
Provenance-based Data Skipping
Xing Niu∗, Boris Glavic∗, Ziyu Liu∗, Pengyuan Li∗, Dieter Gawlick𝛼 , Vasudha Krishnaswamy𝛼 , Zhen

Hua Liu𝛼 , Danica Porobic𝛼
Illinois Institute of Technology∗, Oracle𝛼

xniu7@hawk.iit.edu,bglavic@iit.edu,{zliu102,pli26}@hawk.iit.edu
{dieter.gawlick,vasudha.krishnaswamy,zhen.liu,danica.porobic}@oracle.com

ABSTRACT
Database systems use static analysis to determine upfront which data
is needed for answering a query and use indexes and other physical
design techniques to speed-up access to that data. However, for
important classes of queries, e.g., HAVING and top-k queries, it is
impossible to determine up-front what data is relevant. To overcome
this limitation, we develop provenance-based data skipping (PBDS),
a novel approach that generates provenance sketches to concisely
encode what data is relevant for a query. Once a provenance sketch
has been captured it is used to speed up subsequent queries. PBDS
can exploit physical design artifacts such as indexes and zone maps.

PVLDB Reference Format:
Xing Niu, Boris Glavic, Ziyu Liu, Pengyuan Li, Dieter Gawlick, Vasudha
Krishnaswamy, Zhen Hua Liu, Danica Porobic. Provenance-based Data
Skipping. PVLDB, 15(3): 451 - 464, 2022.
doi:10.14778/3494124.3494130

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/IITDBGroup/2021_pbds_reproducibility.

1 INTRODUCTION
Physical design techniques such as index structures, zone maps, and
horizontal partitioning have been used to provide fast access to data
based on its characteristics. To use any such data structure to answer
a query, database systems statically analyze the query to determine
what data is relevant for answering it. Based on this information the
database (i) optimizes the query to filter out irrelevant data as early
as possible (e.g., using techniques like selection-pushdown) and (ii)
determines how to execute this filtering step efficiently.

Consider a query 𝑄1: SELECT city, popden FROM cities

WHERE state = 'CA' which returns the population density of
cities in CA. The WHERE clause condition of this query implies that
only rows fulfilling the condition state = 'CA' are relevant. The
DBMS may use an index on column state, if it exists, to identify
cities in California, to reduce the I/O cost of the query. While this
approach of statically analyzing a query to determine a declarative
description of what data is relevant is effective for some queries, it
is often not possible to determine relevance statically.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 3 ISSN 2150-8097.
doi:10.14778/3494124.3494130

𝑄2

SELECT state, avg(popden) AS avgden

FROM cities

GROUP BY state

ORDER BY avgden DESC LIMIT 1;

𝑄2 [P𝑠𝑡𝑎𝑡𝑒]

SELECT state, avg(popden) AS avgden

FROM cities

WHERE state BETWEEN 'AL' AND 'DE'

GROUP BY state

ORDER BY avgden DESC LIMIT 1;

(a) Queries
popden city state

𝑡1 4200 Anchorage AK
𝑓1𝑡2 6000 San Diego CA

𝑡3 5000 Sacramento CA
𝑡4 7000 New York NY

𝑓3𝑡5 2000 Buffalo NY
𝑡6 3700 Austin TX

𝑓4𝑡7 2500 Houston TX

(b) cities relation

city popden
San Diego 6000

Sacramento 5000

(c) Result of 𝑄1
state avgden
CA 5500

(d) Result of 𝑄2 (and 𝑄2 [P𝑠𝑡𝑎𝑡𝑒])
𝐹𝑠𝑡𝑎𝑡𝑒 : 𝑓1 = [AL,DE], 𝑓2 = [FL,MI], 𝑓3 = [MN,OK], 𝑓4 = [OR,WY]

𝐹𝑝𝑜𝑝𝑑𝑒𝑛 : 𝑔1 = [1000,4000], 𝑔2 = [4001,9000]

(e) Range partitions of cities on state (top) and popden (bottom)

Figure 1: Running Example

EXAMPLE 1. Query𝑄2 shown in Fig. 1a returns the state with the
highest average city population density. The result of this query over
an example database (Fig. 1b) is shown in Fig. 1d. CA has the highest
average population density. Thus, only the 2𝑛𝑑 and 3𝑟𝑑 tuple are
needed to produce the result. One possible declarative description of
the relevant inputs is state = 'CA'. However, unlike the previous
example, this description is data-dependent. For instance, if we
delete the 5𝑡ℎ row, then NY has the highest average density and
state = 'CA' no longer correctly describes the relevant inputs.

Even though the query in the example above is selective, state-of-
the-art systems are incapable of exploiting this selectivity since it
is impossible to determine a declarative condition capturing what is
relevant by static analysis. In fact, there are many important classes
of queries including top-k queries and aggregation queries with
HAVING, for which static analysis is insufficient to determine rele-
vance. Thus, while these queries may be quite selective, databases
fail to exploit physical design artifacts to speed up their execution.

To overcome this shortcoming of current systems and better uti-
lize existing physical design artifacts, we propose to analyze queries
at runtime to determine concise and declarative descriptions of what
data is relevant (sufficient) for answering a query. We use the prove-
nance of a query to determine such descriptions since for most
provenance models, the provenance of a query is sufficient for an-
swering the query [40]. That is, if we evaluate a query over its
provenance this yields the same result as evaluating the query over

https://doi.org/10.14778/3494124.3494130
https://github.com/IITDBGroup/2021_pbds_reproducibility
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3494124.3494130

the full database. We introduce provenance sketches which are con-
cise descriptions of supersets of the provenance of a query. Given a
horizontal partition of an input table, a provenance sketch records
which fragments of the partition contain provenance. Similar to
query answering with views, a sketch captured for one query is used
to speed up the subsequent evaluation of the same or other queries.

EXAMPLE 2. Using Lineage [25, 40], the provenance of query
𝑄2 from Ex. 1 is the set of the tuples highlighted in yellow in Fig. 1b.
Consider a provenance sketch based on a range-partition of the
input on attribute state which is shown in Fig. 1e. We assume that
states are ordered lexicographically, e.g., CA belongs to the interval
[AL,DE]. In Fig. 1b we show the fragment that each tuple belongs
to on the right. The sketch P𝑠𝑡𝑎𝑡𝑒 of 𝑄2 according to this partition is
{𝑓1}, i.e., 𝑓1 is the only fragment that contains provenance.

Creating Provenance Sketches. We present techniques for instru-
menting a query to compute a provenance sketch that are based on
annotation propagation techniques developed for provenance capture
(e.g., [14, 16, 42]). Our approach has significantly lower runtime and
storage overhead than such techniques. Given range-partition(s) for
one or more of the relations accessed by a query, we annotate each
input row with the fragment it belongs to. These annotations are then
propagated to ensure that each intermediate result is annotated with
a set of fragments that is a superset of its provenance.

Using Provenance Sketches. Once a provenance sketch for a query
𝑄 has been created, we would like to use it to speed up the subsequent
execution of 𝑄 or queries similar to 𝑄 . For that we need to be able
to instrument a query to restrict its execution to data described by
the provenance sketch. This can be achieved by filtering out data not
belonging to the sketch using a disjunction of range restrictions.

EXAMPLE 3. Consider the sketch P𝑠𝑡𝑎𝑡𝑒 = {𝑓1} from Ex. 2. It
describes a superset of what data is relevant for answering query𝑄2.
Thus, we can use it to instrument the query to filter out irrelevant
data early-on. For a query 𝑄 and sketch P we use 𝑄 [P] to denote
the result of instrumenting𝑄 to filter out data that does not belong to
P. Recall that 𝑓1 = [𝐴𝐿, 𝐷𝐸]. In 𝑄2 [P𝑠𝑡𝑎𝑡𝑒] (see Fig. 1a), we apply
a condition WHERE state BETWEEN 'AL'AND 'DE' to filter out
data that does not belong to the sketch.

By translating the sketch into a selection condition, we expose
to the database system what data is relevant. Databases are already
well-equipped to deal with such conditions and exploit existing
physical design, e.g., use an index on state. However, sketches
with many fragments can result in conditions with many disjunctions.
We present optimizations to speed up such expressions.

Sketch Safety. So far we have assumed that if the provenance for a
query is sufficient then so is the superset of the provenance encoded
by a sketch. However, this is not always the case.

EXAMPLE 4. Consider the partition of relation cities on attribute
popden shown on the bottom of Fig. 1e. The first four tuples belong
to the fragment for range 𝑔2 since their population density is in
[4001, 9000]. Only fragment 𝑔2 contains tuples from the provenance
of𝑄2. Hence, the sketch corresponding to this partition is P𝑝𝑜𝑝𝑑𝑒𝑛 =

{𝑔2}. Evaluating𝑄2 over𝑔2, we get (NY, 7000)which is different
from the result for the full input. The reason is that 𝑔2 contains only

one tuple with state NY resulting in an average for this state that is
higher than the one for CA.

We call a sketch safe if evaluating the query over the data encoded
by the sketch yields the same result as evaluating the query over
the full input. We present a sound technique that determines safety
statically, accessing only database statistics, but not the data.

Reusing Sketches for Parameterized Queries. Parameterized que-
ries are used to avoid repeated optimization of queries that only
differ in constants used in selections. Typically, an application uses a
small number of parameterized queries, but executes many instances
of each parameterized query. We develop a sound, but not complete,
method that statically determines whether a sketch captured for one
instance of a parameterized query can be used to answer another
instance of this query.

Provenance-based Data Skipping. We develop a framework for
creating and using sketches that we refer to as provenance-based
data skipping (PBDS). PBDS is used in a self-tuning fashion sim-
ilar to automated materialized view selection: we decide when to
create and when to use provenance sketches with the goal to opti-
mize overall query performance. In this work, we assume read-only
workloads which is common in OLAP and DISC systems. We leave
maintenance of provenance sketches under updates for future work.

Contributions. Our main technical contributions are:
• We introduce provenance-based data skipping (PBDS), a novel

method for analyzing at runtime what data is relevant for a query
and introduce provenance sketches as a concise encoding of what
subset of the input is relevant for a query.

• We develop techniques for capturing provenance sketches by
instrumenting queries to propagate sketch annotations.

• We speed up queries by instrumenting them to filter data based on
sketches. By exposing what data is relevant as selection conditions
to the DBMS, existing physical design can be exploited.

• We present techniques for determining what sketches are safe for
a query and for determining whether a sketch for an instance 𝑄1
of a parameterized query can be used to answer an instance 𝑄2.

• Using DBMS extensibility mechanisms, we implement PBDS
using query instrumentation. We demonstrate experimentally that
PBDS significantly improves performance. We compare PBDS
with query answering with views (MVs) and show that these
techniques are complementary. PBDS is more efficient than MVs
for certain query types at significantly lower storage cost.

2 RELATED WORK
Physical Design and Self-tuning. Index structures [4, 7, 13, 17, 21,
44, 45, 51, 52, 61–63, 84, 84, 90], horizontal and vertical partitioning
techniques [6, 18, 33, 55, 70, 77, 80, 87, 91], zone maps [26, 68],
materialized views [3, 5, 8, 22, 43, 49, 50, 64], join indexes [13,
66, 76, 88], and many other physical design techniques have been
studied intensively. However, databases fail to exploit physical de-
sign artifacts for important classes of selective queries such as top-k
queries, because relevance of data cannot be determined statically for
such queries. We close this gap by capturing relevance information
at runtime and by translating it into selection conditions that DBMS
optimizers are well-equipped to handle. Self-tuning techniques have
a long tradition in databases [23, 33, 45]. Closely related to our work

are automated selection of and query answering with materialized
views (MVs) [2, 5, 22, 34, 43, 49, 50, 64, 78]. A technique similar
to MVs in terms of trade-offs is re-use of data structures such as the
hash table of a hash-aggregate [35]. In contrast to MVs, our tech-
nique has negligible storage requirements and can exploit existing
physical design. Another disadvantage of MVs compared to sketches
is that because of their larger size, they compete with the base data
for buffer pool space. As we demonstrate in Sec. 9.5, reuse of MVs
and sketches behaves quite differently, e.g., sketches may be reusable
when a selection condition below an aggregation is modified which
is not the case for MVs. However, MVs are sometimes superior for
queries that filter the result of an aggregation.
Provenance Capture. Many approaches for provenance capture,
encode provenance as annotations on data and propagate such an-
notations through queries [46, 56, 71, 72]. Systems that capture
database provenance include Perm [42], GProM [14], DBNotes [16],
LogicBlox [46], Smoke [79], declarative Datalog debugging [58],
ExSPAN [93], ProvSQL [85], Müller et al.’s approach [69], and
Links [38]. In PBDS, we only have to generate a single sketch as the
output and, thus, capture is significantly more efficient.
Compressing, Sketching, and Summarizing Provenance. Work
on compressing and factorizing provenance such as [12, 20, 24,
67, 74, 75] avoids storing common substructures in the provenance
more than once. Closely related are techniques for provenance sum-
marization [9, 31, 41, 59, 60, 65], intervention-based methods for
explaining aggregate query results [81, 82, 89] and other approaches
for explaining outcomes [36, 37]. Some of these techniques use
declarative descriptions of data, e.g., selection queries [36, 37, 60,
82]. Such summaries are typically not sufficient for our purpose,
i.e., they may not encode a superset of the provenance or can not be
effectively encoded as selection conditions.
Optimizing Operations with Provenance. Pandas [53, 54] uses
provenance to selectively update the outputs of a workflow to reflect
changes to the workflow’s inputs. Provenance has been used to
provision for answering what-if queries [15, 30–32] and to speed-up
queries in interactive visualization [79]. Assadi et al. [15] create
sketches over provenance to provision for approximate answering
of what-if queries. In contrast to prior work which uses provenance
(sketches) instead of the original input, our sketches act as a light-
weight index that allows us to efficiently access relevant inputs.

3 BACKGROUND AND NOTATION
In this section we introduce provenance sketches and necessary
background on provenance and range-partitioning.
Relational Algebra. We use bold face (non-bold) to denote rela-
tion and database schemas (instances). The arity 𝑎𝑟𝑖𝑡𝑦 (R) of R is
the number of attributes in R. Here we use bag semantics and for
simplicity will sometimes assume a universal domain U. That is, a
relation 𝑅 of schema R is a bag of tuples (elements ofU𝑎𝑟𝑖𝑡𝑦 (R)). We
denote bags using {|·|} and use 𝑡𝑛 ∈ 𝑅 to denote that tuple 𝑡 appears
with multiplicity 𝑛 in relation 𝑅. Fig. 2 shows the bag relational
algebra used in this work. Let SCH(𝑄) denote the schema of query
𝑄’s result. We use 𝑡 .𝐴 to denote the projection of a tuple on a list of
scalar expressions with renaming where 𝐴 = 𝑒1 → 𝑎1, . . . , 𝑒𝑛 → 𝑎𝑛 ,
each 𝑒𝑖 is a scalar expression (an expression that returns a single
value), and 𝑎𝑖 is an attribute name. We use ◦ to denote concatenation

𝜎𝜃 (𝑅) = {|𝑡𝑛 | 𝑡𝑛 ∈ 𝑅 ∧ 𝑡 |= 𝜃 |} Π𝐴 (𝑅) = {|𝑡𝑛 | 𝑛 =
∑︁

𝑢.𝐴=𝑡∧𝑢𝑚∈𝑅
𝑚 |}

𝛿 (𝑅) = {|𝑡1 | 𝑡𝑛 ∈ 𝑅 |} 𝑅 × 𝑆 = {|𝑡 ◦ 𝑠𝑛∗𝑚 | 𝑡𝑛 ∈ 𝑅 ∧ 𝑠𝑚 ∈ 𝑆 |}
𝑅 ∪ 𝑆 = {|𝑡𝑛+𝑚 | 𝑡𝑛 ∈ 𝑅 ∧ 𝑡𝑚 ∈ 𝑆 |}

𝛾𝑓 (𝑎)→𝑏;𝐺 (𝑅) = {|𝑔 ◦ 𝑓 (𝑅𝑔)1 | 𝑔 ∈ GRPS(𝑅,𝐺) |}

GRPS(𝑅,𝐺) = {𝑡 .𝐺 | 𝑡𝑛 ∈ 𝑅} 𝑅𝑔 = {|(𝑐)𝑛 | 𝑛 =
∑︁

𝑡𝑚∈𝑅∧𝑡 .𝐺=𝑔∧𝑡 .𝑎=𝑐
𝑚 |}

𝜏𝑂,𝐶 (𝑅) = {|𝑡𝑛 | 𝑡𝑚 ∈ 𝑅 ∧ 𝑛 =𝑚𝑎𝑥 (0,𝑚𝑖𝑛(𝑚,𝐶 − 𝑝𝑜𝑠 (𝑅,𝑂, 𝑡))) |}
𝑝𝑜𝑠 (𝑅,𝑂, 𝑡) = |{|𝑡𝑛1 | 𝑡𝑛1 ∈ 𝑅 ∧ 𝑡1 <𝑂 𝑡 |}|

Figure 2: Bag Relational Algebra

of tuples. For convenience, we use 𝑡0 ∈ 𝑅 to denote that the tuple 𝑡
is not in 𝑅. The definitions of selection, projection, cross product,
duplicate elimination, and set operations are standard. We use join ⊲⊳

as a shortcut for a crossproduct followed by a selection. Aggregation
𝛾𝑓 (𝑎)→𝑏;𝐺 (𝑅) groups input tuples based to their values in attributes
𝐺 and then computes the aggregation function 𝑓 over the bag of
values of attribute 𝑎 for each group. Let <𝑂 denote a total order over
the tuples of a relation 𝑅 sorting on attributes 𝑂 and breaking ties
using the remaining attributes. The top-k operator 𝜏𝑂,𝐶 (𝑅) returns
the 𝐶 smallest tuples from 𝑅 wrt. <𝑂 .
Provenance and Sufficient Inputs. In the following, we are inter-
ested in finding subsets 𝐷′ of an input database 𝐷 that are sufficient
for answering a query𝑄 . That is, for which𝑄 (𝐷′) = 𝑄 (𝐷). We refer
to such subsets as sufficient inputs.

DEFINITION 1 (SUFFICIENT INPUT). Given a query 𝑄 and data-
base 𝐷 , we call 𝐷′ ⊆ 𝐷 sufficient for 𝑄 wrt. 𝐷 if 𝑄 (𝐷) = 𝑄 (𝐷′).

Several provenance models for relational queries have been pro-
posed in the literature [25]. Most of these models have been proven
to be instances of the semiring provenance model [47, 48] and its
extensions for difference/negation [39] and aggregation [11]. Our
main interest in provenance is to determine a sufficient subset of
the input database. Thus, even a simple model like Lineage which
encodes provenance as a subset of the input database is expressive
enough. We use 𝑃 (𝑄, 𝐷) to denote the provenance of a query 𝑄 over
database 𝐷 encoded as a bag of tuples and assume that 𝑃 (𝑄,𝐷) is
sufficient for 𝑄 wrt. 𝐷. For instance, we may construct 𝑃 (𝑄, 𝐷) as
the union of the Lineage for all tuples 𝑡 ∈ 𝑄 (𝐷). Our results hold
for any provenance model that guarantees sufficiency.

3.1 Provenance Sketches
We propose provenance sketches to concisely represent a superset
of the provenance of a query 𝑄 (a sufficient subset of the input)
based on horizontal partitions of relations. A sketch contains all
fragments which contain at least one row from the provenance of
𝑄 . We limit the discussion to range-partitioning since it allows us to
exploit existing index structures when using a sketch to skip data.
Range Partitioning. Given a set of intervals over the domains of a
set of attributes 𝐴 ⊂ R, range partitioning determines membership
of tuples in fragments based on which interval their values belong
to. For simplicity, we define range partitioning for a single attribute
𝑎. Fig. 1e shows two range partitions for our running example.

DEFINITION 2 (RANGE PARTITION). Consider a relation 𝑅 and
𝑎 ∈ R. Let D(𝑎) denote the domain of 𝑎 and R = {𝑟1, . . . , 𝑟𝑛} be
a set of intervals [𝑙, 𝑢] ⊆ D(𝑎) such that

⋃𝑛
𝑖=0 𝑟𝑖 = D(𝑎) and

𝑟𝑖 ∩ 𝑟 𝑗 = ∅ for 𝑖 ≠ 𝑗 . The range-partition of 𝑅 on 𝑎 according to R
denoted as 𝐹R,𝑎 (𝑅) is defined as:

𝐹R,𝑎 (𝑅) = {𝑅𝑟1 , . . . , 𝑅𝑟𝑛 } where 𝑅𝑟 = {|𝑡𝑛 | 𝑡𝑛 ∈ 𝑅 ∧ 𝑡 .𝑎 ∈ 𝑟 |}

Provenance Sketches. Consider a database 𝐷 , query 𝑄 , and a range
partition 𝐹R,𝑎 of 𝑅. A provenance sketch P for 𝑄 according to
𝐹R,𝑎 is a subset of the ranges R of 𝐹R,𝑎 such that the fragments
corresponding to the ranges in P fully cover 𝑄’s provenance within
𝑅, i.e., 𝑃 (𝑄, 𝐷) ∩ 𝑅. We use R(𝐷, 𝐹R,𝑎 (𝑅), 𝑄) ⊆ R to denote the set
of ranges whose fragment contains at least one tuple from 𝑃 (𝑄, 𝐷):

R(𝐷, 𝐹R,𝑎 (𝑅), 𝑄) = {𝑟 | 𝑟 ∈ R ∧ ∃𝑡 ∈ 𝑃 (𝑄, 𝐷) : 𝑡 ∈ 𝑅𝑟 }

DEFINITION 3 (PROVENANCE SKETCH). Let 𝑄 be a query, 𝐷
a database, 𝑅 a relation accessed by 𝑄 , and 𝐹R,𝑎 (𝑅) a range par-
tition of 𝑅. We call a subset P of R a provenance sketch iff P ⊇
R(𝐷, 𝐹R,𝑎 (𝑅), 𝑄). A sketch is called accurate if P = R(𝐷, 𝐹R,𝑎 (𝑅),
𝑄). We use 𝑅P , called the instance of P, to denote

⋃
𝑟 ∈P 𝑅𝑟 .

Given a query 𝑄 over relation 𝑅, a provenance sketch P is a
compact and declarative description of a superset of the provenance
of 𝑄 (the instance 𝑅P of P). We call a sketch P accurate if it only
contains ranges whose fragments contain provenance. We use PS
to denote a set of provenance sketches for a subset of the relations
in the database accessed by a query. Consider such a set PS =

{P1, . . . ,P𝑚} where P𝑖 is a sketch for relation 𝑅𝑖 in database 𝐷 and
𝑅𝑖 ≠ 𝑅 𝑗 for 𝑖 ≠ 𝑗 . We use 𝐷PS to denote the database derived from
database 𝐷 by replacing each relation 𝑅𝑖 for 𝑖 ∈ {1, . . . , 𝑛} with 𝑅P𝑖

.
Note that we do not require that all relations of 𝐷 are associated
with a sketch. Abusing notation, we will use 𝐷P to denote 𝐷{P} .
Reconsider the running example in Fig. 1. Let P be the accurate
provenance sketch of 𝑄2 using the range partition 𝐹R,𝑠𝑡𝑎𝑡𝑒 (𝑐𝑖𝑡𝑖𝑒𝑠).
Recall that 𝑃 (𝑄2, 𝑐𝑖𝑡𝑖𝑒𝑠) = {𝑡2, 𝑡3}. Tuples 𝑡2 and 𝑡3 both belong to
fragment 𝑓1 since 𝐶𝐴 ∈ [𝐴𝐿, 𝐷𝐸]. Thus, P = {𝑓1}.
Sketch Safety. By construction we have 𝑃 (𝑄, 𝐷) ⊆ 𝐷PS ⊆ 𝐷.
Recall that 𝑃 (𝑄, 𝐷) is sufficient, i.e., 𝑄 (𝑃 (𝑄,𝐷)) = 𝑄 (𝐷). However,
as shown in Ex. 4 this does not guarantee that 𝑄 (𝐷PS) = 𝑄 (𝐷),
even when PS is accurate. We call a set of sketches safe for a query
𝑄 and database 𝐷 if evaluating 𝑄 over the data described by the
sketches returns the same result as evaluating it over 𝐷 .

DEFINITION 4 (SAFETY). Let 𝑄 be a query and 𝐷 a database.
We call a set of sketches PS safe for 𝑄 and 𝐷 iff 𝑄 (𝐷PS) = 𝑄 (𝐷).

Obviously, only safe sketches are of interest. In Sec. 6 we present
a method for testing which attributes are safe for building sketches
for a query. For that we define attributes to be safe for a database
and query 𝑄 , if all sketches created over these attributes are safe.

DEFINITION 5 (ATTRIBUTE SAFETY). Let 𝐷 be a database, 𝑄
a query, and 𝐴 a set of attributes from the schema of a relation
𝑅 accessed by 𝑄 . We call 𝐴 safe for 𝑄 and 𝐷 if for every range
partition 𝐹R,𝐴 of 𝑅, every sketch P based on 𝐹R,𝐴 is safe for 𝑄 and
𝐷 . A set of attributes 𝑋 =

⋃𝑛
1 𝑋𝑖 where each 𝑋𝑖 belongs to a relation

𝑅𝑖 accessed by 𝑄 is safe for 𝐷 and 𝑄 , if each 𝑋𝑖 is safe for 𝐷 and 𝑄 .

4 PROVENANCE SKETCH CAPTURE
We now discuss how to capture provenance sketches through query
instrumentation. We first review how queries are instrumented to
propagate provenance using Lineage [25, 27, 48] where the prove-
nance of a query result is the set of input tuples that were used to
derive the result. Most approaches operate in two phases: 1) anno-
tate each input tuple with a singleton set containing its identifier,
e.g., the ones shown to the left of each tuple in Fig. 1b and 2) prop-
agate these annotations through the operators of a query such that
each (intermediate) query result is annotated with its provenance.

EXAMPLE 5. To capture the Lineage of each result tuple of the
query 𝑄2 from Ex. 2 we annotate each tuple 𝑡𝑖 from the cities table
(see Fig. 1b) with a singleton set {𝑡𝑖 }. Then annotations are propa-
gated through the operators of 𝑄2. At last we get one result tuple
with annotation {𝑡2, 𝑡3} (see Fig. 1d). The annotation {𝑡2, 𝑡3} means
that the result tuple (CA, 5500) of 𝑄2 was produced by combining
input tuples (6000, San Diego, CA) and (5000, Sacramento, CA).

Our approach for computing sketches also operates in two phases.
However, we annotate each tuple with the fragment the tuple belongs
to instead of the tuple identifier. For a partition 𝐹 , the size of the
annotation is determined by |𝐹 |, i.e., the number of fragments of 𝐹 .
Since the partitions are fixed for a query, the annotations used for
capture only need to record which fragments are present (for each
partition we are using). This can be done compactly using bit sets.
A partition with 𝑛 fragments is encoded as a vector of 𝑛 bits. We
refer to this as the bitset encoding of a sketch. For instance, for the
range-partition on attribute state from Fig. 1e, the fragments 𝑓1
and 𝑓3 are encoded as 1000 and 0010.

4.1 Initializing Annotations
We now discuss how to seed the tuple annotations for a query 𝑄 ac-
cording to a set of range partitions F = {𝐹1, . . . , 𝐹𝑚} over database
𝐷 . Let 𝐹𝑖 be the partition for relation 𝑅𝑖 where 𝑖 ∈ [1,𝑚]. To simplify
the presentation, we assume that no relation is accessed more than
once by 𝑄 , but our approach also handles multiple accesses. Further-
more, we assume that we build sketches on all relations accessed by
the query (we may want to omit relations for which the sketch would
not be selective). Recall that a range partition (Def. 2) assigns tuples
to fragments based on their value in an attribute 𝑎 and a set of ranges
over the domain of 𝑎. We add a projection on top of 𝑅𝑖 to compute
and store each row’s fragment in a column 𝜆𝑅𝑖 computed using a
CASE expression. We use INIT𝐹𝑖 (𝑅𝑖) to denote this instrumentation
step. In relational algebra, we use select(𝜃1 ↦→ 𝑒1, . . . , 𝜃𝑛 ↦→ 𝑒𝑛) to
denote an expression that returns the result of the first 𝑒𝑖 for which
condition 𝜃𝑖 evaluates to true and returns null if all 𝜃𝑖 fail. We use
SNG(𝑖) to denote the singleton bit set for {𝑓𝑖 }. For a range partition
𝐹R,𝑎 (𝑅) with ranges R = {𝑟1, . . . , 𝑟𝑛} we generate the query:

INIT𝐹 (𝑅) B ΠR,select(𝑎∈𝑟1 ↦→SNG (1),...,𝑎∈𝑟𝑛 ↦→SNG (𝑛)) (𝑅) (1)

For example, to instrument the relation access cities (Fig. 1b)
from query𝑄2 using the partition 𝐹𝑠𝑡𝑎𝑡𝑒 (Fig. 1e), we generate query
𝑄𝐼𝑁 𝐼𝑇 shown below (written in SQL for legibility). Based on the
value of attribute state we assign tuples to fragments of 𝐹𝑠𝑡𝑎𝑡𝑒 .

PROP(F , 𝑅) = INITF (𝑅) (𝑟0)

PROP(F ,Π𝐴 (𝑄)) = Π𝐴,Λ (PROP(F , 𝑄)) (𝑟1)

PROP(F , 𝜎𝜃 (𝑄)) = 𝜎𝜃 (PROP(F , 𝑄)) (𝑟2)

PROP(F , 𝑄1 ×𝑄2) = PROP(F , 𝑄1) × PROP(F , 𝑄2) (𝑟4)

PROP(F , 𝜏𝑂,𝐶 (𝑄)) = 𝜏𝑂,𝐶 (PROP(F , 𝑄)) (𝑟5)

PROP(F , 𝑄1 ∪𝑄2) = PROP(F , 𝑄1) ∪ PROP(F , 𝑄2) (𝑟6)

PROP(F , 𝛾𝑓 (𝑎)→𝑏;𝐺 (𝑄)) =
{
Π𝑎,𝐺,Λ (𝛾𝑓 (𝑎)→𝑏;𝐺 (𝑄) ⊲⊳𝑏=𝑎∧𝐺=𝐺 PROP(F , 𝑄)) if 𝑓 =𝑚𝑖𝑛 ∨ 𝑓 =𝑚𝑎𝑥

𝛾𝑓 (𝑎)→𝑏,𝑏𝑖𝑡𝑜𝑟 (Λ) ;𝐺 (PROP(F , 𝑄)) otherwise
(𝑟3)

INSTR(F , 𝑄) = 𝛾𝑏𝑖𝑡𝑜𝑟 (Λ)→Λ (PROP(F , 𝑄)) (𝑟7)

Figure 3: Instrumentation rules for sketch capture

SELECT popden, city, state,

CASE WHEN state >= 'AL' AND state <= 'DE' THEN '1000'

WHEN state >= 'FL' AND state <= 'MI' THEN '0100'

WHEN state >= 'MN' AND state <= 'OK' THEN '0010'

WHEN state >= 'OR' AND state <= 'WY' THEN '0001'

END AS 𝜆𝑠𝑡𝑎𝑡𝑒
FROM cities

QINIT

4.2 Propagating Annotations
We now discuss how to instrument a query to propagate annotations
to generate a single output tuple storing the sketch(es) for the query.
We denote the set of attributes of an instrumented query storing
provenance sketches as Λ. Given a set of range partitions F over
database 𝐷 and query 𝑄 , we use INSTR(F , 𝑄) to denote the result
of instrumenting the query to capture a sketch for F . For two lists
of attributes 𝐴 = (𝑎1 . . . , 𝑎𝑛) and 𝐵 = (𝑏1, . . . , 𝑏𝑛) we write 𝐴 = 𝐵

as a shortcut for
∧

𝑖∈{1,...,𝑛} 𝑎𝑖 = 𝑏𝑖 . We apply similar notation
for bulk renaming 𝐴 → 𝐵 and function application, e.g., 𝑓 (𝐴)
denotes 𝑓 (𝑎1), . . . , 𝑓 (𝑎𝑛). We assume the existence of an aggregation
function 𝑏𝑖𝑡𝑜𝑟 which computes the bit-wise OR of a set of bitsets. For
example, in Postgres this function exists under the name bit_or.
The rules defining INSTR(·) are shown in Fig. 3. As the last step of
the rewritten query INSTR(·) we apply 𝑏𝑖𝑡𝑜𝑟 aggregation to merge
the sketch annotations of the results of the query (𝑟7). The input to
this aggregation is generated using PROP(F , 𝑄) which recursively
replaces operators in 𝑄 with an instrumented version.

Rule 𝑟0 initializes the sketch annotations for relation 𝑅 using
INIT (·) as introduced in Sec. 4.1. For projection we only need to
add the Λ columns from its input to the result schema (𝑟1). Selection
is applied unmodified to the instrumented input (𝑟2). A result tuple
of an aggregation operator with group-by is produced by evaluating
the aggregation function(s) over all tuples from the group. Thus,
if each tuple 𝑡 from a group is annotated with a set of fragments
that is sufficient to produce 𝑡 , then the union of these fragments
is sufficient for reproducing the result for this group. Hence, we
union the provenance sketches for each group using the bitwise
or aggregation function 𝑏𝑖𝑡𝑜𝑟 (𝑟3), e.g., 1000 and 0010 will be
merged producing 1010. For aggregation functions 𝑚𝑖𝑛 and 𝑚𝑎𝑥

it is sufficient to only include tuples with the min/max value in
attribute 𝑎. We implement this by selecting a single tuple with the
min/max value for each group. For cross product we compute the
cross product of the instrumented inputs (𝑟4). For the top-k operator
we apply the operator to its instrumented input (𝑟5). For union we
union the instrumented inputs (𝑟6).

THEOREM 1. Consider a query 𝑄 , database 𝐷, and a set of
range-partitions F for attributes that are safe for 𝑄 and 𝐷. Then
INSTR(F , 𝑄) (𝐷) produces a safe sketch.

The capture query for our running example query 𝑄2 is shown
below. This query returns {1000} which encodes the sketch {𝑓 1}.
Recall that subquery 𝑄𝐼𝑁 𝐼𝑇 was shown already in Sec. 4.1.
SELECT bitor(𝜆𝐹𝑠𝑡𝑎𝑡𝑒) AS 𝜆𝐹𝑠𝑡𝑎𝑡𝑒
FROM (SELECT state,avg(popden) AS avgden, bitor(𝜆𝐹𝑠𝑡𝑎𝑡𝑒) AS 𝜆𝐹𝑠𝑡𝑎𝑡𝑒

FROM 𝑄𝐼𝑁 𝐼𝑇 GROUP BY state ORDER BY avgden DESC LIMIT 1)

4.3 Optimizations
Our instrumentation rules preserve the structure of the input query
in most cases. Thus, the majority of overhead introduced by in-
strumentation is based on evaluating 1) CASE expressions and 2)
𝑏𝑖𝑡𝑜𝑟 aggregations. For 1) to initialize a sketch with 𝑛 fragments,
we can apply binary search to test the membership of a value 𝑣

in range 𝑟𝑖 which reduces the runtime from 𝑂 (𝑛) to 𝑂 (log𝑛). We
implemented this optimization as UDFs written in C in MonetDB
and Postgres, two systems we use in our experimental evaluation.
For 2) if 𝑛 is large, then singleton sets of fragments can be encoded
more compactly by storing and propagating the position of the single
set bit as a fixed-size integer value instead of storing and propagat-
ing a full bitset. This encoding can be retained until we encounter
an aggregation and need to union bitsets. We call this the delay
method. Furthermore, in Postgres, the 𝑏𝑖𝑡𝑜𝑟 aggregation function
results in unnecessary creation of 𝑛 − 1 new bitsets when calculating
the bitwise or of 𝑛 bit sets. Also, bitwise or is applied one byte at a
time. We improve this implementation by computing the operation
one machine-word at a time and by avoiding unnecessary creation
of intermediate bitsets (the No-copy method). For MonetDB we
implement 𝑏𝑖𝑡𝑜𝑟 as a user-defined aggregation function in C.

4.4 Attribute and Partition Selection
Selecting Attributes. The choice of attributes 𝐴 on which we are
creating a sketch can significantly affect the sketch instance size.
The most important factors are (i) does 𝐴 have sufficiently many
distinct values to support fine-grained sketches, (ii) can we exploit
physical design to skip data for a sketch build on 𝐴, and (iii) how
predictive are a tuple’s 𝐴-values of the tuple belonging to the query’s
provenance. Primary key (PK) attributes typically fare well for (i)
and (ii), possibly at the cost of being suboptimal wrt. (iii).

Range Partition Selection. Most DBMS maintain statistics in the
form of equi-depth histograms which provide us with a range-
partitioning of a table on a column. However, our approach is com-
patible with any strategy for determining ranges. If no histogram
with a sufficiently large number of buckets exists, then we instruct
the DBMS to build a new histogram. Based on our experimental
result, we recommend 10,000 fragment sketches as a solid choice
that provides the best trade-off between capture and use performance
for most datasets and workloads (testing on datasets between 1GB
to more than 100GB in size). If the number of distinct values of a
column is less than 10,000, we place each value in a separate range.

5 USING PROVENANCE SKETCHES
Once a sketch P has been captured, we can utilize it to speed up
the subsequent execution of queries. For that we have to instrument
the query to filter out data that does not belong to the sketch. This
is achieved by encoding the sketches as selection conditions and
applying these conditions in selection operators on top of every

relation access that is covered by a sketch. Recall that we use 𝑄 [P]
to denote the result of instrumenting query 𝑄 using sketch P. 𝑄 [P]
is defined as the identity function on all operators except for table
access operators. Let 𝐹 be a range-based partition of a relation 𝑅 on
attribute 𝑎 using ranges R = (𝑟1, . . . , 𝑟𝑛) and P = {𝑓𝑖1 , . . . , 𝑓𝑖𝑚 } be a
sketch based on 𝐹 . We generate a condition

∨𝑚
𝑗=1 𝑎 ∈ 𝑟𝑖 𝑗 to filter 𝑅

based on 𝐹 . Thus, the instrumentation rule for applying the sketch
to 𝑅 is 𝑅 [P] B 𝜎∨𝑚

𝑗=1 𝑎∈𝑟𝑖 𝑗 (𝑅). For example, the query 𝑄2 in the
running example would be rewritten into 𝑄2 [P𝑠𝑡𝑎𝑡𝑒] (see Fig. 1a).

5.1 Optimizations
Databases can exploit physical design to evaluate the type of se-
lection conditions we create for range-based sketches. However, if
|P | is large, i.e., the sketch contains a large number of fragments,
then the size of the selection condition that has to be evaluated
may outweigh this benefit. Furthermore, if the database has to re-
sort to a full table scan, then we pay the overhead of evaluating
a condition that is linear in |𝐹 | for each tuple. We now discuss
how to improve this by reducing the number of conditions and/or
improving the performance of evaluating these conditions. First
off, if a sketch contains a sequence of adjacent fragments 𝑓𝑖 , . . . , 𝑓𝑗

for 𝑖 < 𝑗 , we can replace the conditions
∨𝑗

𝑘=𝑖
𝑎 ∈ 𝑟𝑘 with a sin-

gle condition 𝑎 ∈ ⋃𝑗

𝑘=𝑖
𝑟𝑘 . Reconsider the sketch P = {𝑓1, 𝑓2}

from the example above. Since these two fragments are adjacent,
we can generate a single condition 𝑠𝑡𝑎𝑡𝑒 ∈ [𝐴𝐿,𝑀𝐼] instead of
𝑠𝑡𝑎𝑡𝑒 ∈ [𝐴𝑙, 𝐷𝐸] ∨ 𝑠𝑡𝑎𝑡𝑒 ∈ [𝐹𝐿,𝑀𝐼]. Note that the condition gen-
erated for a range partition checks whether an attribute value is an
element of one of the ranges corresponding to the fragments of the
sketch. Since these ranges are ordered, we can apply binary search
to improve the performance of evaluating a condition with 𝑛 disjunc-
tions from 𝑂 (𝑛) to 𝑂 (log𝑛). We implemented a Postgres extension
to be able to exploit zone maps (brin indexes in Postgres) to skip
data based on such a condition.

6 TESTING SKETCH SAFETY
We develop a sound method that determines whether a given set of
attributes 𝑋 is safe for a query 𝑄 and database 𝐷 . Since we want to
determine upfront whether the sketches on 𝑋 are safe before paying
the cost of creating such sketches, we design a method which only
accesses 𝑄 and basic statistics of 𝐷, specifically the minimum and
maximum values of each column. Given 𝑋 , 𝑄 and the statistics as in-
put, this algorithm constructs a universally quantified logical formula
without free variables such that if this formula evaluates to true,then
𝑋 is safe for 𝑄 and 𝐷 . Similar to recent work on query equivalence
checking [92], we utilize an SMT solver [28] to check whether the
formula is true by rewriting it into negated existential form (a univer-
sally quantified formula is true if its negation is unsatisfiable). For
example, to test ∀𝑎 : 𝑎 < 10, we check whether 𝑎 ≥ 10 is unsatisfi-
able. The formula we construct can be evaluated by SMT solvers
such as Z3 [29] as long as conditions, projection expressions, and
aggregation functions only utilize operations and comparisons that
are supported by the SMT solver. Our algorithm is only sound, but
not complete, because, as we show in [73], any sound and complete
algorithm for this problem has to have full access to the database.

As a convention we implicitly assume that variables are universally
quantified unless explicitly stated otherwise.

Rationale and Considerations. Before explaining our safety check-
ing technique in more detail, we first provide some rationale for its
design and an intuition for what attributes are safe for which classes
of queries. Any set of attributes is safe for monotone queries (for
which𝐷 ⊆ 𝐷′ ⇒ 𝑄 (𝐷) ⊆ 𝑄 (𝐷′)). See [73] for the formal definition
of monotonicity and the proof. For queries involving aggregation, a
major challenge stems from the fact that provenance sketches encode
a superset of the provenance. Thus, they may contain a subset of the
input tuples for a group whose result may not contribute to any query
result tuple. This can lead to the aggregation producing a different
aggregation function result for such a group which in turn may lead
to a different final query result. We already showcased this problem
in Ex. 4. This problem can be avoided by creating the sketch on a
subset of the group-by attributes, i.e., the group-by attributes of an
aggregation query are safe. Non-group-by attributes are safe when
the results produced for partial groups will not affect the final query
result. Thus, our safety check procedure needs to reason about how
the values of a tuple in 𝑄 (𝐷) are related to values of the correspond-
ing tuple in 𝑄 (𝐷PS). For instance, for aggregation function 𝑐𝑜𝑢𝑛𝑡 ,
the count of a partial group included in a sketch is guaranteed to
be smaller than the count for the full group. Then, for a query that
returns the top-k counts or uses a HAVING condition which checks
that the count is larger than a threshold, groups that did not make
the cut in the evaluation of 𝑄 over 𝐷 will also not be in the result
when only the partial group included the sketch is used. Thus, for
such queries, also non-group-by attributes are safe. For instance, if
we would change the aggregation function in query 𝑄2 from Fig. 1
to be 𝑐𝑜𝑢𝑛𝑡 , then the sketch on popden would be safe.

6.1 Generalized Containment
Our approach utilizes a generalization of the subset relationship
between two relations to be able to express that, e.g., a count ag-
gregation returns a subset of the groups over the sketches, but the
counts produced by 𝑄 (𝐷PS) (running the query over the sketches)
are smaller than the counts for 𝑄 (𝐷). Consider following example:

EXAMPLE 6. Reconsider Fig. 1 and let 𝑄𝑡𝑜𝑡𝑎𝑙 be query 𝑄2
where the aggregation function is replaced with sum(popden) AS
sd. Then this query returns (CA,11000) and the provenance of
𝑄𝑡𝑜𝑡𝑎𝑙 is {𝑡2, 𝑡3}. Consider creating a sketch 𝑃𝑆𝑡𝑜𝑡𝑎𝑙 on the partition
𝐹𝑝𝑜𝑝𝑑𝑒𝑛 shown in Fig. 1e. All cities in the provenance belong to 𝑔2
([4001,9000]). Because this fragment contains row 𝑡4 (New York),
evaluating the aggregation subquery (which we denote as𝑄𝑎𝑔𝑔) over
the sketch returns a smaller result for NY (7000). However, this does
not affect the final result, because CA already had a larger sum than
the full group for NY. This does not just work out for this particular
example instance. Since population density is positive, the sum for
any partial group included in the sketch will be smaller than for
𝑄 (𝐷) and, thus, the top-1 operator will filter out these groups.

The definition of generalized containment shown below allows us
to express such complex relationships where one relation contains
some tuples that also exist in another relation, albeit with different
attribute values that obey some constraints.

DEFINITION 6 (GENERALIZED CONTAINMENT). Let 𝑅(𝑎1, . . . ,
𝑎𝑛) and 𝑅′ (𝑏1, . . . , 𝑏𝑛) be two relations with the same arity. Further-
more, let Ψ be a boolean formula over comparisons of the form 𝑎𝑖⋄𝑏𝑖
where 𝑖 ∈ [1, 𝑛] and ⋄ ∈ {≤,=, ≥}. The generalized containment
relationship 𝑅 ≾Ψ 𝑅′ based on Ψ holds for 𝑅 and 𝑅′ if there exists a
mapping M ⊆ 𝑅 × 𝑅′ that fulfills all of the following conditions:
∀𝑡 ∈ 𝑅 : ∃𝑡 ′ ∈ 𝑅′ : M(𝑡, 𝑡 ′) (1) ∀(𝑡, 𝑡 ′) ∈ M : (𝑡, 𝑡 ′) |= Ψ (2)

∀𝑡1, 𝑡2, 𝑡 ′1, 𝑡
′
2 : M(𝑡1, 𝑡 ′1) ∧M(𝑡2, 𝑡 ′2) ∧ (𝑡1 = 𝑡2 ∨ 𝑡 ′1 = 𝑡 ′2)

→ 𝑡1 = 𝑡2 ∧ 𝑡 ′1 = 𝑡 ′2 (3)

Conditions (1) and (3) ensure that every tuple from 𝑅 is “matched”
to exactly one tuple from 𝑅′. Condition (2) ensures that all pairs of
matched tuples fulfill condition Ψ. Note that 𝑅 ⊆ 𝑅′ is a special case
of generalized containment where Ψ =

∧𝑛
𝑖=1 𝑎𝑖 = 𝑏𝑖 . In the follow-

ing, we will use generalized containment to model the relationship
between (intermediate) results of a query over the full input database
and over provenance sketch instances. In this scenario, the two rela-
tions we are comparing have the same schema. To avoid ambiguities
in Ψ, for each attribute 𝑎 in the schema, we use 𝑎PS to refer to the
corresponding attribute over the instance of the sketches. Recon-
sider Ex. 6. The relationship between the results of the subquery
𝑄𝑎𝑔𝑔 over 𝐷 and 𝐷P can be encoded as the generalized containment
relationship 𝑄𝑎𝑔𝑔 (𝐷P) ≾𝑠𝑑PS≤𝑠𝑑∧𝑠𝑡𝑎𝑡𝑒PS=𝑠𝑡𝑎𝑡𝑒 𝑄𝑎𝑔𝑔 (𝐷).

6.2 Inference Rules
Given a query 𝑄 and a set of attributes 𝑋 from the database 𝐷,
we construct a logical formula 𝑔𝑐 (𝑄,𝑋) which evaluates to true iff
𝑄 (𝐷PS) is generalized contained in 𝑄 (𝐷) according to a formula
Ψ𝑄,𝑋 for any set of sketches PS created on𝑋 for 𝐷 . For instance, for
an aggregation, Ψ𝑄,𝑋 encodes how the aggregation function results
for 𝐷 and 𝐷PS are related to each other. Intuitively, 𝑔𝑐 (𝑄,𝑋) does
encode constraints that have to hold for attribute values of any tuple
produced by 𝑄 (𝐷PS) and/or by 𝑄 (𝐷). For instance, if the query
contains a selection on a condition 𝑎 < 10 then all result tuples of
the selection are guaranteed to fulfill 𝑎 < 10. We demonstrate in
[73] that this type of generalized containment (based on 𝑔𝑐 (𝑄,𝑋))
does imply 𝑄 (𝐷PS) = 𝑄 (𝐷). In the construction of 𝑔𝑐 (𝑄,𝑋) we
make use of several auxiliary constructs:

pred(Q). We use 𝑝𝑟𝑒𝑑 to record conditions which are fulfilled by all
tuples produced by query 𝑄 and its subqueries. 𝑝𝑟𝑒𝑑 is computed
bottom-up. For instance, selection and join conditions are added
to 𝑝𝑟𝑒𝑑, since all tuples produced by such operators have to fulfill
these conditions. For example, given𝑄 B 𝜎𝑎=5 (Π𝑎 (𝜎𝑏<4 (𝑅))), then
𝑝𝑟𝑒𝑑 (𝑄) = (𝑎 = 5 ∧ 𝑏 < 4). Note that in 𝑝𝑟𝑒𝑑 (𝑅) we use database
statistics to bound the values of tuples from input relation 𝑅. 𝑚𝑖𝑛(𝑎)
(𝑚𝑎𝑥 (𝑎)) denotes the smallest (largest) value in attribute 𝑎.

expr(Q). This formula encodes for every generalized projection
how the value of attributes in the output of the projection are re-
lated to the values of attributes in its input. For example, for 𝑄 B
Π𝑎+𝑏→𝑥,𝑐+𝑑→𝑦 , we get 𝑒𝑥𝑝𝑟 (𝑄) = (𝑎 + 𝑏 = 𝑥 ∧ 𝑐 + 𝑑 = 𝑦).

For simplicity, we assume that attribute names are unique. Fur-
thermore, we use 𝑐𝑜𝑛𝑑𝑠 (𝑄) to denote 𝑝𝑟𝑒𝑑 (𝑄) ∧ 𝑒𝑥𝑝𝑟 (𝑄) and 𝑄PS

to denote query𝑄 applied to the instance of PS. We define 𝑔𝑐 (𝑄,𝑋)
using a set of rules, one for each operator of our algebra. We apply
these rules recursively in a bottom-up traversal. That is, whether
𝑔𝑐 (𝑄,𝑋) holds is based on the root operator of 𝑄 and whether 𝑔𝑐

Query 𝑄 𝑔𝑐 (𝑄,𝑋)
𝑅 true
𝛾𝑓 (𝑎)→𝑏;𝐺 (𝑄1) 𝑔𝑐 (𝑄1, 𝑋1) ∧ (∀𝑔 ∈ 𝐺 : Ψ𝑄1,𝑋1 ∧ 𝑐𝑜𝑛𝑑𝑠 (𝑄1PS) ∧ 𝑐𝑜𝑛𝑑𝑠 (𝑄1) → 𝑔PS = 𝑔)
𝜏𝑂,𝐶 (𝑄1) 𝑔𝑐 (𝑄1, 𝑋1) ∧ (∀𝑜 ∈ 𝑂 : Ψ𝑄1,𝑋1 ∧ 𝑐𝑜𝑛𝑑𝑠 (𝑄1PS) ∧ 𝑐𝑜𝑛𝑑𝑠 (𝑄1) → 𝑜 ≤ 𝑜PS)

Figure 4: Exemplary rules for 𝑔𝑐 (𝑄,𝑋)

holds for the root’s children. Because of space limitations, we only
show some 𝑔𝑐 rules used in our examples in Fig. 4. The remaining
𝑝𝑟𝑒𝑑 , 𝑒𝑥𝑝𝑟 , and 𝑔𝑐 rules are shown in [73].

Table Access. For a table access operator we know that 𝑅PS ⊆
𝑅. Thus, we set 𝑔𝑐 (𝑅,𝑋) = true and Ψ𝑅,𝑋 to the equality on all
attributes, i.e., Ψ𝑅,𝑋 =

∧
𝑎∈SCH (𝑄) 𝑎

PS = 𝑎.

Aggregation. In Fig. 4, we check whether the conditions for the
input of the aggregation (𝑄1) do imply that all group-by attributes are
equal on 𝐷 and 𝐷PS . Here, we use 𝑋1 to represent the attributes in
𝑋 which are from relations accessed by 𝑄1 (for aggregation we have
𝑋1 = 𝑋). If generalized containment holds for 𝑄1 and the group-
by attributes are equal for all inputs, then generalized containment
will hold for the result. To determine Ψ𝑄,𝑋 which, in addition to
constraints on the attributes from 𝑄1, encodes how the aggregation
function result (attributes 𝑏 and 𝑏PS) for a group over 𝐷 and 𝐷PS
are related to each other, we have to consider several cases:

Ψ𝑄,𝑋 =


Ψ𝑄1,𝑋1 ∧ 𝑏PS = 𝑏 if ∀𝑥 ∈ 𝑋1∃𝑔 ∈ 𝐺 : 𝑐𝑜𝑛𝑑𝑠 (𝑄1) → 𝑥 = 𝑔

Ψ𝑄1,𝑋1 ∧ 𝑏PS ≤ 𝑏 if ∃𝑥 : 𝑥 ∈ 𝑋1 ∧ 𝑥 ∉ 𝐺 ∧ (𝑓 = 𝑐𝑜𝑢𝑛𝑡 ∨ (𝑓 ∈ {𝑠𝑢𝑚,𝑚𝑎𝑥} ∧ (𝑐𝑜𝑛𝑑𝑠 (𝑄1) → 𝑎 ≥ 0)))
Ψ𝑄1,𝑋1 ∧ 𝑏PS ≥ 𝑏 if ∃𝑥 : 𝑥 ∈ 𝑋1 ∧ 𝑥 ∉ 𝐺 ∧ (𝑓 ∈ {𝑠𝑢𝑚,𝑚𝑖𝑛} ∧ (𝑐𝑜𝑛𝑑𝑠 (𝑄1) → 𝑎 ≤ 0))
Ψ𝑄1,𝑋1 otherwise

(i) if 𝑋1 is a set of attributes that is guaranteed to be equal to a subset
of the group-by attributes, then calculating the aggregation function
over the sketch instance yields the same result as over the database,
because each group is contained in exactly one fragment of the parti-
tion on which the sketch is build on. Thus, either all or none of the
tuples of a group are included in 𝐷PS and for all groups included in
𝐷PS , the aggregation function result will be the same in 𝑄 (𝐷PS)
and 𝑄 (𝐷); (ii) for aggregation functions that are monotone (e.g.,
count, max, or sum over positive numbers) we know that the aggre-
gation function result produced for a group that occurs in 𝑄 (𝐷PS)
has to be smaller than or equal to the result for the same group in
𝑄 (𝐷). Thus, if the constraints we have derived for the input of the
aggregation imply that the input attribute 𝑎 for the aggregation func-
tion is larger than 0, then 𝑏PS ≤ 𝑏 holds; (iii) the third case handles
min and sum aggregation over negative numbers; (iv) otherwise, we
cannot guarantee any relationship between 𝑏 and 𝑏PS .

Top-K. Recall that the top-k operator returns the 𝑘 tuples with the
smallest values in the order-by attributes 𝑂 . We check whether the
condition established for 𝑄1 imply that the order-by attribute values
for 𝐷PS are larger than or equal to the ones for 𝐷 . If that is the case,
then tuples that were not part of the top-k answer for 𝐷 , will not be
in top-k on 𝐷PS either. Since no additional attributes are created by
this operator, Ψ𝑄,𝑋 is the same as Ψ𝑄1,𝑋1 .

EXAMPLE 7. Reconsider query 𝑄𝑡𝑜𝑡𝑎𝑙 written in relational al-
gebra: 𝜏𝑑𝑒𝑠𝑐,1 (Π𝑠𝑡𝑎𝑡𝑒,𝑠𝑑 ·−1→𝑑𝑒𝑠𝑐 (𝛾𝑠𝑡𝑎𝑡𝑒 ; 𝑠𝑢𝑚 (𝑝𝑜𝑝𝑑𝑒𝑛)→𝑠𝑑 (𝑐𝑖𝑡𝑖𝑒𝑠))).
Since the top-k operator uses ascending order, we have to encode
DESC by multiplying 𝑠𝑑 with −1. To determine whether popden is a
safe attribute for 𝑄𝑡𝑜𝑡𝑎𝑙 , we calculate 𝑔𝑐 (𝑄𝑡𝑜𝑡𝑎𝑙 , {𝑝𝑜𝑝𝑑𝑒𝑛}) using
the rules from Fig. 4. For relation CITIES, since 𝑝𝑜𝑝𝑑𝑒𝑛 > 0, then
𝑝𝑟𝑒𝑑 (𝑐𝑖𝑡𝑖𝑒𝑠) = 𝑝𝑜𝑝𝑑𝑒𝑛 > 0, 𝑒𝑥𝑝𝑟 (𝑐𝑖𝑡𝑖𝑒𝑠) = ∅, Ψ𝑐𝑖𝑡𝑖𝑒𝑠,{𝑝𝑜𝑝𝑑𝑒𝑛} =

𝑝𝑜𝑝𝑑𝑒𝑛PS = 𝑝𝑜𝑝𝑑𝑒𝑛 ∧ 𝑐𝑖𝑡𝑦PS = 𝑐𝑖𝑡𝑦 ∧ 𝑠𝑡𝑎𝑡𝑒PS = 𝑠𝑡𝑎𝑡𝑒, and
𝑔𝑐 (𝑐𝑖𝑡𝑖𝑒𝑠, {𝑝𝑜𝑝𝑑𝑒𝑛}) evaluates to true. Next, 𝑔𝑐 (𝑄𝑎𝑔𝑔, {𝑝𝑜𝑝𝑑𝑒𝑛})
evaluates to true, because Ψ𝑐𝑖𝑡𝑖𝑒𝑠,{𝑝𝑜𝑝𝑑𝑒𝑛} states that the group-
by attribute (𝑠𝑡𝑎𝑡𝑒) values are equal: 𝑠𝑡𝑎𝑡𝑒PS = 𝑠𝑡𝑎𝑡𝑒. Since 𝑠𝑑 is
computed as a sum over an attribute with positive values, we add
𝑠𝑑 ≥ 𝑠𝑑PS to Ψ𝑄𝑎𝑔𝑔,{𝑝𝑜𝑝𝑑𝑒𝑛} . The projection multiplies 𝑠𝑑 with −1.
Thus, the constraint 𝑑𝑒𝑠𝑐 = 𝑠𝑑 · −1 is added. Finally, for the top-k
operator, 𝑑𝑒𝑠𝑐 = 𝑠𝑑 · −1 in conjunction with 𝑠𝑑 ≥ 𝑠𝑑PS implies
𝑑𝑒𝑠𝑐 ≤ 𝑑𝑒𝑠𝑐PS and 𝑔𝑐 (𝑄𝑡𝑜𝑡𝑎𝑙 , {𝑝𝑜𝑝𝑑𝑒𝑛}) evaluates to true. Hence,
any sketch build on attribute 𝑝𝑜𝑝𝑑𝑒𝑛 is safe for this query.

We now show that our safety check condition is correct, i.e., if
𝑔𝑐 (𝑄,𝑋) holds, then 𝑋 is a safe set of attributes for 𝑄 .

THEOREM 2 (𝑔𝑐 (𝑄,𝑋) IMPLIES SAFETY OF 𝑋). Let 𝑄 be a
query, 𝐷 be a database, and 𝑋 =

⋃𝑛
1 𝑋𝑖 a set of attributes where

each 𝑋𝑖 belongs to a relation 𝑅𝑖 accessed by 𝑄 such that 𝑅𝑖 ≠ 𝑅 𝑗 for
𝑖 ≠ 𝑗 . If 𝑔𝑐 (𝑄,𝑋) holds, then 𝑋 is a safe for 𝑄 wrt. 𝐷 .

PROOF SKETCH. The claim is proven by first proving two lem-
mas that state that (i) 𝑔𝑐 (𝑄,𝑋) implies 𝑔𝑐 (𝑄 ′, 𝑋 ′) for any subquery
of 𝑄 (this follows trivially from the definition of 𝑔𝑐) and that (ii)
𝑔𝑐 (𝑄 ′, 𝑋 ′) implies 𝑄 ′ (𝐷PS) ≾Ψ 𝑄 ′ (𝐷) for any subquery 𝑄 ′ of
𝑄 . (ii) is proven by induction over the structure of a query. Then
based on these results we prove the theorem by demonstrating that
𝑔𝑐 (𝑄,𝑋) together with the fact that 𝐷PS contains the provenance
of 𝑄 implies the claim. □

7 REUSING PROVENANCE SKETCHES
Given a set of accurate provenance sketches PS captured for a query
𝑄 , we would like to be able to use PS to answer future queries
𝑄 ′. To determine whether this is possible, we need to determine
whether 𝐷PS is sufficient for 𝑄 ′. This is similar to checking query
containment which is known to be undecidable for the class of
queries we are interested in [19, 57, 83]. We develop a solution for a
restricted version of this problem: reusing sketches across multiple
instances of a parameterized query [10]. Given the prevalence of
parameterized queries in applications and reporting tools that access
a database, this is an important special case. The major result of this
section is a sufficient condition for checking whether a sketch can
be reused that is rooted in the safety conditions from Sec. 6.

Let P be a countable set of variables called parameters. A pa-
rameterized query T [®𝑝] for ®𝑝 = (𝑝1, . . . , 𝑝𝑛) and 𝑝𝑖 ∈ P is a
relational algebra expression where conditions of selections may
refer to parameters from the set {𝑝𝑖 }. We assume that each pa-
rameter from ®𝑝 is referenced at least once by T [®𝑝]. A parameter
binding ®𝑣 for T [®𝑝] is a vector of constants, one for each param-
eter 𝑝𝑖 from ®𝑝. The instance T [®𝑣] of T [®𝑝] for ®𝑣 is the result of
substituting each 𝑝𝑖 with 𝑣𝑖 in T . For instance, the parameterized
SQL query SELECT * FROM R WHERE a < $1 can be written as
T [𝑝1] = 𝜎𝑎<𝑝1 (𝑅). We define the sketch reusability problem as:
given a parameterized query T , two instances 𝑄 and 𝑄 ′ for T , and
a safe set of provenance sketches PS for 𝑄 , determine whether
𝐷PS is sufficient for 𝑄 ′. In the remainder of this section we develop
a sufficient condition for sketch reusability. Before presenting our
condition, we first state three observations. (i) The same sets of
attributes are safe for all instances of a parameterized query. (ii)
Adding additional fragments to a safe sketch P for a query 𝑄 yields

a safe sketch (Sec. 6). (iii) Recall that accurate provenance sketches
are sketches which do only contain ranges whose fragments con-
tain provenance. Consider a database 𝐷 and two queries 𝑄 and 𝑄 ′

and denote the provenance of 𝑄 (𝑄 ′) as 𝑃 (𝑄,𝐷) (𝑃 (𝑄 ′, 𝐷)), two
sets of accurate provenance sketches PS and PS′ build over the
same attributes 𝑋 and partitions such that PS (PS′) is a sketch
for 𝑄 (𝑄 ′). If 𝑃 (𝑄, 𝐷) ⊇ 𝑃 (𝑄 ′, 𝐷) then PS ⊇ PS′ and, thus, also
𝐷PS ⊇ 𝐷PS′ .

Based on these observations, we prove three lemmas that imply
that a provenance sketch for any instance𝑄 of a parameterized query
T is safe for another instance 𝑄 ′ of T if 𝑃 (𝑄, 𝐷) ⊇ 𝑃 (𝑄 ′, 𝐷). We
refer to this as provenance containment. We refer the interested
reader to [73] for the details. In the following we develop a suffi-
cient condition that guarantees provenance containment for all input
databases 𝐷 . We again use an SMT solver similar to how we checked
safety in Sec. 6. Our condition consists of two parts: 𝑢𝑐𝑜𝑛𝑑𝑠 (𝑄 ′, 𝑄)
(shown below) and 𝑔𝑒 (𝑄 ′, 𝑄). Condition 𝑔𝑒 (Fig. 5) serves a similar
purpose as 𝑔𝑐 in our safety condition. It is defined recursively over
the structure of a query and we construct a formula Ψ𝑄 ′,𝑄 over com-
parisons between attributes from 𝑄 and 𝑄 ′ such that 𝑔𝑒 (together
with the condition 𝑢𝑐𝑜𝑛𝑑𝑠 explained below) implies general contain-
ment (𝑄 ′ (𝐷) ≾Ψ𝑄′,𝑄 𝑄 (𝐷)). Furthermore, we demonstrate that 𝑔𝑒 in
conjunction with 𝑢𝑐𝑜𝑛𝑑𝑠 implies provenance containment and, thus,
safety of PS for 𝑄 ′. We will use 𝑎 to refer to attributes from 𝑄 and
𝑎′ to refer to the corresponding attribute from 𝑄 ′. Similarly, if 𝜃 is a
condition in 𝑄 , then 𝜃 ′ denotes the corresponding condition in 𝑄 ′.

The main difference of 𝑔𝑒 and 𝑔𝑐 is that we are now dealing with
two different queries instead of one query. The selection conditions
of the two queries that restrict values of an attribute may be spread
over multiple operators in these queries. It is possible that the condi-
tions of all selections of 𝑄 ′ imply the conditions of all selections of
𝑄 even though this does not hold for all individual selections of these
two queries. As a trivial example consider 𝑄 = 𝜎𝑎=40 (𝜎𝑎>30 (𝑅))
and 𝑄 ′ = 𝜎𝑎=40 (𝜎𝑎>10 (𝑅)). Subquery 𝜎𝑎>10 (𝑅) is not contained in
𝜎𝑎>30 (𝑅), but 𝑄 and 𝑄 ′ are equivalent. To be able to determine gen-
eralized containment, even if it does not hold for a subquery, we do
not test generalized containment for selections in 𝑔𝑒. Instead we use
condition 𝑢𝑐𝑜𝑛𝑑𝑠 (𝑄 ′, 𝑄) to test whether all conditions in 𝑝𝑟𝑒𝑑 (𝑄 ′)
imply 𝑝𝑟𝑒𝑑 (𝑄):

𝑢𝑐𝑜𝑛𝑑𝑠 (𝑄 ′, 𝑄) = Ψ𝑄 ′,𝑄∧𝑝𝑟𝑒𝑑 (𝑄 ′)∧𝑒𝑥𝑝𝑟 (𝑄 ′)∧𝑒𝑥𝑝𝑟 (𝑄) → 𝑝𝑟𝑒𝑑 (𝑄)

For the example shown above this means we test 𝑎 = 𝑎′ ∧ 𝑎′ =

40 ∧ 𝑎′ > 10 → 𝑎 = 40 ∧ 𝑎 > 30 instead of testing 𝑎 = 𝑎′ ∧ 𝑎′ >
10 → 𝑎 > 30 first (which would fail). A similar problem arises
when testing whether the input groups for an aggregation are the
same for both queries. To avoid failing, because we may not have
seen all restrictions for the values of group-by attributes yet, we only
check the restrictions on non-group-by attributes enforced by the two
queries. Here non-grp-pred(𝑄) denotes the result of putting 𝑝𝑟𝑒𝑑 (𝑄)
into conjunctive normal form and removing all conjuncts that only
reference group-by attributes, e.g., given 𝑝𝑟𝑒𝑑 (𝑄) = 𝑎 > 10 ∧ 𝑔 < 5
where 𝑔 is a group-by attribute, we get non-grp-pred(𝑄) = 𝑎 > 10.
We construct two conditions 1○ and 2○ to test whether it is the case
that for any group that exists in both 𝑄 ′

1 (𝐷) and 𝑄1 (𝐷), the group
for 𝑄 ′

1 contains a subset of the tuples of the corresponding group for
𝑄1 (or vice versa). If both 1○ and 2○ hold, then 𝑄 ′

1 and 𝑄1 produce
the same result for every group that exists in both query results. Thus,

Ψ𝑅′,𝑅 =
∧

𝑎∈SCH (𝑅) 𝑎 = 𝑎′

Ψ𝜎𝜃 ′ (𝑄 ′
1),𝜎𝜃 (𝑄1) = ΨΠ𝐴 (𝑄 ′

1),Π𝐴 (𝑄1) = Ψ𝛿 (𝑄 ′
1),𝛿 (𝑄1) = Ψ𝑄 ′

1,𝑄1

Ψ𝑄 ′
1×′𝑄 ′

2,𝑄1×𝑄2 = Ψ𝑄 ′
1,𝑄1 ∧ Ψ𝑄 ′

2,𝑄2

Ψ𝑄 ′
1∪′𝑄 ′

2,𝑄1∪𝑄2 =
∧𝑛

𝑖=1 (Ψ𝑄 ′
1,𝑄1 → 𝑎𝑖 = 𝑎′

𝑖
∧ Ψ𝑄 ′

2,𝑄2 → 𝑏𝑖 = 𝑏′
𝑖
)

→ 𝑎𝑖 = 𝑎′
𝑖

where SCH(𝑄1) = (𝑎1, . . . , 𝑎𝑛)
and SCH(𝑄2) = (𝑏1, . . . , 𝑏𝑛)

Query T 𝑔𝑒 (𝑄 ′, 𝑄)
𝑅 true
𝜎𝜃 (T1)/Π𝐴 (T1) 𝑔𝑒 (𝑄 ′

1, 𝑄1)
𝛾𝑓 (𝑎)→𝑏;𝐺 (T1) 𝑔𝑒 (𝑄 ′

1, 𝑄1) ∧ (∀𝑔 ∈ 𝐺 : Ψ𝑄 ′
1,𝑄1 ∧ 𝑐𝑜𝑛𝑑𝑠 (𝑄1) ∧ 𝑐𝑜𝑛𝑑𝑠 (𝑄 ′

1) → 𝑔 = 𝑔′)
𝛿 (T1) 𝑔𝑒 (𝑄 ′

1, 𝑄1) ∧ (∀𝑎 ∈ SCH(𝑄1) : Ψ𝑄 ′
1,𝑄1 ∧ 𝑐𝑜𝑛𝑑𝑠 (𝑄1) ∧ 𝑐𝑜𝑛𝑑𝑠 (𝑄 ′

1) → 𝑎 = 𝑎′)
T1 ∪ T2/T1 × T2 𝑔𝑒 (𝑄 ′

1, 𝑄1) ∧ 𝑔𝑒 (𝑄 ′
2, 𝑄2)

(a) 𝑔𝑒 (𝑄 ′,𝑄)

Ψ𝛾 ′
𝑓 (𝑎)→𝑏;𝐺 (𝑄 ′

1),𝛾𝑓 (𝑎)→𝑏;𝐺 (𝑄1) =


Ψ𝑄 ′

1,𝑄1 ∧ 𝑏 = 𝑏′ if 1○ ∧ 2○
Ψ𝑄 ′

1,𝑄1 ∧ 𝑏 ≤ 𝑏′ else if 2○ ∧ ((𝑓 = 𝑠𝑢𝑚 ∨𝑚𝑖𝑛) ∧ (𝑐𝑜𝑛𝑑𝑠 (𝑄1) → 𝑎 < 0))
Ψ𝑄 ′

1,𝑄1 ∧ 𝑏 ≥ 𝑏′ else if 2○ ∧ (𝑓 = 𝑐𝑜𝑢𝑛𝑡 ∨ ((𝑓 = 𝑠𝑢𝑚 ∨𝑚𝑎𝑥) ∧ (𝑐𝑜𝑛𝑑𝑠 (𝑄1) → 𝑎 > 0)))
Ψ𝑄 ′

1,𝑄1 otherwise

1○ Ψ𝑄 ′
1,𝑄1 ∧ non-grp-pred(𝑄1) ∧ 𝑒𝑥𝑝𝑟 (𝑄1) ∧ 𝑒𝑥𝑝𝑟 (𝑄 ′

1) → non-grp-pred(𝑄 ′
1) 2○ Ψ𝑄 ′

1,𝑄1 ∧ non-grp-pred(𝑄 ′
1) ∧ 𝑒𝑥𝑝𝑟 (𝑄 ′

1) ∧ 𝑒𝑥𝑝𝑟 (𝑄1) → non-grp-pred(𝑄1)

(b) Ψ𝑄 ′,𝑄

Figure 5: Rules defining 𝑔𝑒 (𝑄 ′, 𝑄) and Ψ𝑄 ′,𝑄 which are used to test reusability

the aggregation function result produced for these groups by the two
queries are equal (we can add 𝑏 = 𝑏′ to Ψ𝑄 ′,𝑄). For the 2nd and 3rd
case, we check whether the tuples in a group for 𝑄 ′

1 is a subset of the
tuples for same group in 𝑄1. If this is the case and are we using𝑚𝑖𝑛

or 𝑠𝑢𝑚 over negative numbers than then the aggregation function
result for 𝑄 ′

1 is smaller than the one for 𝑄1. The 3rd case is the
symmetric case for 𝑠𝑢𝑚 over positive numbers or𝑚𝑎𝑥 aggregation.

EXAMPLE 8. Consider the parameterized query T = 𝜎𝑐𝑛𝑡>$2 (
𝛾𝑠𝑡𝑎𝑡𝑒 ;𝑐𝑜𝑢𝑛𝑡 (∗)→𝑐𝑛𝑡 (𝜎𝑝𝑜𝑝𝑑𝑒𝑛>$1 (𝑐𝑖𝑡𝑖𝑒𝑠))). This query returns states
that have more than $2 cities with a population density of at least $1.
Assume 𝑄 and 𝑄 ′ are two instances of T with parameters binding
(100, 10) and (100, 15) for ($1, $2), respectively. We use 𝑄𝑎𝑔𝑔 and
𝑄 ′
𝑎𝑔𝑔 to denote the subqueries rooted at the aggregation operator. To

determine whether a set of sketches PS for 𝑄 can be used to answer
𝑄 ′, we construct the conditions shown below. We use 𝑝, 𝑐, and 𝑠 to
denote 𝑝𝑜𝑝𝑑𝑒𝑛, 𝑐𝑖𝑡𝑦, and 𝑠𝑡𝑎𝑡𝑒, respectively.

𝑝𝑟𝑒𝑑 (𝑄) = 𝑝 > 100 ∧ 𝑐𝑛𝑡 > 10 𝑝𝑟𝑒𝑑 (𝑄 ′) = 𝑝′ > 100 ∧ 𝑐𝑛𝑡 ′ > 15
Ψ𝑄 ′,𝑄 = 𝑝 = 𝑝′ ∧ 𝑐 = 𝑐′ ∧ 𝑠 = 𝑠′ ∧ 𝑐𝑛𝑡 = 𝑐𝑛𝑡 ′

Since this query does not contain any projections, 𝑒𝑥𝑝𝑟 (𝑄) and
𝑒𝑥𝑝𝑟 (𝑄 ′) are empty. The condition 𝑔𝑒 (𝑄 ′, 𝑄) constructed for this
query tests the relationship between group-by attributes in the inputs
of the aggregation subqueries 𝑄𝑎𝑔𝑔 and 𝑄𝑎𝑔𝑔′ . Since Ψ𝑄 ′

𝑎𝑔𝑔,𝑄𝑎𝑔𝑔

contains 𝑠 = 𝑠′, 𝑔𝑒 (𝑄 ′, 𝑄) holds. Furthermore, both 1○ and 2○ hold
and, thus, we add 𝑐𝑛𝑡 = 𝑐𝑛𝑡 ′ to Ψ𝑄 ′,𝑄 . Finally, 𝑢𝑐𝑜𝑛𝑑𝑠 (𝑄 ′, 𝑄) tests

Ψ𝑄 ′,𝑄 ∧ 𝑝𝑟𝑒𝑑 (𝑄 ′) ∧ 𝑒𝑥𝑝𝑟 (𝑄 ′) ∧ 𝑒𝑥𝑝𝑟 (𝑄) → 𝑝𝑟𝑒𝑑 (𝑄)
Substituting the conditions shown above we get 𝑝 = 𝑝′ ∧ 𝑐𝑛𝑡 =

𝑐𝑛𝑡 ′∧𝑝 > 100∧𝑐𝑛𝑡 ′ > 15∧𝑝′ > 100∧𝑐𝑛𝑡 > 10. Since this condition
holds for all possible values of the variables in the formula (recall
that free variables are assumed to be universally quantified), we can
use PS to answer 𝑄 ′.

We now demonstrate that our approach is sound.

THEOREM 3. Let 𝑄 and 𝑄 ′ be two instances of a parameterized
query T , 𝐷 be a database, and PS a set of safe provenance sketches
of 𝑄 with respect to 𝐷 .

𝑔𝑒 (𝑄 ′, 𝑄) ∧ 𝑢𝑐𝑜𝑛𝑑𝑠 (𝑄 ′, 𝑄) ⇒ PS is safe for 𝑄 ′ and𝐷

PROOF SKETCH. We first demonstrate that𝑔𝑒 (𝑄 ′, 𝑄)∧𝑢𝑐𝑜𝑛𝑑𝑠 (𝑄 ′, 𝑄)
implies that the generalized containment 𝑄 ′ (𝐷) ≾Ψ𝑄′,𝑄 𝑄 (𝐷) holds,

thus, establishing a connection between all tuples in 𝑄 ′ (𝐷) and tu-
ples of 𝑄 (𝐷). We then show that given an arbitrary mapping M
based on which 𝑄 ′ (𝐷) ≾Ψ𝑄′,𝑄 𝑄 (𝐷), for any (𝑡 ′, 𝑡) ∈ M, the prove-
nance of 𝑡 ′ ∈ 𝑄 ′ (𝐷) is a subset of the provenance of 𝑡 ∈ 𝑄 (𝐷). By
definition of generalized containment, for all 𝑡 ′ ∈ 𝑄 ′ (𝐷) there has to
exist 𝑡 ∈ 𝑄 (𝐷) such that (𝑡 ′, 𝑡) ∈ M which immediately implies that
𝑃 (𝑄 ′, 𝐷) ⊆ 𝑃 (𝑄,𝐷). Since we have shown before that provenance
containment implies that PS is safe for 𝑄 ′, this concludes the proof.
For the detailed proof, please see [73]. □

8 SELF-TUNING
To be able to use PBDS to optimize workloads consisting of mul-
tiple instances of one or more parameterized queries, we design a
simple self-tuning strategy. We leave a detailed study of self-tuning
and more complex strategies to future work. Our strategy decides
for each incoming query whether we will capture a sketch, use a
previously captured sketch, or just execute the query without any in-
strumentation. We use our safety tests to determine which attributes
are safe for a parameterized query and the method described in Sec. 7
to determine whether one of the sketches we have captured can be
used to answer an incoming query.

If this is the case, we instrument the query to use this sketch. If
no such sketch exists, then we record what sketch could have been
used for the query. To avoid paying overhead for sketches that are
rarely used, we only create a new sketch once we have accumulated
enough evidence that the sketch is needed (the number of times it
could have been used is above a threshold). We call this the adaptive
strategy. In [73] we also evaluate an eager strategy that creates new
sketches whenever a query cannot use any of the existing sketches.
We keep track of sketches we have captured by mapping pairs of
parameterized queries and parameter bindings to the sketches we
have created for these queries and parameter bindings.

9 EXPERIMENTS
All experiments were run on a machine with 2 x 3.3Ghz AMD
Opteron 4238 CPUs (12 cores) and 128GB RAM running Ubuntu
18.04 (linux kernel 4.15.0). We use Postgres 11.4, MonetDB 11.33.11
and DB-X (name omitted due license restrictions). In preliminary
experiments, we have evaluated the optimizations for sketch capture
from Sec. 4.3, demonstrating that using binary search to determine
which partition a tuple belongs to and representing singleton sketches

as integers instead of sets is always beneficial (see [73]). Thus,
we always applied these optimizations. In all experiments, we
determined what attributes are safe using the techniques from Sec. 6.
For experiments measuring the end-to-end performance of PBDS,
the cost of safety and reuse checks is included in the runtime.

9.1 Workloads and Datasets
TPC-H. We use the TPC-H [1] benchmark at SF1 (∼ 1GB) and
SF10 (∼ 10GB) to evaluate performance.
Stack Overflow. This is an archive of content from https://www.
kaggle.com/stackoverflow/stackoverflow. It consists of relations:
users (∼12.5m rows), badges (∼35.9m rows), comments (∼75.9m
rows) and posts (∼48.5m rows). We use ten real queries from or mod-
ified from https://data.stackexchange.com/stackoverflow/queries: S-
Q1: The 10 users with the most number of posts. S-Q2: Owners of
the 10 most favored posts. S-Q3: The 10 users that authored the
most comments. S-Q4: The 10 users with the most badges. S-Q5:
Users who did post between 47945 and 52973 comments. The
remaining queries and SQL code for all queries are shown in [73].

9.2 TPC-H
Because of the TPC-H benchmark’s artificial data distribution, this
stresses our approach since there are essentially no meaningful cor-
relations that we can exploit. As explained in Sec. 4.4 , we use
equi-depth histograms maintained as statistics by the DBMS to de-
termine the partition ranges for sketches. We generate sketches on
primary key attributes (PK). However, for cases where the PK is
unsafe, we build sketches over the query’s group-by attributes. PK
attributes have the advantage that both Postgres and MonetDB auto-
matically build indexes on PK columns. We first evaluated how the
number of fragments of a partition affect the selectivity of sketches
(the fraction of input data covered by the sketch). We show these
sketch selectivities in [73]. For many queries we already achieve
selectivities of a few percent for PS4000 (4000 fragments). For
queries that are omitted in the following either the provenance is too
large for these queries to benefit from PBDS (e.g., Q1’s provenance
is over 95% of its input) or the query’s selection conditions leave no
room for improvement.
Postgres - Capture & Reuse. Fig. 6a and 6f show the runtime of
TPC-H queries using captured sketches (PS) and without PBDS (No-
PS). We created zone maps (called brin indexes in Postgres) for all
tables. Furthermore, we create indexes on PK and FK columns. Note
that PK indexes are created automatically by the system. Unless
stated otherwise, queries apply the binary search (BS) method to test
whether a tuple belongs to a fragment of the partition (Sec. 5).

Fig. 6a shows runtimes for SF1. Q3 is a top-10 query that returns
the 10 orders with the highest revenue. It is highly selective on the
PK of orders and customers. Since we use equi-depth histograms to
determine partition ranges, each fragment contains approximately
the same number of rows. Thus, the runtime of the query is roughly
linear in the number of rows contained in the 10 fragments of the
sketch, e.g., ∼ 1

40 the runtime without PBDS for PS400. We observe
similar behavior for Q10 and Q18 which are top-20 and top-100
queries, respectively. The result for Q19 demonstrates that PBDS can
sometimes unearth additional ways to exploit selection conditions
that the DBMS was unable to detect. For Q5, Q7, Q8, Q20 and

Q21 more fine-grained partitioning is required to benefit from PBDS.
While Q2 and Q17 have selective sketches, their selection conditions
are quite restrictive leaving little room for improvement. Fig. 6f
shows runtimes for SF10. Observe that the runtime of queries Q2,
Q3, Q10, Q20 and Q21 exhibit similar behavior as for SF1.

Fig. 6b and 6g show the overhead of capturing sketches relative
to executing the queries without any instrumentation for SF1 and
SF10. For some queries the overhead is less than 20% while it is
always less than 100% for partition sizes up to 10000 fragment. The
overhead increases slightly in the number of fragments since larger
number of fragments result in larger bitvectors. In [73] we analyze
after how many executions of a query the cost of capturing a sketch
has been amortized (for most queries after using the sketch once or
twice). Overall, partitions with 10,000 fragments provide the best
trade-off between capture and use performance for our workloads.

MonetDB. We also evaluate PBDS on MonetDB to test our ap-
proach on an operator-at-a-time columnar main-memory system
without indexes that is optimized for minimizing cost per tuple.
Fig. 6h and 6i show the runtime for using sketches. Even though
MonetDB supports database cracking [52] and column imprints [86]
(a technique similar to zone maps), the implementation of these
techniques turned out to not be beneficial for PBDS (see [73] for
a detailed explanation). Nonetheless, PBDS is still beneficial for
several queries. However, for 1GB the overhead of evaluating WHERE
clause conditions sometimes outweight the benefits of reducing data
size (Q2 and Q10). Fig. 6j and 6k shows the relative overhead of
sketch capture (similar trends as for Postgres). We omit PS100000
since it did not result in additional improvement.

DB-X. We also evaluated PBDS on the cloud deployment of DB-
X, a commercial DBMS with support for columnar storage. We
measured the performance of sketch use for the same TPC-H queries
as for Postgres for SF10. We use a VM with 16 shared CPUs and
did evaluate our approach for a database with physically range-
partitioned tables (PS-PT) and for tables with zone maps (PS-ZM).
The results are shown in Fig. 6c. PS-ZM outperforms No-PS by a
factor of ∼ 2 to ∼ 4.6. PS-PT is always the best choice and improves
performance by a factor of ∼ 2 to ∼ 37. The reason for the superior
performance of PT is that DB-X cannot utilize binary search when
using a zonemap to skip data. This is also why Q19 and Q20 runtimes
are slower than No-PS that the provenance sketches for these queries
are quite large. Sketch capture is inefficient in DB-X, because our
implementation of binary search as a UDF suffers from the high
overhead of UDF calls in DB-X (we omit these results).

9.3 Stack Overflow Dataset
Since this is a large dataset, we only consider 1000 and 10000
fragments. Fig. 6d shows that PBDS improves query performance
by 96.9% to 98.85% for PS10000. The capture overhead ranges
between a factor of ∼ −0.14 and ∼ 1.2 (Fig. 6e). The negative
overhead is caused by Postgres choosing parallel pre-aggregation
for the capture query, but not for the No-PS query. We show results
for additional real world datasets in [73].

9.4 End-to-end Experiment
We now evaluate PBDS in a self-tuning setting on workloads that
consist of multiple instances of one or more parameterized queries

https://www.kaggle.com/stackoverflow/stackoverflow
https://www.kaggle.com/stackoverflow/stackoverflow
https://data.stackexchange.com/stackoverflow/queries

−0.04 −0.02 0.00 0.02 0.04
−0.05

0.00

0.05
NOR PS32 PS64 PS400 PS1000 PS4000 PS10000 PS100000

Q2 Q3 Q5 Q7 Q8 Q10 Q17 Q18 Q19 Q20 Q210

1

2

3

4

R
un

tim
e
(s
ec
)

(a) Postgres Use - 1GB (BS)
Q2 Q3 Q5 Q7 Q8 Q10Q15Q17Q18Q19Q20Q211%

10%

100%

R
el
at
iv
e
ov

er
he
ad

(b) Postgres Capture - 1GB
Q2 Q3 Q10Q18Q19Q20Q2110−2

10−1

100

101

R
un
tim

e
(s
ec
)

No-PS
PS-PT
PS-ZM

(c) DB-X Use - 10GB (OR)

S-Q1 S-Q2 S-Q3 S-Q4 S-Q5
2

10
20
30
40
50
60

R
un

tim
e
(s
ec
)

(d) Stack Overflow - Use (BS)
S-Q1 S-Q2 S-Q3 S-Q4 S-Q5

0

50%

100%

150%
R
el
at
iv
e
ov

er
he

ad

(e) Stack Overflow - Capture
Q2 Q3 Q10 Q18 Q19 Q20 Q21

10

20

30

R
un

tim
e
(s
ec
)

(f) Postgres Use - 10GB (BS)
Q2 Q3 Q10Q18Q19Q20Q211%

10%

100%

1000%

R
el
at
iv
e
ov

er
he
ad

(g) Postgres Capture - 10GB

Q2 Q3 Q10 Q15 Q18

0.01
0.02
0.03
0.04
0.05
0.06

R
un

tim
e
(s
ec
)

(h) MonetDB Use - 1GB (OR)
Q3 Q10 Q15 Q18 Q210

1

2

3

R
un

tim
e
(s
ec
)

(i) MonetDB Use - 10GB (OR)
Q2 Q3 Q10 Q15 Q180

100%
200%
300%
400%
500%

R
el
at
iv
e
ov

er
he
ad

(j) MonetDB Capture - 1GB
Q3 Q10 Q15 Q18 Q210

200%
400%
600%
800%

1000%
1200%

R
el
at
iv
e
ov

er
he
ad

(k) MonetDB Capture - 10GB
Figure 6: Performance of provenance sketch capture and use for TPC-H and Stack Overflow queries.

0 375 750

10,000

30,000

50,000

C
um

ul
at
iv
e

ru
nt
im

e
(s
ec

)

No-PS
adaptive

(a) Mixed templates
0 100 200

0
2,000
4,000
6,000
8,000

10,000

0 100 200 0 100 200

No-PS
adaptive

(b) 𝑠𝑒𝑙 = 0.7% (left) 2% (middle) 5% (right)
Figure 7: End-to-end experiments on stack overflow data. We
report the cumulative runtime in sec (the x-axis show the number
of queries that have been executed up to that point).

using the techniques described in Sec. 8. Note that the runtimes
reported here include the runtime of safety and reuse checking and
the cost of creating sketches. Given a set of query templates, we gen-
erate workloads by randomly choosing for each query the template
and parameter values controlling for average query selectivity (𝑠𝑒𝑙).
For this experiment we modified queries introduced in Sec. 9.1 by
changing LIMIT to a HAVING.
Stack Overflow. Fig. 7a shows the result of a workload over the
stack overflow dataset with three query templates (SQL code shown
in [73]). We set 𝑠𝑒𝑙 = 1%. Since our adaptive strategy (see Sec. 8)
delays capturing sketches and we pay for creating sketches, there
is a delay before we see benefits. The benefits of using sketches
accumulate over time and adaptive outperforms No-PS by ∼ 3𝑥
with respect to total workload execution time (800 queries). We also
evaluated how query selectivity affects performance. Fig. 7b show
results varying the average query selectivity (0.7%, 2% and 5%). For
this experiment we use a single query template. As expected we ben-
efit less for higher selectivites. We also vary the standard deviation
(SDV) of the normal distribution and show the result in [73].
Safety and Reuse Check Overhead. We separately measured the
overhead of safety and reuse checks (both are ∼ 20 ms per check).

Safety checks: If there are 𝑛 sets of columns we want to check, then
the total cost is 0.02 ∗ 𝑛 seconds. Since we only need to evaluate
safety once per query template, this cost is negligible. Reusability
check: Given 𝑘 templates and 𝑚 sketches for the each template,
we have to test which template a query corresponds to. This takes
about 0.05 ms per template. Then we need to check for each sketch
we have created for the query’s template whether it can be used to
answer the query. Thus, the total time requires to find a sketch to use
is 𝑘 · 0.00005 + 0.02 ·𝑚 seconds.

9.5 Provenance Sketches vs Materialized Views
We now compare the performance and space usage of PBDS (PS)
against query answering with materialized views (MV). Further-
more, we also consider combining these two methods by building
provenance sketches on-top of MVs and/or using MVs for some
parts of a query and PBDS for others. For PBDS, the performance
is affected by the provenance sketches size ratio (PSSR = number
of fragments in provenance sketches / number of fragments in total)
and the cost of filtering data that does not belong to the sketch. The
performance of materialized views is affected by the materialized
view size (MVS) and the cost of the remaining parts of the query.
Synthetic Datasets. We start with a synthetic dataset with 40M
rows. We use a group-by aggregation with HAVING (template SYN-
Q1) which is beneficial for MVs. We materialize the aggregation
result. We control the number of groups by choosing the group-by
column (MVS). We vary the HAVING condition to control the query
result size which determines PSSR. Fig. 8a to 8c show the runtime
for answering SYN-Q1 for MVS from 0.1 (Fig. 8a) to 10 million
(Fig. 8c) and PSSR from 0.001% to 20%. PS is more effective for
SYN-Q1 for lower selectivities, because the sketch will be small
and most of the MV’s data is irrelevant for the query. For MVS 0.1

0.001%0.01% 0.1% 1% 5% 10% 20%10−2

10−1

100

R
un
tim

e

No-PS
PS

MV
PS-on-MV

(a) SYN-Q1 (0.1 million)
0.001%0.01% 0.1% 1% 5% 10% 20%10−2

10−1

100

101

R
un
tim

e

No-PS
PS

MV
PS-on-MV

(b) SYN-Q1 (1 million)
0.001%0.01% 0.1% 1% 5% 10% 20%10−2

10−1

100

101

R
un
tim

e

No-PS
PS
MV
PS-on-MV

(c) SYN-Q1 (10 million)
0.001%0.01% 0.1% 1% 5% 10% 20%10−2

10−1

100

101

R
un
tim

e

No-PS
PS
MV
PS-on-MV
MV+PS

(d) SYN-Q2 (0.1 million)
S-Q6 S-Q7 S-Q8 S-Q9 S-Q10 S-Q1110−2

100

102

R
un
tim

e

No-PS
PS

MV
MV+PS

(e) Stack Overflow

0 100 200
Query sequence (200 queries)

0

5000

10000

15000

C
um

ul
at
iv
e
ru
nt
im

e
(s
ec
)

No-PS
PS
MV

(f) 200 ($1,$2), 1 ($3)
0 100 200
Query sequence (200 queries)

0

5000

10000

15000

20000

C
um

ul
at
iv
e
ru
nt
im

e
(s
ec
)

No-PS
PS
MV

(g) 100 ($1,$2), 2 ($3)
0 100 200
Query sequence (200 queries)

0

5000

10000

15000

20000

C
um

ul
at
iv
e
ru
nt
im

e
(s
ec
)

No-PS
PS
MV

(h) 50 ($1,$2), 4 ($3)
0 100 200
Query sequence (200 queries)

0

5000

10000

15000

20000

C
um

ul
at
iv
e
ru
nt
im

e
(s
ec
)

No-PS
PS
MV

(i) 20 ($1,$2), 10 ($3)

MV PS
(f) 44,975 0.209
(g) 13,502 0.181
(h) 6,723 0.209
(i) 2,687 0.133

(j) PS and MV Size (MB)

Figure 8: Comparing PBDS (PS) against materialized views (MV): (a)-(e) show performance of using sketches / views for query
answering for two queries over synthetic data and Stack Overflow (e); (f)-(h) show the end-to-end performance of both methods for a
workload consisting of multiple instances of a query template; (j) shows the storage requirements for sketches and MVs for (f)-(i).

million (fig. 8a), MV outperforms PS since we only need to eval-
uate the having condition on the small MV. For MVS 10 million,
PS is better when selectivity < 5%. Building a sketch on the MV
(PS-on-MV) outperforms both methods for this template. Fig. 8d
shows the runtime for template SYN-Q2 which joins the result of
a group-by aggregation with HAVING with another table. For MV,
we did materialize the aggregation result. Even for MVS 0.1 million
(Fig. 8d), PS significantly outperforms MV for all selectivities, be-
cause PS can filter both inputs of the join. We consider two options
for combining PBDS and MV: PS-on-MV builds a sketch on the
MV. PS+MV uses the MV and uses a sketch for the joined table.

Stack Overflow Data. To verify whether the results for synthetic
dataset translate to real world settings, we compared the two tech-
niques on the Stack Overflow dataset using real queries posed by
stackoverflow users. We choose six representative queries. The re-
sults are shown in Fig. 8e. Note that we only materialize aggregation
results (we also treat DISTINCT as an aggregation). For queries with
more than one level of aggregation, we choose to materialize the
innermost aggregation. Query S-Q6 is an aggregation over a join
of two tables returning the top-k aggregation results. Running the
top-k operation on the materialized aggregation (MV) performs best.
Query S-Q7 first computes a DISTINCT over a join of four tables,
then joins the result of this subquery with two tables, and finally
applies a group-by aggregation with HAVING. Since PSSR is high
for this query, using provenance sketches are less effective. Query
S-Q8 is a query that joins the result of two separate aggregations.
Since the aggregation results are relatively small, MV outperforms
PS. Queries S-Q9, S-Q10 and S-Q11 have a similarly structure as
S-Q7, consisting of an aggregation and a join afterwards followed
by a top-k operator or an aggregation and top-k. PS outperforms
MV for these queries, because PSSR is relatively low (top-k query)
and we can use sketches to filter joined tables. Notably, the hybrid
approach (PS+MV) outperforms both PS and MV for most queries.

End-to-end Workloads. Next, we compare MV and PS in a self-
tuning setting over the Stack Overflow dataset. We apply the eager
strategy (Sec. 8) and use the following query template:
SELECT count(*) AS cnt, u_id, u_displayname FROM comments, users

WHERE c_creationdate >= $1 AND c_creationdate < $2 AND c_userid=u_id

GROUP BY u_id, u_displayname HAVING count(*) >= $3

We ran 200 instances of this template using different options for
setting the $1, $2 and $3 parameters. Strategies: Consider a specific
instance of the template for $1 = 𝑐1, $2 = 𝑐2, $3 = 𝑐3. The result of
the aggregation depends on $1 and $2 and, thus, a separate view has
to be created for each such setting. Checking reusability of an exist-
ing sketch for this query corresponds to checking the containment
of intervals [𝑐1, 𝑐2) and [𝑐3,∞) in the intervals for the sketch. If no
such sketch exists, then we capture a new sketch. Results: Results
are shown in Fig. 8. Both methods are highly efficient if an existing
sketch/view can be reused. Thus, the main cost is creating MVs and
sketches. Since the number of MVs and sketches that need to be
created are affected by the number of the distinct settings of the
inner selection ($1 and $2) and the outer selection ($3), we control
for these settings. Larger number of distinct ($1, $2) pairs are dis-
advantageous for MV (a view is created for each ($1, $2) pair). PS
outperforms MV for these workloads (except for 20 ($1, $2),10 $3),
because sketches can be reused across different $1+$2 and $3 set-
tings. Space usage: Fig. 8j shows the space required for storing the
sketches and views created after evaluating all 200 queries. PS needs
less than 0.3MB space whereas the MVs occupy between 2.6GB
and 45GB. Even if storage is not a limiting factor, these views will
compete with table data for available buffer pool space.

10 CONCLUSIONS AND FUTURE WORK
We present provenance-based data skipping (PBDS), a novel tech-
nique that determines at runtime which data is relevant for answering
a query and then exploits this information to speed-up future queries.
PBDS uses provenance sketches to concisely over-approximate the
data that is relevant for a query. We develop self-tuning techniques
for reusing a sketches captured for one query to answer a different
query. PBDS results in significant performance improvements for
important classes of queries such as top-k queries that are highly se-
lective, but where it is not possible to determine statically what data
is relevant. In the future, we will investigate how to maintain prove-
nance sketches under updates and extend our self-tuning techniques
to support wider range of queries and more powerful strategies.

Acknowledgments. This work is supported in part by NSF awards
IIS-1956123 and IIS-2107107.

REFERENCES
[1] [n.d.]. http://www.tpc.org/tpch/ (visited on 10/28/2021).
[2] Serge Abiteboul and Olivier Duschka. 2013. Complexity of Answering Queries

Using Materialized Views. (2013).
[3] Serge Abiteboul and Oliver M Duschka. 1998. Complexity of answering queries

using materialized views. In PODS. 254–263.
[4] Daniar Achakeev and Bernhard Seeger. 2013. Efficient bulk updates on multiver-

sion B-trees. PVLDB 6, 14 (2013), 1834–1845.
[5] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R Narasayya. 2000. Automated Se-

lection of Materialized Views and Indexes in SQL Databases. In VLDB, Vol. 2000.
496–505.

[6] S. Agrawal, V. Narasayya, and B. Yang. 2004. Integrating vertical and horizontal
partitioning into automated physical database design. In SIGMOD. 359–370.

[7] Marcos K. Aguilera, Wojciech Golab, and Mehul A. Shah. 2008. A practical
scalable distributed B-tree. PVLDB 1, 1 (2008), 598–609.

[8] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. 2012.
DBToaster: Higher-order delta processing for dynamic, frequently fresh views.
PVLDB 5, 10 (2012), 968–979.

[9] Eleanor Ainy, Pierre Bourhis, Susan B. Davidson, Daniel Deutch, and Tova Milo.
2015. Approximated Summarization of Data Provenance. In CIKM. 483–492.

[10] Khalil Amiri, Sanghyun Park, Renu Tewari, and Sriram Padmanabhan. 2003.
Scalable template-based query containment checking for web semantic caches. In
ICDE. 493–504.

[11] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for Aggre-
gate Queries. In PODS. 153–164.

[12] Manish Kumar Anand, Shawn Bowers, Timothy McPhillips, and Bertram
Ludäscher. 2009. Efficient Provenance Storage over Nested Data Collections. In
EDBT. 958–969.

[13] Kamel Aouiche, Jérôme Darmont, Omar Boussaid, and Fadila Bentayeb. 2005.
Automatic Selection of Bitmap Join Indexes in Data Warehouses. In DaWaK.
64–73.

[14] Bahareh Sadat Arab, Su Feng, Boris Glavic, Seokki Lee, Xing Niu, and Qitian
Zeng. 2018. GProM - A Swiss Army Knife for Your Provenance Needs. Data
Eng. Bull. 41, 1 (2018), 51–62.

[15] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Val Tannen. 2016. Algorithms for
Provisioning Queries and Analytics. In ICDT. 18:1–18:18.

[16] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijayvargiya.
2005. An annotation management system for relational databases. VLDBJ 14, 4
(2005), 373–396.

[17] C. Böhm, S. Berchtold, H.P. Kriegel, and U. Michel. 2000. Multidimensional
index structures in relational databases. Journal of Intelligent Information Systems
15, 1 (2000), 51–70.

[18] Stefano Ceri, Mauro Negri, and Giuseppe Pelagatti. 1982. Horizontal data parti-
tioning in database design. In SIGMOD. 128–136.

[19] Ashok K Chandra and Philip M Merlin. 1977. Optimal implementation of con-
junctive queries in relational data bases. In STOC. 77–90.

[20] Adriane Chapman, H. V. Jagadish, and Prakash Ramanan. 2008. Efficient Prove-
nance Storage. In SIGMOD. 993–1006.

[21] Surajit Chaudhuri, Mayur Datar, and Vivek Narasayya. 2004. Index selection for
databases: A hardness study and a principled heuristic solution. TKDE 16, 11
(2004), 1313–1323.

[22] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok Shim.
1995. Optimizing queries with materialized views. In ICDE. 190–190.

[23] Surajit Chaudhuri and Vivek Narasayya. 2007. Self-tuning database systems: a
decade of progress. In VLDB. 3–14.

[24] Chen Chen, Harshal Tushar Lehri, Lay Kuan Loh, Anupam Alur, Limin Jia,
Boon Thau Loo, and Wenchao Zhou. 2017. Distributed Provenance Compression.
In SIGMOD. 203–218.

[25] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. 2009. Provenance in
Databases: Why, How, and Where. Foundations and Trends in Databases 1, 4
(2009), 379–474.

[26] John Clarke. 2013. Storage indexes. In Oracle Exadata Recipes. 553–576.
[27] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. 2000. Tracing the Lineage of

View Data in a Warehousing Environment. TODS 25, 2 (2000), 179–227.
[28] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver.

In International conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 337–340.

[29] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In TACAS. 337–340.

[30] D. Deutch, Z. Ives, T. Milo, and V. Tannen. 2013. Caravan: Provisioning for
What-If Analysis. CIDR (2013).

[31] Daniel Deutch, Yuval Moskovitch, and Noam Rinetzky. 2019. Hypothetical
Reasoning via Provenance Abstraction. In SIGMOD. 537–554.

[32] Daniel Deutch, Yuval Moskovitch, and Val Tannen. 2013. PROPOLIS: Provi-
sioned Analysis of Data-Centric Processes. PVLDB 6, 12 (2013).

[33] Jiang Du. 2013. DeepSea: self-adaptive data partitioning and replication in
scalable distributed data systems. In PODS. 7–12.

[34] Jiang Du, Boris Glavic, Wei Tan, and Renée J. Miller. 2017. DeepSea: Adaptive
Workload-Aware Partitioning of Materialized Views in Scalable Data Analytics.
In EDBT. 198–209.

[35] Kayhan Dursun, Carsten Binnig, Ugur Çetintemel, and Tim Kraska. 2017. Revis-
iting Reuse in Main Memory Database Systems. In SIGMOD, Semih Salihoglu,
Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). 1275–1289.

[36] Kareem El Gebaly, Parag Agrawal, Lukasz Golab, Flip Korn, and Divesh Srivas-
tava. 2014. Interpretable and informative explanations of outcomes. PVLDB 8, 1
(2014).

[37] Kareem El Gebaly, Guoyao Feng, Lukasz Golab, Flip Korn, and Divesh Srivastava.
2018. Explanation Tables. Sat 5 (2018), 14.

[38] Stefan Fehrenbach and James Cheney. 2018. Language-integrated provenance.
Sci. Comput. Program. 155 (2018), 103–145.

[39] F. Geerts and A. Poggi. 2010. On database query languages for K-relations.
Journal of Applied Logic 8, 2 (2010), 173–185.

[40] Boris Glavic. 2021. Data Provenance - Origins, Applications, Algorithms, and
Models. Foundations and Trends® in Databases 9, 3-4 (2021), 209–441. https:
//doi.org/10.1561/1900000068

[41] Boris Glavic, Sven Köhler, Sean Riddle, and Bertram Ludäscher. 2015. Towards
Constraint-based Explanations for Answers and Non-Answers. In TaPP.

[42] Boris Glavic, Renée J Miller, and Gustavo Alonso. 2013. Using SQL for Efficient
Generation and Querying of Provenance Information. In In Search of Elegance in
the Theory and Practice of Computation. 291–320.

[43] J. Goldstein and P.Å. Larson. 2001. Optimizing queries using materialized views:
a practical, scalable solution. SIGMOD Record 30, 2 (2001), 331–342.

[44] Goetz Graefe. 2006. B-tree indexes for high update rates. SIGMOD Record 35, 1
(2006), 39–44.

[45] Goetz Graefe and Harumi Kuno. 2010. Self-selecting, self-tuning, incrementally
optimized indexes. In EDBT. 371–381.

[46] Todd J Green, Molham Aref, and Grigoris Karvounarakis. 2012. Logicblox,
platform and language: A tutorial. In Datalog in Academia and Industry. 1–8.

[47] Todd J. Green, Gregory Karvounarakis, and Val Tannen. 2007. Provenance
Semirings. In PODS. 31–40.

[48] Todd J Green and Val Tannen. 2017. The Semiring Framework for Database
Provenance. In PODS. 93–99.

[49] A. Gupta and I.S. Mumick. 1999. Materialized views: techniques, implementa-
tions, and applications. MIT press.

[50] Alon Y Halevy. 2001. Answering queries using views: A survey. VLDB 10, 4
(2001), 270–294.

[51] Sándor Héman, Niels J Nes, Marcin Żukowski, and Peter Alexander Boncz. 2008.
Positional Delta Trees to reconcile updates with read-optimized data storage.
CWI. Information Systems [INS].

[52] Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe. 2011. Merging
what’s cracked, cracking what’s merged: adaptive indexing in main-memory
column-stores. PVLDB 4, 9 (2011), 586–597.

[53] Robert Ikeda, Semih Salihoglu, and Jennifer Widom. 2010. Provenance-Based
Refresh in Data-Oriented Workflows. technical report.

[54] Robert Ikeda and Jennifer Widom. 2010. Panda: A System for Provenance and
Data. In TaPP ’10.

[55] Alekh Jindal and Jens Dittrich. 2012. Relax and let the database do the partitioning
online. In Enabling Real-Time Business Intelligence. 65–80.

[56] G. Karvounarakis and T.J. Green. 2012. Semiring-Annotated Data: Queries and
Provenance. SIGMOD 41, 3 (2012), 5–14.

[57] Anthony Klug. 1988. On conjunctive queries containing inequalities. JACM 35, 1
(1988), 146–160.

[58] S. Köhler, B. Ludäscher, and Y. Smaragdakis. 2012. Declarative datalog debug-
ging for mere mortals. Datalog in Academia and Industry (2012), 111–122.

[59] Seokki Lee, Bertram Ludäscher, and Boris Glavic. 2018. Provenance Summaries
for Answers and Non-Answers. PVDLB 11, 12 (2018), 1954–1957.

[60] Seokki Lee, Bertram Ludäscher, and Boris Glavic. 2020. Approximate Summaries
for Why and Why-not Provenance. PVLDB 13, 6 (2020), 912–924.

[61] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix
tree: ARTful indexing for main-memory databases. In ICDE. 38–49.

[62] Justin Levandoski, David Lomet, Sudipta Sengupta, Adrian Birka, and Cristian
Diaconu. 2014. Indexing on modern hardware: Hekaton and beyond. In SIGMOD.
717–720.

[63] Justin J Levandoski, David B Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for new hardware platforms. In ICDE. 302–313.

[64] Alon Y Levy, Alberto O Mendelzon, and Yehoshua Sagiv. 1995. Answering
queries using views. In PODS. 95–104.

[65] Xiang Li, Xiaoyang Xu, and Tanu Malik. 2016. Interactive provenance summaries
for reproducible science. In eScience. 355–360.

[66] Zhe Li and Kenneth A. Ross. 1999. Fast Joins Using Join Indices. VLDBJ 8, 1
(1999), 1–24.

[67] T. Malik, L. Nistor, and A. Gehani. 2010. Tracking and Sketching Distributed
Data Provenance. In eScience. 190–197.

https://doi.org/10.1561/1900000068
https://doi.org/10.1561/1900000068

[68] Guido Moerkotte. 1998. Small materialized aggregates: A light weight index
structure for data warehousing. (1998).

[69] Tobias Müller, Benjamin Dietrich, and Torsten Grust. 2018. You Say ‘What’,
I Hear ‘Where’and ‘Why’—(Mis-) Interpreting SQL to Derive Fine-Grained
Provenance. PVLDB 11, 11 (2018).

[70] S.B. Navathe and M. Ra. 1989. Vertical partitioning for database design: a
graphical algorithm. In SIGMOD. 450.

[71] Xing Niu, Raghav Kapoor, Boris Glavic, Dieter Gawlick, Zhen Hua Liu, Vasudha
Krishnaswamy, and Venkatesh Radhakrishnan. 2017. Provenance-aware Query
Optimization. In ICDE. 473–484.

[72] Xing Niu, Raghav Kapoor, Boris Glavic, Dieter Gawlick, Zhen Hua Liu, Vasudha
Krishnaswamy, and Venkatesh Radhakrishnan. 2018. Heuristic and Cost-based
Optimization for Diverse Provenance Tasks. TKDE 31, 7 (2018), 1267–1280.

[73] Xing Niu, Ziyu Liu, Pengyuan Li, and Boris Glavic. 2021. Provenance-based
Data Skipping (extended version). (2021). arXiv:2104.12815

[74] Dan Olteanu and Maximilian Schleich. 2016. Factorized Databases. SIGMOD
Record 45, 2 (2016), 5–16.

[75] Dan Olteanu and Jakub Závodný. 2011. On Factorisation of Provenance Polyno-
mials. In TaPP.

[76] Patrick O’Neil and Goetz Graefe. 1995. Multi-table joins through bitmapped join
indices. SIGMOD Record 24, 3 (1995), 8–11.

[77] S. Papadomanolakis and A. Ailamaki. 2004. Autopart: Automating schema design
for large scientific databases using data partitioning. (2004).

[78] Luis L. Perez and Christopher M. Jermaine. 2014. History-aware Query Opti-
mization with Materialized Intermediate Views. In ICDE.

[79] Fotis Psallidas and Eugene Wu. 2018. Smoke: Fine-grained lineage at interactive
speed. PVLDB 11, 6 (2018), 719–732.

[80] Tilmann Rabl and Hans-Arno Jacobsen. 2017. Query Centric Partitioning and
Allocation for Partially Replicated Database Systems. In SIGMOD. 315–330.

[81] Sudeepa Roy, Laurel Orr, and Dan Suciu. 2015. Explaining query answers with
explanation-ready databases. PVLDB 9, 4 (2015), 348–359.

[82] Sudeepa Roy and Dan Suciu. 2014. A formal approach to finding explanations
for database queries.

[83] Yehoshua Sagiv and Mihalis Yannakakis. 1980. Equivalences among relational
expressions with the union and difference operators. JACM 27, 4 (1980), 633–
655.

[84] T. Sellis, N. Roussopoulos, and C. Faloutsos. 1987. The R-tree: A dynamic index
for multi-dimensional objects. VLDB (1987), 507–518.

[85] Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat. 2018. ProvSQL:
provenance and probability management in postgreSQL. PVLDB 11, 12 (2018),
2034–2037.

[86] Lefteris Sidirourgos and Martin L. Kersten. 2013. Column imprints: a secondary
index structure. In SIGMOD, Kenneth A. Ross, Divesh Srivastava, and Dimitris
Papadias (Eds.). 893–904.

[87] Liwen Sun, Michael J Franklin, Jiannan Wang, and Eugene Wu. 2016. Skipping-
oriented partitioning for columnar layouts. PVLDB 10, 4 (2016), 421–432.

[88] Patrick Valduriez. 1987. Join Indices. TODS 12, 2 (1987), 218–246.
[89] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining Away Outliers in

Aggregate Queries. PVLDB 6, 8 (2013), 553–564.
[90] Jia Yu and Mohamed Sarwat. 2016. Two birds, one stone: a fast, yet lightweight,

indexing scheme for modern database systems. PVLDB 10, 4 (2016), 385–396.
[91] Jingren Zhou, Per-Ake Larson, and Ronnie Chaiken. 2010. Incorporating parti-

tioning and parallel plans into the SCOPE optimizer. In ICDE. 1060–1071.
[92] Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Dong Xu. 2019.

Automated verification of query equivalence using satisfiability modulo theories.
Proceedings of the VLDB Endowment 12, 11 (2019), 1276–1288.

[93] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and Yun
Mao. 2010. Efficient querying and maintenance of network provenance at internet-
scale. In SIGMOD. 615–626.

https://arxiv.org/abs/2104.12815

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Notation
	3.1 Provenance Sketches

	4 Provenance Sketch Capture
	4.1 Initializing Annotations
	4.2 Propagating Annotations
	4.3 Optimizations
	4.4 Attribute and Partition Selection

	5 Using Provenance Sketches
	5.1 Optimizations

	6 Testing Sketch Safety
	6.1 Generalized Containment
	6.2 Inference Rules

	7 Reusing Provenance Sketches
	8 Self-tuning
	9 Experiments
	9.1 Workloads and Datasets
	9.2 TPC-H
	9.3 Stack Overflow Dataset
	9.4 End-to-end Experiment
	9.5 Provenance Sketches vs Materialized Views

	10 Conclusions and Future Work
	References

