analogues of polynomials for the spherical version of
Weyl’s Tube Formula. More precisely, given a smooth compact manifold M ↪→ Sn, of dimension
m and codimension c = n −m, possibly with boundary, and an open set A ⊆ M \ ∂M , there
exists ε0 > 0 such that for all 0 < ε < ε0 we have [20]:

vol(T (A, ε)) =
m∑
i=0

Jn,c+i(ε)

∫
N1M

ψi(ν)ωN1M (dν).

Since ψi(ν) is a homogeneous polynomial of degree i, its integral on N1
xM vanishes for i odd. The

integral
∫
N1M

ψi(ν)ωN1M (dν) is usually denoted by Ki(M) and called i–th curvature integral.

4.1.1. Volume of tubes and curvature integrals. We prove now a sequence of useful lemmas,
relating the volume of tubes and the total absolute curvatures.

Lemma 4.7. Let M ↪→ Sn be a smooth manifold, possibly with boundary, of dimension m and
codimension c = n−m. Let A ⊆M \ ∂M be an open set. For every 0 ≤ ε ≤ π

2 :

vol(T (A, ε)) ≤
m∑
i=0

Jn,c+i(ε)|Ki|(A).

Proof. This is simply an adaptation of [16, Theorem 3.1] to the spherical case. We prove the
case ε < π

2 ; the case ε = π
2 follows easily by a limit argument.

Consider the density rn−m−1dr ∧ Θ on NM and the map ϕ : NM ' N1M × (0,∞) → Sn

defined by

ϕ(ν, r) := expp(ν)(rv) =
p(ν) + rν

(1 + r2)
1
2

.
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The Jacobian of the map ϕ is computed in [20] and can be used to compute the pull-back of the
volume density ωSn under ϕ:

ϕ∗(ωSn) =
| det(1− rLx(ν))|

(1 + r2)
n+1
2

rn−m−1dr ∧Θ.

The image of ϕ|N1A×(0,tan ε) contains T (A, ε) and by the change of variables formula, since the
set of critical values of ϕ has measure zero:

vol(T (A, ε)) ≤
∫
N1A×(0,tan ε)

| det(1− rLx(ν))|
(1 + r2)

n+1
2

rn−m−1dr ∧Θ(dν)

=

∫
N1A×(0,tan ε)

∣∣∑m
i=0 r

iψi(ν)
∣∣

(1 + r2)
n+1
2

rn−m−1dr ∧Θ(dν)

≤
∫
N1A×(0,tan ε)

m∑
i=0

|ψi(ν)| ∧Θ(dν)

=
m∑
i=0

(∫ tan ε

0

rn−m−1+i

(1 + r2)
n+1
2

dr

)(∫
N1A

|ψi(ν)|ωN1M (dν)

)

=
m∑
i=0

Jn,c+i(ε)|Ki|(A).

�

Definition 4.8. For n ∈ N we denote by O(n) ⊂ Rn×n the orthogonal group, with the induced
riemannian structure, and by “dg” the integration with respect to the corresponding volume
density. If f : O(n)→ R is a measurable function we define

E
g∈O(n)

f(g) :=
1

vol(O(n))

∫
O(n)

f(g) dg.

Lemma 4.9. Let M ↪→ Sn be a smooth manifold, possibly with boundary, of dimension m and
codimension c = n−m. Let A ⊆M \ ∂M be an open set. Then for every 0 ≤ i ≤ m we have:

Ki(M) =
π

1
2 Γ
(
n
2

)
Γ
(
m−i+1

2

)
Γ
(
n−m+i

2

) E
g∈O(n+1)

Ki(M ∩ g · Sn−m+i).

Proof. This is simply a restatement of [5, Theorem A.59] in our notation. �

Lemma 4.10. Let M ↪→ Sn be a smooth manifold, possibly with boundary, of dimension m and
codimension c = n−m. Let A ⊆M \ ∂M be an open set. Then for every 0 ≤ i ≤ m we have:

(4.3) |Ki|(M) ≤ 2
π

1
2 Γ
(
n
2

)
Γ
(
m−i+1

2

)
Γ
(
n−m+i

2

) E
g∈O(n+1)

|Ki|(M ∩ g · Sn−m+i).

Proof. This is an adaptation of [16, Theorem 3.3] to the spherical case. One denotes by A+

and A− the set of points in A where Ii is positive and negative, respectively. Then |Ki|(A) =
|Ki(A+)|+ |Ki(A−)| ≤ 2|Ki(A)|. The inequality (4.3) follows now from Lemma 4.9. �
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4.1.2. The gauss map.

Definition 4.11. Let Y ↪→ Sn be a smooth manifold and N1Y be its unit normal bundle.
Observe that N1Y = {(y, ν) ∈ Sn × Sn | y ∈ Y, ν ∈ (TyY )⊥} ⊂ Sn × Sn. We denote by

γY := p2|N1Y : N1Y → Sn

the restriction of the projection on the second factor and call it the Gauss map of Y .

Proposition 4.12. Let Y ↪→ Sn be a smooth semialgebraic manifold of dimension i. Let
γ = γY : N1Y → Sn be the corresponding Gauss map. Consider the set Oγ,t := {h ∈ O(n +
1) | γ t h · S1}.6 Then Oγ,t ⊆ O(n+ 1) has full measure and:

|Ki|(Y ) ≤ vol(Sn−1)

2
sup

h∈Oγ,t
#
(
γ−1(h · S1)

)
.

Proof. Let p1 : N1Y → Y and p2 : N1Y → Sn be the projections onto the two factors (recall
that γY = p2). Pick a point (y, ν) ∈ N1Y ⊂ Y × Sn and write

(4.4) T(y,ν) ' TyY ⊕Wy,

where Wy ⊂ NyY is the orhtogonal complement of Rν in NyY and with d(y,ν)p1 the orthogonal
projection to TyY and d(y,ν)p2 the orthogonal projection to Wy.

Pick orthonormal bases {v1, . . . , vi} for TyY and {w1, . . . , wn−1−i, ν} for NyY , so that, us-
ing the identification (4.4), the list {v1, . . . , vi, w1, . . . , wn−i−1} is an orthonormal basis for
T(y,ν)N

1Y . In particular:

|ωN1Y (v1, . . . , vi, w1, . . . , wn−i−1)| = 1,

where ωN1Y = p∗1ωY ∧Θ is the density defined in (4.1).

We show now that for every ν ∈ N1Y we have:

|ψi(ν)| =
√

det
(
(J(y,ν)γ)TJ(y,ν)γ

)
,

where J(y,ν)γ is the matrix [(d(y,ν)γ)v1, . . . , (d(y,ν))γvi, (d(y,ν))γw1, . . . , (d(y,ν))γwn−i−1] (i.e. the
columns of J(y,ν)γ are the coordinate vectors of the images under d(u,ν)γ of the chosen basis
elements). To this end, observe first that, since d(y,ν)p2 is the orthogonal projection to Wy,

(d(y,ν)γ)wj = wj ∀j = 1, . . . , n− i− 1.

In order to compute (d(y,ν)γ)vj , for j = 1, . . . , i, we take a curve c : (−ε, ε) → N1Y such that
c(0) = (y, ν) and ċ(0) = vj . Notice that ν(t) := p2(c(t)) defines a normal field on Y along c
and with ν(0) = ν. In particular, denoting by Ly(ν) : TyY → TyY the Weingarten map in the
direction of ν, we have :

(d(y,ν)γ)vj =
d

dt
(p2(c(t)))

∣∣
t=0

=
d

dt
(ν(t)))

∣∣
t=0

= ∇ d
dt
ν(t)

∣∣
t=0

= Ly(ν)vj .

This shows that the matrix (J(y,ν)γ)TJ(y,ν)γ has the following shape:

(J(y,ν)γ)T (J(y,ν)γ) =

(
Q 0
0 1

)
,

where Qij = vTi Ly(ν)TLy(ν)vj . In particular, as claimed:

(4.5)
√

det
(
(J(y,ν)γ)TJ(y,ν)γ

)
= | det(Ly(ν))| = |ψi(ν)|.

6Given a map γ : A → B between smooth manifolds and a submanifold S ↪→ B, the symbol “γ t S” stands
for “γ is transversal to S”, i.e. im(dxγ) + Tγ(x)S = Tγ(x)B for every x ∈ A such that γ(x) ∈ S.
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Observe that if E ⊆ N1Y is such that γ|E is an embedding, using Remark 4.1, we get:∫
E

|ψi(ν)|ωN1Y (dν) = voln−1(γ(E)).

Since Y is semialgebraic, so are N1Y and γ and we can partition N1Y = E1 t E2 into
semialgebraic pieces such that rk(dνγ) = n − 1 for ν ∈ E1 and rk(dνγ) ≤ n − 2 for ν ∈ E2. By
(4.5) we have |ψi| ≡ 0 on E2 and therefore:

|Ki|(Y ) =

∫
N1Y

|ψi(ν)|ωN1Y (dν) =

∫
E1

|ψi(ν)|ωN1Y (dν).

Using again the semialgebraic assumptions, we can partition E1 =
(⊔a

j=1E1,j

)
t E1,0 into

semialgebraic pieces such that for every j = 1, . . . , a the set E1,j ↪→ N1Y is a smooth submanifold
of dimension n − 1, γ|E1,j

is an embedding, and E1,0 is of dimension smaller then or equal to
n− 2 (and in particular it has measure zero). Then∫

N1Y

|ψi(ν)|ωN1Y (dν) =

a∑
j=1

∫
E1,j

|ψi(ν)|ωN1Y (dν)

=

a∑
j=1

voln−1(γ(E1,j)) = (∗).

Since γ(Ei,j) is a submanifold of Sn of dimension n− 1, we have the kinematic identity [13]:

(4.6) E
h∈O(n+1)

#
(
γ(E1,j) ∩ h · S1

)
= 2

vol(γ(E1,j))

vol(Sn−1)
.

Using (4.6) we can continue with

(∗) =

a∑
j=1

vol(Sn−1)

2
E

h∈O(n+1)
#
(
γ(E1,j) ∩ h · S1

)
=

a∑
j=1

vol(Sn−1)

2
E

h∈O(`)
#
(
γ|−1
E1,j

(h · S1)
)

=
vol(Sn−1)

2
E

h∈O(n+1)
#
(
γ|−1
E1\E0,1

(h · S1)
)

=
vol(Sn−1)

2
E

h∈Oγ,t
#
(
γ|−1
E1\E0,1

(h · S1)
)

≤ vol(Sn−1)

2
E

h∈Oγ,t
#
(
γ−1(h · S1)

)
≤ vol(Sn−1)

2
sup

h∈Oγ,t
#
(
γ−1(h · S1)

)
.

�

Motivated by the previous result we introduce the following definition.

Definition 4.13. Let M ↪→ Sn be a smooth manifold of dimension m. For every 0 ≤ i ≤ m let
OM,t := {g ∈ O(n+ 1) |M t g · Sn−m+i} and for every g ∈ OM,t consider the set Og,t := {h ∈
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O(n+ 1) | γM∩g·Sn−m+i t h · S1}. We define:

βi(M) := sup
g∈OM,t

sup
h∈Og,t

#
(
γ−1
M∩g·Sn−m+i(h · S1)

)
.

Before proving next result, we will need the following technical lemma.

Lemma 4.14. Let B(p, σ) ⊂ Sn be a ball with σ > 0. Then

P
(
g · Sn−m+i ∩B(p, σ) 6= ∅

)
=

2Γ
(
n+1

2

)
Γ
(
n−m+i+1

2

)
Γ
(
m−i

2

)Jn,m−i(σ).

Proof. Let c = n−m. Observe first that

P
(
g · Sc+i ∩B(p, σ) 6= ∅

)
= P

(
Sc+i ∩B(g−1 · p, σ) 6= ∅

)
= P

(
Sc+i ∩B(g · p, σ) 6= ∅

)
,

since g−1 ∈ O(n+1) is still uniformly distributed. Denoting by ` = span{p} ⊂ Rn+1, we see that
g · ` is a uniformly distributed one dimensional linear space and, denoting by 0 ≤ θ1(`,W ) ≤ π

2
the first principal angle between ` and a (c + i + 1)–dimensional linear space W , for σ ≤ π

2 we
get:

P
(
Sc+i ∩B(gp, σ) 6= ∅

)
= P

(
θ1(g · `,Rc+i+1) ≤ σ

)
.

The density p(θ) of θ1 is computed in [8, Theorem 3.2] and it is given by:

p(θ) =
2Γ
(
n+1

2

)
Γ
(
n−m+i+1

2

)
Γ
(
m−i

2

) (cos θ)c+i(sin θ)n−c−i−1.

Integrating this function between 0 and σ gives the desired probability in the case σ ≤ π
2 :

(4.7) P
(
g · Sn−m+i ∩B(p, σ) 6= ∅

)
=

∫ σ

0

p(θ)dθ =
2Γ
(
n+1

2

)
Γ
(
n−m+i+1

2

)
Γ
(
m−i

2

)Jn,m−i(σ).

If σ > π
2 , then P

(
g · Sc+i ∩B(p, σ) 6= ∅

)
= 1. Recall now that we have defined Jn,m−i(σ) =∫min{σ,π2 }

0
(cos θ)c+i(sin θ)n−c−i−1. In particular, since

2Γ
(
n+1

2

)
Γ
(
n−m+i+1

2

)
Γ
(
m−i

2

)Jn,m−i (π
2

)
= 1,

then (4.7) is still valid for σ > π
2 . �

Proposition 4.15. Let M ↪→ Sn be a smooth manifold of dimension m, p ∈ Sn, σ > 0 and
A ⊆M \ ∂M be an open set contained in B(p, σ). Then for every 0 ≤ ε ≤ π

2 :

vol(T (A, ε)) ≤ vol(Sn−1)
m∑
i=0

(
n− 1

m− i

)
(m− i)Jn,c+i(ε)Jn,m−i(σ)βi(M).

Proof. Let us set αi(n,m) :=
π

1
2 Γ(n2 )

Γ(m−i+1
2 )Γ(n−m+i

2 )
. Using the above results we have:

vol(T (A, ε)) ≤
m∑
i=0

Jn,c+i(ε)|Ki|(A) (Lemma 4.7)

≤ 2
m∑
i=0

Jn,c+i(ε)αi(n,m) E
g∈O(n+1)

|Ki|(A ∩ g · Sn−m+i) (Lemma 4.10)(4.8)
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Observe now that, by Proposition 4.12,

E
g∈O(n+1)

|Ki|(A ∩ g · Sn−m+i) ≤ E
g∈O(n+1)

vol(Sn−1)

2
sup

h∈Og,γ
#
(
(γM∩g·Sn−m+i)−1(h · S1)

)
≤ vol(Sn−1)

2
βi(M)P

(
g · Sn−m+i ∩B(p, σ) 6= ∅

)
.(4.9)

The probability on the right hand side of (4.9) is computed in Lemma 4.14 (which has no
restriction on σ > 0, using the convention (4.2)). Substituting (4.9) into (4.8) we get:

vol(T (A, ε)) ≤ vol(Sn−1)
m∑
i=0

αi(n,m)
2Γ
(
n+1

2

)
Γ
(
n−m+i+1

2

)
Γ
(
m−i

2

)Jn,ci(ε)Jn,m−i(σ)βi(M).

The inequality in the statement follows from the identity:

αi(n,m)
2Γ
(
n+1

2

)
Γ
(
n−m+i+1

2

)
Γ
(
m−i

2

) =
Γ(n)

Γ(m− i)Γ(n−m+ i)
=

(
n− 1

m− i

)
(m− i).

�

4.1.3. The spherical algebraic case: degree estimates. Next lemma estimates the quantities βi(Z)
defined in Definition 4.13 in the case Z ⊂ Sn is a smooth complete intersection.

Lemma 4.16. Let Z be the zero set of homogeneous polynomials P1, . . . , Pc of degree at most d
in Sn. Assume that Z is a non-singular complete intersection of dimension m = n − c. Then
for every i = 0, . . . ,m we have:

βi(Z) ≤ 2(4d)n−m+i.

Proof. Let X0, . . . , Xn be linear coordinates on Rn+1 such that P1, . . . , Pc ∈ R[X0, . . . , Xn].
Moreover, since we are interested in an upper bound on βi(Z), we can assume without loss of
generality that the polynomials P1, . . . , Pc defining Z are of the same degree d. The tangent
bundle TSn is embedded in the tangent bundle TRn+1, which is trivial, and we denote by
Y0, . . . , Yn, the coordinate functions corresponding to the basis ( ∂

∂X0
, . . . , ∂

∂Xn
) of T0Rn+1 '

Rn+1.

Following Definition 4.13, for an element g ∈ OZ,t(n + 1), the set Z ∩ g · Sn−m+i can be
described by (4.10) and

P1 = · · · = Pc = 0,

L0 = · · · = Lm−i−1 = 0,

intersected with Sn, where the Li’s are generic linear forms in X0, . . . , Xn.

By making a linear change in the Xi, we may assume that Lj = Xj , 0 ≤ j ≤ m− i− 1.
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With this choice of coordinates, the normal bundle NZ ↪→ TSn ↪→ TRn+1 can be described
as projection to TRn+1, of the solutions to the set of equations,

X0 = · · · = Xm−i−1 = 0,

P1 = · · · = Pc = 0,(4.10)
c∑
j=1

λj
∂Pj

∂Xm−i
= Ym−i,

...(4.11)
c∑
j=1

λj
∂Pj
∂Xn

= Yn,

intersected with Sn×Rc+n+1, where λ1, . . . , λc are Lagrangian variables. Notice that the above
equations imply via the Euler identity that

X0Y0 + · · ·+XnYn = 0,

and hence Y0
∂
∂X0

+ · · ·+ Yn
∂
∂X0

is constrained to belong to the tangent space of Sn.

We have to bound the cardinality of γ−1
Z∩g·Sn−m+i(h · S1) for h ∈ Og,t(n + 1). Being zero–

dimensional, we can assume (up to making another linear change of coordinates Xn−m, . . . , Xn)
that γ−1

Z∩g·Sn−m+i(h · S1) has an empty intersection with the hyperplane Xn = 0.

Now, we can take h ·S1 to be the intersection of Sn, with n−1 hyperplanes defined by generic
linear forms in Y0, . . . , Yn, which after another linear change in coordinates we can assume to be
Y2, . . . , Yn.

With the above assumptions, using Definition 4.11, the pull-back of h ·S1 under γZ∩g·Sn−m+i ,
for h ∈ Og,t(n+ 1), can be described by (4.10), (4.11) and

Y2 = · · · = Yn = 0.

intersected with Sn × Rc+n+1 and projected to the first factor.

Homogenizing (4.11) with respect to Xn, we obtain the following system of bi-homogeneous
equations,

P1 = · · · = Pc = 0,(4.12)

X0 = · · · = Xm−i−1 = 0,
c∑
j=1

λj
∂Pj

∂Xm−i
= Xd−1

n Ym−i,

...
c∑
j=1

λj
∂Pj
∂Xn

= Xd−1
n Yn,

Y2 = · · · = Yn = 0.

These equations are homogeneous of degree at most d in (X0, . . . , Xn), and homogeneous of
degree at most 1 in (Y0, . . . , Yn, λ1, . . . , λc). Also, using the fact X0 = · · · = Xn−m−1 = Y2 =
· · · = Yn = 0, the above equations define a zero–dimensional subvariety of CPn−m+i × CPc+1.
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Using Kouchnirenko’s Theorem [14] the number of non-degenerate roots of this system in
CPn−m+i × CPc+1 is bounded by

(n− (m− i) + c+ 1)! · voln−(m−i)+c+1(d ·∆n−(m−i) ×∆c+1),

where for p > 0, ∆p denotes the p-dimensional simplex in Rp (i.e. with vertices the origin and
the standard basis vectors). Noting that

volp(∆p) =
1

p!
,

we obtain that the number of non-degenerate roots of this system in CPn−m+i × CPc+1 is
bounded by

(n− (m− i) + c+ 1)!

(n− (m− i))!(c+ 1)!
dn−m+i =

(
2c+ i+ 1

c+ 1

)
dn−m+i

≤ 22c+idn−m+i

≤ 22(c+i)dc+i

≤ (4d)c+i.

This gives a bound for the number of real projective solutions of the system of equations in
(4.12). The lemma follows after noting that Sn is a double covering of RPn which gives the
extra factor of 2. �

4.1.4. The spherical case: smooth complete intersections. Next theorem is the spherical analogue
of Theorem 3.1.

Theorem 4.17. Let Z be the zero set of homogeneous polynomials P1, . . . , Pc in Sn of degree at
most d. Assume that Z is a smooth complete intersection of dimension m = n − c. Let x be a
uniformly distributed point in a ball B(p, s) of radius 0 ≤ s ≤ π

2 around p ∈ Sn. Then, for every
0 ≤ r ≤ π

2 :

P(dist(x, Z) ≤ r) ≤ 2

(
1 +

vol(Sn)

2

)(
4nd sin r

sin s

)n−m(
1 + (4nd+ 4d+ 1)

sin r

sin s

)m
.

In particular, if sin r ≤ sin s
(4nd+4d+1)m ,

P(dist(x, Z) ≤ r) ≤ 2e

(
1 +

vol(Sn)

2

)(
4nd sin r

sin s

)n−m
.

Remark 4.18. The bounds from the statements that we put in the Introduction follow from:

max
n≥0

vol(Sn)

2
=

vol(S6)

2
=

8

15
π3 ≤ 20.

Since vol(Sn) → 0 as n → ∞, for large n the reader might want to keep using the bound from
the previous statement (similarly for Theorem 4.20 and Theorem 1.5).

Proof. Let Z ↪→ Sn be a complete intersection defined by polynomials P1, . . . , Pc whose degrees
are bounded by d. Let r, s > 0 such that Z t B(p, s + r), denote by Z ′ = Z ∩ B(p, s + r) and
define:

A0 = Z ′ \ ∂Z ′ and A1 = ∂Z ′.

With this choice we have

U(Z, r) ∩B(p, s) ⊆ T (A0, r) ∪ T (A1, r),
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and consequently

(4.13) P(dist(x, Z) ≤ r) =
vol(U(Z, r) ∩B(p, s))

vol(B(p, s))
≤ vol(T (A0, r))

vol(B(p, s))
+

vol(T (A1, r))

vol(B(p, s))
.

We apply now Proposition 4.15 (which has no constraints on σ > 0) for estimating both sum-
mands of (4.13), with the choice σ = s + r, ε = r and A = A0, A1. For j = 0, 1, using the
properties from Lemma 4.4 and setting (r + s)′ := min{r + s, π2 }, we get:

vol(T (Aj , r))

vol(B(p, s))
≤ 1

Jn,n(s)

m−1−j∑
i=0

(
n− 1

m− i− j

)
(sin r)n−m+i+j

n−m+ i+ j
(sin(r + s)′)m−i−jβi(m− j, d)

+
1

Jn,n(s)

vol(Sn)

2
(sin r)nβm−j(m− j, d).(4.14)

Setting now vn = (1 + vol(Sn)
2 ), using (4.14) we get

(4.15)
vol(T (Aj , r))

vol(B(p, s))
≤ vn
Jn,n(s)

m−j∑
i=0

(
n− 1

m− i− j

)
(sin r)n−m+i+j

n−m+ i+ j
(sin(r+ s)′)m−i−jβi(m− j, d).

Let us write now:

(4.16)

(
n− 1

m− i− j

)
1

n−m+ i+ j
=

(
m− j
i

)( n−1
m−i−j

)
1

n−m+i+j(
m−j
i

) ≤
(
m− j
i

)
nn−m+j−1

and, using Lemma 4.16, let us estimate

(4.17) βi(m− j, d) ≤ 2(4d)n−m+i+j .

Using (4.16) and (4.17) into (4.15) we get

vol(T (Aj , r))

vol(B(p, s))
≤ 2vn
Jn,n(s)

m−j∑
i=0

(
m− j
i

)
nn−m+j−1(sin r)n−m+i+j(sin(r + s)′)m−i−j(4d)n−m+i+j

=
2vn

Jn,n(s)
nn−m+j−1(4d)n−m+j(sin r)n−m+j (4d sin r + sin(r + s)′)

m−j

≤ 2vn
(sin s)n

nn−m+j(4d)n−m+j(sin r)n−m+j (4d sin r + sin(r + s)′)
m−j

,

where in the last inequality we have used Lemma 4.4.

From this we see that

vol(T (A0, r))

vol(B(p, s))
+

vol(T (A1, r))

vol(B(p, s))
≤ 2vnn

n−m(4d)n−m(sin r)n−m

(sin s)n
(4d sin r + sin(r + s)′)

m−1 ·

· (4d sin r + sin(r + s)′ + n4d(sin r))

=
2vnn

n−m(4d)n−m(sin r)n−m

(sin s)n
(4d sin r + sin(r + s)′)

m−1 ·

· ((n+ 1)4d sin r + sin(r + s)′)

≤ 2vn

(
4nd sin r

sin s

)n−m(
(n+ 1)4d

sin r

sin s
+

sin(r + s)′

sin s

)m
= (∗).
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We observe now that for every 0 ≤ r, s ≤ π
2 we have sin(r+ s)′ ≤ sin r+ sin s (Lemma 4.19) and

therefore:

(∗) = 2vn

(
n4d sin r

sin s

)n−m(
(n+ 1)4d

sin r

sin s
+

sin s+ sin r

sin s

)m
≤ 2vn

(
n4d sin r

sin s

)n−m(
1 + (4nd+ 4d+ 1)

sin r

sin s

)m
.(4.18)

This proves the first part of the statement.

If now sin r ≤ sin s
(4nd+4d+1)m , then

(4.19)

(
1 + (4nd+ 4d+ 1)

sin r

sin s

)m
≤
(

1 +
1

m

)m
≤ e

and the second part follows from (4.18). �

It remains to prove the lemma that we used in the proof.

Lemma 4.19. For every 0 ≤ r, s ≤ π
2 we have sin

(
min{r + s, π2 }

)
≤ sin r + sin s.

Proof. If r + s ≤ π
2 , then

sin
(

min
{
r + s,

π

2

})
= sin(r + s) = sin r cos s+ sin s cos r ≤ sin r + sin s.

If r + s ≥ π
2 , say r ≥ π

2 − s, then

sin
(

min
{
r + s,

π

2

})
= sin

(π
2

)
= 1

= (sin s)2 + (cos s)2 ≤
0≤sin s,cos s≤1

sin s+ cos s

= sin s+ sin
(π

2
− s
)
≤ sin s+ sin r.

�

4.2. The general spherical case. We are now ready to give the proof of the bound for the
general case in the sphere.

Theorem 4.20. Let P ⊂ R[X0, . . . , Xn] be a finite set of homogeneous polynomials of degree
bounded by δ and Z ⊂ Sn be their common zero set. Assume dimR(Z) ≤ m. Given p ∈ Sn and
σ > 0 let x ∈ B(p, σ) be a uniformly distributed point. Then, for every ε ≥ 0

P(dist(x, Z) ≤ ε) ≤ 2

(
1 +

vol(Sn)

2

)(
8nδ sin ε

sinσ

)n−m(
1 + (8nδ + 8δ + 1)

sin ε

sinσ

)m
.

In particular, if sin ε ≤ sinσ
(8nδ+8δ+1)m ,

P(dist(x, Z) ≤ ε) ≤ 2e

(
1 +

vol(Sn)

2

)(
8nδ sin ε

sinσ

)n−m
.

Proof. The proof is similar to the proof of Theorem 3.2. Let 0 ≤ ε < π
2 (the case ε = π

2 follows
by a limit argument).

By part (B) of Theorem 2.10 there exists a one parameter family of real algebraic sets {Zt}t>0

in the sphere Sn and t0 > 0 such that for all 0 < t < t0 the set Zt is a complete intersection
defined by homogeneous polynomials P1, . . . , Pn−m of degree bounded by 2δ and such that:

lim
t→0

Zt ⊇ Z.
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Applying Theorem 2.3 with the choices X = B = Sn and {Ct}t>0 = {Zt}t>0, for every
0 < τ < π

2 − ε there exists tτ > 0 such that for all t < tτ :

U(Z, ε) ∩B(p, σ) ⊆ U(Zt, ε+ τ) ∩B(p, σ).

Therefore for every t < min{t0, tτ} we can apply Theorem 4.17 to the set Zt, with the choices
d = 2δ, r = ε+ τ < π

2 and s = σ:

P(dist(x, Z) ≤ ε) ≤ 2

(
1 +

vol(Sn)

2

)(
8nδ sin(ε+ τ)

sinσ

)n−m(
1 + (8nδ + 8δ + 1)

sin(ε+ τ)

sinσ

)m
.

Letting τ → 0 on both sides we get the first part of the result; the second part follows now
arguing as in (4.19). �

4.3. Proof of Theorem 1.5.

Proof. Using the fact that Σ ⊆ V we see that

{C (x) ≥ t} ⊆
{

dist(x, Z) ≤ 1

arcsin t

}
.

For a ∈ Sn and 0 < u ≤ 1, let us write Bsin(a, u) = B(a, arcsinu) ∪B(−a, arcsinu), so that:

P
x∈Bsin(a,u)

{C (x) ≥ t} =
vol ({C (x) ≥ t} ∩Bsin(a, u))

vol (Bsin(a, u))

=
vol ({C (x) ≥ t} ∩B(a, arcsinu)) + vol ({C (x) ≥ t} ∩B(−a, arcsinu))

2vol (B(a, arcsinu))
(4.20)

≤
vol
({

dist(x, Z) ≤ 1
arcsin t

}
∩B(a, arcsinu)

)
vol (B(a, arcsinu))

.

In the last step we have used the fact that Σ = −Σ, which in particular implies that the two
summands in the numerator of (4.20) are equal. The result is now just a reformulation of
Theorem 4.20. �
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82–83. MR 0422272 (54 #10263) 20

15. François Loeser, Volume de tubes autour de singularités, Duke Math. J. 53 (1986), no. 2, 443–455. MR 850545

1
16. Martin Lotz, On the volume of tubular neighborhoods of real algebraic varieties, Proc. Amer. Math. Soc. 143

(2015), no. 5, 1875–1889. MR 3314098 1, 3, 9, 13, 14
17. S. M. Srivastava, A course on Borel sets, Graduate Texts in Mathematics, vol. 180, Springer-Verlag, New

York, 1998. MR 1619545 9

18. A. G. Vitushkin, The relation of variations of a set to the metric properties of its complement, Dokl. Akad.
Nauk SSSR (N.S.) 114 (1957), 686–689. MR 0090622 2
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