2011.12720v2 [cs.CR] 12 Oct 2021

arxiv

Noname manuscript No.
(will be inserted by the editor)

Omni: Automated Ensemble with Unexpected Models
against Adversarial Evasion Attack

Rui Shu - Tianpei Xia - Laurie Williams - Tim
Menzies

Received: date / Accepted: date

Abstract Background: Machine learning-based security detection models have become prevalent in
modern malware and intrusion detection systems. However, previous studies show that such models are
susceptible to adversarial evasion attacks. In this type of attack, inputs (i.e., adversarial examples) are spe-
cially crafted by intelligent malicious adversaries, with the aim of being misclassified by existing state-of-
the-art models (e.g., deep neural networks). Once the attackers can fool a classifier to think that a malicious
input is actually benign, they can render a machine learning-based malware or intrusion detection system
ineffective.

Goal: To help security practitioners and researchers build a more robust model against non-adaptive,
white-box and non-targeted adversarial evasion attacks through the idea of ensemble model.

Method: We propose an approach called Omni, the main idea of which is to explore methods that
create an ensemble of “unexpected models”; i.e., models whose control hyperparameters have a large
distance to the hyperparameters of an adversary’s target model, with which we then make an optimized
weighted ensemble prediction.

Result: In studies with five types of adversarial evasion attacks (FGSM, BIM, JSMA, DeepFool
and Carlini-Wagner) on five security datasets (NSL-KDD, CIC-IDS-2017, CSE-CIC-IDS2018, CICAnd-
Mal2017 and the Contagio PDF dataset), we show Omni is a promising approach as a defense strategy
against adversarial attacks when compared with other baseline treatments.

Conclusion: When employing ensemble defense against adversarial evasion attacks, we suggest to
create ensemble with unexpected models that are distant from the attacker’s expected model (i.e., target
model) through methods such as hyperparameter optimization.

Declarations:

Funding: This work was partially funded by NSF grant #1909516.
Conflicts of interest/Competing interests: The authors have no relevant financial or non-financial interests
to disclose.

Keywords Hyperparameter Optimization - Ensemble Defense - Adversarial Evasion Attack

Rui Shu, Tianpei Xia, Laurie Williams, Tim Menzies

Department of Computer Science, North Carolina State University, Raleigh, NC, USA
Email: rshu@ncsu.edu, txiad @ncsu.edu, lawilli3 @ncsu.edu, timm@ieee.org.

We assert that the authors have no conflict of interests

2 Rui Shu et al.

1 Introduction

With the growing reliance on information technology, cybercrime is a serious threat
to the economy, military and other industrial sectors [12, 18, 39, 59, 71]. In 2019,
the damage cost caused by malware and cybercrime exceeded a trillion dollars [56].
For example, a March 2019 ransomware attack on aluminum producer Norsk Hydro
caused 60 million pounds of remediation cost [72]. The attack brought production to a
halt at 170 sites around the world. More generally, a 2019 study by Accenture reports
that cybercrime will cost US $5.2 trillion over the next five years [12] Alarming, that
cost is growing. That same report documents that in the United States, the annual
average cost to organization of malicious software has grown 29% in the last year.

To counter those threats, machine learning algorithms are being widely applied to
security critical tasks, such as malware detection and intrusion detection. For exam-
ple, security practitioners and researchers build detection models that utilize learned
patterns to detect whether a new file (e.g., PDF file) or an application (e.g., Android
app) or a network traffic becomes a security threat [1, 6, 53, 77]. But paradoxically,
machine learning also introduces a new attack vector for motivated adversaries[3, 7].
An active research field called adversarial machine learning has received a signif-
icant amount of attention over the last decade. Adversarial machine learning is a
technique that attempts to fool or misguide a machine learning-based model with
malicious inputs. This technique was first studied in spam filtering [23, 50, 51] and
later on since 2014, Szegedy et al. [82] found that small perturbations in images
can cause misclassification in neural network classifiers which attracted more studies
in domains such as computer vision. While at the same time, this technique is also
widely studied in the security domain. Adversarial evasion attack [9] is one of the
most prevalent types of adversarial machine learning attacks that happens during the
testing stage in the machine learning pipeline. In this attack, attackers try to evade
the detection system by manipulating the testing data, resulting in a wrong model
classification. The core of adversarial evasion attack is that when an attacker can fool
a classifier to think that a malicious input (e.g., malicious Android application or net-
work traffic) is actually benign, they can render a machine learning-based malware
detector or intrusion detector ineffective.

Prior studies have tried [41, 78, 86] to thwart evasion attacks by building a more
robust and complex model via ensemble learning [26]. Ensemble learning is the pro-
cess of (a) building multiple models and then (b) polling across the models to arrive
at a final decision. In theory, ensemble learning tends to defend against adversarial
evasion attack because attackers have to craft payloads (i.e., adversarial examples)
that are able to subvert all constituent models at once, which makes it more difficult
to be successful. However, some other studies [35, 65, 86, 95, 96] caution that adver-
saries can still defeat ensemble-based strategy. For example, Papernot et al. [65] find
that, even when ensemble classifiers are used, adversarial attackers can still manage
to use their own models to find ways to “transfer” the adversarial examples to a vic-
tim model (i.e., attacker’s target model), even if (a) the adversary has little knowledge
of the victim model; and even if (b) the defender uses an ensemble of classifiers.

The starting point for our research in this paper is the following observation. Prior
work on ensemble learning against adversarial evasion attack [41, 78, 86] barely ex-

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 3

Table 1: Hyperparameters selected to tweak for deep neural networks and their ranges
in hyperparameter optimization. Assuming the drop out rate is divided into 100 op-
tions, then this table shows a close to trillion options: 11 % 11 % 120 %20 %22 % 100 *
Tx4%15%3 ~ 1013,

Hyperparameter Ranges

Hidden layer elu, relu, selu, sigmoid, softmax, tanh, hard_sigmoid, softplus,
activation function | softsign, linear, exponential

Output layer elu, relu, selu, sigmoid, softmax, tanh, hard_sigmoid, softplus,

activation function softsign, linear, exponential
First layer dense quniform(30, 150, 1)
Second layer dense | quniform(30, 50, 1)
Third layer dense quniform(10, 32, 1)
Drop out rate uniform(0.0, 0.5)
Adadelta, Adagrad, Adam, Adamax,

Optimizer NAdam, RMSprop, SGD
Batch size 16, 32, 64, 128
Number of epochs quniform(5, 20, 1)
Learning rate 0.001, 0.01, 0.1

* Note: quniform(low, high, ¢q) 1is a function returns a value like
round (uniform(low, high)/q) * g, while uniform(low, high) returns a value uniformly
between low and high.

plored the range of options available within a model or explored few different models.
For example, some researchers build their ensemble-based approaches using a small
number of constitute models; e.g., Kantchelian et al. [41] use seven constitute models
in their ensemble classifier. Such kind of small size ensemble classifier usually does
not yield the optimal prediction performance [37]. However, as shown in Table 1,
malware or intrusion detection models can be built from a space of trillions of op-
tions (i.e., hyperparameter choices of a model). The small space of ensembles used
in previous work barely scratches the surface of the large space of options within
ensemble generation.

Accordingly, the core innovation of this paper is the proposed approach called
Omni. This method uses hyperparameter optimization [29] algorithms that build an
ensemble system by exploring trillion of model options. Such optimization algo-
rithms seek the set of hyperparameters of a given machine learning algorithm which
return the optimal evaluation performance. In a machine learning algorithm, hyperpa-
rameters are properties that control the behaviors of the machine learning algorithms.
For example, when reasoning about “k-nearest neighbors”, the hyperparameter “k”
decides how many neighbors to use for making a decision.

While exploring a large number of models (such as the trillions of options from
Table 1), our Omni method learns the “expected model”; i.e. the optimal model from
hyperparameter optimization, which is used in normal prediction. This model is the
target of attackers and hence then becomes the victim model. Next, Omni’s optimizer
surveys the hyperparameter space of models to find “unexpected models”; i.e. mod-
els that are (a) performing well (i.e., sub-optimal models) and (b) dissimilar to the
expected model (i.e., in the architecture). More specifically:

4 Rui Shu et al.

— For hyperparameter optimization, we search a large space of possible configura-
tions of a model to initialize a large model pool.

— The expected model is a model from the model pool that performs best (under no
attack). We call this model “expected” since we conjecture that this model would
be the target of an attacker, and becomes a victim model.

— We introduce an idea called model distance, which is a numeric value indicating
the degree of similarity of two models’ hyperparameter configurations. A large
model distance value means that two models are more likely to be different in
their model architecture.

— The unexpected models are those whose performance within some small € of the
expected model but are more than some distance ¢ away from the expected model.

— Those unexpected models are combined into a weighted ensemble, in which each
model m; in the ensemble with a weight w;. The final prediction of this ensemble
is the combined prediction of each model m; times its weight w;. These weights
are further optimized by an evolutionary algorithm that finds optimal w; setting
that maximizes prediction performance.

— The final weighted ensemble, with its optimized weight setting is then deployed
against evasion attacks.

The rest of the paper shows empirically that the results of using Omni as a de-
fense method against adversarial evasion attacks is promising. Background and re-
lated work is discussed in Section 2. We introduce threat model, adversarial evasion
attack strategies as well as the proposed approach in Section 3. We then describe our
datasets and experiment rigs in Section 4. For this studies, we use:

— Five sophisticated adversarial evasion attack strategies; i.e. FGSM [30], BIM [44],
JSMA [63], DeepFool [55] and Carlini-Wagner [14, 16];

— And five security datasets; i.e. NSL-KDD [22], CIC-IDS-2017 [75], CSE-CIC-
IDS2018 [75], CICAndMal2017 [47] and the Contagio PDF dataset [20].

As shown in Section 5 (i.e., the results section), Omni demonstrates its advantages
when compared with other baseline treatments such as adversarial training, random
ensemble and average weight ensemble. We discuss more about the nature of Omni
and other issues in Section 6 and threats to validity in Section 7 then present the
conclusion and future directions to extend this work in Section 8. Here we conclude:

A well-designed weighted ensemble system is a promising approach to defend
against adversarial evasion attack.

and

When using ensemble learning as a defense method against adversarial eva-
sion attacks, we suggest to create ensemble with unexpected models that are
distant from the attacker’s expected model (i.e., target model) through meth-
ods such as hyperparameter optimization.

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 5

2 Background and Related Works

2.1 Machine Learning for Security & Adversarial Machine Learning

The global security threat continues to evolve at a rapid pace, with a rising number of
types of threats. For example, previous studies have shown many kinds of malicious
software:

Malware that is a malicious file or hidden within files; e.g. PDF files can carry

malicious code [76].

— Ransomware that encrypts a victim’s files then demands a ransom from the vic-
tims to restore access to the data upon payment. For example, a March 2019 ran-
somware attack on aluminum producer Norsk Hydro caused 60 million pounds of
remediation cost. The attack brought production to a halt at 170 sites around the
world (some 22,000 computers were affected across 40 different networks) [72].

— Industrial espionage software that infects, then destroyed industrial machinery;
e.g. the Stuxnet virus used to damage centrifuges at Iran’s Natanz uranium en-
richment facility [46].

— In the social network realm, Facebook estimated that hackers stole user informa-
tion from nearly 30 million people through malicious software [69].

— According to the International Data Corporation (IDC), the Android operating
system covers around 85% of the world’s smartphone market. Because of its in-
creasing popularity, Android is drawing the attention of malware developers and
cyber-attackers. Android malware families that are popular are spyware, bots, Ad-
ware, Potentially Unwanted Applications (PUA), Trojans, and Trojan spyware,
which affect millions of Android users [6].

— Other kinds of malicious software [54] include (a) scareware that socially en-

gineers anxiety, or the perception of a threat, to manipulate users into e.g. buy-

ing unwanted software; (b) adware that throws advertisements up on your screen

(most often within a web browser); and (c) software that infects your computer

then, without your permission of knowledge, mounts a denial of service attack on

other computers.

Security practitioners now routinely add security detectors to their environments,
which are machine learning models that utilize known detective patterns to ver-
ify whether an application becomes a threat. Such detectors can be built in many
ways including (but not restricted to) building a classifier to examine a web page
for malicious content [13, 27]; constructing multiple classifier systems to classify
spam emails [8]; building classifiers to detect malicious PDF files [91]; applying
machine learning to detect Android malware [34]; designing supervised learning al-
gorithm to classify HTTP logs [49]; designing machine learning models to detect
ransomware [57]; and detecting malicious PowerShell commands using deep neural
networks [36].

6 Rui Shu et al.

Table 2: A list of highly cited (i.e., those with at least ten cites per year since pub-
lication) studies of adversarial machine learning in the security-sensitive tasks. This
list of papers was found from the Google scholar using the search query, e.g., “(ad-
versarial machine learning) and (malware)” and “(adversarial machine learning) and
(intrusion detection)” and “(adversarial machine learning) and (malicious)”. We only
use papers in the last ten years (2010-2020). The count of citations is retrieved from
Google Scholar on Sept 9th, 2020.

Ref | Year | Citation Tasks Attack/Defense
[8] 2010 175 Spam Filtering)
[97] | 2012 87 Spam Filtering (D)
[77] 2012 207 Malicious PDF ©
[10] 2013 91 Program Malware Detection ©
[9] 2013 471 Malicious PDF Detection ©
[53] 2013 101 Malicious PDF Detection ©
[48] 2014 239 Malicious PDF Detection]
[11] 2014 80 Spam and Malware Detection ©
[11] 2014 95 Program Malware Detection ©
[94] 2015 126 Spam Filtering and Malicious PDF Detection (]
[90] 2015 211 Malicious PDF Detection ()
[90] 2015 160 Malicious PDF Detection ©
[32] | 2016 229 Android Malware Detection ©
[85] | 2016 623 Spam Filtering ()
[91] 2016 243 Malicious PDF Detection ©
[33] | 2017 255 Android Malware Detection ©
[81] 2017 57 Android Malware Detection []
[38] | 2017 172 Program Malware Detection ©
[24] 2017 50 Malicious PDF Detection ©
[19] 2018 77 Android Malware Detection ©
[25] 2019 20 Android Malware Detection ©

Previous research works on adversarial machine learning are mainly focused on
computer vision which solves tasks such as image recognition [30, 67]. However,
adversarial machine learning can also be applied to other domains, such as the secu-
rity domain, since most of them are not data dependent attacks. Adversarial machine
learning studies in the security domain (e.g., intrusion detection) received more and
more attention in recent years. To understand the current thinking of adversarial ma-
chine learning in the security domain, we conduct a literature review of papers during
the last decade. We use google scholar to trace publications and their citations and
search papers that fall into this topic.

Table 2 lists relevant work from the last decade. We observe that researchers are
more interested in attacks than defense, while at the same time, malware detection
and intrusion detection receive more attention than other tasks (e.g., spam filtering),
which also motivate our study.

2.2 Adversarial Defense Strategy

Researchers have proposed various solutions against adversarial machine learning at-
tacks. One way to categorize defense strategies is based on different phases in the

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 7

machine learning pipeline. Another way is to divide into two types, i.e., reactive de-
fenses and proactive defenses. The former focuses on detecting adversarial examples
separately from a trained classifier, while the latter focuses on building classifiers that
are robust to adversarial examples. In the following section, we provide a summary
of existing defense methods especially against adversarial evasion attacks.

Defense during the testing phases includes adversarial training, gradient mask-
ing, defensive distillation, and ensemble learning. The idea of adversarial train-
ing [28, 52, 58, 73, 86, 92] is to build a “golden” dataset that ideally contains a
set of curated attacks and normal data that are representative of the target system.
The data is then used when training the model. Intuitively, if the model sees adversar-
ial examples during training, its performance during prediction will be improved for
adversarial examples generated in the same way. However, the problem with adver-
sarial training is that it suffers from an optimized attack or adaptive attack, since this
method only defends the model against the same attacks used to craft the examples
originally included during training.

Gradient masking [68] is a technique that hides the model gradients to reduce
model’s sensitivity to adversarial examples. However, later work [2] shows that the
gradient masking tactic does not work because of the transferability property of ad-
versarial examples. The attackers can still build a substitute model and transfer the
attacks.

Defensive distillation [64] tries to generate a new model whose gradients are
much smaller than the original undefended model. If gradients are very small, some
gradient-based attacks are no longer useful, as the attacker would need great distor-
tions of the input data to achieve a sufficient change in the loss function. However,
this method was quickly proved to be ineffective [15]. With a slight modification to a
standard attack, attackers can still find adversarial examples on distilled networks.

Ensemble learning [26] is another widely used defense mechanism, in which mul-
tiple classifiers are combined together to improve classifier robustness. For example,
Biggio et. al. [8] investigated ways to build a multiple classifier system (MCS) that
improved the robustness of linear classifiers. They argued that randomization-based
MCS construction techniques, such as bagging and random subspace method (RSM),
were effective in improving classification accuracy. Tramer et. al. [86] introduced a
technique called ensemble adversarial training that augments training data with per-
turbations transferred from other models to increase robustness. Kariyappa et. al. [42]
showed that an ensemble of models with misaligned loss gradients can provide an ef-
fective defense against transfer-based attacks. Besides, some other studies [41, 78, 86]
also show ways to respond to adversarial evasion attack via ensemble learning.

However, some other prior results are not supportive of the use of ensemble learn-
ing for defense purposes [35, 65, 86, 95, 96]. For example, Zhang et al. [96] show that
a discrete-valued tree ensemble classifier can be easily evaded by adversarial inputs
manipulated based only on the model decision outputs. Zhang et al. [95] investigate
the evasion attacks in a more practical setting where attackers do not know the de-
tails of classifier, but instead they may acquire only a portion of the labeled data or
a replacement dataset for learning the target decision boundary. They argue that en-
semble classifiers are not necessarily more robust under a least effort attack based
on gradient descent. He et al [35] demonstrate that an adaptive adversary can create

8 Rui Shu et al.

adversarial examples successfully with low distortion, hence implies that ensemble
of weak defenses is not sufficient to provide strong defense against adversarial exam-
ples. Papernot et al. [65] find the transferability property of adversarial examples also
make ensemble classifier less effective.

As mentioned in the introduction section, we argue that there is an issue with prior
research using ensemble methods for defense purpose. Specifically, the exploration
space for their ensemble systems was too small, while our reading of Table 1 indicates
that there are trillions of options to configure a security detection model (the building
block of the ensemble system). The rest of this paper proposes a novel method that
takes better advantage of that large space of options.

2.3 Hyperparameter Optimization

Given a space of hyperparameter options like Table 1, hyperparameter optimization
can be represented as follows:

x* = argmax f(x) (1)
xey
Here f(x) represents the objective to be maximize, e.g. recall or accuracy. x* is the
set of hyperparameters that produce the best score, while x can be any value from
domain .
Existing hyperparameter optimization algorithms can mainly fall into three cate-
gories:

— Exhaustive search of hyperparameter space;
— Using evolutionary algorithm;
— Utilizing Bayesian optimization.

The first category includes manual search, grid search and random search. The
search space of each hyperparameter is discretized, and the total search space is dis-
cretized as the Cartesian products of them. When using manual search, we choose
some model hyperparameters based on our own experience. We then train the model,
evaluate its performance and start the process again. This loop is repeated until a sat-
isfactory score is found. The grid search [5] algorithm would traverse all the configu-
rations and select the best one, which is computationally costly and can easily suffer
from the “curse of dimensionality”. As a variation of grid search algorithm, random
search algorithm [4] randomly samples the configurations to reach a predefined fixed
sampling density. With purely random sampling, the selected hyperparameters give a
non-uniform sampling density of the search space.

As for the second category, the evolutionary algorithm in hyperparameter opti-
mization [93] takes its inspiration from the process of natural selection. This algo-
rithm allows a selective exploration of the operation range using fitness function that
determines which is going to be the next point to be sampled.

Both of them are good options for simple optimization problems due to easy im-
plementation of algorithms. However, for complex objective functions, both methods
are relatively inefficient because there is no guarantee that they can find an optimal

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 9

Iteration 1

—— Acquisition function

04 0.20 4 ---- Next sampling location
N /
Noise-free objective
—— surrogate function
-2 #® Noisy samples
-1.0 —0.5 0.0 0.5 10 15 2.0 2.0

Iteration 2

0.4

e e N I

-34 0.01
-1.0 —0.5 0.0 0.5 10 15 2.0 -L.0 —0.5 0.0 0.5 10 15 2.0
Iteration 3
0 0.15
a1 / 010
0.05 4
-2
. 0.00 1
-1.0 —0.5 0.0 0.5 10 15 2.0 -L.0 —0.5 0.0 0.5 10 15 2.0
Iteration 4
14 034
04
/ 021
-1
0.14
-2
0.04
-1.0 —05 0.0 0.5 10 15 2.0 -1.0 —0.5 0.0 0.5 10 15 2.0

Fig. 1: An example of the Bayesian optimization process. Bayesian optimization in-
corporates prior belief about objective function and updates the prior with samples
drawn from objective function to get a posterior that better approximates objective
function. The model used for approximating the objective function is called surro-
gate function. Bayesian optimization also uses an acquisition function that directs
sampling to areas where an improvement over the current best observation is more
likely.

solution except if the configuration space is thoroughly searched. This is a prob-
lem if the evaluations of the objective function are not cheap, i.e., the models take
a significant amount of time to run with lots of computational resources, and they
are uninformed of the information gained from previous evaluations. For example,
they do not choose the next hyperparameter based on previous results, which leads to
wasting a large amount of time evaluating “bad” hyperparameters instead of focusing
on the most promising hyperparameters.

10 Rui Shu et al.

Bayesian optimization [74, 79] address such concerns by keeping track of past
evaluation results. The principle of Bayesian optimization is using those results to
build a probability model of objective function, and map hyperparameters to a prob-
ability of a score on the objective function, and therefore use it to select the most
promising hyperparameters to evaluate in the true objective function. This method is
also called Sequential Model-Based Optimization (SMBO). Figure 1 shows an exam-
ple process of Bayesian optimization.

The probability representation of the objective function is called surrogate func-
tion or response surface because it is a high-dimensional mapping of hyperparameters
to the probability of a score on the objective function. The surrogate function is much
easier to optimize than the objective function and Bayesian methods work by finding
the next set of hyperparameters to evaluate the actual objective function by selecting
hyperparameters that perform best on the surrogate function. This method continu-
ally updates the surrogate probability model after each evaluation of the objective
function.

Variations of SMBO methods differ in how to build a surrogate of the objective
function and the criterion used to select the next hyperparameters. Several choices
for surrogates function are Gaussian Processes, Random Forest Regression, and Tree
Parzen Estimators (TPE) [5], and one of the most common choices for acquisition
function is Expected Improvement [79]. Specifically, our method chooses TPE as the
surrogate function and Expected Improvement as the acquisition function, which is
popular to use. TPE handles hyperparameter space in a tree-structured fashion, and
during iterations, TPE divides observations into two groups. One group only contains
observations that give the best scores after evaluation and the other group contains
all the rest. The fraction of the best observation is usually defined as 10% to 25% of
observations. TPE then models the likelihood probability of each group, and using the
likelihood probability from the first group, TPE sampled a bunch of candidates, from
which we seek a candidate that is more likely to be in the first group and less likely
to be in the second group. TPE also uses the parzen-window density estimators, with
which each sample defines Gaussian distribution with specified mean (i.e., the value
of the hyperparameter) and standard deviation. These points then stack together and
normalized to assure that output is Probability Density Function (PDF). For Expected
Improvement, finding the values that will yield the greatest expected improvement in
the surrogate function is much cheaper than evaluating the objective function itself.

3 Methodology

In this section, we first introduce some guidelines that help direct our work. We
then discuss the adversarial threat model. Next, we introduce the methods of gener-
ating adversarial examples for evasion attack. We then demonstrate the details of our
ensemble learning based approach Omni.

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 11

3.1 Some Guidelines

Before we go deeper into our proposed method, we first introduce several general
design principles that are not specific to any individual research question. Carlini et
al. [17] provide practical advices for evaluating adversarial defense that is intended to
be robust to adversarial examples. Specifically, their work shows a list of principles of
rigorous evaluations and a checklist of recommendations. Motivated by their work,
here we list some example principles that are applicable to our work. Besides, we
also add some other principles that beyond Carlini et al.’s recommendations.

— PI: State a precise threat model that defense is supposed to be effective under.
— Our threat model is described in Section 3.2.
P2: Release models and source code.
P3: Report clean model accuracy when not under attack.
— In the results section, we take care to present our pre-attack accuracy as well
as other results.
P4: Describe the attacks applied, and report all attack hyperparameters.
P5: Apply a diverse set of attacks.
— P6: Report per-case attack success rate.
— P7: Record the runtime of hyperparameter tuning phase.
— P8: Any work with a stochastic component need to repeat experiments multiple
times. As shown below, all our results come from multiple 80% train, 20% test
runs where, for each run, the random number seed was changed.

3.2 Threat Model

The machine learning adversarial threat model is a structured framework that lays
out all the possible threat vectors on the machine learning system. We provide here
a detailed threat model for evasion attacks against deep neural networks. This threat
model consists of defining the adversary’s goals, knowledge of the target system, and
capabilities of manipulating the testing data.

Adbversary’s goals. The goal of the adversary attackers is to impact target model’s
prediction performance by causing its misclassification in the testing phase, thus ma-
licious payload can avoid being detected. For example, in a security system (e.g.,
intrusion detection or malware detection), the attackers want a specific class (e.g.,
“malicious”) to be classified as a specific other class (e.g., “benign”).

Adbversary’s knowledge. The smart adversary attackers are essentially assumed to
obtain the internal knowledge of the target model through other approaches. For ex-
ample, we assume that attackers are able to collect information, including but not lim-
ited to model architecture, number of layers, optimization algorithm used, gradients
of loss function, testing data, and therefore could successfully carry out white-box
attacks [30] to the target model. Prior study [16] has shown that accessing model’s
gradients is one of the most efficient ways to fool the target models with crafted ad-
versarial examples. When a defense system is applied, the attackers are also assumed
to obtain its knowledge and thus challenge the defense system.

12 Rui Shu et al.

Adbversary’s capability. In adversarial evasion attacks, the adversary attackers are
assumed to be able to perturb the testing dataset. In addition, the adversary attackers
are also able to acquire prediction results from the target model. We assume adver-
sarial attacks are carried out at the inference time (i.e., testing time), which means the
attackers are only able to perturb the immediate inputs, while not be able to manipu-
late the training dataset.

Furthermore, we make some justifications about the threat model. Firstly, we limit
the scope of study that the attackers will try to evade a single model with crafted
adversarial examples. Attacking multiple models with adversarial examples [45] is
another interesting research direction which we would like to explore in future work.
In such type of attack, attackers generate multi-targeted adversarial examples which
can be found useful for them to make multiple models to recognize a single data (e.g.,
image) as different classes.

Secondly, there is a growing interest in different types of privacy-related attacks
(e.g., model extraction attack [66]) which make the leakage of model information
possible [70]. For example, in an example from the previous study [40], some busi-
ness models are hosted in a secure cloud that allow user clients to query the models
via cloud-based prediction APIs. These prediction APIs are suffered from being ex-
ploited with model extraction attacks. The target model can be used as an oracle for
returning predictions for the samples that attackers submit. Such kind of attempts can
further be iteratively executed for attackers to maximize the information extraction
about model internals.

Thirdly, our threat model also does not assume adaptive adversarial attacks which
are more novel and specifically designed to target a given defense mechanism. In ad-
dition, the white-box adversarial attacks in this threat model are non-targeted attacks.
Specifically, the aim of non-targeted attacks is to cause samples to be classified in-
correctly while targeted attacks would cause samples to be misclassified as specific
target class.

3.3 Adversarial Attack Strategy

Adversarial examples [83] or adversarial inputs are examples that are intention-
ally crafted by attackers by making small perturbations to the input data to cause a
machine learning model to produce an incorrect output. Machine learning models,
including existing state-of-the-art models such as neural networks lack the ability to
classify adversarial examples correctly. A very active research field relevant to this
topic is how to craft adversarial examples to fool models. We choose five methods
that are widely studied in this domain.

Fast Gradient Sign Method (FGSM) [30] is a method to generate adversarial
examples using model’s gradient information. Each data in the clean dataset x is
modified by adding or subtracting an almost imperceptible error of €. If the sign of
the gradient is positive, € will be added, and vice versa. Equation 2 formalizes the
way to generate adversarial examples by FGSM. In this expression, we note that x4,
is the adversarial dataset, x is the original input dataset, y is the original output label,

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 13

€ is the multiplier to ensure the small perturbation, 0 is the model hyperparameters,
V is the gradient, and .Z is the loss function.

xadv:x+8*Sign(Vx$(9axay)) (2)

Under this assumption, the gradient of the loss function indicates the direction in
which we need to change the input vector to produce a maximal change in the loss.
In order to keep the size of the perturbation small, we only extract the sign of the
gradient, not its actual norm, and scale it by a small factor epsilon.

Basic Iterative Method (BIM) [44] is an iterative version of FGSM where a small
perturbation is added in each iteration. There are two versions of BIM attack: BIM-A
and BIM-B. The BIM-A method stops the iteration as soon as mislcassification is
achieved. In the BIM-B method, iterations only stop after a fixed number of rounds.

Jacobian-based Saliency Map (JSMA) [63] is an iterative method that achieves
misclassification of input to any pre-specified class. It uses feature selection with the
aim of minimizing the number of features perturbed (i.e., the L distance metric).

This method includes the computation of saliency maps for an input sample,
which contain the saliency values for each input feature. These values indicate how
much the modification of that feature will perturb the classification process, how
much different from each target class. Features are then selected in decreasing order
of saliency value, and the feature with the max value in this map is perturbed by €.
The saliency map is created in the following way:

.o 9 () () If ())
0 if T <0or ch S >0
SJr ()C(i) 5 C) = (3)

/

If ()0 o)y .
— 7 -ZC/ T otherwise

We modify JSMA, so as to flip the feature values from 0 to 1, or 1 to 0 in the perturb
step.

DeepFool [55] works in an iterative manner, with the aim of minimizing the eu-
clidean distance between perturbed samples and original samples (i.e., the L, distance
metric). Specifically, the generation of adversarial samples consists of the analytical
calculation of a linear approximation of the decision boundary that separates sample
from different classes, and then adding a perturbation perpendicular to that decision
boundary, which brings the input closest to a linear approximation of the decision
boundary. The algorithm terminates once misclassification is achieved.

Carlini-Wagner (C & W) attack [14, 16] builds an optimization-based attack
where the goal is to find the smallest perturbation that can cause a misclassification.
If we consider input x € [0, 1]" and noise & € [0, 1]", this attack finds the adversarial
instance by finding the smallest noise 6 € R” added to the input x that will change the
classification to a class ¢. The noise level is measured in terms of L,, distance. Finding
the minimum L, distance of 0 while ensuring that the output will have a class ¢ is not
a trivial optimization problem. Instead, Carlini-Wagner attack solves the optimization
problem of the form:

14 Rui Shu et al.

min ||8]|,+c- f(x+3) @
SeR”

where x+ 6 € [0,1]"; f is an objective function that drives the input x to be misclas-

sified; and ¢ > 0 is a suitably chosen constant.

3.4 Omni: Building Ensembles of “Unexpected” Models

3.4.1 System Architecture

Target Model Attacker
%Z attack A attack
4> 4— ———————————————
o
Select
optimal
model
[[R
| S ot |
| R S U S
! | ! 0% o | ! ° | v
I | I ° " I % |
} I } | } 2 0Zod0 |
/-\ I | I oZ8% oZoNo | o 3 S 3 |
o -3 o -]
allp’ —> | e ST NI N A N e A —
N2 A L ese |
I i I | I N I
1 [e o 1 | K
o o o o o.
1 . . I gcesy |
1 Lo ! 1 v
I I I
| R ———. T ——- POyl
Bayesian) Optimized Weight Ensemble
Optimization Model Pool Candidate Models Models Classifier

Fig. 2: The architecture of our proposed ensemble system.

The basic idea of Omni is to build a more robust ensemble classifier against ad-
versarial attacks that aim at a target model. In order to create such robust ensem-
ble classifier, we employ several novel tricks. The architecture of Omni is presented
in Figure 2. In our method, we first apply a hyperparameter tuning method named
Bayesian optimization to train a set of models that build a model pool. We ranked
the models in the model pool by prediction performance, and pick the model with
optimal performance for normal prediction. This model is thus becoming the target
model of the adversarial attackers.

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 15

As the defense strategy against the adversarial attacks, the ensemble classifier
(i.e., Omni) selects other candidate models from the model pool rather than the target
model. Those candidate models are able to achieve sub-optimal prediction perfor-
mance as well as with a distance (in terms of hyperparameter) to the target model.
Those picked models are further optimized with weights in the ensemble classifier in
order to perform better (i.e., robust) against adversarial attacks.

Besides, we assume that users are more likely to train their models and further
optimize their models towards the goal of better prediction performance. We start
with such point and choose the optimal model as the attacker’s target since a sub-
optimal model might suffer from misclassification even under normal prediction.

3.4.2 Build Ensemble Classifier

Since Omni is an ensemble learning based approach, we then come up with two
questions: 1) How to select models for the ensemble system? and 2) How to aggregate
those models across the ensemble system?

Unexpected model selection. In our method, we first run our optimizer in the
usual manner to find parameters resulting in the model with the highest accuracy.
We call this model the expected model since this is the model we would expect the
attackers to learn.

Note that, as a side effect of this process, we have a large pool of models; i.e.
all the other models explored by the optimizer before arriving at the best one. In this
pool, we then hunt for “useful” unexpected models; i.e. models whose hyperparam-
eters are distant from the expected models. Here, by “useful” we mean the models
that are performing nearly as well as the expected model. Using ensemble learning,
we then create a combined classifier from the unexpected models.

Why do we use those“unexpected models”? Previous work [25, 62] show that
adversarial evasion attack has the ability to transfer from one model to another model.
That is, specially crafted adversarial examples that cause misprediction of model A
are also likely to mislead a different model B. However, this transferability becomes
less reliable when two models have different structures [62]. For example:

— For cross-technique models (e.g., SVM and DNN), attacks from SVM to DNN
are less effective than from SVM to SVM.

— For intra-technique models (e.g., both models are DNN), attacks from DNN A to
DNN B are also less effective than from DNN A to itself.

— Generalizing these examples, the rest of this paper tests that we can generate dif-
ferent structures (that makes an adversary harder to figure out defender’s decision
boundary), just be picking models that are some distance “¢” from the expected
model (measured using the distance between the hyperparameters.

To implement the above, we need some measure of “distance” ¢, that denotes an
“unexpected model”. To compute that, we note that the hyperparameters in Table 1
are in various forms, which involve both discrete categorical and continuous numer-
ical values. Traditional metrics such as Euclidean distance or cosine distance cannot
calculate distance between two entities whose attributes have a mix of values. Gower

16 Rui Shu et al.

distance [31] is a distance measure that can be used to address this concern. This
measure is defined as follows:

(k) (k)
.. PO wii d;;
d(i,j) = =~ ®)
k=1Wij

(k)

;j 1s the weight of variable k between observation i and j and dl-(j]f) is the

distance between i and j on variable k. Moreover, di(j]-() applies different formulas

to categorical and numerical variables. Specifically, for categorical variable, if two
observations are the same then the distance dl-(]-{) of them is assigned 0, otherwise
assigned 1. For numerical variable, the absolute difference is calculated between ob-
servation i and j, then the result is scaled to range [0, 1] by dividing the range of values

of variable k. The following equations describe how to calculate categorical and nu-

where w

merical variables respectively, where xl(k) is the value of variable k for observation
i.

Jo_ [t ifx*) 1Y .
700, il =0 ©
i J
(k) _ (k)
X —x
a® = L it N %)

The Gower distance allows to assign a weight w;j; to each individual variable
base on the importance of that variable in the distance calculation. For simplicity, we
use the equal weight in our study.

Unexpected model aggregation. There are various ways of combining unex-
pected models, in our work, Omni uses a bagging approach named weighted en-
semble. When optimizing these weights, we seek to maximize the accuracy of the
ensemble.

The way of searching for the weight values is an optimization process. We pro-
pose to use an evolutionary algorithm named differential evolution (DE), shown in
Figure 3, to solve the function optimization. This optimizer is inspired by biology
natural selection process and follows the rule of Darwin’s “survival of the fitness”
evolution theory. The general idea of this algorithm is to randomly select some sam-
ples from a population. The selected samples are then combined with a scheme to
generate a new sample. If the new sample is better after evaluation with target func-
tion, then the previous samples are replaced. After several iterations, the population
will converge towards the optimal solution. Differential evolution algorithm has very
few parameters to adjust, so it is easy to implement and convenient to use.

The premise of the Figure 3 code is that the best way to mutate the existing op-
timizations is to extrapolate between current solutions (stored in the frontier list).
Three solutions x,y,z are selected at random from the frontier. For each tuning pa-
rameter j, at some probability cf, DE replaces the old solution x; with new where
new;=x;+ f x (yj—z;) and f is a parameter controlling differential weight.

The main loop of DE runs over the frontier of size np, replacing old population
with new candidates (if new candidate is better). This means, as the loop progresses,

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 17

def DE(np=20, cf=0.75, f=0.3, lives=10): # default settings
frontier = # make "np” number of random guesses
best = frontier.1 # any value at all
while(lives—— > 0):
tmp = empty
for i = 1 to |frontier|: # size of frontier
old = frontier;
x,y,z = any three from frontier, picked at random
new= copy(old)
for j = 1 to |newl|: #for all attributes
if rand() < cf #at probability cf..
new.j = x.j+ f(z.j—y.j) #...change item j

end for
new = new if better(new,old) else old
tmp; = new

if better(new,best) then
best = new
lives++ # enable one more generation
end
end for
frontier = tmp
lives——
end while
return best

Fig. 3: Pseudocode of differential evolution. Extended from [80].

the frontier contains increasingly more valuable solutions (which in turn helps ex-
trapolation since the next time we pick x,y,z, we get better candidates). DE’s loops
keep repeating until it runs out of /ives. The number of lives is decremented for each
loop (and incremented every time we find a better solution).

Note that this paper has two optimization problems requiring different optimiza-
tion technologies. Exploring the hyperparameters is a complex task which, if done
naively, results in very slow optimization runtime. For that reason, as described above,
we optimize the values of Table 1 very carefully using the TPE-based Bayesian opti-
mization method [5] On the other hand, once a deep learner is tuned, then its runtime
for making predictions is fast. Hence, for just fiddling with the weights placed on the
conclusions of a deep learner, we use the much simpler optimizer of Figure 3,

4 Experiments

4.1 Datasets

To assess Omni, we use the five security datasets of Table 3, which covers various
attack types including network traffic, Android malwares and malicious PDF files.
These datasets were selected since they are publicly available and widely used in the
security literature.

NSL-KDD [22] dataset is an improved version of KDD’99 dataset [84], which
recorded network traffic under different types of attacks. Compared with the original

Rui Shu et al.

Table 3: An overview of the statistics of the security datasets studied in our work.

Dataset Original Size | Sampling Rate(%) | Feature Count
NSL-KDD 148,517 100 123
CSE-CIC-IDS2018 16,233,003 5 70
CIC-IDS-2017 2,830,743 20 70
CICAndMal2017 2,618,533 20 71
Contagio PDF Malware 22,525 100 135

KDD dataset, NSL-KDD dataset removes redundant records in the train set and test
set, which reduces the bias of trained classifiers towards the frequent records and
further improves the detection rates.

CIC-IDS-2017 [75] is a dataset that consists of labeled network flows. It is com-
prised of both normal traffic and simulated abnormal data caused by intentional at-
tacks on a test network. This dataset was constructed using the NetFlowMeter Net-
work Traffic Flow analyzer, which collected more than 80 network traffic features
and supported Bi-directional flows.

CSE-CIC-IDS2018 [75] is another intrusion detection dataset collected in 2018
by Canadian Institute for Cybersecurity (CIC) on AWS (Amazon Web Services).
This dataset includes seven different attack scenarios such as Brute-force, Heartbleed,
Botnet, DoS, DDoS, Web attacks, and infiltration of the network from inside. Using
the tool CICFlowMeter-V3, this dataset includes the captured network traffic and
system logs of each machine.

CICAndMal2017 [47] is an Android malware dataset that collects 426 malicious
and 1,700 benign applications collected from 2015 to 2017 by researchers at the
University of New Brunswick (UNB). The malicious samples are split into four cat-
egories (Adware, Ransomware, Scareware, SMS Malware) and 42 families. In addi-
tion to providing the APK files, the authors also ran each malicious sample on real
Android smartphones and captured network traffic during installation, before restart,
and after restart.

Contagio PDF Malware [20] dataset is widely available and used for signature
research and testing. This source of datasets was selected because it contained a large
number of labeled benign and malicious PDF documents, including a relatively large
number from targeted attacks.

Note that some datasets (e.g., CSE-CIC-IDS2018) have millions of entries, which
would significantly increase the computational cost of both model training and testing
on deep neural network. To simplify our evaluation, we apply the stratified random
sampling strategy with pre-defined sampling rate. In this way, we maintain the im-
balanced characteristic of security datasets (see Table 4).

The sampled datasets are further pre-processed with the one-hot-encoding tech-
nique that encodes all categorical features to one-hot numeric array. We also apply
the StandardScaler pre-processor to transform the data such that their distribution
will have a mean value 0 and standard deviation of 1. Both of the procedures are
implemented with the Scikit-learn toolkits. We also note that our task is essentially a
binary classification problem, and we do not distinguish the attack types (e.g., Denial

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 19

Table 4: The characteristics of security datasets during training and testing phase.

Dataset Training Phase Testing Phase Total
Benign | Malicious | Benign | Malicious | Benign | Malicious
NSL-KDD 67,343 58,530 12,833 9,711 80,176 68,341
CSE-CIC-IDS2018 535,701 102,379 | 133,926 25,595 | 669,627 127,974
CIC-IDS-2017 363,410 89,050 90,853 22,262 | 454,263 111,312
CICAndMal2017 193,777 224,873 48,445 56,218 | 242,222 281,091
Contagio PDF Malware 8,821 9,199 2,205 2,300 11,026 11,499

of Service) in the datasets. All data originally labeled with the type of attacks are
labeled as malicious, and the others are labeled as benign.

4.2 Experiment Rigs

In all our experiments, we split the sampled dataset into two parts:

— Part 1: 80% of the sampled dataset is used for training and optimization.
— Part 2: the rest of the sampled data is used for model testing.

The first part of the data ((Part 1)) is further split with ratio 3:1. During each trail
of Bayesian optimization, the model is trained with the former part (75%), and then
evaluated in the latter part (25%).

As mentioned above, for fast learners, these splits are typically created ten times.
However, for deep learning experiments (like this paper), since the training times are
so long, three samples are often used.

We have referred to existing open-source CleverHans [61] library during the im-
plementation of adversarial attacks. In addition, experiments are implemented on the
Tensorflow framework, and conducted on our university’s ARC cluster [88], which
provides Nvidia GPU computing resources. Experiments are also repeated multiple
times (i.e., 20) (with different random number seeds), and median results are shown.

4.3 Adversarial Attack Parameters

Table 5 lists the parameters that we set for each type of adversarial attack. Our exper-
iment results in Section 5 are based on these default settings. In the table, the epsilon
parameter indicates the degree of perturbation, and the clip function is defined as
follows:

MIN if x < MIN
clip(x) =< x if MIN <x < MAX (8)
MAX if x > MAX

20 Rui Shu et al.
Table 5: The default attack parameters used in our experiment.
Attack Parameters
FGSM epsilon: 0.2, clip-min: 0.0, clip-max: 1.0
BIM-A epsilon: 0.2, clip-min: 0.0, clip-max: 1.0,
BIM-B iterations: 10
DeepFool epsilon: 0.2, clip_min: 0.0, clip_max: 1.0
JSMA th.eta: 1.0, gamma: 1.0, clip_min: 0.0,
clip-max: 1.0
Carlini-Wagner | Iteration: 100, clip-min: 0.0, clip-max: 1.0
S Results

5.1 Evaluation Treatments

In our experiment, we evaluate our proposed approach with several treatments

below:

— Treatment 0 : Normal prediction. In this treatment, we do not apply any adversar-

ial attack, therefore models are trained on training datasets and normal predictions
are made on testing datasets.

Treatment 1 : Adversarial attacks. This treatment creates adversarial examples
with strategies introduced in Section 3.3, with which the testing datasets are per-
turbed. Trained models then make prediction on the modified testing datasets.
Treatment 2 : Adversarial training. Previous works [28, 52, 58, 86] proposed a
simple and intuitive strategy to train an adversarially robust model called “adver-
sarial training”, the basic idea of which is to produce adversarial examples and
then incorporate adversarial examples into the training process. The robustness
achieved by adversarial training depends on the strength of the adversarial ex-
amples used. In this treatment, for each type of adversarial attack, we generate
adversarial examples with attack parameter set S; on a portion of testing datasets,
then we aggregate training datasets with created adversarial examples. We then
perform same type of adversarial attack with adversarial examples generated with
attack parameter set Sy while S; # S». With “adversarial training”, the trained
models are expected to learn some traits of existing adversarial examples in order
to make better predictions on new adversarial examples.

Treatment 3 : Attack random ensemble. In this treatment, we build an ensemble
classifier that does not apply any specific strategy of model selection but random
pick within a pool of models generated from Bayesian optimization. This ran-
dom strategy neither guarantees the quality of models (in terms of performance),
nor applies the distance criteria. Adversarial attacks are applied to the ensemble
classifier.

Treatment 4 : Attack average weight ensemble. In this treatment, we build an
ensemble classifier by selecting “useful” unexpected models with methods intro-

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 21

duced in Section 3.4.2. Models in the ensemble system are with a scheme that
all weights of constitute models are equal, i.e., the final prediction is the aver-
age across the ensemble system. Adversarial attacks are applied on the ensemble
classifier.

— Treatment 5 : Attack Omni. Same as Treatment 4, Omni selects models with de-
fined strategies. Rather than enforcing average weights in the ensemble system,
the weights of models are optimized with the “differential evolution” algorithm
that tries to maximize the performance of the ensemble classifier under adversar-
ial attacks.

5.2 Treatment Evaluation Results

We present the empirical experiment results of different treatments from Table 6
to Table 10. Each table is a summary result of an individual dataset. We also de-
note Ag,A1,A2,A3,A4 and As as the accuracy of each treatment, respectively. Note
that the Ag results are shown in the header of each result table. We now discuss the
observations from these tables.

Accuracy results Ag in Treatment 0 indicate that prior to the adversarial evasion
attacks, the step of hyperparameter optimization lets us find models with very high
prediction performance of about 85% to 99% across all datasets. Then sophisticated
adversarial attacks are proved to be effective in dropping those accuracy by a large
amount (as shown in A of Treatment 1).

The A, results show the effectiveness of Treatment 2 (i.e., adversarial training).
In our study, we see that this strategy is beneficial in building a more robust model
(compared to the results of A;). The pre-trained models learn some traits of adversar-
ial perturbations, and therefore are able to correctly classify more testing data when
facing new adversarial examples. Note that in our study, models are adversarially
trained with adversarial examples within the same adversarial attack type (i.e., attack
specific), and therefore such strategy might be less effective in face of a new class of
adversarial attacks or optimized attacks that would generate stronger perturbations.
To address these concerns, several other studies proposed different adversarial train-
ing schemes such as “ensemble adversarial training” [86] which augments training

Table 6: Classification accuracy (%) on adversarial examples of dataset Contagio
PDF Malware. The normal accuracy of the dataset of Treatment 0 (Ag) is 99.64%.
For Omni, the distance d = 0.9 is used.

Attacks Treatment 1 | Treatment2 | Treatment3 | Treatment4 | Treatment 5
(A1) (A2) (A3) (Aq) (As)
FGSM 37.58 59.33 33.67 57.53 70.48
BIM-A 14.24 55.25 22.95 51.18 58.72
BIM-B 35.67 60.71 36.53 52.54 65.03
JSMA 62.65 72.86 56.82 70.36 76.22
DeepFool 67.46 71.23 55.42 73.42 87.37
C&W 55.42 66.49 45.92 63.55 74.41

22

Rui Shu et al.

Table 7: Classification accuracy (%) on adversarial examples of dataset NSL-KDD.
The normal accuracy of the dataset of Treatment 0 (Ag) is 84.82%. For Omni, the

distance d = 0.9 is used.

Attacks Treatment 1 | Treatment 2 | Treatment3 | Treatment4 | Treatment 5
(A1) (A2) (A3) (A4) (4s)
FGSM 56.87 70.54 48.12 69.12 79.14
BIM-A 55.64 72.17 56.67 67.10 74.52
BIM-B 63.87 69.46 61.72 66.91 74.65
JSMA 47.32 54.92 48.62 53.82 73.17
DeepFool 57.03 71.21 56.13 76.74 83.22
C&W 44.87 67.26 47.21 66.79 71.14

Table 8: Classification accuracy (%) on adversarial examples of dataset CIC-IDS-
2017. The normal accuracy of the dataset of Treatment 0 (Ag) is 92.56%. For Omni,
the distance d = 0.9 is used.

Attacks Treatment 1 | Treatment 2 | Treatment3 | Treatment4 | Treatment 5
(A1) (A2) (A3) (A4) (4s)
FGSM 40.29 62.47 51.03 63.07 77.13
BIM-A 57.12 77.61 63.18 64.16 73.57
BIM-B 53.58 67.89 48.94 70.18 76.24
JISMA 40.15 58.62 42.13 52.27 74.31
DeepFool 50.18 63.18 4491 65.31 76.52
C&W 46.23 61.34 42.86 59.64 70.35

data with perturbations transferred from other models. We argue that these methods
can be further explored as one of our future directions.

As to the Az results from Treatment 3, these results show no fixed patterns for
adversarial defense. We can see that without specific strategy of model selection, in
some cases such as FGSM attack on the NSL-KDD dataset, the prediction accuracy
are close to or even slightly lower than A; results. Several factors may contribute to
these mixed results, such as using weak models to constitute the ensemble system
or using a similar model to the victim model that enables transferability attacks, or
both. These results could further suggest the desire to build a well-designed ensemble
system rather than a random schema.

A4 results of Treatment 4 come from a simple ensemble weighting scheme where
all weights of constitute models are equal (so the final conclusion is the average
across the ensemble). We note that our model selection strategy shows benefits with
building a better robust model (compared with Treatment 3). Furthermore, we note
that, this approach always performs worse than our proposed Omni’s As results in
Treatment 5. This is due to the use of differential evolution in Omni to explore to-
wards a more optimal weight. This optimization process is shown to be able to reach
a higher performance in our study. Besides, compared with the adversarial training
approach applied in our study, one advantage of Omni is that it makes no assump-
tions of specific attacks, but explores the attack transferability property between the
models.

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 23

Table 9: Classification accuracy (%) on adversarial examples of dataset CSE-CIC-
IDS2018. The normal accuracy of the dataset of Treatment 0 (Ag) is 94.48%. For

Omni, the distance d = 0.9 is used.

Attacks Treatment 1 | Treatment 2 | Treatment3 | Treatment4 | Treatment 5
(A1) (A2) (A3) (A4) (4s)
FGSM 61.59 68.89 55.68 74.31 86.68
BIM-A 49.61 77.67 56.79 70.54 85.03
BIM-B 66.33 82.17 70.02 74.15 84.53
JSMA 56.09 63.89 51.17 63.41 77.87
DeepFool 66.12 64.73 52.19 70.38 87.12
C&W 54.07 63.39 51.05 61.73 75.23

Table 10: Classification accuracy (%) on adversarial examples of dataset CICAnd-
Mal2017. The normal accuracy of the dataset of Treatment 0 (Ag) is 95.47%. For
Omni, the distance d = 0.9 is used.

Attacks Treatment 1 | Treatment2 | Treatment3 | Treatment4 | Treatment 5
(A1) (A2) (A3) (A4) (45)
FGSM 44.41 56.33 42.38 63.91 74.93
BIM-A 15.19 34.43 19.17 37.28 48.48
BIM-B 43.09 57.28 46.39 54.11 71.72
JISMA 45.67 56.07 46.91 53.38 72.35
DeepFool 55.32 57.76 46.82 62.53 76.21
C&W 43.54 59.43 44,72 57.26 68.47

Going forward, we would make a remark that it is recommended to try optimizing
ensemble weights since this means that the contribution of each ensemble member
to a prediction to be weighted proportionally to the trust of the performance of the
member, which results in achieving better performance.

Another remark we would like to make is about the treatments in our study against
potential adaptive attacks. In adaptive attacks [87], adversarial attackers design at-
tacks specifically against a given defense mechanism. Adaptive attacks have attracted
more attention for evaluating defenses to adversarial examples. A recent study from
Tramer et al. [87] reports that a diverse set of thirteen defense strategies can be cir-
cumvented with adaptive attacks. We make no claim that Omni are robust to adaptive
attack through this empirical study, however, we believe that it would be an interest-
ing direction to explore for future work.

5.3 Hyperparameter Distance

In this section, we conduct a series of experiments to study the influence of the
hyperparameter distance on the performance of Omni against adversarial attacks. We
only consider attacking Omni in this case. We empirically experiment with different
hyperparameter distances range from 0.1 to 0.9 (with a step of 0.2). This range ex-

24 Rui Shu et al.

plores “unexpected models” from a small distance to a large distance. The results are
summarized in Figure 4 to Figure 8.

We observe that there is a trend shown (e.g., see the lines above the bar charts in
Figure 4 to Figure 8) in the results table. A larger hyperparameter distance between
the constitute models in the ensemble system and the “victim model” would help to
build a defense that is less likely to be susceptible to attack transferability. More-
over, for Omni, if d is small, i.e., the architecture of selected models and the “victim
model” are quite close, the defense performance is also close to A results (i.e., attack
accuracy). This trend provides useful suggestions for constructing stronger ensemble
classifier in practice.

-®- FGSM -®- BIM-B -®- DeepFool B FGSM EEN BM-B WS DeepFool
~®- BIM-A JSMA -e- caw s BIM-A JSMA mmm C W

100

Accuracy

0.1 0.3 0.5 0.7 0.9
Distance

Fig. 4: Classification accuracy (%) of Omni with different hyperparameter distance
on dataset Contagio PDF.

6 Discussion

6.1 The Nature of Omni

We now provide a brief discussion of why the proposed approach Omni can help to
build a more robust classifier. We make the following remarks as well as hypothesis
from this empirical study. In the future, we plan to further validate this hypothesis
empirically or theoretically.

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 25

—®- FGSM —®- BM-B —-®- DeepFool HE FGSM NN BiM-B EEE DeepFool
—®- BIM-A JSMA —®- C&W . BIM-A JSMA . cw

100

Accuracy

Y
o
s

20 1

0.1 0.3 0.5 0.7 0.9
Distance

Fig. 5: Classification accuracy (%) of Omni with different hyperparameter distance
on dataset NSL-KDD.

-®- FGSM -®- BIM-B -@- DeepFool E FGSM EEE BM-B EEE DeepFool
—®- BIM-A JSMA —®- C&W s BIM-A JSMA mm cw

100

Accuracy
3

=y
[=]
L

20 1

0.1 0.3 0.5 0.7 0.9
Distance

Fig. 6: Classification accuracy (%) of Omni with different hyperparameter distance
on dataset CIC-IDS-2017.

Hyperparameter optimization. In machine learning tasks, hyperparameter opti-
mization is a widely-used technique that fine-tunes hyperparameters of models in
order to achieve a better performance. An explanation of how hyperparameter opti-
mization works is the change of model’s decision boundary. For example, as for a
machine learning algorithm such as SVM (Support Vector Machine) in a binary clas-

26 Rui Shu et al.

—®- FGSM —®- BM-B —-®- DeepFool HE FGSM NN BiM-B EEE DeepFool

—®- BIM-A JSMA 8- C&w . BIM-A JSMA s cw
100
80 1
> 60
v
©
il
3
o
< 401
20 4
o0l
0.1 0.3 0.5 0.7 0.9
Distance

Fig. 7: Classification accuracy (%) of Omni with different hyperparameter distance
on dataset CSE-CIC-IDS2018.

-®- FGSM -®- BIM-B -@- DeepFool E FGSM EEE BM-B EEE DeepFool
—®- BIM-A JSMA —®- C&W s BIM-A JSMA mm cw

100

Accuracy

0.1 0.3 0.5 0.7 0.9
Distance

Fig. 8: Classification accuracy (%) of Omni with different hyperparameter distance
on dataset CICAndMal2017.

sification task, if the data points in different classes are linearly separable, then it is
easy to draw a decision boundary. However, in some real cases, the noisy data points
make it not trivial to separate the data linearly. A standard SVM would typically try
to separate all data points and not to misclassify any point. This phenomenon usually

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 27

results in an overfit model and even in some cases, a decision boundary cannot be
found.

The idea of “soft margin” [21] in SVM allows some of the data points to be mis-
classified (i.e., on the wrong side of decision boundary), which helps to build a better
generalized classifier. The “soft margin” tries to optimize a trade-off of two goals: 1)
increase the distance of support vectors to decision boundary; 2) maximize the num-
ber of data points that are correctly classified. In the SVM algorithm, the C parameter
adds a regularization penalty for each misclassified data point and the gamma param-
eter indicates the kernel trick. When optimizing the SVM-based models, the selection
of different C parameter and gamma parameter would generate models with distinct
decision boundaries.

We make one hypothesis about the decision boundary of models in Omni. Close
trained models (with similar inherent structure) share similar decision boundaries on
the same datasets, while distant models (in terms of hyperparameter distance) would
contribute to creating different decision boundaries. Omni then select models with
distinct decision boundaries from the target model. Omni seeks “decision boundary
variance” with these chosen models.

Ensemble classifier. Compared to a single model, an ensemble classifier is sup-
posed to make the attackers harder to figure out the decision boundary and thus more
difficult to find adversarial examples. Omni’s strategy is to build an ensemble classi-
fier from models the decision boundaries of which are even distinct from the “victim
models”. A further exploration of Omni would be increasing the diversity of ensem-
ble. Prior study [60] demonstrates that a more diverse ensemble would increase the
robustness than a less diverse ensemble.

Weight optimization. The weighted ensemble is related to the “voting ensemble”
which involves combination of predictions from multiple other models. A trivial trick
is to average the prediction from each model. A limitation of this technique is that it
assumes all models in the ensemble are equally effective, which may not be the case.
Omni further enforces another optimization effort in searching for optimal contribu-
tion of each constitute model.

6.2 Trade Principle

Results in Section 5 show that the final A5 accuracy is still less than the original Ay
pre-attack accuracy. Mathematically, we can show that this is the expected case:

— Khasawneh et al. [43] offer a mathematical analysis of how hard it is for an ad-
versary to reverse engineer the defense model.

— Given an ensemble of H learners, each of which has its own errors of e(H;), then
using the probably approximately correct (PAC) learning theory [89] we can show
that the upper bound on the error of the attacker approximation of the defense
model is

2(max e(H;)))
i.e. twice the worst error of any defense learner. This result has a clear intuition:
the more the defense model makes mistakes, the harder it becomes for the attacker
to learn the policies of the defense strategy.

28 Rui Shu et al.

— Khasawneh et al. [43] warn that this kind of defense has an unwanted side-effect.
Specifically, it can reduce prediction performance. We call this the trade princi-
ple:

“The above theorem (Equation 9) suggests a trade-off between the accu-
racy of the defense model under no reverse-engineering vs. the suscepti-
bility to being reverse-engineered: using low-accuracy but high-diversity
classifiers allow the defender to induce a higher error rate on the attacker,
but will also degrade the baseline performance against the target.”

The trade principle tells us that adversarial defense is mathematically required to
lose predictive accuracy as they struggle to respond to an attack. That is, we should
expect that As is less than Ag (the pre-attack accuracy). A system under attack suffers
some predictive losses — the issue is how much we can mitigate that loss.

7 Threats to Validity

As to any empirical study, biases can affect the final results. Therefore, conclu-
sions drawn from this work must be considered with threats to validity in mind. In
this section, we discuss the validity of our work.

Attack strategy bias. We evaluate our method over a diverse set of attack strate-
gies. However, we do not argue that our list of attacks is exhaustive, and we observe
that more or more complicated adversarial attacks are emerging in recent work, which
can be one of our future research directions.

Sampling bias. Our datasets cover network traffic, Android malwares and mali-
cious pdf files, which are representative in previous intrusion detection and malware
detection related research. However, some other popular data in existing work are
also available which be further evaluated.

Evaluation bias. Carlini et al. [17] introduce several commonly accepted best
practices that can be used to evaluate the defenses to adversarial examples. One of the
suggestions is to protect from the adaptive adversaries, which means they are adapted
to the specific details of the defense and hence further invalidate the robustness. Our
approach is not designed with adaptive in mind, which is one of our future work.

Parameter bias. There are a bunch of parameters that control the degree of per-
turbation to the dataset. For example, a larger epsilon value cause large perturbation
which further reduces the accuracy under attack. We do explore every set of param-
eters or the converge issue as suggests by Carlini et al. [17]. In addition, Table 1
mentions the hyperparameter options explored but the hyperparameter optimization
spaces are much more vast. Exploring these options will require vast amount of CPU
resources. Thus we will require to make a trade-off between exploring the extend of
hyperparameter space and cost awareness of the models. We do not claim that hyper-
parameters that we select for Bayesian optimization are exhaustive, rather, we believe
the hyperparameter ranges that we choose are enough for us in the work.

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 29

8 Conclusion

When attackers can fool a classifier to think that a malicious input is actually be-
nign, they can render a machine learning-based malware or intrusion detection system
ineffective. Various researchers have proposed ensemble methods as a technique to
increase the complexity and robustness of a defense model [41, 78, 86]. In theory,
this added complexity makes it harder for the attackers to learn the defender’s model.
However, several researchers have reported that such ensemble learners have limited
advantages.

The starting point for this paper was the observation that prior work barely scratched
the surface of all the options available when building an ensemble system. Rather than
use a handful of models (as done by, eg. Kantchelian et al. [41]), we explore a much
large space of options within the hyperparameter configuration space of a model.

In our approach, we create an ensemble of “unexpected models”; i.e., models
whose control hyperparameters have a large distance to the hyperparameters of an
adversary’s target model. In studies with five adversarial evasion attacks on five se-
curity datasets, we show that this method can successfully mitigate the effects of
adversarial evasion attack. Hence we conclude:

A well-designed weighted ensemble system is a promising approach to defend
against adversarial evasion attack.

and

When using ensemble learning as a defense method against adversarial eva-
sion attacks, we suggest to create ensemble with unexpected models that are
distant from the attacker’s expected model (i.e., target model) through meth-
ods such as hyperparameter optimization.

For future directions, we recommend trying to speed up our optimization meth-
ods. Table 11 shows the runtime of the optimization process: TPE takes around nine
hours to terminate (on average). Clearly, this needs to be improved. When attack-
ers have more knowledge and resources than defenders, they might be able to learn
to adapt faster than we can defend against. Therefore, it is vital that we make our
method as fast as possible.

Table 11: Runtime of Bayesian optimization.

Dataset Runtime H:M:S
CIC-IDS-2017 10:33:31
CICAndMal2017 9:22:58
ContagioPDF 1:47:29
CSE-CIC-IDS2018 15:59:02
NSL-KDD 6:54:22

Also, here we were only optimizing for accuracy. But Carlini et. al [17] suggest
to that other metrics might be equally important such as TP (true positives), TN (true

30

Rui Shu et al.

negatives), FP (false positives) and FN (false negatives). Here we have not explored
such multi-goal reasoning (since that would be much slower) but this is clearly a
direction for future work.

Finally, here we have assumed that the attack strategies are constant across our

experiments. In the future work, it would be also important to explore a more chal-
lenging adaptive adversaries that frequently change their attacks strategies.

Acknowledgements This work was partially funded by NSF grant #1909516.

References

1.

11.

Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Siemens C (2014)
Drebin: Effective and explainable detection of android malware in your pocket.
In: Ndss, vol 14, pp 23-26

Athalye A, Carlini N, Wagner DA (2018) Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. In: Dy JG, Krause
A (eds) Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmaéssan, Stockholm, Sweden, July 10-15, 2018

Barreno M, Nelson B, Sears R, Joseph AD, Tygar JD (2006) Can machine learn-
ing be secure? In: Proceedings of the 2006 ACM Symposium on Information,
computer and communications security, pp 16-25

Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization.
Journal of Machine Learning Research 13(Feb):281-305

Bergstra JS, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-
parameter optimization. In: Advances in neural information processing systems,
pp 2546-2554

Bhat P, Dutta K (2019) A survey on various threats and current state of security
in android platform. ACM Computing Surveys (CSUR) 52(1):1-35

Biggio B, Roli F (2018) Wild patterns: Ten years after the rise of adversarial
machine learning. Pattern Recognition 84:317-331

. Biggio B, Fumera G, Roli F (2010) Multiple classifier systems for robust classi-

fier design in adversarial environments. International Journal of Machine Learn-
ing and Cybernetics 1(1-4):27-41

. Biggio B, Corona I, Maiorca D, Nelson B, Srndi¢ N, Laskov P, Giacinto G, Roli F

(2013) Evasion attacks against machine learning at test time. In: Joint European
conference on machine learning and knowledge discovery in databases, Springer,
pp 387-402

. Biggio B, Pillai I, Rota Bulo S, Ariu D, Pelillo M, Roli F (2013) Is data clustering

in adversarial settings secure? In: Proceedings of the 2013 ACM workshop on
Artificial intelligence and security, pp 87-98

Biggio B, Rieck K, Ariu D, Wressnegger C, Corona I, Giacinto G, Roli F (2014)
Poisoning behavioral malware clustering. In: Dimitrakakis C, Mitrokotsa A, Ru-
binstein BIP, Ahn G (eds) Proceedings of the 2014 Workshop on Atrtificial Intel-
ligent and Security Workshop, AlSec 2014, Scottsdale, AZ, USA, November 7,
2014, pp 27-36

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 31

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Bissell K, LaSalle R, Dal Cin P (2019) The cost of cybercrime—ninth annual
cost of cybercrime study. Tech. rep., Technical report, Accenture, 2019.

Canali D, Cova M, Vigna G, Kruegel C (2011) Prophiler: a fast filter for the large-
scale detection of malicious web pages. In: Proceedings of the 20th international
conference on World wide web, pp 197-206

Carlini N, Wagner D (2017) Towards evaluating the robustness of neural net-
works. In: 2017 ieee symposium on security and privacy (sp), IEEE, pp 39-57
Carlini N, Wagner DA (2016) Defensive distillation is not robust to adversarial
examples. CoRR abs/1607.04311

Carlini N, Wagner DA (2017) Adversarial examples are not easily detected: By-
passing ten detection methods. In: Thuraisingham BM, Biggio B, Freeman DM,
Miller B, Sinha A (eds) Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, AISec@CCS 2017, Dallas, TX, USA, November 3,
2017, pp 3-14

Carlini N, Athalye A, Papernot N, Brendel W, Rauber J, Tsipras D, Goodfellow I,
Madry A, Kurakin A (2019) On evaluating adversarial robustness. arXiv preprint
arXiv:190206705

Chang C, Wenming S, Wei Z, Changki P, Kontovas C (2019) Evaluating cyber-
security risks in the maritime industry: a literature review. In: Proceedings of the
International Association of Maritime Universities (IAMU) Conference

Chen S, Xue M, Fan L, Hao S, Xu L, Zhu H, Li B (2018) Automated poison-
ing attacks and defenses in malware detection systems: An adversarial machine
learning approach. computers & security 73:326-344

Contagio (2020) Contagio Malware Dump. http://contagiodump.
blogspot.com/, [Online; accessed 6th-September-2020]

Cortes C, Vapnik V (1995) Support-vector networks. Machine learning
20(3):273-297

Canadian Institute for Cybersecurity (2009) NSL-KDD dataset. https://www.
unb.ca/cic/datasets/nsl.html, [Online; accessed 6th-September-2020]
Dalvi N, Domingos P, Sanghai S, Verma D (2004) Adversarial classification. In:
Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp 99—108

Dang H, Huang Y, Chang EC (2017) Evading classifiers by morphing in the
dark. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp 119-133

Demontis A, Melis M, Pintor M, Jagielski M, Biggio B, Oprea A, Nita-Rotaru
C, Roli F (2019) Why do adversarial attacks transfer? explaining transferabil-
ity of evasion and poisoning attacks. In: 28th {USENIX} Security Symposium
({USENIX} Security 19), pp 321-338

Dietterich TG, et al. (2002) Ensemble learning. The handbook of brain theory
and neural networks 2:110-125

Eshete B, Villafiorita A, Weldemariam K (2012) Binspect: Holistic analysis and
detection of malicious web pages. In: International conference on security and
privacy in communication systems, Springer, pp 149-166

Farnia F, Zhang JM, Tse D (2019) Generalizable adversarial training via spec-
tral normalization. In: 7th International Conference on Learning Representations,

http://contagiodump.blogspot.com/
http://contagiodump.blogspot.com/
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html

32

Rui Shu et al.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

ICLR 2019, New Orleans, LA, USA, May 6-9, 2019

Feurer M, Hutter F (2019) Hyperparameter optimization. In: Automated Ma-
chine Learning, Springer, Cham, pp 3-33

Goodfellow 1J, Shlens J, Szegedy C (2015) Explaining and harnessing adver-
sarial examples. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015

Gower JC (1971) A general coefficient of similarity and some of its properties.
Biometrics pp 857-871

Grosse K, Papernot N, Manoharan P, Backes M, McDaniel PD (2016) Adversar-
ial perturbations against deep neural networks for malware classification. CoRR
abs/1606.04435

Grosse K, Manoharan P, Papernot N, Backes M, McDaniel PD (2017) On the
(statistical) detection of adversarial examples. CoRR abs/1702.06280

Grosse K, Papernot N, Manoharan P, Backes M, McDaniel P (2017) Adversar-
ial examples for malware detection. In: European Symposium on Research in
Computer Security, Springer, pp 62-79

He W, Wei J, Chen X, Carlini N, Song D (2017) Adversarial example defense:
Ensembles of weak defenses are not strong. In: 11th {USENIX} Workshop on
Offensive Technologies ({WOOT} 17)

Hendler D, Kels S, Rubin A (2018) Detecting malicious powershell commands
using deep neural networks. In: Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, pp 187-197

Hernéndez-Lobato D, MartiNez-MuiiOz G, Sudrez A (2013) How large should
ensembles of classifiers be? Pattern Recognition 46(5):1323-1336

Hu W, Tan Y (2017) Generating adversarial malware examples for black-box
attacks based on gan. arXiv preprint arXiv:170205983

Jang-Jaccard J, Nepal S (2014) A survey of emerging threats in cybersecurity.
Journal of Computer and System Sciences 80(5):973-993

Juuti M, Szyller S, Marchal S, Asokan N (2019) Prada: protecting against dnn
model stealing attacks. In: 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), IEEE, pp 512-527

Kantchelian A, Tygar JD, Joseph A (2016) Evasion and hardening of tree ensem-
ble classifiers. In: International Conference on Machine Learning, pp 2387-2396
Kariyappa S, Qureshi MK (2019) Improving adversarial robustness of ensembles
with diversity training. arXiv preprint arXiv:190109981

Khasawneh KN, Abu-Ghazaleh N, Ponomarev D, Yu L (2017) Rhmd: evasion-
resilient hardware malware detectors. In: Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, pp 315-327
Kurakin A, Goodfellow 1J, Bengio S (2017) Adversarial examples in the physi-
cal world. In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings

Kwon H, Kim Y, Park KW, Yoon H, Choi D (2018) Multi-targeted adversarial
example in evasion attack on deep neural network. IEEE Access 6:46084—46096
Langner R (2011) Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security &
Privacy 9(3):49-51

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 33

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Lashkari AH, Kadir AFA, Taheri L, Ghorbani AA (2018) Toward developing a
systematic approach to generate benchmark android malware datasets and clas-
sification. In: 2018 International Carnahan Conference on Security Technology
(ICCST), IEEE, pp 1-7

Laskov P, et al. (2014) Practical evasion of a learning-based classifier: A case
study. In: 2014 IEEE symposium on security and privacy, IEEE, pp 197-211
Liu C, Li B, Vorobeychik Y, Oprea A (2017) Robust linear regression against
training data poisoning. In: Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pp 91-102

Lowd D, Meek C (2005) Adversarial learning. In: Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data min-
ing, pp 641-647

Lowd D, Meek C (2005) Good word attacks on statistical spam filters. In: CEAS,
vol 2005

Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A (2018) Towards deep
learning models resistant to adversarial attacks. In: 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings

Maiorca D, Corona I, Giacinto G (2013) Looking at the bag is not enough to find
the bomb: an evasion of structural methods for malicious pdf files detection. In:
Proceedings of the 8th ACM SIGSAC symposium on Information, computer and
communications security, pp 119-130

Monshizadeh M, Yan Z (2014) Security related data mining. In: 2014 IEEE Inter-
national Conference on Computer and Information Technology, IEEE, pp 775-
782

Moosavi-Dezfooli SM, Fawzi A, Frossard P (2016) Deepfool: a simple and ac-
curate method to fool deep neural networks. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp 2574-2582

Morgan S (2019) Official annual cybercrime report. Sausalito: Cybersecurity
Ventures

Muiioz-Gonzilez L, Biggio B, Demontis A, Paudice A, Wongrassamee V, Lupu
EC, Roli F (2017) Towards poisoning of deep learning algorithms with back-
gradient optimization. In: Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pp 27-38

NaT, Ko JH, Mukhopadhyay S (2018) Cascade adversarial machine learning reg-
ularized with a unified embedding. In: 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings, OpenReview.net

Opderbeck DW (2015) Cybersecurity, data breaches, and the economic loss doc-
trine in the payment card industry. Md L Rev 75:935

Pang T, Xu K, Du C, Chen N, Zhu J (2019) Improving adversarial robustness via
promoting ensemble diversity. In: Chaudhuri K, Salakhutdinov R (eds) Proceed-
ings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, PMLR, Proceedings of Machine
Learning Research, vol 97, pp 4970-4979

34

Rui Shu et al.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Papernot N, Faghri F, Carlini N, Goodfellow I, Feinman R, Kurakin A, Xie C,
Sharma Y, Brown T, Roy A, et al. (2016) Technical report on the cleverhans v2.
1.0 adversarial examples library. arXiv preprint arXiv:161000768

Papernot N, McDaniel P, Goodfellow I (2016) Transferability in machine learn-
ing: from phenomena to black-box attacks using adversarial samples. arXiv
preprint arXiv:160507277

Papernot N, McDaniel P, Jha S, Fredrikson M, Celik ZB, Swami A (2016) The
limitations of deep learning in adversarial settings. In: 2016 IEEE European sym-
posium on security and privacy (EuroS&P), IEEE, pp 372-387

Papernot N, McDaniel P, Wu X, Jha S, Swami A (2016) Distillation as a de-
fense to adversarial perturbations against deep neural networks. In: 2016 IEEE
Symposium on Security and Privacy (SP), IEEE, pp 582-597

Papernot N, McDaniel PD, Goodfellow 1J (2016) Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples. CoRR
abs/1605.07277

Papernot N, McDaniel P, Goodfellow I, Jha S, Celik ZB, Swami A (2017) Prac-
tical black-box attacks against machine learning. In: Proceedings of the 2017
ACM on Asia conference on computer and communications security, pp 506—
519

Papernot N, McDaniel PD, Goodfellow 1J, Jha S, Celik ZB, Swami A (2017)
Practical black-box attacks against machine learning. In: Karri R, Sinanoglu O,
Sadeghi A, Yi X (eds) Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, AsiaCCS 2017, Abu Dhabi, United
Arab Emirates, April 2-6, 2017, pp 506-519

Papernot N, McDaniel P, Sinha A, Wellman MP (2018) Sok: Security and pri-
vacy in machine learning. In: 2018 IEEE European Symposium on Security and
Privacy (EuroS&P), IEEE, pp 399-414

Queenie Wong LH (2018) Facebook says hackers stole per-
sonal info on 29 million wusers. https://www.cnet.com/news/

facebook-e-mails-phone-numbers-and-other-personal-information-accessed-during-breach/,

[Online; accessed 6th-July-2021]

Rigaki M, Garcia S (2020) A survey of privacy attacks in machine learning. arXiv
preprint arXiv:200707646

Roskot M, Wanasika I, Kroupova ZK (2020) Cybercrime in europe: surprising
results of an expensive lapse. Journal of Business Strategy

Sechel S (2019) A comparative assessment of obfuscated ransomware detection
methods. Informatica Economica 23(2):45-62

Shafahi A, Najibi M, Ghiasi A, Xu Z, Dickerson JP, Studer C, Davis LS, Taylor
G, Goldstein T (2019) Adversarial training for free! In: Wallach HM, Larochelle
H, Beygelzimer A, d’ Alché-Buc F, Fox EB, Garnett R (eds) Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp 3353-3364

Shahriari B, Swersky K, Wang Z, Adams RP, De Freitas N (2015) Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the
IEEE 104(1):148-175

https://www.cnet.com/news/facebook-e-mails-phone-numbers-and-other-personal-information-accessed-during-breach/
https://www.cnet.com/news/facebook-e-mails-phone-numbers-and-other-personal-information-accessed-during-breach/

Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack 35

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.
90.

Sharafaldin I, Lashkari AH, Ghorbani AA (2018) Toward generating a new in-
trusion detection dataset and intrusion traffic characterization. In: ICISSP, pp
108-116

Smith R (2001) Adobe pdf files can be used as virus carriers. http://lwn.net/
2001/0809/a/adobe-pdf-vul.php3

Smutz C, Stavrou A (2012) Malicious pdf detection using metadata and struc-
tural features. In: Proceedings of the 28th annual computer security applications
conference, pp 239-248

Smutz C, Stavrou A (2016) When a tree falls: Using diversity in ensemble clas-
sifiers to identify evasion in malware detectors. In: NDSS

Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of ma-
chine learning algorithms. In: Advances in neural information processing sys-
tems, pp 2951-2959

Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic
for global optimization over continuous spaces. Journal of global optimization
11(4):341-359

Strauss T, Hanselmann M, Junginger A, Ulmer H (2017) Ensemble methods
as a defense to adversarial perturbations against deep neural networks. CoRR
abs/1709.03423

Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R
(2013) Intriguing properties of neural networks. arXiv preprint arXiv:13126199
Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow 1J, Fergus
R (2014) Intriguing properties of neural networks. In: Bengio Y, LeCun Y (eds)
2nd International Conference on Learning Representations, ICLR 2014, Banff,
AB, Canada, April 14-16, 2014, Conference Track Proceedings

Tavallaece M, Bagheri E, Lu W, Ghorbani AA (2009) A detailed analysis of the
kdd cup 99 data set. In: 2009 IEEE symposium on computational intelligence for
security and defense applications, IEEE, pp 1-6

Tramer F, Zhang F, Juels A, Reiter MK, Ristenpart T (2016) Stealing machine
learning models via prediction apis. In: 25th {USENIX} Security Symposium
({USENIX} Security 16), pp 601-618

Tramer F, Kurakin A, Papernot N, Goodfellow 1J, Boneh D, McDaniel PD (2018)
Ensemble adversarial training: Attacks and defenses. In: 6th International Con-
ference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018

Tramer F, Carlini N, Brendel W, Madry A (2020) On adaptive attacks to adver-
sarial example defenses. In: Larochelle H, Ranzato M, Hadsell R, Balcan M, Lin
H (eds) Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual

North Carolina State University (2020) ARC: A Root Cluster for Research
into Scalable Computer Systems. https://arcb.csc.ncsu.edu/~mueller/
cluster/arc/, [Online; accessed 6th-September-2020]

Valiant L (1984) A theory of the learnable. Communications of the ACM (27)
Xiao H, Biggio B, Brown G, Fumera G, Eckert C, Roli F (2015) Is feature selec-
tion secure against training data poisoning? In: Bach FR, Blei DM (eds) Proceed-

http://lwn.net/2001/0809/a/adobe-pdf-vul.php3
http://lwn.net/2001/0809/a/adobe-pdf-vul.php3
https://arcb.csc.ncsu.edu/~mueller/cluster/arc/
https://arcb.csc.ncsu.edu/~mueller/cluster/arc/

36

Rui Shu et al.

91.

92.

93.

94.

95.

96.

97.

ings of the 32nd International Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015, JMLR Workshop and Conference Proceedings,
vol 37, pp 1689-1698

Xu W, Qi Y, Evans D (2016) Automatically evading classifiers. In: Proceedings
of the 2016 network and distributed systems symposium, vol 10

Yin X, Kolouri S, Rohde GK (2019) Adversarial example detection and classifi-
cation with asymmetrical adversarial training. arXiv preprint arXiv:190511475
Young SR, Rose DC, Karnowski TP, Lim SH, Patton RM (2015) Optimizing
deep learning hyper-parameters through an evolutionary algorithm. In: Proceed-
ings of the Workshop on Machine Learning in High-Performance Computing
Environments, pp 1-5

Zhang F, Chan PP, Biggio B, Yeung DS, Roli F (2015) Adversarial feature selec-
tion against evasion attacks. IEEE transactions on cybernetics 46(3):766-777
Zhang F, Wang Y, Wang H (2018) Gradient correlation: Are ensemble classi-
fiers more robust against evasion attacks in practical settings? In: International
Conference on Web Information Systems Engineering, Springer, pp 96-110
Zhang F, Wang Y, Liu S, Wang H (2020) Decision-based evasion attacks on tree
ensemble classifiers. World Wide Web pp 1-21

Zhou Y, Kantarcioglu M, Thuraisingham B, Xi B (2012) Adversarial support
vector machine learning. In: Proceedings of the 18th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pp 1059-1067

	1 Introduction
	2 Background and Related Works
	3 Methodology
	4 Experiments
	5 Results
	6 Discussion
	7 Threats to Validity
	8 Conclusion

