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We use quantitative measures and visual inspection to compare the item response curves (IRCs) of matched
pre-/post-instruction Force Concept Inventory (FCI) data. We find that the IRCs are not static; the pre-instruction
IRCs differ from the post-instruction IRCs by more than can be explained by random chance. This result is also
the case for a subpopulation consisting of students who make little or no gains on the FCI, suggesting that
learning is taking place even when scores do not change appreciably. We consider three items where students
make substantial progress (item 4) or little progress (items 14 and 21) compared to overall changes in FCI
scores.
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I. INTRODUCTION

There are various ways to ascertain changes in understand-
ing that result from instruction. Common practice includes
administering a research-based multiple-choice assessment
before and after instruction, determining an overall score for
each student, and reporting a measure of growth (often nor-
malized gain or effect size) [1–3]. An important but often
implicit assumption in these common practices is that any
learning will appear as an increase in the number of items
answered correctly. In recent years, many researchers have
explored methods for reporting student growth using methods
that are more informative than comparisons of single-number
scores generated from dichotomously scored items. Morris
et al. analyze pre-/post-instruction concept inventory data to
incorporate all of the answer choices on an item to construct
transition matrices to observe changes in student understand-
ing [4]. In another example, Pérez-Lemonche et al. apply
multidimensional item response theory to study the effect of
answer choices that highlight particular student misconcep-
tions and act as distractors [5]. They also characterize item
response curves (IRCs) based on their shape, such as attrac-
tive distractors having a maximum at an intermediate score.
A strength of item response theory and the related IRCs is
that they highlight the relationship between a student’s over-
all understanding of a topic and their likelihood of choosing
each answer on a given item [6].

Similar to Morris et al. and Pérez-Lemonche et al., we an-
alyze data from the 30-item Force Concept Inventory (FCI)
[7]. The novelty of our approach is that we focus on compar-
ing students’ IRCs before instruction to those same students
after instruction. We do so by showing the IRCs graphically
and employing an approach that allows for having a quantifi-
able measure of how close the pre-instruction IRCs are to the
post-instruction IRCs. In this work, we investigate whether
IRCs (and the relationships between total score and the prob-
ability of choosing each answer choice) are static and if learn-
ing appears as a simple increase in the overall score.

We seek to answer the following research questions.
1. Do the pre-instruction and post-instruction IRCs of

matched students differ? If so, how pronounced are
and what features characterize those differences?

2. Are the pre-/post-instruction IRCs the same for those
students who make little to no gains?

II. BACKGROUND

Morris et al. first introduced item response curves (IRCs)
for each item on the FCI using data from more than 6,000
respondents [6, 8]. As an example, Fig. 1 shows the item re-
sponse curves for item 4 on the FCI for the pre-instruction
and post-instruction results of 9,354 matched students. IRCs
plot the percentage of students who selected an answer choice
as a function of the overall score. In Fig. 1, the correct an-
swer choice is E (shown in red); students with a perfect score

FIG. 1. Pre-instruction and post-instruction item response curves
for item 4 on the FCI for the data set of 9,354 students. NR = no
response. The error bars are the 95% confidence intervals of 10,000
bootstrapped sample data sets.

(i.e., an FCI score of 30) selected that answer choice. An-
swer choice A (shown in purple) is an example of a distractor,
which attracts students with a particular misconception (i.e.,
the heavier object in a collision exerts a larger force).

IRCs are quite similar to item characteristic curves created
using item response theory (IRT) analyses. In dichotomous
IRT models, item characteristic curves show the probability
of getting an item correct as a function of the latent character-
istic of ability level [9]. In contrast, IRCs substitute the over-
all score in place of IRT’s ability level. IRCs contain more
information than IRT’s item characteristic curves by showing
the percentage of students who select each answer choice, not
only whether they selected the correct answer. IRT nominal
response models also provide information about the proba-
bility of students choosing each response option, but these
analyses typically require very large data sets, which limits
their utility in many cases [10, 11].

Ishimoto, Davenport, and Wittmann (hereafter, IDW) used
IRC analysis to compare Japanese and American students’
pre-instruction performance on the Force and Motion Con-
ceptual Evaluation (FMCE) [12, 13]. They found from visual
inspection that the IRCs for the two populations were highly
similar for most items. They attributed differences to contex-
tual differences resulting from the translation from English to
Japanese, and to cultural differences between Japanese and
American students; e.g., American students typically have
more experience driving and riding in automobiles.

Walter, Nuhfer, and Suarez (hereafter, WNS) introduced a
metric for quantifiably comparing the IRCs of two popula-
tions [14]. WNS used more than 12,000 students’ responses
to the 25-item Science Literacy Concept Inventory (SLCI),
which assesses respondents’ understanding of citizen-level
science literacy, to compare the IRCs of different demo-
graphic populations [14, 15].
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FIG. 2. The fraction of students with each score on the 30-item FCI
for 9,354 matched pre-/post-instruction respondents, as well as for
2,414 matched students who scored within ±2 on the pre-instruction
and post-instruction FCIs. The data was provided by PhysPort.

Richardson, Smith, and Walter (hereafter, RSW) replicated
IDW’s work using a more extensive data set of American stu-
dents while expanding upon the same quantitative approach
employed by WNS to compare IRCs [11, 12, 14].

III. DATA

PhysPort provided our data set consisting of the matched
pre-/post-instruction FCI results of 9,636 students [16]. Stu-
dents who left 10 or more items unanswered on either the
pre-instruction or post-instruction FCI were not included in
the original data set. Students who selected the same answer
choice for all 30 items on either the pre-instruction or post-
instruction FCI were removed from the sample. In almost
all such cases (99 of 101), students repeatedly chose answer
choice A. Students who scored lower on the post-instruction
FCI than on the pre-instruction FCI by 6 or more out of 30
were removed from the sample, which removed an additional
181 students [17]. This left a sample of 9,354 students with
matched pre-/post-instruction FCI data. The data set does not
include demographic information or the mode of instruction
for most participants, and such information is not considered
in this work. Figure 2 shows the fraction of students with
each overall score on the pre-/post-instruction FCI.

IV. METHODS

In addition to comparing pre-instruction and post-
instruction IRCs by visual inspection, we use the quantita-
tive approach of calculating IRC dot products to compare two
populations, as described in WNS [14]. In this approach,
each population is represented by 31 vectors (one for each
score bin), each with five dimensions (one for each response
option). The components of each vector are the response fre-
quencies for that score bin (i.e., the IRC data points). The

vectors are normalized to have a magnitude of unity, and the
IRC dot product between two populations is the weighted av-
erage of the 31 individual dot products. Given that all values
of each IRC are positive (or zero), the theoretical limits of the
IRC dot product range from 0 (completely different IRCs—
not realized in practice) to 1 (identical IRCs) for each item.

To interpret the value of the IRC dot products in mean-
ingful ways, we incorporate two forms of uncertainty. WNS
ascertain whether an IRC dot product value for an item is
potentially the result of random chance by pooling all data
together and repeatedly assigning each response set to one of
the comparison groups at random. Following the convention
of RSW, we will refer to the central 95% range of random-
ized trials described in WNS as the randomized trial confi-
dence interval (RTCI) [11]. The RTCI provides an expected
range of IRC dot product values between two identical popu-
lations. As was introduced in RSW, we also include an IRC
dot product confidence interval (DPCI) using the central 95%
distribution of 10,000 bootstrapped simulations. The DPCI
is based on the inherent uncertainty in the data points of the
IRCs themselves. Large gaps between the RTCI and DPCI
suggest that the low value of the IRC dot product represents
meaningful differences between the IRCs. We compute the
dot product effect size (DES) as described in RSW to quan-
tify this difference [11].

To help answer Research Question 2, we created a subset
of the 9,354 students in our sample whose pre-instruction and
post-instruction scores differed by no more than 2 out of 30.
This group consisted of 2,414 students (26% of our data set);
their score distribution (labeled as ±2) is shown in Fig. 2.

V. RESULTS COMPARING PRE/POST IRCS

Figure 3 shows the IRC dot products comparing the pre-
instruction and post-instruction IRCs (data points shown in
red) for each item. The light red error bars are the RTCIs,
and the dark red error bars are the IRC DPCIs. The same is
shown in blue for the subset of students whose pre-instruction
scores were within ±2 of their post-instruction scores. An
interesting feature, which is the subject of future work, is that
the IRC dot products of the ±2 population are above the IRC
dot product confidence intervals for many items [18]. Some
potential factors include the sample size, the bimodal score
distribution (Fig. 2), and ceiling effects related to the IRC dot
products being close to 1.

Pérez-Lemonche et al. identify 12 incorrect answer choices
acting as effective distractors and having a maximum at inter-
mediate scores: 4A, 5D, 5E, 11C, 13C, 15C, 17A, 18D, 18E,
25D, 28D, 30E [5]. While item 4 has the lowest IRC dot
product, the next two lowest values are for items 5 and 18,
which are the only items that Pérez-Lemonche et al. identify
as having two such intermediate distractors.

For the overall population, the IRC dot product for every
item is below its corresponding RTCI. Item 4 has the lowest
IRC dot product value of 0.88, indicating that the item has the
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FIG. 3. The IRC dot product of the pre-instruction and post-
instruction FCI IRCs of 9,354 matched students is shown in red for
each item. The light red error bars represent the randomized trial
confidence intervals for the 9,354 students. The dark red error bars
represent the IRC dot product confidence intervals. The data points
and error bars in blue are the same for the subset of students who
score within ±2 on the pre-instruction and post-instruction FCIs.

most pronounced differences in its pre- and post-instruction
IRCs. The IRC dot product values in Fig. 3 and the DES
values shown in Table I allow us to compare the amount of
difference in pre/post-IRCs for the overall population and the
±2 subpopulation for each item. RSW define a threshold for
similar IRCs as having a DES value of 0.6 or less [11]. Table
I shows that none of the comparisons of the overall data set
are within this range, and only 13 items are similar for the ±2
data set. This suggests that, even though the IRC dot products
seem high (only item 4 is below 0.92), they are not as high
would be expected if the differences between the IRCs were
the result of random fluctuations in student responses. To
further explore these differences we present a careful analysis
of three items: one that shows significant learning, and two
that show minimal learning.

A. Example of Significant Gains in Understanding

Based on both the IRC dot product values in Fig. 3 and the
DES values in Table I, the IRCs’ changes from pre-instruction
to post-instruction are more pronounced on item 4 than for
any item on the FCI. Item 4 asks students to compare the
forces a car and a truck exert on each other during a collision.
Figure 1 (on p. 1) shows the pre- and post-instruction IRCs
for item 4 on the FCI. There are considerable differences in
the pre-/post-instruction IRCs for the correct answer choice,
E (shown in red), and the distractor, answer choice A (shown
in purple). The error bars on these IRCs were generated from
the bootstrapped samples used to generate the DPCIs. The
leftward shift of the choice E IRC shows that lower-scoring
students are more likely to choose the correct answer to item 4
post-instruction than pre-instruction. The downward shift of
the choice A IRC shows that lower-scoring students are less

item overall ±2 item overall ±2

1 0.7 0.4 16 1.3 0.3
2 1.5 0.9 17 2.5 0.9
3 1.1 0.6 18 3.2 1.4
4 4.6 1.6 19 2.1 0.6
5 2.8 1.4 20 1.0 0.4
6 1.3 0.2 21 2.3 1.0
7 0.8 0.3 22 1.4 0.7
8 1.2 0.5 23 1.8 0.4
9 1.4 0.8 24 1.5 0.6
10 1.1 0.4 25 1.4 0.7
11 2.9 1.2 26 1.1 0.7
12 0.7 0.6 27 2.4 0.7
13 1.9 0.8 28 2.1 0.7
14 2.8 0.4 29 3.2 1.0
15 1.4 0.6 30 2.2 0.9

TABLE I. The dot product effect size (DES) values for pre-/post-
instruction comparisons for the overall data set (N = 9,354) and
for the subset of students whose scores on the pre-instruction and
post-instruction FCIs differ by no more than ±2 (N = 2,414).

FIG. 4. Pre-instruction and post-instruction item response curves for
item 4 of the FCI for the 2,414 students who scored within ±2 on
the pre-instruction and post-instruction FCIs. NR = no response.

likely to choose the most common distractor post-instruction.
On the far left of the plot, we also see an inversion of choices
A and B, with B being more likely post-instruction for the
lowest-scoring students. Together these results suggest that
students are more likely to learn the content tested by item 4
than that of other items on the FCI. The pronounced changes
to the IRCs in Fig. 1 reflect that students substantially im-
prove their understanding of objects in a collision exerting
equal and opposite forces on each other.

Fig. 4 shows the IRCs for item 4 of the 2,414 students who
scored within ±2 on the pre-instruction and post-instruction
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FIG. 5. Pre-instruction and post-instruction item response curves for
item 14 for the data set of 9,354 students. NR = no response.

FCIs. While the differences in the IRCs are less pronounced
than for Fig. 1, even students who made little or no overall
gains made progress in understanding Newton’s third law.

B. Examples of Little Gains in Understanding

Comparing pre-instruction and post-instruction IRCs allow
for identifying cases where students do not learn particular
concepts even while making gains on the concept inventory
overall. Figure 5 shows the IRCs for item 14 on the FCI,
which asks students to select the path a bowling ball would
take if it fell from an airplane. For a given overall score, stu-
dents select the correct answer (D) at higher rates on the pre-
test than the post-test. The IRC for the distractor, choice A,
shifts to the right from pre-test to post-test. The changes in
the IRCs indicate that, while students are making gains on the
FCI overall, they are not making commensurate progress on
the concept involved in this item.

Figure 6 shows the IRCs for item 21 on the FCI, which
asks students to select the best path for a rocket that has a
constant speed in one direction (to the right) while acceler-
ating in another (upward). As was the case for the IRCs on
item 14, the IRCs on item 21 show how for a given overall
score, students are more likely to get the item correct (choice
E) on the pre-test. We also see how the distractor (choice C),
which has the rocket moving in a straight path in a direction
up and to the right, shifts to the right from pre-test to post-
test. Items 14 and 21 involve the same concept of selecting
the best path to describe an object having a constant speed
in one direction while accelerating in another. The rightward
shifts (for both the correct and incorrect answer choices) sug-
gest that students may be increasing their scores overall but
not changing the ways that they interact with these items. We
observe the same effect on items 19 and 27 (IRCs not shown).

FIG. 6. Pre-instruction and post-instruction item response curves for
item 21 for the data set of 9,354 students. NR = no response.

VI. CONCLUSION

Quantitative comparisons of pre-instruction and post-
instruction IRCs show that the relationship between students’
overall scores and their likelihood to choose a particular an-
swer choice are not static. As students’ scores increase, they
do not progress evenly across all items. Some items show
larger-than-average gains (e.g., item 4), while others show
smaller-than-average gains (e.g., items 14 and 21).

Using IRCs to make these comparisons allows us to see
changes to incorrect answer choices as well as the correct
choices. For item 4, we see the likelihood of students choos-
ing incorrect response A decreasing dramatically, even for
students whose total scores do not change much (Fig. 4).
Conversely, for items 14 and 21, students choose the same
incorrect responses at the same rates, even when their scores
increase. Instructors can use this information to identify top-
ics that may require additional (or different) instruction.

The large size of our data set, and the fact that the data
come from many different institutions across the country,
suggests that these trends may exist across different forms
of instruction. Since we are using the same population in
this work and comparing the pre-instruction IRCs to the post-
instruction IRCs, bias present in the items (e.g., gender bias)
is likely to remain consistent for the pre-instruction and post-
instruction data. Any changes in the IRCs are thus a result
of the changes in the understanding of the population. Fu-
ture work will involve looking for additional similarities in
the content of the items with IRCs that shift in similar ways.
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