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Abstract
We show how incorporating Gilboa et al.’s (2010) notion of objective rationality

into the α-MEU model of choice under ambiguity can overcome several challenges faced
by the baseline model without objective rationality. The decision-maker (DM) has a
subjectively rational preference %∧, which captures the complete ranking over acts the
DM expresses when forced to make a choice; in addition, we endow the DM with a
(possibly incomplete) objectively rational preference %∗, which captures the rankings
the DM deems uncontroversial. Under the objectively founded α-MEU model, %∧ has
an α-MEU representation and %∗ has a unanimity representation à la Bewley (2002),
where both representations feature the same utility index and set of beliefs. While
the axiomatic foundations of the baseline α-MEU model are still not fully understood,
we provide a simple characterization of its objectively founded counterpart. Moreover,
in contrast with the baseline model, the model parameters are uniquely identified.
Finally, we provide axiomatic foundations for prior-by-prior Bayesian updating of the
objectively founded α-MEU model, while we show that, for the baseline model, standard
updating rules can be ill-defined.

Keywords: ambiguity, α-MEU, objective rationality, updating.

1 Introduction

A widely used model of choice under ambiguity is the α-maxmin expected utility (α-MEU)
criterion, dating back to Hurwicz (1951). This criterion represents a decision-maker’s (DM’s)
preference %∧ over (Anscombe-Aumann) acts f by considering the weighted average of each
act’s worst-case and best-case expected utility,

αmin
µ∈P

Eµ[u(f)] + (1− α) max
µ∈P

Eµ[u(f)], (1)
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according to some weight α ∈ [0, 1], closed and convex set P of beliefs over states, and
nonconstant and affine utility u over outcomes. Unlike Gilboa and Schmeidler’s (1989)
maxmin expected utility criterion (i.e., the special case when α = 1), the general α-MEU
model does not assume that the DM is uncertainty-averse (Schmeidler, 1989). Instead, in line
with various experimental evidence (see the survey by Trautmann and van de Kuilen, 2015),
(1) allows the DM to display a mix of ambiguity-averse and ambiguity-seeking tendencies,
and the weight α and set of beliefs P are often interpreted as simple parameterizations of the
DM’s ambiguity attitude and perception of ambiguity, respectively. This has contributed to
the model’s popularity in applied work, which has employed α-MEU representations in both
static and dynamic settings.1

Despite its popularity, the foundations of the α-MEU model are still not fully understood.
In this paper, we point to several challenges that arise in the standard domain of preferences
over acts, and show how incorporating the notion of objective rationality (Gilboa et al., 2010,
henceforth, GMMS) into the model can overcome these challenges.

In Section 3, we begin by highlighting three main challenges in the standard domain.
First, there is no known fully general axiomatic characterization of α-MEU in terms of the
DM’s preference %∧ over acts (Section 1.1 discusses existing work). The remaining two chal-
lenges are more fundamental. Second, as is well-known, the preference %∧ does not uniquely
identify α and P , complicating the interpretation of these parameters as capturing the DM’s
ambiguity attitude and perception: In Proposition 1, we fully characterize the extent of
multiplicity (building on Siniscalchi, 2006). Third, as we show in Example 1, the lack of
identification of the model parameters creates the following problem for dynamic extensions
of α-MEU: Common belief-updating rules, such as prior-by-prior Bayesian updating of all
beliefs in P , are ill-defined at the level of preferences, as different representations of the same
ex-ante preference %∧ may give rise to different updated preferences.

Motivated by these challenges, we consider the following objectively founded α-MEU
model. We interpret %∧ as the DM’s subjectively rational preference, which captures the
complete ranking the DM expresses when forced to choose between any two acts. In addition,
as in GMMS, we endow the DM with a (possibly incomplete) objectively rational preference
%∗, which models the rankings that appear uncontroversial to the DM. We then consider a
joint representation of %∧ and %∗, where for some utility u, set of beliefs P , and weight α:

1. The subjectively rational preference %∧ admits an α-MEU representation based on u,
P , and α.

1In static settings, see, e.g., Cherbonnier and Gollier (2015); Chen et al. (2007); Bossaerts et al. (2010);
Ahn et al. (2014); in dynamic settings, see, e.g., Saghafian (2018); Georgalos (2019); Beissner et al. (2020);
Hedlund et al. (2020).
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2. The objectively rational preference %∗ is represented by u and P in the sense of Bewley
(2002); that is, act f is deemed uncontroversially better than g if and only if the
expected utility under u of f dominates the expected utility of g for every belief in P .

Thus, under this model, the DM employs the α-MEU criterion as a forced-choice completion
of Bewley’s (2002) unanimity criterion, where both criteria are based on the same set of
beliefs P and the same utility u over outcomes.

In Section 4, we address the aforementioned challenges using the objectively founded
α-MEU model. We first show that this model admits a simple axiomatic characterization
(Theorem 1). We impose Bewley’s (2002) axioms on the objectively rational preference;
that is, %∗ satisfies all subjective expected utility axioms, except that completeness is only
assumed for the ranking over constant acts. The subjectively rational preference is required
to be invariant biseparable (Ghirardato et al., 2004); that is, %∧ satisfies all subjective
expected utility axioms, except that independence is only imposed for mixtures with constant
acts. The final and key axiom, security-potential dominance, disciplines the completion rule
from %∗ to %∧: We require the DM to subjectively prefer act f to act g whenever f is
both “more secure” than g and has “more potential” than g, where security and potential are
defined in terms of the objective ranking against certain prospects.

Second, in contrast with the baseline model without objective rationality, the parameters
α and P in Theorem 1 are uniquely identified. Thus, the interpretation of α and P as
the DM’s ambiguity attitude and perception is behaviorally founded, making it possible to
conduct comparative statics of these parameters (Section 4.2).

Third, in contrast with Example 1, we show that prior-by-prior Bayesian updating of
the objectively founded α-MEU model admits well-defined preference foundations. Suppose
the DM’s ex-ante subjective and objective preferences have an objectively founded α-MEU
representation (u, P, α). Upon learning that the state of the world is contained in some
event E, the DM forms a conditional subjective preference %∧E. Theorem 2 characterizes
when %∧E admits an α-MEU representation whose utility is u and whose set of beliefs PE is
derived from the unique ex-ante belief set P by prior-by-prior Bayesian updating. The key
axiom imposes an intertemporal analog of security-potential dominance on the relationship
between the ex-ante objective preference and the conditional subjective preference.

The contribution of Section 4 is not primarily technical (the results admit relatively sim-
ple proofs), but rather, to illustrate the methodological value of the objective rationality
framework in shedding light on the α-MEU model. As we discuss in Section 5, our approach
is not restricted to α-MEU. Indeed, we show that security-potential dominance characterizes
linear completion rules for a broader class of incomplete preferences %∗ beyond Bewley pref-
erences. Just as for α-MEU, this makes it possible to provide foundations and characterize
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belief updating for several other representations that are difficult to analyze based on the
subjectively rational preference %∧ alone.

1.1 Related literature

GMMS propose the objective and subjective rationality approach, and characterize when %∗

and %∧ admit Bewley and maxmin expected utility representations with a common set of
beliefs P and utility u. We impose the same axioms as GMMS on %∗ and %∧ individually,
but relax their main axiom, caution, that concerns the relationship between %∗ and %∧ (see
Section 4.1).2 Several papers extend the results in GMMS in different directions. Kopylov
(2009) characterizes when %∧ admits an ε-contamination representation. Cerreia-Vioglio
(2016) allows %∧ to be a general uncertainty-averse preference (Cerreia-Vioglio et al., 2011).
Faro and Lefort (2019) characterize prior-by-prior Bayesian updating under the Bewley-
maxmin model in GMMS.3 Grant et al. (2021) use a condition that is equivalent to security-
potential dominance (along with weaker assumptions on %∧) to characterize a representation
in which the subjectively rational model—ordinal Hurwicz expected utility—is more general
than α-MEU; they do not characterize α-MEU and do not study belief updating.4 We
note that most aforementioned papers consider subjectively rational models that have well-
understood foundations based on the primitive %∧ alone, and the focus is on understanding
the consistency of the objective and subjective models. In contrast, in the present paper, the
subjectively rational model—α-MEU—is not well-understood in isolation, and incorporating
objective rationality plays a key role in enabling its axiomatic characterization, identification,
and dynamic extension.

Several papers characterize α-MEU representations in terms of the subjectively rational
preference %∧ alone, but impose specific assumptions on the structure of the belief set P .
Kopylov (2003) considers the case in which P consists of beliefs that are derived from a
particular class of subjectively risky acts. Ghirardato et al. (2004) require P to coincide
with the Bewley set of the largest independent subrelation of %∧; for finite state spaces,
Eichberger et al. (2011) show that this case reduces to maxmin or maxmax expected utility
(see Remark 2). Chateauneuf et al. (2007) consider a neo-additive capacity model that eval-
uates each act according to a convex combination of the least favorable prize, most favorable

2GMMS also introduce a slight strengthening of caution, termed default to certainty, under which C-
independence can be dropped from the assumptions on %∧.

3See also Bastianello et al. (2020) and Ceron and Vergopoulos (2020) for the connection with dynamic
consistency.

4Relatedly, Nehring (2009) studies the compatibility of an incomplete preference over events and a com-
plete preference over Savage acts. He considers the case where the latter preference is invariant biseparable,
but does not characterize the special case of α-MEU.
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prize, and the expected utility with respect to a fixed probability. Gul and Pesendorfer (2015)
study the case in which P is the set of measures that are consistent with some benchmark
belief µ over a given sigma-algebra of events. Klibanoff et al. (2021) consider a product state
space S = Y ∞ and assume that P consists of i.i.d. distributions.

In more recent work, Hartmann (2021) characterizes the α-MEU model with a general
belief set P , based on axioms on %∧ that are indexed by an exogenously fixed α 6= 1

2
. It is

still unknown how to obtain a characterization that does not directly specify α.
Finally, Hill (2019) enriches the standard domain in a different direction from us, by

considering a preference over acts f that map each state s to a set of objective lotteries f(s).
He characterizes an α-MEU representation αminµ∈P Eµ[w(f)] + (1 − α) maxµ∈P Eµ[w(f)],
where the utility w(f(s)) = αminp∈f(s) Ep[u] + (1 − α) maxp∈f(s) Ep[u] over sets of lotteries
also takes an α-MEU form. Relatedly, Jaffray (1994) and Olszewski (2007) directly consider
preferences over sets of objective lotteries and characterize α-MEU representations for such
preferences.

2 Model

2.1 Setup

Let Z be a set of prizes and let ∆(Z) denote the space of probability measures with finite
support over Z. We refer to typical elements p, q ∈ ∆(Z) as lotteries. Let S be a finite
set of states. An (Anscombe-Aumann) act is a mapping f : S → ∆(Z). Let F be the
space of all acts, with typical elements f, g, h. For any f, g ∈ F and α ∈ [0, 1], define
the mixture αf + (1 − α)g ∈ F to be the act that in each state s ∈ S yields lottery
αf(s) + (1− α)g(s) ∈ ∆(Z). As usual, we identify each lottery p ∈ ∆(Z) with the constant
act that yields lottery p in all states s ∈ S.

Let ∆(S) denote the set of all probability measures over S, which we embed in RS and
endow with the Euclidean topology. We refer to typical elements µ, ν ∈ ∆(S) as beliefs.
Given any act f ∈ F and function u : ∆(Z)→ R, let u(f) denote the element of RS defined
by u(f)(s) = u(f(s)) for all s ∈ S, and let Eµ[u(f)] := µ · u(f). Given any functions
u, v : ∆(Z)→ R, we write u ≈ v if u is a positive affine transformation of v.

We follow GMMS in endowing the DM with two binary relations, %∧ and %∗, over F .
Relation %∧ is the DM’s subjectively rational (for short, subjective) preference, which
models the rankings the DM expresses when forced to choose between any two acts and,
as such, is complete. Relation %∗ is the DM’s objectively rational (for short, objective)
preference, which captures the rankings that appear uncontroversial to the DM and, as such,
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may be incomplete. As usual, we write � (resp., ∼) for the asymmetric (resp., symmetric)
part of a generic binary relation %.

One possible interpretation of %∗ is that it describes choices that are made with “confi-
dence.” For example, Kopylov (2009) interprets %∗ as capturing choices that the DM would
not want to revise at an interim stage (prior to the resolution of any uncertainty). As such,
%∗ might in principle be elicited by charging a small monetary cost for the option to revise
choices, as in Danan and Ziegelmeyer (2006).5

2.2 Representation

We are interested in the following joint representation of %∗ and %∧:

Definition 1. An objectively founded α-MEU representation of (%∧,%∗) consists of
a nonconstant affine utility u : ∆(Z) → R, a nonempty, closed and convex set of beliefs
P ⊆ ∆(S), and a weight α ∈ [0, 1] such that

(i.) (u, P, α) is an α-MEU representation of %∧; that is, for all f, g ∈ F ,

f %∧ g ⇔ αmin
µ∈P

Eµ[u(f)]+(1−α) max
µ∈P

Eµ[u(f)] ≥ αmin
µ∈P

Eµ[u(g)]+(1−α) max
µ∈P

Eµ[u(g)].

(2)

(ii.) (u, P ) is a Bewley representation of %∗; that is, for all f, g ∈ F ,

f %∗ g ⇐⇒ Eµ[u(f)] ≥ Eµ[u(g)] ∀µ ∈ P. (3)

The first condition says that when forced to choose between any two acts, the DM employs
the α-MEU criterion based on utility u, set of beliefs P , and weight α. The second condition
enriches the basic α-MEU model by requiring this choice procedure to be objectively founded,
in the sense that the same set of beliefs P and utility u also represent the rankings the DM
considers uncontroversial: Specifically, the DM deems act f uncontroversially better than
act g if and only if the expected utility under u of f dominates the expected utility of g for
every belief in P . Thus, the objectively founded α-MEU model captures a DM who uses the
α-MEU criterion as a completion of an underlying unanimity criterion à la Bewley (2002).

5See also Sautua (2017) and Cettolin and Riedl (2019) for more recent experimental elicitations of in-
complete preferences.
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3 α-MEU without objective rationality

To motivate studying objectively founded α-MEU representations, we point to three chal-
lenges for the baseline α-MEU model without objective rationality. First, as discussed in
the introduction, there is so far no fully general axiomatization of α-MEU representations
in terms of the subjective preference %∧ alone. The remaining two challenges are more
fundamental.

The second challenge is that the belief set P and weight α in representation (2) are not
uniquely pinned down by %∧, complicating the common interpretation of these parameters
as capturing the DM’s ambiguity perception and attitude, respectively. The following result
characterizes which pairs (P, α) give rise to the same preference, extending a result in Sinis-
calchi (2006).6 Given any nonempty, closed and convex sets P,Q ⊆ ∆(S) and any γ ≥ 1, we
call Q the γ-expansion of P if

Q = γP + (1− γ)P := {γν + (1− γ)ν ′ : ν, ν ′ ∈ P}. (4)

Observe that (4) implies Q ⊇ P , with Q = P if γ = 1.7

Proposition 1. Suppose (u1, P1, α1) and (u2, P2, α2) are α-MEU representations of %∧1 and
%∧2 , respectively, such that αi 6= 1/2 and Pi is not a singleton for i = 1, 2.8 Suppose α1 ≤ α2.

Then %∧1 =%∧2 if and only if u1 ≈ u2 and one of the following two statements holds:

(i). α1, α2 > 1/2 and P1 is the γ-expansion of P2 for γ =
α1 + α2 − 1

2α1 − 1
;

(ii). α1, α2 < 1/2 and P2 is the γ-expansion of P1 for γ =
1− α1 − α2

1− 2α2

.

Proposition 1 shows that while the DM’s subjective preference pins down whether the
weight α is greater or less than 1/2, a range of different weights can be used to represent the
same preference %∧. For each such weight α, the corresponding set of beliefs P is uniquely
determined. In case 1, weight α1 suggests a less extreme attitude towards ambiguity than α2

6Siniscalchi (2006) (Proposition 6.1) considers the special case when %∧ admits a maxmin expected utility
representation whose belief set P is bounded away from ∆(S) and shows that there is a continuum of α-MEU
representations of %∧ with α < 1 and belief sets Q ) P . His proof uses a different (but equivalent) definition
of γ-expansion.

7Note that while the set γP + (1 − γ)P ⊆ RS need not in general be a subset of the simplex ∆(S),
condition (4) implicitly imposes this as Q ⊆ ∆(S).

8Rogers and Ryan (2012) cover the case where one belief set Pi = {µ} is a singleton (%i is subjective
expected utility): In this case, %∧i =%∧j iff ui ≈ uj and either (i) Pj = {µ} or (ii) αj = 1/2 and Pj is centrally
symmetric around µ. Appendix B considers the case where Pi, Pj are not singletons and αi = 1/2 (which
implies αj = 1/2). As we show, this case admits a greater multiplicity of belief sets than in Proposition 1.
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(as α2 ≥ α1 is closer to {0, 1} than α1), but the corresponding set of priors P1 is larger than
P2, suggesting greater perceived ambiguity. In case 2, the opposite relationship obtains.

Third, we highlight that the non-uniqueness of the set of priors P poses a challenge for
defining belief-updating under α-MEU. To illustrate, we focus on prior-by-prior Bayesian
updating, which has been used in several applications.9 Consider a DM whose ex-ante
preference %∧ admits an α-MEU representation (u, P, α). Suppose the DM is informed that
the true state of nature is contained in some event E ⊆ S and based on this information
forms a conditional preference %∧E. Consider deriving %∧E from %∧ by prior-by-prior Bayesian
updating of all beliefs in P . That is, assuming that µ(E) > 0 for all µ ∈ P , let %∧E be induced
by the α-MEU representation (u, PE, α) whose conditional set of beliefs is

PE := {µE : µ ∈ P}, where µE(F ) :=
µ(E ∩ F )

µ(E)
∀F ⊆ S. (5)

The following example shows that this approach is not well-defined at the level of prefer-
ences. Indeed, if the ex-ante preference %∧ admits multiple α-MEU representations, prior-by-
prior updating can induce a different conditional preference %∧E depending on which ex-ante
representation is used:

Example 1. Suppose S = {1, 2, 3}. Fix any nonconstant affine utility u, and consider the
two α-MEU representations (u, Pi, αi), where

α1 =
3

4
, P1 = co

{
(
5

6
,

1

12
,

1

12
), (

1

6
,

5

12
,

5

12
)

}
,

α2 = 1, P2 = co

{
(
2

3
,
1

6
,
1

6
), (

1

3
,
1

3
,
1

3
)

}
.

Let γ =
α1 + α2 − 1

2α1 − 1
= 3/2, and note that P1 is the γ-expansion of P2. Thus, by Proposi-

tion 1, the two representations represent the same ex-ante preference %∧. Now, consider the
event E = {1, 2}. The prior-by-prior Bayesian updates of P1 and P2 are

PE
1 = co

{
(
10

11
,

1

11
, 0), (

2

7
,
5

7
, 0)

}
, PE

2 = co

{
(
4

5
,
1

5
, 0), (

1

2
,
1

2
, 0)

}
.

However, the γ-expansion of PE
2 is co

{
(19

20
, 1

20
, 0), ( 7

20
, 13

20
, 0)

}
6= PE

1 . Hence, by Proposition 1,
the conditional preferences represented by (u, PE

1 , α1) and (u, PE
2 , α2) are not the same. N

An implication of Example 1 is that Pires’s (2002) coherency axiom, which characterizes
9See the references in Footnote 1. Analogous issues arise for other updating rules, such as maximum

likelihood updating.
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prior-by-prior updating under maxmin expected utility and some extensions, need not hold
for prior-by-prior updating under α-MEU. Indeed, given that the conditional preference in-
duced by prior-by-prior updating depends on the non-unique choice of ex-ante representation
under α-MEU, this rule does not admit any axiomatic foundation in terms of the subjective
preference alone.

4 Objectively founded α-MEU representations

We now show how incorporating objective rationality into the α-MEU model makes it pos-
sible to overcome the challenges discussed in the previous section.

4.1 Characterization and uniqueness

This section provides an axiomatic characterization of objectively founded α-MEU represen-
tations and shows that the pair (%∧,%∗) uniquely determines P and α. Our characterization
imposes the same five axioms as GMMS on %∧ and %∗ individually, but differs from GMMS
in what we assume about the relationship between %∗ and %∧.

First, we impose two basic rationality conditions, along with continuity and nondegener-
acy, on both %∧ and %∗. We state this axiom for a generic binary relation % on F :

Axiom 1 (Basic conditions).

1. Transitivity: If f, g, h ∈ F , f % g, and g % h, then f % h.

2. Monotonicity: If f, g ∈ F and f(s) % g(s) for all s ∈ S, then f % g.

3. Mixture continuity: If f, g, h ∈ F , then the sets {λ ∈ [0, 1] : λf + (1 − λ)g % h} and
{λ ∈ [0, 1] : h % λf + (1− λ)g} are closed in [0, 1].

4. Non-degeneracy: f � g for some f, g ∈ F .

The following two axioms are specific to the objective preference %∗:

Axiom 2 (C-Completeness). If p, q ∈ ∆(Z), then either p %∗ q or q %∗ p.

Axiom 3 (Independence). If f, g, h ∈ F and λ ∈ (0, 1], then

f %∗ g ⇐⇒ λf + (1− λ)h %∗ λg + (1− λ)h.
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A binary relation on F satisfying Axioms 1–3 is called a Bewley preference. Such
preferences satisfy all subjective expected utility axioms, except that completeness is only
imposed on the ranking over constant acts. C-completeness assumes that any difficulties the
DM might have in determining an uncontroversial ranking are due to uncertainty, rather than
incompleteness of tastes over certain outcomes. As is well-known (Bewley, 2002, GMMS),
%∗ is a Bewley preference if and only if it admits a Bewley representation (3).

The next two axioms are specific to the subjective preference %∧:

Axiom 4 (Completeness). If f, g ∈ F , then either f %∧ g or g %∧ f .

Axiom 5 (C-Independence). If f, g ∈ F , p ∈ ∆(Z), and α ∈ (0, 1], then

f %∧ g ⇐⇒ αf + (1− α)p %∧ αg + (1− α)p.

A binary relation on F satisfying Axioms 1, 4, and 5 is called an invariant biseparable
preference. Unlike Bewley preferences, such preferences satisfy completeness, but differ
from subjective expected utility in that independence is only assumed for mixtures with
constant acts. We refer the reader to GMMS for a rationale for imposing C-independence
on %∧, and to Ghirardato et al. (2004), Amarante (2009), and Chandrasekher et al. (2021)
for representations of invariant biseparable preferences.

Our key axiom disciplines the completion rule from %∗ to %∧. Consider any f, g ∈ F .
As in Kopylov (2009), we say that f is more secure than g if for all p ∈ ∆(Z),

g %∗ p =⇒ f %∗ p.

We say that f has more potential than g if for all p ∈ ∆(Z),

p 6%∗ g =⇒ p 6%∗ f.10

Axiom 6 (Security-potential dominance). If f, g ∈ F and f is both more secure than g and
has more potential than g, then f %∧ g.

Axiom 6 captures that in choosing between two uncertain acts f and g, the DM might
compare how f and g rank objectively against prospects that are certain. Two dimensions
might matter to the DM in comparing an uncertain act f with a constant act p. On the one
hand, an ambiguity-averse DM might favor the “security” of certain prospects, and thus seek

10Kopylov (2009) introduces the notion of more security to define a strengthening of uncertainty aversion
he calls cautious independence, and uses this to characterize the ε-contamination model. He uses the notion
of more potential to characterize its uncertainty-seeking counterpart.
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the assurance that f uncontroversially dominates p. On the other hand, an ambiguity-seeking
DM might be drawn to the “potential” of uncertain prospects, and thus be content as long as
p does not uncontroversially dominate f . If f is more secure (resp., has more potential) than
g, then f performs at least as well as g along the first (resp., second) dimension. Security-
potential dominance allows for the possibility that both dimensions are relevant to the DM,
reflecting the idea that the α-MEU criterion accommodates a mix of ambiguity-averse and
ambiguity-seeking tendencies. Thus, Axiom 6 only requires the DM to choose f over g if f
is both more secure and has more potential than g.

Given transitivity of %∗, note that if f %∗ g, then f is more secure than g and has
more potential than g; thus, security-potential dominance implies the following consistency
condition imposed by GMMS. This condition (together with Axiom 4) captures that the
subjectively rational preference is a completion of the objectively rational preference:

Consistency. If f, g ∈ F and f %∗ g, then f %∧ g.

By contrast, Axiom 6 does not entail the main substantive assumption in GMMS. This
assumption requires the DM’s completion rule to be cautious, in the sense that unless a
general act f is uncontroversially superior to a constant act p, the DM prefers to choose the
constant act:

Caution. If f ∈ F , p ∈ ∆(Z) and f 6%∗ p, then p %∧ f .

While GMMS show that caution and consistency characterize when the invariant bisep-
arable preference %∧ is a maxmin expected utility completion of the Bewley preference %∗,
the following result shows that security-potential dominance characterizes α-MEU comple-
tions. Moreover, in contrast with Proposition 1, for the objectively founded α-MEU model,
the parameters P and α are uniquely identified.

Theorem 1. The following are equivalent:

(i). %∗ is a Bewley preference, %∧ is an invariant biseparable preference, and the pair
(%∧,%∗) jointly satisfies security-potential dominance.

(ii). (%∧,%∗) admits an objectively founded α-MEU representation (u, P, α).

Moreover, in this case, u is unique up to positive affine transformation, P is unique, and α
is unique if %∗ is not complete.

To construct the representation, we first observe that, given a Bewley representation
(u, P ) of %∗, security-potential dominance means that, for any f and g,[

min
µ∈P

Eµ[u(f)] ≥ min
µ∈P

Eµ[u(g)] and max
µ∈P

Eµ[u(f)] ≥ max
µ∈P

Eµ[u(g)]

]
=⇒ f %∧ g. (6)
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The main step of the proof is to show that (6), together with the assumption that %∧

is invariant biseparable, guarantees that %∧ can be represented by a linear aggregation of
the min and max functionals. To this end, Lemma A.3 (Appendix A.1) establishes a linear
aggregation result for constant-linear functionals that also applies to the more general setting
in Section 5.

Formally, a functional I : RS → R is called constant-linear if I(φ+ a) = I(φ) + a and
I(aφ) = aI(φ) for any φ ∈ RS, a ∈ R, where a denotes the constant vector (a, · · · , a) ∈ RS.
Lemma A.3 shows that, for any monotonic and constant-linear functionals I, I ′, I ′′ with
I ′ ≤ I ′′, functional I can be written as I = αI ′ + (1 − α)I ′′ for some α ∈ [0, 1], if and only
if, for all φ, ψ ∈ RS,

[I ′(φ) ≥ I ′(ψ) and I ′′(φ) ≥ I ′′(ψ)] =⇒ I(φ) ≥ I(ψ).

To apply Lemma A.3 to the current setting, we invoke the fact (Ghirardato et al., 2004)
that preference %∧ is invariant biseparable if and only if it is represented by I ◦ u for
some affine utility u and unique monotonic and constant-linear functional I. Given (6),
Lemma A.3 then applies to I and the functionals I ′ and I ′′ defined by I ′(φ) = minµ∈P µ · φ
and I ′′(φ) = maxµ∈P µ · φ.

The uniqueness of u and P in Theorem 1 follows from the uniqueness of Bewley repre-
sentations. Given that P is unique, %∧ pins down α, unless P = {µ} is a singleton (i.e.,
%∗ is complete). In the latter case, %∗=%∧ is the subjective expected utility preference
corresponding to belief µ, and α can be chosen arbitrarily.

Remark 1. Identifying α and P does not require full observation of %∗: Suppose that in
addition to %∧, we only observe the restriction of %∗ to binary bets, i.e., to acts that yield
at most two different outcomes. This is enough to identify minµ∈P µ(E) and maxµ∈P µ(E)

for all events E, which in turn allows one to identify α from %∧ (unless %∧ is subjective
expected utility). As long as α 6= 1

2
, Proposition 1 then implies that P is identified.11 N

Remark 2. For any invariant biseparable preference %∧, Ghirardato et al. (2004) define the
unambiguous preference %u as the largest independent subrelation of %∧; equivalently,
f %u g means that λf + (1 − λ)h %∧ λg + (1 − λ)h for all λ ∈ (0, 1] and h ∈ F . They
show that %u admits a Bewley representation (u,C) for some set of beliefs C.12 Under the
assumptions of Theorem 1, we have that f �∗ g implies f �u g, or equivalently C ⊆ P .

11We thank an anonymous referee for this suggestion. Identifying P is not in general possible if α = 1
2 .

12They also use the derived relation %u to characterize the special case of α-MEU where the belief set P
equals the induced C: Their Proposition 19 shows that %∧ admits such an α-MEU representation if and
only if it is invariant biseparable and Cu(f) = Cu(g) implies f ∼∧ g, where Cu(f) := {p ∈ ∆(Z) : ∀q ∈
∆(Z), [q %u f =⇒ q %u p] & [f %u q =⇒ p %u q]} is the set of unambiguous certainty equivalents of f .
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However, the opposite implication is typically not true. Thus, the unambiguous ranking
f %u g is necessary but not sufficient for the DM to deem f uncontroversially superior to g.
As a result, Theorem 1 avoids the existence problem for finite-state α-MEU representations
highlighted by Eichberger et al. (2011): While requiring P to be the Bewley set of %u

implies that either α = 1 (maxmin), α = 0 (maxmax), or P is a singleton (subjective
expected utility), Theorem 1 imposes no such restrictions. N

Finally, strengthening security-potential dominance as follows characterizes the extreme
cases of objectively founded maxmin (α = 1) and maxmax (α = 0) expected utility:

Axiom 7 (Security dominance). If f, g ∈ F and f is more secure than g, then f %∧ g.

Axiom 8 (Potential dominance). If f, g ∈ F and f has more potential than g, then f %∧ g.

Corollary 1. The following are equivalent:

(i). %∗ is a Bewley preference, %∧ is an invariant biseparable preference, and the pair
(%∧,%∗) jointly satisfies security (resp., potential) dominance.

(ii). (%∗,%∧) admits an objectively founded α-MEU representation (u, P, α) with α = 1

(resp., α = 0).

Corollary 1 provides an alternative to GMMS’s foundation for maxmin expected utility
completions. In particular, imposing security dominance on the completion rule is equivalent
(given Axioms 1–5) to caution and consistency.

4.2 Comparative ambiguity attitudes

The unique identification of the parameters α and P in Theorem 1 behaviorally founds their
interpretation as ambiguity attitude and perception and motivates conducting comparative
statics. Consider two individuals (%∧i ,%

∗
i )i=1,2 with objectively founded α-MEU represen-

tations (ui, Pi, αi)i=1,2. The belief sets (and utilities) are fully determined by the objective
Bewley preferences %∗i , and the comparative statics of Pi are well-understood.13 Moreover,
when u1 ≈ u2 and P1 = P2, standard arguments imply that α1 ≥ α2 if and only if individ-
ual 1’s subjective preference is more ambiguity averse than individual 2’s (Ghirardato and
Marinacci, 2002), in the sense that for all p ∈ ∆(Z) and f ∈ F ,

p %∧2 f =⇒ p %∧1 f. (7)
13In particular, if u1 ≈ u2, then P1 ⊆ P2 if and only if %∗2⊆%∗1.
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We now show how, by considering both subjective and objective preferences, one can
compare ambiguity attitudes αi across individuals whose perceived ambiguity Pi need not
be the same.

Definition 2. We call (%∧1 ,%
∗
1) more security oriented than (%∧2 ,%

∗
2) if the following

condition holds: Whenever f, g ∈ F are such that for all q ∈ ∆(Z), f %∗1 q ⇔ g %∗2 q and
q %∗1 f ⇔ q %∗2 g, then for any p ∈ ∆(Z),

p %∧2 g =⇒ p %∧1 f.

Suppose that in terms of objective comparisons against constant acts, individual 1 ranks
act f the same way as individual 2 ranks act g. Thus, objectively, f has the same level of
security and potential for individual 1 as act g has for individual 2. If, subjectively, individual
1 is more inclined to prefer constant acts over f than individual 2 is to prefer constant acts
over g, this suggests that individual 1’s choices are more driven by security considerations
than individual 2’s. This is the content of Definition 2. Note that when %∗1=%∗2, more
security orientation implies that %∧1 is more ambiguity averse than %∧2 in the sense of (7).

The following result shows that for a fixed utility u, a higher α corresponds to more
security orientation, even across individuals with different belief sets:

Proposition 2. Suppose (%∧i ,%
∗
i )i=1,2 admit objectively founded α-MEU representations

(ui, Pi, αi)i=1,2, where u1 ≈ u2 and Pi is not a singleton for i = 1, 2. The following are
equivalent:

(i). (%∧1 ,%
∗
1) is more security oriented than (%∧2 ,%

∗
2) .

(ii). α1 ≥ α2.

Remark 3. Proposition 2 remains valid under the following alternative definition of “more
security oriented:” Whenever f, g ∈ F are such that, for some q, q′ ∈ ∆(Z), q %∗1 f 6%∗1 q′

and q 6%∗2 g %∗2 q
′, then for any p ∈ ∆(Z), p %∧2 g =⇒ p %∧1 f. In contrast with Definition 2,

this condition is refutable, because verifying the antecedent does not require infinitely many
observations of %∗1 and %∗2.

Proposition 2 can also be extended to allow for heterogeneous utilities. Specifically,
assume instead of u1 ≈ u2 that there exist some p, q ∈ ∆(Z) such that p �∧i q for i = 1, 2.
Then, if P1 and P2 are not singletons, one can show that imposing Definition 2 only on acts
that have range in {λp+ (1− λ)q : λ ∈ [0, 1]} characterizes the condition α1 ≥ α2.14 N

14We thank an anonymous referee for this observation.
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4.3 Belief updating

Finally, the fact that the objectively founded α-MEU model uniquely determines a set of
priors makes it possible to provide preference foundations for prior-by-prior updating, avoid-
ing the problem highlighted in Example 1. Fix ex-ante subjective and objective preferences
(%∧,%∗) that admit an objectively founded α-MEU representation with belief set P . Call
event E ⊆ S non-null if µ(E) > 0 for all µ ∈ P . For any non-null event E, denote by %∧E
the DM’s subjective preference conditional on learning that the true state is in E. In this
section, we characterize when %∧E admits an α-MEU representation whose set of beliefs PE

is the prior-by-prior update (5) of P .
To do so, we impose an intertemporal analog of security-potential dominance that relates

the ex-ante objective preference %∗ and conditional subjective preference %∧E. For any f, g ∈
F , let fEg denote the act such that fEg(s) = f(s) for all s ∈ E and fEg(s) = g(s) for all
s /∈ E. Call f more secure than g at E15 if for all p ∈ ∆(Z),

gEp %
∗ p =⇒ fEp %

∗ p.

Likewise, f has more potential than g at E if for all p ∈ ∆(Z),

p 6%∗ gEp =⇒ p 6%∗ fEp.

Axiom 9 (Intertemporal security-potential dominance). If f, g ∈ F and f is both more
secure than g at E and has more potential than g at E, then f %∧E g.

Axiom 9 requires that if at the ex-ante stage, act f offers both more security and more
potential than g when only considering their outcomes in event E, then ex post, upon learning
that event E has realized, the DM will choose f over g.

The following result shows that Axiom 9 (along with the assumption that the conditional
subjective preference %∧E remains invariant biseparable) characterizes when %∧E admits an
α-MEU representation whose set of beliefs PE is the prior-by-prior update of the ex-ante set
P and whose utility u is the same as the ex-ante utility:

Theorem 2. Suppose (%∧,%∗) admits an objectively founded α-MEU representation (u, P, α).
Fix any non-null E and conditional subjective preference %∧E. The following are equivalent:

(i). %∧E is an invariant biseparable preference and the pair (%∧E,%
∗) jointly satisfies in-

tertemporal security-potential dominance.
15This condition is analogous to the definition of “more secure on E” in Kopylov (2016), who studies the

ε-contamination model in a setting with an exogenous set of priors.
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(ii). There exists αE ∈ [0, 1] such that (u, PE, αE) is an α-MEU representation of %∧E.

Moreover, in this case, αE is unique if PE is not a singleton.

Note that Theorem 2 does not restrict how the weight αE in the conditional α-MEU
representation relates to the ex-ante weight α. Indeed, for any αE ∈ [0, 1], the condi-
tional preference %∧E represented by (u, PE, αE) satisfies intertemporal security-potential
dominance with respect to the ex-ante objective preference %∗ represented by (u, P ). Thus,
updating based on Axiom 9 allows for a flexible relationship between ex-ante and conditional
ambiguity attitudes. This flexibility can capture that the DM’s ambiguity attitude might
be affected by the nature of the information he obtains—for example, ambiguity attitudes
might differ following “surprising” (low ex-ante likelihood) vs. “unsurprising” events.16

At the same time, the case when αE = α can be characterized behaviorally by additionally
requiring (%∗,%∧E) and (%∗,%∧) to be “equally security-oriented,” in a sense analogous to
Definition 2.17

Remark 4. A prominent special case of α-MEU is the neo-additive capacity model, where
the belief set takes the form

P = δ∆(S) + (1− δ){ν},

for some δ ∈ [0, 1] and ν ∈ ∆(S). Since this model is also a special case of Choquet expected
utility, the literature has applied updating rules for capacities. In contrast with the flexible
relationship between αE and α in Theorem 2, these updating rules pin down a specific value
of αE from the ex-ante preference. For example, Eichberger et al. (2010) show that under
the generalized Bayesian updating rule (Eichberger et al., 2007; Horie, 2013), the resulting
conditional preference is represented by (u, PE, αE) with αE = α. On the other hand, they
show that under the Dempster-Shafer (resp. Optimistic) updating rule, the value of αE
always increases (resp. decreases) relative to α in a particular manner.18 N

Remark 5. Theorem 2 characterizes prior-by-prior updating by relating the conditional
subjective preference %∧E to the ex-ante objective preference %∗. An alternative approach
would be to introduce a conditional objective preference %∗E as part of the primitives. In that
case, Theorem 1 in Ghirardato et al. (2008) (see also Faro and Lefort, 2019) implies that %∗E

16Dillenberger and Rozen (2015) explore history-dependent risk attitudes, focusing on the effect of past
payoff realizations, as opposed to realized information.

17Formally, the same argument as for Proposition 2 implies that αE = α is equivalent to the following
condition: Suppose that for all q, f %∗ q ⇐⇒ gEq %∗ q and q %∗ f ⇐⇒ q %∗ gEq. Then for all p,
p %∧ f ⇐⇒ p %∧E g.

18Eichberger et al. (2012) extend the results to the more general class of Jaffray-Philippe capacities, which
is still a special case of α-MEU.
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admits the Bewley representation (u, PE) if and only if (%∗,%∗E) satisfies dynamic consistency
(i.e., fEg %∗ g ⇔ f %∗E g). Given this, our Theorem 1 implies that additionally imposing
security-potential dominance (Axiom 6) on the conditional pair (%∗E,%

∧
E) also yields an α-

MEU representation (u, PE, αE) of %∧E. One advantage of the approach in Theorem 2 is
that, as we show in the next section, it extends to more general objective preferences %∗

that need not admit a dynamically consistent update %∗E.
We also note that, under prior-by-prior updating, the subjective preferences (%∧,%∧E)

need not satisfy dynamic consistency, but the updating rule does satisfy consequentialism
(i.e., fEg ∼∧E fEh for all f, g, h).19 N

5 Linear completion rules for other incomplete prefer-

ences

In the previous section, we provided foundations for α-MEU (as well as prior-by-prior up-
dating of the model) by applying (intertemporal) security-potential dominance to a Bewley
preference %∗. We conclude the paper by showing that this approach can be extended to
obtain linear completion rules for a broader class of incomplete preferences %∗.

The following result, which again applies Lemma A.3, generalizes the static characteriza-
tion in Theorem 1. Recall that every invariant biseparable preference % can be represented
by I ◦ u for some affine utility u and unique monotonic and constant-linear functional I.

Proposition 3. Suppose that %∗ satisfies transitivity and C-completeness and that the as-
sociated more-secure and more-potential orders are invariant biseparable with respective rep-
resentations I ′ ◦ u and I ′′ ◦ u.20 Then the following are equivalent:

(i). %∧ is an invariant biseparable preference and the pair (%∧,%∗) jointly satisfies security-
potential dominance.

(ii). There exists α ∈ [0, 1] such that %∧ is represented by I ◦ u with I = αI ′ + (1− α)I ′′.

As an application of Proposition 3, suppose %∗ admits a twofold conservatism repre-
sentation , as introduced by Echenique et al. (2020) and Miyashita and Nakamura (2020):

19Beissner et al. (2020) show that for a given α-MEU representation (u, P, α), imposing Epstein and
Schneider’s (2003) rectangularity condition on P is not in general sufficient to ensure that prior-by-prior
updating is dynamically consistent, in contrast with maxmin expected utility. Siniscalchi (2011) provides a
general analysis of dynamic choice without dynamic consistency.

20Transitivity and C-completeness of %∗ ensures that I ′ ≤ I ′′, so that Lemma A.3 applies.
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There exist non-disjoint sets of beliefs P1, P2 and an affine u such that

f %∗ g ⇐⇒ min
µ∈P1

Eµ[u(f)] ≥ max
µ∈P2

Eµ[u(g)]. (8)

Here, %∗ is also C-complete and transitive, but unlike Bewley preferences, %∗ does not
satisfy full monotonicity and independence (unless %∗ is complete, which is equivalent to
P1 = P2 = {µ} for some belief µ, i.e., to %∗ being a subjective expected utility preference).
See the aforementioned papers for an axiomatization and interpretation of (8) as capturing
difficulties with performing contingent reasoning.

The associated more-secure and more-potential orders are represented by I ′(φ) = minµ∈P1 µ·
φ and I ′′(φ) = maxµ∈P2 µ ·φ. Thus, by Proposition 3, imposing security-potential dominance
on the pair (%∧,%∗) characterizes the following asymmetric α-MEU representation of
%∧:

f %∧ g ⇐⇒ αmin
µ∈P1

Eµ[u(f)]+(1−α) max
µ∈P2

Eµ[u(f)] ≥ αmin
µ∈P1

Eµ[u(g)]+(1−α) max
µ∈P2

Eµ[u(g)].

(9)
This model has been considered in the literature, because unlike symmetric α-MEU, it
can accommodate source-dependent ambiguity attitudes (e.g., Chandrasekher et al., 2021).
However, just as for symmetric α-MEU, there is no known characterization of (9) and the
parameters in (9) are not identified based on %∧ alone. Incorporating the objective preference
%∗ addresses these issues. In particular, %∗ uniquely determines P1 and P2, which in turn
pins down α except when %∗ is complete. A notable special case of (9) is when P2 is a
singleton, yielding the widely studied ε-contamination representation (e.g., Nishimura
and Ozaki, 2006; Gajdos et al., 2008; Kopylov, 2009); for this model, it is again well-known
that the parameters are not identified based on %∧ alone.21

More broadly, beyond (asymmetric) α-MEU, Proposition 3 can shed light on various
other representations that may be difficult to analyze based on a subjective preference %∧

alone, by recasting these models as linear completion rules of suitable well-understood in-
complete preferences %∗. Appendix B.2 further illustrates this point using other examples
of incomplete preferences from the recent literature.

Finally, our characterization of belief updating in Theorem 2 also generalizes to the
current setting. For any monotonic and constant-linear functional I and event E, define
the functional IE by IE(φ) = I(φEIE(φ)) for all φ ∈ RS. When I(φ) = minµ∈P µ · φ
is maxmin expected utility, then IE(φ) = minµE∈PE µ

E · φ corresponds to prior-by-prior

21This model is characterized in our setting by requiring the more-potential order to be independent.
Together with the axioms in Echenique et al. (2020) and Miyashita and Nakamura (2020), this ensures that
%∗ admits a twofold conservatism representation where P2 is a singleton.
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updating. More generally, if % is the invariant biseparable preference represented by I ◦ u,
then IE ◦ u represents the unique conditional preference %E obtained from % via Pires’s
(2002) coherency axiom (i.e., fEp % p ⇐⇒ f %E p, for all f ∈ F , p ∈ ∆(Z)), and IE is
itself monotonic and constant-linear.22

The following result shows that intertemporal security-potential dominance corresponds
to first updating the more-secure and more-potential functionals associated with %∗ to I ′E
and I ′′E and then representing %∧E by a linear aggregation of these functionals:

Proposition 4. Suppose that %∗ satisfies transitivity and C-completeness and that the asso-
ciated more-secure and more-potential orders are invariant biseparable with respective repre-
sentations I ′ ◦ u and I ′′ ◦ u. Fix any non-null E and conditional subjective preference %∧E.23

The following are equivalent:

(i). %∧E is an invariant biseparable preference and the pair (%∧E,%
∗) jointly satisfies in-

tertemporal security-potential dominance.

(ii). There exists αE ∈ [0, 1] such that %∧E is represented by I◦u with I = αEI
′
E+(1−αE)I ′′E.

When %∗ admits a twofold conservatism representation, Proposition 4 characterizes prior-
by-prior updating of the asymmetric α-MEU model:

f %∧E g ⇐⇒ αE min
µ∈PE1

Eµ[u(f)]+(1−αE) max
µ∈PE2

Eµ[u(f)] ≥ αE min
µ∈PE1

Eµ[u(g)]+(1−αE) max
µ∈PE2

Eµ[u(g)].

Just as for symmetric α-MEU, this updating rule is not well-defined based on %∧ alone. This
issue does not arise in the current setting due to the unique identification offered by %∗.

A Proofs

A.1 Preliminaries

Throughout this appendix, for any non-empty, closed and convex P ⊆ ∆(S) and φ ∈ RS, let

MP (φ) := max
µ∈P

φ · µ, mP (φ) := min
µ∈P

φ · µ.

22Chandrasekher et al. (2021) show that for every invariant biseparable preference, I admits a dual-self
expected utility representation of the form I(φ) = maxP∈P minµ∈P µ · φ, where P is a set of belief sets P .
They also show that the functional IE is obtained by updating each belief set P ∈ P prior-by-prior, i.e.,
IE(φ) = maxP∈P minµE∈PE µE · φ.

23Call E non-null if there exist p, q ∈ ∆(Z) such that pEq is both strictly more secure and has strictly
more potential than q.
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The following lemma shows that for any given α 6= 1
2
, the sets of priors in the α-MEU

functional are uniquely identified:

Lemma A.1. Fix any α ∈ [0, 1] with α 6= 1/2 and any non-empty, closed and convex
P1, P2 ⊆ ∆(S). For i = 1, 2 and each φ ∈ RS, let Ii(φ) := αmPi(φ) + (1 − α)MPi(φ). If
I1(φ) = I2(φ) for all φ ∈ RS, then P1 = P2.

Proof. Take any φ ∈ RS. Then for each i = 1, 2,

Ii(−φ) = −αMPi(φ)− (1− α)mPi(φ).

But I1(φ) = I2(φ) and I1(−φ) = I2(−φ) implies MP1(φ) = MP2(φ), because

(1− α)I1(φ) + αI1(−φ) = (1− α)I2(φ) + αI2(−φ)

⇐⇒ (1− 2α)MP1(φ) = (1− 2α)MP2(φ)

⇐⇒ MP1(φ) = MP2(φ),

where the last equivalence uses α 6= 1/2. Since this is true for any φ ∈ RS, the support
functions of P1 and P2 coincide, which implies P1 = P2.

The next lemma, which is used in the proof of Proposition 1, characterizes γ-expansions
in terms of the relationship between the corresponding support functions.

Lemma A.2. Consider two non-empty, closed and convex sets P,Q ⊆ ∆(S), and γ ≥ 1.
Then Q is the γ-expansion of P if and only if, for each φ ∈ RS,

MP (φ) =
γ

2γ − 1
MQ(φ) +

γ − 1

2γ − 1
mQ(φ), mP (φ) =

γ − 1

2γ − 1
MQ(φ) +

γ

2γ − 1
mQ(φ). (10)

Proof. Suppose first that Q is the γ-expansion of P . Then µ ∈ Q if and only if µ =

γν + (1− γ)ν ′ for some ν, ν ′ ∈ P . Since γ ≥ 1, this implies that for any φ ∈ RS,

MQ(φ) = γMP (φ) + (1− γ)mP (φ), mQ(φ) = γmP (φ) + (1− γ)MP (φ).

Solving this system yields (10).
Conversely, suppose (10) holds for all φ ∈ RS. For any s ∈ S, define φs ∈ RS by φs(s) = 1
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and φs(s′) = 0 for each s′ 6= s. By (10), we have

γmin
ν∈P

ν(s) = γmP (φs) =
γ2

2γ − 1
mQ(φs) +

γ(γ − 1)

2γ − 1
MQ(φs)

≥ (γ − 1)2

2γ − 1
mQ(φs) +

γ(γ − 1)

2γ − 1
MQ(φs) since γ2 ≥ (γ − 1)2 and mQ(φs) ≥ 0

= (γ − 1)MP (φs)

= (γ − 1) max
ν∈P

ν(s).

This shows that for any s ∈ S and ν, ν ′ ∈ P , we have γν(s) + (1 − γ)ν ′(s) ≥ 0. Thus,
P γ := γP + (1− γ)P is a subset of ∆(S). Moreover, P γ is non-empty (since it contains P ),
closed, and convex. Hence, for any φ ∈ RS, we have

γ

2γ − 1
MP γ (φ) +

γ − 1

2γ − 1
mP γ (φ) = MP (φ) =

γ

2γ − 1
MQ(φ) +

γ − 1

2γ − 1
mQ(φ),

where the first equality holds by the “only if” direction of the lemma and the second by (10).
By Lemma A.1, this implies Q = P γ, that is, Q is the γ-expansion of P .

The final lemma is a general linear aggregation result for constant-linear functionals.
This is central to the proof of Proposition 3 (and hence Theorem 1):

Lemma A.3. Suppose functionals I, I ′, I ′′ : RS → R are monotonic and constant-linear with
I ′ ≤ I ′′. Then the following are equivalent:

(i). For all φ, ψ ∈ RS,

[I ′(φ) ≥ I ′(ψ) and I ′′(φ) ≥ I ′′(ψ)] =⇒ I(φ) ≥ I(ψ).

(ii). There exists α ∈ [0, 1] such that for all φ ∈ RS, I(φ) = αI ′(φ) + (1− α)I ′′(φ).

Proof. We show that (i) implies (ii); verifying the other direction is standard.24 By (i), there
exists a weakly increasing function W : {(I ′(φ), I ′′(φ)) : φ ∈ RS} → R such that

I(φ) = W (I ′(φ), I ′′(φ)) for all φ ∈ RS. (11)

Consider any φ ∈ RS such that I ′(φ) = I ′′(φ) =: c. Since I ′, I ′′, I are constant-linear,
they are normalized, i.e., c = I(c) = I ′(c) = I ′′(c). Thus, by (11), I(φ) = I(c) = c. Hence,
I(φ) = αI ′(φ) + (1− α)I ′′(φ) holds for any α ∈ R.

24Similar arguments were used in the proof of Lemma B.5 in Ghirardato et al. (2004), which considers the
special case of Lemma A.3 when I ′ = mP , I ′′ = MP for some P .
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Next, consider any φ ∈ RS such that I ′(φ) < I ′′(φ); if there is no such φ, the previous
paragraph establishes (ii). Then there exists a unique α(φ) ∈ R such that

I(φ) = α(φ)I ′(φ) + (1− α(φ))I ′′(φ).

In particular,

α(φ) =
I(φ)− I ′′(φ)

I ′(φ)− I ′′(φ)
= − I(φ)− I ′′(φ)

I ′′(φ)− I ′(φ)
= −I (ψ) = −W (I ′(ψ), I ′′(ψ)),

where ψ :=
φ−I′′(φ)

I′′(φ)−I′(φ)
and the third equality holds since I is constant-linear. Note that

I ′(ψ) = −1 and I ′′(ψ) = 0. Thus, α(φ) = −W (−1, 0) =: α, which does not depend on φ.
Hence, for α thus defined, I(φ) = αI ′(φ) + (1− α)I ′′(φ) holds for all φ with I ′(φ) < I ′′(φ).

It remains to show that α ∈ [0, 1]. Suppose that α < 0. Then for any φ such that I ′(φ) <

I ′′(φ), we have I(φ) > I ′′(φ) = I(I ′′(φ)), which contradicts (i), as I ′(I ′′(φ)) = I ′′(φ) > I ′(φ)

and I ′′(I ′′(φ)) = I ′′(φ). If α > 1, we obtain a contradiction in an analogous manner.

A.2 Proof of Proposition 1

“If” direction. For each φ ∈ RS and i = 1, 2, let Ii(φ) := αimPi(φ) + (1 − αi)MPi(φ).
Suppose case 1 in the proposition holds; the argument for case 2 is analogous. Note that
since α2 ≥ α1 >

1
2
, we have γ := α1+α2−1

2α1−1
≥ 1. Since P1 is the γ-expansion of P2, Lemma

A.2 implies that for any φ ∈ RS,

MP2(φ) =
γ

2γ − 1
MP1(φ) +

γ − 1

2γ − 1
mP1(φ), mP2(φ) =

γ

2γ − 1
mP1(φ) +

γ − 1

2γ − 1
MP1(φ).

Then, for any φ ∈ RS,

α2mP2(φ) + (1− α2)MP2(φ)

=α2[
γ

2γ − 1
mP1(φ) +

γ − 1

2γ − 1
MP1(φ)] + (1− α2)[

γ

2γ − 1
MP1(φ) +

γ − 1

2γ − 1
mP1(φ)]

=α1mP1(φ) + (1− α1)MP1(φ),

as α2γ/(2γ− 1) + (1−α2)(γ− 1)/(2γ− 1) = α1 by the definition of γ. Thus, given u1 ≈ u2,
(u1, P1, α1) and (u2, P2, α2) represent the same preference.

“Only if” direction. Assume that (u1, P1, α1) and (u2, P2, α2) with α1 ≤ α2 represent
the same preference, and let I1 and I2 denote the associated utility act functionals. Standard
arguments imply that u1 ≈ u2 and I1 = I2. Suppose that α1 < 1

2
(the case α1 > 1

2
is
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analogous). Note that for i = 1, 2 and any event E ⊆ S, we have

Ii(1E0) + Ii(0E1) = (2αi − 1)

(
min
µ∈Pi

µ(E)−max
µ∈Pi

µ(E)

)
+ 1.

Since the left-hand side is the same for i = 1, 2 and each Pi is non-singleton, it follows that
α2 <

1
2
.

For any φ ∈ RS, the fact that I1(φ) = I2(φ) and I1(−φ) = I2(−φ) implies

α1mP1(φ) + (1− α1)MP1(φ) = α2mP2(φ) + (1− α2)MP2(φ)

and
(1− α1)mP1(φ) + α1MP1(φ) = (1− α2)mP2(φ) + α2MP2(φ).

Solving this system yields

MP1(φ) =
1− α1 − α2

1− 2α1

MP2(φ)+
α2 − α1

1− 2α1

mP2(φ), mP1(φ) =
1− α1 − α2

1− 2α1

mP2(φ)+
α2 − α1

1− 2α1

MP2(φ)

which can be written as

MP1(φ) =
γ

2γ − 1
MP2(φ) +

γ − 1

2γ − 1
mP2(φ), mP1(φ) =

γ

2γ − 1
mP2(φ) +

γ − 1

2γ − 1
MP2(φ),

where γ := 1−α1−α2

1−2α2
. By Lemma A.2, this implies that P2 is the γ-expansion of P1.

A.3 Proof of Theorem 1

We show that (i) implies (ii); verifying that (ii) implies (i) is standard. Since %∗ is a Bewley
preference, it admits a Bewley representation (u, P ) (see, e.g., Theorem 1 in GMMS).

Observe that f is more secure than g if and only if minµ∈P µ · u(f) ≥ minµ∈P µ · u(g).
Likewise, f has more potential than g if and only if maxµ∈P µ ·u(f) ≥ maxµ∈P µ ·u(g). Thus,
Proposition 3 yields some α ∈ [0, 1] such that (u, P, α) is an objectively founded α-MEU
representation of (%∗,%∧).

For the moreover part, cardinal uniqueness of u and uniqueness of P follows from
the uniqueness properties of Bewley representations (e.g., Theorem 1 in GMMS). Finally,
whenever %∗ is incomplete, then P is not a singleton. Thus, there exists φ ∈ RS with
minµ∈P µ·φ < maxµ∈P µ·φ. For any α′ 6= α, this implies α′minµ∈P µ·φ+(1−α′) maxµ∈P µ·φ 6=
αminµ∈P µ ·φ+ (1−α) maxµ∈P µ ·φ. Hence, α is unique by the uniqueness of the utility act
functional I representing %∧.
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A.4 Proof of Corollary 1

We show that (i) implies (ii); verifying the other direction is standard. Consider the case in
which security dominance holds (the argument when potential dominance holds is analogous).
By Theorem 1, (%∗,%∧) admits some objectively founded α-MEU representation (u, P, α).
If P is a singleton, the representation does not depend on the value of α, and we can
set α = 1. If P is not a singleton, then there exist f ∈ F and p ∈ ∆(Z) such that
minµ∈P µ · u(f) = u(p) < maxµ∈P µ · u(f). Thus, p is more secure than f , and hence by
security dominance p %∧ f . By the representation, this means

u(p) ≥ αmin
µ∈P

µ · u(f) + (1− α) max
µ∈P

µ · u(f),

which is only possible if α = 1.

A.5 Proof of Proposition 2

Observe first that there exist φ, ψ ∈ [ − 1, 1]S such that mP1(φ) = mP2(ψ) < MP1(φ) =

MP2(ψ). Indeed, given that P1 and P2 are not singletons, there exist φ′, ψ′ ∈ RS such
that mP1(φ

′) < MP1(φ
′) and mP2(ψ

′) < MP2(ψ
′). By setting φ := ε

φ′−mP1 (φ′)

MP1
(φ′)−mP1 (φ′)

and

ψ := ε
ψ′−mP2 (ψ′)

MP2
(ψ′)−mP2 (ψ′)

for a sufficiently small ε > 0, we obtain φ, ψ ∈ [−1, 1]S and mP1(φ) =

mP2(ψ) = 0 < ε = MP1(φ) = MP2(ψ).
Since u1 ≈ u2, we can assume without loss that u1 = u2 =: u and that [−1, 1] ⊆ u(Z) (up

to performing a suitable positive affine transformation). Given this, consider any f, g ∈ F ,
and observe that the equivalences f %∗1 p⇔ g %∗2 p and p %∗1 f ⇔ p %∗2 g hold for all constant
acts p, if and only if, minµ∈P1 µ·u(f) = minµ∈P2 µ·u(g) and maxµ∈P1 µ·u(f) = maxµ∈P2 µ·u(g).
The equivalence of (i) and (ii) then follows from the fact that minµ∈P1 µ · u(f) = minµ∈P2 µ ·
u(g) < maxµ∈P1 µ · u(f) = maxµ∈P2 µ · u(g) for some f, g ∈ F which satisfy u(f) = φ and
u(g) = ψ as in the previous paragraph.

A.6 Proof of Theorem 2

Suppose (%∧,%∗) admits an objectively founded α-MEU representation (u, P, α). We will
show that (i) implies (ii); verifying the other direction is standard.

Suppose %∧E is an invariant biseparable preference and the pair (%∧E,%
∗) jointly satisfies

intertemporal security-potential dominance. Note that the more-secure and more-potential
orders are represented by I ′(u(f)) = minµ∈P µ · u(f) and I ′′(u(f)) = maxµ∈P µ · u(f), re-
spectively, and that I ′E(φ) = minµE∈PE µ

E · φ and I ′′E(φ) = maxµE∈PE µ
E · φ. Thus, by
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Proposition 4, there exists αE ∈ [0, 1] such that (u, PE, αE) represents %∧E.
Moreover, if PE is not a singleton, then αE is unique by the same argument as in the

proof of Theorem 1.

A.7 Proof of Proposition 3

Lemma A.4. Under the assumptions of Proposition 3, we have that I ′ ≤ I ′′.

Proof. It suffices to show that, for any f ∈ F and p ∈ ∆(Z), I ′(u(f)) ≥ u(p) implies
I ′′(u(f)) ≥ u(p). Suppose I ′(u(f)) ≥ u(p). Then f is more secure than p. Since p %∗ p

by C-completeness, this implies f %∗ p. For any q ∈ ∆(Z) such that q %∗ f , we then have
q %∗ p by transitivity. Thus f has more potential than p, and hence I ′′(u(f)) ≥ u(p).

Proof of Proposition 3. We show that (i) implies (ii); verifying that (ii) implies (i) is stan-
dard. Since %∧ is invariant biseparable, %∧ is represented by I ◦ v for some nonconstant and
affine utility v and a unique constant-linear and monotonic functional I. Note that for any
p, q ∈ ∆(Z), we have

u(p) ≥ u(q) =⇒ p is more secure and has more potential than q =⇒ v(p) ≥ v(q),

where the last implication holds by security-potential dominance. Since u and v are noncon-
stant and affine, this implies v ≈ u, and we can assume without loss that v = u.

Thus, I◦u represents %∧. Hence, security-potential dominance and the constant-linearity
of I, I ′, I ′′ imply that for any φ, ψ ∈ RS with I ′(φ) ≥ I ′(ψ) and I ′′(φ) ≥ I ′′(ψ), we have
I(φ) ≥ I(ψ). Since I ′ ≤ I ′′ (Lemma A.4), Lemma A.3 yields some α ∈ [0, 1] such that
I(φ) = αI ′(φ) + (1− α)I ′′(φ) for all φ ∈ RS.

A.8 Proof of Proposition 4

Lemma A.5. Under the assumptions of Proposition 4, there exist constant-linear functionals
I ′E, I

′′
E such that for all φ ∈ RS and β ∈ R, I ′E(φ) ≥ β iff I ′(φEβ) ≥ β (resp. I ′′E(φ) ≥ β

iff I ′′(φEβ) ≥ β). Moreover, f is more secure (resp. has more potential) than g at E iff
I ′E(u(f)) ≥ I ′E(u(g)) (resp. I ′′E(u(f)) ≥ I ′′E(u(g))).

Proof. The existence of such functionals I ′E and I ′′E follows from Theorem 2 in Chandrasekher
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et al. (2021); see Footnote 22. Given this, the “moreover” part follows because

f is more secure than g at E iff (∀p ∈ ∆(Z), [I ′(u(gEp)) ≥ u(p)] =⇒ [I ′(u(fEp)) ≥ u(p)])

iff (∀p ∈ ∆(Z), [I ′E(u(g)) ≥ u(p))] =⇒ [I ′E(u(f)) ≥ u(p)])

iff I ′E(u(f)) ≥ I ′E(u(g)).

The same argument applies to the more-potential order.

Proof of Proposition 4. We show that (i) implies (ii); verifying that (ii) implies (i) is stan-
dard. We first observe that I ′E ≤ I ′′E. To see this, note that, for any φ ∈ RS and β ∈ R,

I ′E(φ) ≥ β =⇒ I ′(φEβ) ≥ β =⇒ I ′′(φEβ) ≥ β =⇒ I ′′E(φ) ≥ β,

where the second implication uses I ′ ≤ I ′′ (by Lemma A.4) and the other implications follow
from Lemma A.5.

Let (I, v) be the representation of %∧E. By intertemporal security-potential dominance,
we can assume that v = u, by the same argument as in the proof of Proposition 3. Based
on I ′E ≤ I ′′E and Lemma A.3, intertemporal security-potential dominance then yields some
αE ∈ [0, 1] such that I = αEI

′
E + (1− αE)I ′′E.

B Additional results

B.1 Identification under α = 1/2

The following result complements the identification result in Proposition 1 by covering the
remaining case where αi = 1/2 for some i. Given two subsets A and B of ∆(S), we write
A− B := {a− b : a ∈ A, b ∈ B}.

Proposition B.1. Suppose (u1, P1, 1/2) and (u2, P2, α2) are α-MEU representations of %∧1
and %∧2 , respectively, where Pi is not a singleton for i = 1, 2. Then %∧1 =%∧2 if and only if
u1 ≈ u2, α2 = 1/2, and P1 − P2 = P2 − P1.

Proof. The condition u1 ≈ u2 is standard, and we can thus assume u1 = u2 = u without loss
of generality. Moreover, since α1 = 1/2 and the Pi are not singletons, the same argument as
in the “only if” direction of Proposition 1 implies that if %∧1 =%∧2 , then α2 = 1/2.

Given that α1 = α2 = 1/2 and the uniqueness of the utility act functional, the condition
%∧1 =%∧2 is equivalent to

1

2
min
µ∈P1

µ · φ+
1

2
max
µ∈P1

µ · φ =
1

2
min
µ∈P2

µ · φ+
1

2
max
µ∈P2

µ · φ
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for all φ ∈ RS. Re-arranging yields

max
(µ1,µ2)∈P1×P2

µ1 · φ− µ2 · φ = max
(µ1,µ2)∈P1×P2

µ1 · φ− µ2 · φ,

that is,
max

µ∈P1−P2

µ · φ = max
µ∈P2−P1

µ · φ.

Since P1 − P2 and P2 − P1 are both closed and convex subsets of RS, the above property is
true for all φ ∈ RS if and only if P1 − P2 = P2 − P1.

The multiplicity of belief sets allowed by Proposition B.1 is greater than in Proposition 1.
Indeed, P1 − P2 = P2 − P1 is satisfied if P2 is the γ-expansion of P1 (or vice versa) for some
γ ≥ 1, irrespective of the value of γ. However, in contrast with Proposition 1, the opposite
implication is not true, as P1−P2 = P2−P1 can hold even if P1 and P2 are not nested. The
following example illustrates this: Consider |S| = 3, take ε with 0 < ε < 1/3, and define

P1 := {µ ∈ ∆(S) : µ1 =
1

3
, |µ2 −

1

3
| ≤ ε} and P2 := {µ ∈ ∆(S) : |µ1 −

1

3
| ≤ ε, µ2 =

1

3
}.

The sets P1 and P2 are not nested but satisfy

P1 − P2 = P2 − P1 = {(ν1, ν2,−ν1 − ν2) : |ν1| ≤ ε, |ν2| ≤ ε}.

B.2 Additional examples for Section 5

Beyond the cases where %∗ admits a Bewley representation (as in Section 4) or a twofold
conservatism representation (as in Section 5), Propositions 3–4 apply to several other classes
of incomplete preferences.

For example, Valenzuela-Stookey (2020) considers a model of subjective complexity:

f %∗ g ⇐⇒ max
h∈G:f≥h

Eµ[u(h)] ≥ min
h∈G:h≥g

Eµ[u(h)],

where µ is a fixed belief, G is a set of acts that are “simple,” and ≥ denotes the state-wise
dominance relation. In this model, the more-secure and more-potential orders are represented
by I ′(u(f)) = maxh∈G:f≥h Eµ[u(h)] and I ′′(u(f)) = minh∈G:h≥f Eµ[u(h)].

Another example is the multiple MEU model in Nascimento and Riella (2011) and Hara
(2021), which considers a unanimity rule over MEU preferences:

f %∗ g ⇐⇒ min
µ∈P

Eµ[u(f)] ≥ min
µ∈P

Eµ[u(g)] ∀P ∈ P,
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where P ⊆ 2∆(S) is a (Hausdorff)-compact set of sets of beliefs. In this case, I ′(u(f)) =

minµ∈∪P∈PP Eµ[u(f)] and I ′′(u(f)) = maxP∈P minµ∈P Eµ[u(f)].
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