2203.11410v2 [cs.CR] 2 May 2022

arxiv

Dazzle: Using Optimized Generative Adversarial Networks to
Address Security Data Class Imbalance Issue

Rui Shu, Tianpei Xia, Laurie Williams, Tim Menzies
North Carolina State University
Raleigh, North Carolina, USA

ABSTRACT

Background: Machine learning techniques have been widely used
and demonstrate promising performance in many software security
tasks such as software vulnerability prediction. However, the class
ratio within software vulnerability datasets is often highly imbal-
anced (since the percentage of observed vulnerability is usually
very low). Goal: To help security practitioners address software
security data class imbalanced issues and further help build better
prediction models with resampled datasets. Method: We introduce
an approach called Dazzle which is an optimized version of condi-
tional Wasserstein Generative Adversarial Networks with gradient
penalty (¢(WGAN-GP). Dazzle explores the architecture hyperpa-
rameters of cWGAN-GP with a novel optimizer called Bayesian
Optimization. We use Dazzle to generate minority class samples
to resample the original imbalanced training dataset. Results: We
evaluate Dazzle with three software security datasets, i.e., Moo-
dle vulnerable files, Ambari bug reports, and JavaScript function
code. We show that Dazzle is practical to use and demonstrates
promising improvement over existing state-of-the-art oversam-
pling techniques such as SMOTE (e.g., with an average of about
60% improvement rate over SMOTE in recall among all datasets).
Conclusion: Based on this study, we would suggest the use of
optimized GANS as an alternative method for security vulnerability
data class imbalanced issues.
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1 INTRODUCTION

Machine learning has been used for many security tasks; e.g. secu-
rity vulnerability prediction [23]. A core problem with a security
dataset is class imbalance; i.e., there may be very few instances of
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security events within many such datasets. For example, Figure 1
shows that components with known security vulnerabilities within
Mozilla are very rare. As another example, as security bug reports
can describe the critical security vulnerabilities in software prod-
ucts, Peters et al. [49] show that only 0.8% of bug reports are known
to be security bug reports in their study.

When the target class is rare, it is challenging for a learner to
distinguish the goal (security target) from other event [34]. There
are many ways to handle the class imbalance. For example, SMOTE
(i.e. Synthetic Minority Oversampling TEchnique) [13] is a highly-
cited methods that oversamples the minority class by generating
new samples. Specifically, SMOTE works by introducing new syn-
thetic samples along with the line segments of k nearest minority
class neighbors. However, SMOTE generates new samples via a
simplistic linear interpolation between minority neighbors. Also,
when generating new data in some local regions, SMOTE does not
use knowledge from the whole minority class samples — which
means its interpolations might not be helpful. Recently, SMOTE
has been used extensively in software analytics in work published
at top venues such as ICSE [1, 58], TSE [8], EMSE [33], etc.

SMOTE was first proposed in 2002, and this paper explores “can
we do better than SMOTE?”. For example, a new approach to gener-
ate samples for resampling purposes is GANs [25]; i.e. Generative
Adversarial Networks. Unlike SMOTE’s issue with local inference,
GAN s oversampling can effectively learn the whole data character-
istics and generate samples close to the distribution of original input
data. Considering that GANs can achieve some impressive results
in producing meaningful, realistic samples in prior studies (e.g., in

Figure 1: Mozilla code [47]. Only a few modules (seen in red)
are vulnerable components.
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Table 1: Recent works that use GANs as data oversampler in the security domain (as shown in column three, none of these
prior works explored hyperparameter optimization on GANs). Training a GANs model is a difficult task since we have to
achieve a balance between its internal components (i.e., the generator and discriminator) [52]. This paper explores this task
with hyperparameter optimization with the novel Bayesian optimization.

Publication [ Year [ Optimized [

Brief Description

[5] 2018 No
[20] 2019 No
[30] 2020 No
(64] 2020 No
[14] 2021 No
[55] 2018 No
[15] 2019 No
(53] 2020 No
[66] 2019 No
[51] 2019 No
[60] 2020 No

domains such as computer vision [31, 63]), more security practition-
ers have adopted variants of GANs in many security tasks [5, 15, 30]
(see Table 1).

One reason to prefer SMOTE over GANSs is that the SMOTE
is much easier to implement and apply. GANs have two parts:
a generator model that generates new plausible examples and a
discriminator model that checks if it can distinguish real from fake
examples. However, training a useful and stable GANs can be a
difficult task [52]. Here, stable means a balance between generator
and discriminator with proper coordination. For example, if one
model overpowers the other, neither can learn more even with more
iterations. Some other challenges with training GANs include mode
collapse (discussed in §2.5), in which situation the generator may
not explore much of the possible solution space and thus fails to
produce a variety of realistic outputs.

This empirical study tries to tame the GANSs training problem as
well as using GANSs as a data oversampler with hyperparameter op-
timization on Wasserstein GAN (WGAN) [6, 7]. WGAN applies the
Wasserstein distance metric instead of the cross-entropy loss used
in the traditional discriminator. The advantage of the Wasserstein
distance metric is that it measures the distributions of each data fea-
ture and determines how far apart the distributions are for real and
fake data. Considering the complexity of tuning two components
in the GANs architecture, we use a novel optimizer called Bayesian
Optimization [54, 57]. Our Bayesian optimizer explores the hyper-
parameter set of WGAN’s generator and discriminator and returns
an optimal solution set towards the evaluation target. We refer to
our proposed combination of GANs and Bayesian Optimization
as “Dazzle”. The experiments of this paper evaluate Dazzle with
three security datasets, i.e., Moodle vulnerable files, Ambari bug
reports, and JavaScript function code dataset. The results show that
we can achieve an average 60% improvement rate in recall across
all datasets. We recommend using optimized GANs for security
vulnerability dataset class rebalancing purposes based on this study.

As for the novelty and contribution of this work, we note that
this paper is not the first work to apply Bayesian optimization
to tune the GANSs architecture. For example, prior work [17] has
proposed using optimized GANSs in the sign language classification.
However, the main focus of this empirical study is to show that the

Propose text-GANs to generate phishing URLs.

Train a GANs to output mimicked minority class example for credit card fraud detection.
Propose IGAN-IDS to cope with imbalanced intrusion detection.

Use an improved GANS to detect social bots on Twitter.

Use GANs as data augmentation in Android Malware Detection.

Apply GANs for black-box API attacks to deal with limited training data.

Propose using CNN GANSs to generate network traffic.

Propose a GANs based intrusion detection system to counter imbalanced learning.
Use GANS to synthesize DoS attack traces.

GANS is used to generate flow-based network traffic.

Adopt two existing GANs models to generate synthetic network traffic.

idea of using optimized GANS is able to help solve some existing
security tasks, and it is more promising than currently widely used
SMOTE-based methods. We also note that this study cannot cover
all security tasks as we show in Table 1, and we believe this would
be an interesting future direction to explore.

The remainder of this paper is organized as follows. We discuss
background and related work in Section 2 and our methodology
in Section 3. We then report our experiment details in Section 4,
including datasets, evaluation metrics, etc. Section 5 presents our
experiment results. We discuss the threats of validity in Section 6
and provides a remark of addressing class imbalanced issues in
Section 7 and then we conclude in Section 8.

2 BACKGROUND AND RELATED WORKS
2.1 Software Vulnerability Prediction

Software security vulnerabilities are critical issues that would im-
pact software systems’ confidentiality, integrity, and availability.
The exploitation of such vulnerabilities would result in tremendous
financial loss. To mitigate these issues, many machine learning
and data mining techniques are proposed to build vulnerability
prediction models to aid security practitioners [23].

Prior works have demonstrated several ways to extract useful
features to train vulnerability prediction models. For example, as
software bug reports can describe security vulnerabilities in soft-
ware products, prior researchers [32, 49, 65] proposed a way to
adopt natural language text based text mining techniques to iden-
tify security-related keywords. Vulnerability prediction models are
then built by using the frequency of security-related keywords
as features. Source code is another widely used avenue to derive
vulnerability prediction models. Each piece of code can be repre-
sented by text, metric, token, tree, or graph. For example, in the
metric-based representation, a code fragment is represented by a
vector of features, such as lines of code, number of functions, total
external calls, etc. These metrics can be extracted automatically
with existing source code analyzers or extractors, which become
ideal available resources to train prediction models [19, 41, 62].
Metric-based representation is often used at the file/component
fragment level.
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2.2 Software Vulnerability Dataset Class
Imbalance

Software bug report based [49] or source code metric based [45] pre-
diction models mostly require a large amount of prior knowledge of
vulnerabilities, which means many known vulnerable bug reports
or codes are needed to train supervised machine learning mod-
els effectively. However, the imbalance between non-security bug
reports and security bug reports or non-vulnerable code and vul-
nerable code brings significant challenges. When training machine
learning prediction models with those class imbalanced datasets,
the resulting models usually demonstrate a heavy bias towards the
majority class. They tend to classify new data into the majority class,
but they belong to the minority class. Such a phenomenon makes
prediction models difficult to detect rare vulnerabilities (which
are important) since models cannot effectively learn the decision
boundary, resulting in poor performance.

Many prior studies have introduced various ways to tackle this
issues, such as utilizing the “sampling” idea with the imbalanced
data and they mainly fall into the following categories:

o Undersampling to remove majority class instances;

e Oversampling to generate more of the minority class in-
stances;

e Some hybrid of the first two methods.

How to choose an appropriate way to sample the datasets is
based on the characteristics of the datasets. Machine learning re-
searchers [27] advise that undersampling usually works better than
oversampling if there are hundreds of minority instances in the
datasets. When there are only a few dozen of minority instances,
the oversampling approaches are superior to undersampling. In the
case of large size training datasets, the hybrid methods would be
preferred. The datasets we studied fall into the second category.
Therefore, oversampling is a better choice.

2.3 SMOTE

A simple way to oversample data is to duplicate samples from
the minority class in the training dataset before training a model.
Samples from the training dataset are selected randomly with re-
placement. This method is called RandomOverSampler. It is referred
to as a “naive” method because it assumes nothing about the data
and provides no additional information to the model but barely
balances the class distribution.

An improved way is synthesizing new samples with existing
samples from the minority class. Synthetic Minority Oversampling
TEchnique, also known as SMOTE [13], is an algorithm that over-
samples the minority class by creating new synthetic samples.
SMOTE works by selecting samples that are close in the feature
space, drawing a line between the samples, and generating a new
sample at a point along that line (as shown in Figure 2). Specifi-
cally, SMOTE calculates the k nearest neighbors for each minority
class sample. Depending on the amount of oversampled instances
required, one or more of the k-nearest neighbors are selected to
create the synthetic samples. This amount is usually denoted by
oversampling percentage (e.g., 50% by default). The next step is to
create a synthetic sample connecting two minority samples ran-
domly.
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Figure 2: An example of how SMOTE works. The blue dots
denote the majority class samples and the orange dots de-
note the minority class samples. In SMOTE, a neighbour
sample X, is selected for sample X; and a new synthetic sam-
ple X’ (i.e., the red dot) is created as a linear interpolation.

Algorithm 1: Pseudocode for SMOTE.

1 Function SMOTE (Dyrgining, k. m, 1);
Input :Training datasets - Dygining.
Number of nearest neighbours - k,
Number of synthetic instances to create - m,
Distance metric parameter - r
Output:Resampled training datasets - Dyesampled

2 while # of Minority samples < m do

3 x « random minority class samples from Dyrgining
4 neighbours « k nearest neighbours of x

5 for n; € neighbours do

6 Xnew < interpolate(x, n;)

7 Add xpey to Dresampled

8 return Dresampled

Algorithm 1 describes how SMOTE works. A random sample
from the minority class is firstly chosen. Then k of the nearest
neighbors of that example are found. For each selected neighbor,
a synthetic example is created at a randomly selected point be-
tween the two samples in feature space. The approach is more
effective than the naive duplicate oversampling because new syn-
thetic samples from the minority class are created that are plausible
and relatively close in feature space to existing samples from the
minority class.

Table 2 also lists several variants of SMOTE, which are used
as our baseline methods for comparison purposes. For example,
ADASYN [29] (i.e., Adaptive Synthetic Sampling) is an improved
version of SMOTE, which creates synthetic data according to the
data density. The synthetic data generation would be inversely
proportional to the density of the minority class. It means more
synthetic data are created in regions of the feature space where
the density of minority examples is low and fewer or none where
the density is high. BorderlineSMOTE [28] involves selecting those
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Table 2: A list of baseline data oversampling methods used in this study.

Method [ Description
RandomOverSampler | Randomly duplicate examples in the minority class.
SMOTE Create a synthetic sample between minority sample and its neighbour.
ADASYN Creates synthetic data according to the data density.
BorderlineSMOTE Only select minority samples that are misclassified.
KMeansSMOTE Apply a KMeans clustering before to over-sample using SMOTE.
SVMSMOTE Use an SVM algorithm to detect sample to use for generating new synthetic samples.
SMOTUNED An auto tuning version of SMOTE that optimizes its parameters.
Pml]?:gc;ion Algorithm 2: Pseudocode for a simple GANSs as an over-
sampler.
Discriminator 1 Function simpleGAN (Drgining, D, G);
Real Sample p A 4

v

R _

Classification Loss
Input | )
a|—
L Fake Sample
Random Noise I U Back
T Propagation

Generator

Figure 3: The architecture of a traditional GANs model.

instances of the minority class that are misclassified. Unlike with
the SMOTE, where the synthetic data are created randomly between
the two data, BorderlineSMOTE only makes synthetic data along
the decision boundary between the two classes. KMeansSMOTE [38]
applies a KMeans clustering before to over-sample using SMOTE,
and SVMSMOTE [48] uses an SVM algorithm to detect samples to
use for generating new synthetic samples. SMOTETUNED [1] is an
auto-tuning version of SMOTE that explores the parameter space of
SMOTE with an optimizer called differential evolution algorithm.

2.4 GANs

Compared with SMOTE, GANS is a new emerging technique, and in
this work, we explore the merits of GANs over SMOTE. Generative
Adversarial Networks (GANs) [25] are a neural network architec-
ture that has a set of two models used to produce synthetic data. The
GANs model architecture (see Figure 3) typically involves two sub-
models, i.e., a generator and a discriminator. The generator model
generates new plausible examples in the problem domain, while
the discriminator model distinguishes whether the new generated
examples by generator are real or fake, from the perspective of
the domain. Both of the models are trained in a min-max zero-sum
game since the generator tries to produce synthetic instances of
data that reliably trick the discriminator, while the discriminator
tries to distinguish between real and fake data.

The two models, the generator and discriminator, are trained
together. The generator generates a batch of samples, and these,
along with real examples from the domain, are provided to the
discriminator and classified as real or fake. The discriminator is
then updated to get better at discriminating real and fake samples

Input :Training datasets - Dirgining.
Discrinimator - D,
Generator - G
Output:Resampled training datasets - Dyesampled
for epoch; € number of epochs do

~

/* Train Discriminator D */
3 Sample a mini-batch of real data, train as true
4 sample a mini-batch of fake data from Generator G, train as false
5 Update the gradient of Discriminator D

/* Train Generator G */
6 Sample a mini-batch of fake data from Generator G, which should be

classified as true

7 Update the gradient of Generator G

Generate new data Xy, with Generator G
Add Xpey to Dresampled
return Drexampled

[CIY

1

S

in the next round, and importantly, the generator is updated based
on how well or not, the generated samples fooled the discriminator.
When training begins, the generator produces obviously fake data,
and the discriminator quickly learns to tell that it’s fake. Finally, if
generator training goes well, the discriminator gets worse at telling
the difference between real and fake. It starts to classify fake data
as real, and its accuracy decreases. Both the generator and the dis-
criminator are neural networks. The generator output is connected
directly to the discriminator input. Through backpropagation, the
discriminator’s classification provides a signal that the generator
uses to update its weights. In fact, a really good generative model
may be able to generate new examples that are not just plausible,
but indistinguishable from real examples from the problem domain.
The loss function of GANs is shown as follows:

minmax V(D, G) = Ex[log(D(x))] + Ez[log(1 - D(G(2))] (1)

where D(x) is the discriminator’s estimate of the probability that
real data instance x is real, Ey is the expected value over all real data
instance. G(x) is the generator’s output when given noise z and
D(G(z) is the discriminator’s estimate of the probability that a fake
instance is real. E; is the expected value over all random inputs to
the generator. The goal of discriminator is to bring D(G(Z)) closer
to 0, while the goal of generator is to bring it closer to 1. If the
generator outputs a probability of 0.5, then this means the discrim-
inator is unable to make a right decision whether the instance is
real or fake.



Dazzle: Using Optimized Generative Adversarial Networks to Address Security Data Class Imbalance Issue

GANs are rapidly evolving fields, delivering promising results in
generating realistic examples across a range of problem domains,
most notably in images tasks such as synthesizing images from text
description [67], image compression [2], image classification [69],
etc. In the security domain, prior work indicate that GANs would
be an ideal technique to train a classification model to explore
unforeseen data threats with generated data. Table 1 lists recent
work that use GANSs as data oversampler (used in a way similar to
Algorithm 2). Those works motivate our study, however, we also
note that they hardly introduce any way to optimize their GANs
architecture as we do in this study.

2.5 Challenges with traditional GANs

Although GANs has achieved notable success in multiple domains,
GANS s also face several challenges which may cause issues such as
unstable training [31, 52].

Nash Equilibrium. Nash Equilibrium (NE) [46] is a notion in game
theory where two players come to a joint strategy in which each
player select a best response (i.e., a strategy that yields the best
payoff against the strategies chosen by the other player). In the
context of GANs, the generator and discriminator represent the
two players, which work in an adversarial way against each other.
The generator and discriminator train themselves simultaneously
for NE. When both generator and discriminator update their cost
function independently without coordination, it is hard to achieve
NE.

Vanishing Gradient. Vanishing gradient occurs when one part
of GANs is more powerful than the other part. For example, if the
generator model is very poor, then the discriminator can easily
distinguish between real and fake samples. This further causes the
probability of the generated samples being real from generator
close to zero, i.e., gradients of log(1 — D(G;)) will be very small.
Therefore, discriminator fails to provide gradients and the generator
will stop updating.

Mode Collapse. Model collapse is one of the most crucial issues
with GANs training, which means the output samples from genera-
tor lacks of variety (i.e., producing same outputs). If the generator
starts to produce the same output, an ideal strategy for the dis-
criminator is to reject the output. However, if the discriminator
gets stuck in local minima and does not find the strategy, then the
generator tends to find the same output that seems most plausible
to the discriminator.

2.6 Attempts to Address the Challenges

Prior work indicates that Wasserstein GAN (WGAN) [6, 7] is de-
signed to prevent vanishing gradients. In WGAN, the discriminator
does not classify input instances, but it outputs an exact score for
each instance. WGAN does not use a threshold to decide whether
an instance is real or fake but tries to make the score bigger than
fake instances. WGAN also alleviates mode collapse since it pre-
vents the discriminator from getting stuck in local minima. In this
case, the generator has to try new samples since the discriminator
would reject the same sample. For the Nash equilibrium problem
(i.e., non-converge), prior work [18] suggests an exhaustive hyper-
parameter and architecture search, and hence this work. We will
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discuss WGAN and architecture optimization in detail in the next
subsections.

2.7 cWGAN-GP

Traditional GANSs is motivated to minimize the distance between
the actual and predicted probability distributions for real and gen-
erated samples. Typically, there are two metrics to measure the sim-
ilarity between two probability distributions, the Kullback-Leibler
divergence and the the jensen-Shannon divergence.

Kullback-Leibler divergence [37], also known as KL divergence,
is a metric to measure relative entropy between two probability
distributions over the same variable. Consider distributions P and
Q of a continuous random variable, the KL divergence is computed
as an integral as follows:

p(x)

KL(P1Q) = [ plog 255 s @
where p(x) and q(x) are the probability density functions of distri-
bution P and Q, respectively. The lower the KL divergence value,
the closer the two distributions are to each other.

An extension to KL divergence is the Jensen-Shannon diver-
gence [21], also known as JS divergence. Compared with KL diver-
gence, this metric is a symmetric version, which means calculating
the divergence for distribution P and Q will result in the same score
as from distribution Q and P. Define the quantity M = (P + Q) % 0.5,
JS divergence is formulated as follows:

JS(PIQ) = ZKL(PIIM) + SKL(QIIM) (3)

Besides symmetric, JS divergence is also a smoothed and normalized
version, and the square root of this score which referred as Jensen-
Shannon distance is commonly used.

The JS divergence scores provides ways to calculate scores for
cross-entropy which is commonly used as a loss function in clas-
sification models such as the discriminator in GANs. However,
researchers notice that such loss function does not necessarily cor-
relate with the sample quality and therefore does not guarantee
the convergence between generator and discriminator to an equi-
librium [24]. Wasserstein GAN [6, 7] improves traditional GANs’
optimization goal based on Wasserstein distance, which is formu-
lated as follows:

W(P,Q)= inf E v lllx— 4
(P,Q) yo i o) Eeow) ylllx =yl 4)

where [](P, Q) is the set of all possible joint distributions in which
P and Q are combined. For each possible joint distribution y, a
real sample x and a generated sample y can be sampled, and the
sample distance ||x — y|| is calculated, so that the expected value
E(x,y)~y[llx = yll] of the sample to the distance under the joint
distribution y can be calculated. This expected value can be taken
to the lower bound in all possible joint distributions and defined
as the Wasserstein distance of the two distributions. This distance
is helpful when facing two distributions with non-overlapping, in
which case JS divergence fails to provide a useful gradient.
WGAN with Gradient Penalty (WGAN-GP) further suggests to
add a gradient penalty to address the concern of Lipschitz constraint.
With the gradient penalty, the norm of the gradient is limited to a
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value of 1 to satisfy the 1-Lipschitz continuous condition. This is
helpful to build a “worse” discriminator, but provide more gradient
information that helps to train a better generator. In short, the use
of gradient penalty helps enhance the training stability and reduce
the mode collapse of the networks.

Moreover, we adopt an extension to WGAN-GP, which is called
conditional WGAN-GP. In this method, both the generator and
discriminator add data category information, with which the opti-
mization function of WGAN-GP is a maximal and minimal game
with this condition.

2.8 Bayesian Optimization

Since training a new GANs model can be difficulty, this works
checks if that process can be automated with hyperparameter op-
timization. Typically a hyperparameter has a known effect on a
model in the general sense, but it is not clear how to best set a
hyperparameter for a given dataset. Hyperparameter optimization
or hyperparameter tuning is a technique that explores a range of
hyperparameters and search for the optimal solution for a task.
Bayesian optimization [54, 57] is a widely-used hyperparameter op-
timization technique that keeps track of past evaluation results. The
principle of Bayesian optimization is using those results to build a
probability model of objective function, and map hyperparameters
to a probability of a score on the objective function, and therefore
use it to select the most promising hyperparameters to evaluate in
the true objective function. This method is also called Sequential
Model-Based Optimization (SMBO).

The probability representation of the objective function is called
surrogate function or response surface because it is a high-dimensional
mapping of hyperparameters to the probability of a score on the ob-
jective function. The surrogate function is much easier to optimize
than the objective function and Bayesian methods work by finding
the next set of hyperparameters to evaluate the actual objective
function by selecting hyperparameters that perform best on the
surrogate function. This method continually updates the surrogate
probability model after each evaluation of the objective function.

Several prior works have combined Bayesian optimization with
GAN s in tasks from other domains [16] [17], and this work shares
the similar underlying idea with previous studies and adopts this
combination in selected security tasks.

3 METHODOLOGY

3.1 Dazzle: Optimized c(WGAN-GP

In designing the network architecture of c(WGAN-GP, another con-
cern emerges as how to select the hyperparameters of the structure.
GANs models might be highly sensitive to the hyperparameter selec-
tion. Prior work on DCGANS [50] introduced a deep convolutional
generative adversarial networks that made several modifications
to the model hyperparameters of CNN architecture to address the
architectural topology constraints and made the GANs’ training
more stable. For example, that work

(1) replaced pooling layers with strided convolutions and fractional-

strided convolutions;
(2) used batch normalization for generator & discriminator;
(3) used ReLU activation in generator;
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Figure 4: An example of the Bayesian optimization process.
Bayesian optimization incorporates prior belief about ob-
Jjective function and updates the prior with samples drawn
from objective function to get a posterior that better ap-
proximates objective function. The model used for approx-
imating the objective function is called surrogate function.
Bayesian optimization also uses an acquisition function
that directs sampling to areas where an improvement over
the current best observation is more likely. Note that the
Bayesian optimization we use come from the HyperOpt [9]
library, in which the optimization algorightm is based on
Tree of Parzen Estimators (TPE).

o

(4) used LeakyReLU activation in discriminator.

Inspired by this work, we hypothesize that GANs would benefit
from an automatic optimized architecture. We mean proper hyper-
parameter selection would help with GANs training to converge
and further achieve better performance. In our case as using GANs
as data oversampler, if we indicate a not well-designed GANs as
GANs A and a well-designed GANs as GANs B, then if we build
classification model with training data from GANs B, then the pre-
diction performance is better than the models built from data with
GANSs A.

However, hyperparameter optimization is not a trivial work, es-
pecially when facing a complex system such as neural networks.
The tuning process is more challenging since there are more hyper-
parameter with neural networks, and what’s the most important,
even one iteration of evaluation would be time consuming. Tradi-
tional hyperparameter optimization techniques such as “random
search” or “grid search” either suffer from not ideal performance
or would be costly expensive. To address this concern, we pro-
pose a method called Dazzle that adopts a novel optimizer called
Bayesian optimization that fine-tunes both generator model and
discriminator model.
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Table 3: Hyperparameter selection ranges chosen to optimize in Dazzle.

Hyperparameter Range

Batch Size

Learning Rate for Generator

Learning Rate for Discriminator
Optimizer for Generator

Optimizer for Discriminator
Activation Function for Generator
Activation Function for Discriminator
No. of Epochs

Generator Layer Normalization
Discriminator Layer Normalization

16, 32, 64, 128

quniform(5, 20, 1)
True, False
True, False

0.0005, 0.001, 0.005, 0.01, 0.05, 0.1

0.0005, 0.001, 0.005, 0.01, 0.05, 0.1

Adadelta, Adagrad, Adam, Adamax, NAdam, RMSprop, SGD

Adadelta, Adagrad, Adam, Adamax, NAdam, RMSprop, SGD

elu, relu, selu, sigmoid, softmax, tanh, hard_sigmoid, softplus, leakyRelu
elu, relu, selu, sigmoid, softmax, tanh, hard_sigmoid, softplus, leakyRelu

* Note: quniform(low, high, q) is a function returns a value like round (uniform(low, high)/q) * q, while uniform(low, high) returns a
value uniformly between low and high. We also note that we do not tune the number of layers but with a fixed number (e.g., 4) in our study,
and we find that such architecture suffices to achieve good performance on considered datasets.

Algorithm 3: Pseudocode of Dazzle’s training process.

1 Function Dazzle (Diraining: Dvatidation> D> G, 0, F);
Input :Training datasets - Diaining,
Validation datasets - D.idations
Discrinimator - D,
Generator - G,
Hyperparameter space - 6,
Target function - F
Output:Optimal resampled training dataset D’“‘"'"Plfdopnmal’
Optimal hyperparameter set eoptimal
for iteration; € number of Bayesian Optimization iterations do
Select a hyperparameter set 0; € 0
Train D and G with 0;
Generate new resampled training dataset Dyesampled;

Build classifier with Dyesampled; and evaluate with Dyalidation

N e w e W

Compute loss with target function F

8 Rank all optimization iterations by loss with smallest on the top

9 return Dresampled and goptimal

optimal

Dazzle’s training process is on the training dataset and validation
dataset. During each iteration of Bayesian optimization, Dazzle
selects a hyperparameters for discriminator and generator from
Table 3, and generates new minority samples. These samples are
used to resample the original dataset (and to build the classifier).
Each time, the classifier is only evaluated with validation dataset.
With the optimization goal, the loss is computed. Finally, we rank
all the optimization iterations by loss with smallest on the top of
the rank, and select the trained classifer from that iteration as the
optimized classifier. Moreover, we choose 30 iterations for Bayesian
optimization and repeat the whole experiment process 10 times.

Algorithm 3 lists the optimization steps of Dazzle. Note that our

task with the security datasets is a binary classification problem.

In Dazzle, we choose g-measure as our optimization goal (i.e., the
target to increase). G-measure is the harmonic mean of recall and
the complement of false positive rate. We choose g-measure based
on the following considerations. For an imbalanced dataset where
there is a skew in class distribution, we have two competing goals:

e We focus on minimizing false negatives, i.e., increase recall;
e We prefer not to predict too many non-security samples as
security samples, i.e., reduce false positive rate.

Therefore, g-measure is ideal for chasing both goals.

Table 4: Statistics of security datasets used in this study. Note
that the security target column indicate the number of vul-
nerable files, security bug reports, and JavaScript function
code, respectively.

Security Imbalance No. of
Dataset Total
Target Rate (%) Features
Moodle
Vulnerable Files 24 2,942 08 13
Ambari Bug Reports 29 1,000 29 101
JavaScript
Function Code 1,496 12,125 12.3 36

4 EXPERIMENTAL EVALUATION
4.1 Datasets

Our evaluations are experimented on datasets that are widely stud-
ied in prior work. Moodle [62] is an open source learning man-
agement system, and the data source for Moodle vulnerabilities
is the National Vulnerabilities Database (NVD), from with a va-
riety of vulnerabilities are covered, such as code injection, path
disclosure, XSS, etc. A total of 24 vulnerable files are included in
this dataset. Ambari [49] is an open source project of Apache that
aims to provision, manage and monitor Apache Hadoop cluster.
Bug reports with BUG or IMPROVEMENT label from the JIRA bug
tracking system are selected, and then the selected bug reports
are further classified with scripts or manually into six high impact
bugs (i.e., Surprise, Dormant, Blocking, Security, Performance, and
Breakage bugs). All the target bug reports in the Ambari dataset all
belong to Security bug reports (i.e., bug reports of the type Security).
The JavaScript [19] function code dataset extracts data from Node
Security Platform and the Snyk Vulnerability Database, and used
static source code metrics as predictor features. Table 4 shows a
list and description of the datasets used in this study. As we can
observe from the table, all datasets suffer from different levels of
class imbalanced issues.

4.2 Machine Learning Algorithms

We apply five machine learning algorithms, namely K-Nearest
Neighbours (KNN), Logistic Regression (LR), Decision Tree (DT),
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Random Forest (RF) and Support Vector Machine (SVM) in our
experiment. We choose them since they are widely used in previ-
ous literatures in different classification tasks in security [61] or
other domains such as defect prediction [40]. We implement these
algorithms with open source tool called Scikit-learn. In order to
reduce the influence of model hyperparameters to our evaluation
results, we adopt default settings from Scikit-learn. We do not claim
that the list of algorithms that we use is complete, but we note that
these algorithms are enough for our study purpose.

4.3 Evaluation Metrics

For the performance of the classification models, the confusion
matrix is used, where TP, TN, FP and FN indicate true positive,
true negative, false positive and false negative, respectively. We
report the results of recall (pd), false positive rate (pf), f-measure
and g-measure as we defined in Table 5. Note that precision and
accuracy in the table are not endorsed in our study, since both of
these metrics can be inaccurate for datasets where the positive class
is rare case. For example, Menzies et al. [44] argue that when the
target class is less than 10%, the precision results become more a
function of the random number generator used to divide data (for
testing purposes). G-measure is a composite metric, which is the
harmonic mean of recall and the complement of false positive rate.
A higher g-measure indicates higher recall and lower false positive
rate. As we discuss before, this metric is also our optimization target
in Dazzle. We also report f-measure for completeness purpose.

Table 5: Performance evaluation metrics. Definitions of re-
call (pd), false positive rate (pf), precision (prec), accuracy
(acc), f-measure (f1) and g-measure (g-score).

Metric [ Expression
TP
Recall (pd) TPiFN
False Positive Rate FP
(pf) FP+TN
Precision (prec) %
TP+ TN
Accuracy (ac) | TpETNiFPIFN
F-Measure (f1) %

2+pd+(100—pf)
pd+(100—-pf)

G-Measure (g-score)

4.4 Experiment Rigs

Our datasets are split in a stratified way into two parts with a ratio
of 8:2 where the latter part is used as testing set. We further split the
former part into training set and validation set with the same ratio.
Therefore, the final ratio between the actual training, validation,
and testing part is 6.4: 1.6: 2 of the whole dataset. The training part
is only used for training classifiers with selected hyperparameter
set, and the validation part is used to evaluate the classifiers dur-
ing optimization iterations towards optimization goal. Then the
selected optimized models are evaluated on the testing dataset.
Lastly, our implementation of Bayesian Optimization is based
on the tool called Hyperopt [10], which is one of the most cited
hyperparameter optimizer in the literature at this time of writing.
The implementation of SMOTE and its variants are based on the
open-source imbalanced-learn toolbox [39] while SMOTUNED is
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implemented according to Agrawal et al.’s study [1]. SMOTUNED
has three available parameters:

e Number of neighbours k with range [1, 20].
o Minkowski distance metric  with range [1, 6].
e Number of synthetic samples m to create with range [50, 500].

5 RESULTS

Our study answers the following research questions:

RQ1. Will GANs based oversampling better than SMOTE based
oversampling?

For each treatment in our study, we use default learners for
fair comparison. Table 6 lists all the evaluations results of met-
rics defined in Table 5 for all three datasets. In these results, the
None treatment indicate the training process with original dataset
without any oversampling techniques, after which different over-
samplers such as RandomOversampler and variants of SMOTE are
presented. The cWGAN-GP treatment is GANs based oversampler
with optimization. In order to configure the architecture of (WGAN-
GP, we randomly select parameter set from Table 3 during each
run.

As we can observe from the table, the original dataset without
oversampling performs badly across all datasets, even with different
machine learning algorithms. The results are no surprise as we
consider the percentage of security relevant class samples in Table 4.
For moodle and Ambari dataset, the positive class samples are less
than 3% of the whole datasets, it is hard for machine learning
algorithms to learn the traits with so few samples. As a result, none
of the learners can detect any true positive during the testing phase.

Naive oversampler such as the RandomOversampler shows some
advantages for some learners, for example Logistic Regression and
SVM, but fails for others. SMOTE and its variants demonstrate
better results than RandomOversampler, but the advantage is not
obvious. Previous state-of-the-art SMOTUNED works best among
all SMOTE based oversampling techniques.

cWGAN-GP is the GANs version oversampler, and there are two
observations from the results:

o c(WGAN-GP achieves nearly tied performance with SMO-
TUNED in important metric such as recall, but we note that
the latter is an optimized version which requires more effort
and configuration.

o Unlike other oversamplers, cWGAN-GP does not fail totally
in some certain machine learning algorithms. For example,
the SVMSMOTE does not detect any true positive with LR
and RF in Moodle dataset, and even 4 out of 5 learners fails
in Ambari dataset. This phenomenon indicates that (WGAN-
GP is more practical to use in general cases.

We have to point out that the false positive rate metric is not
suggested to indicate which method is better than others. For exam-
ple, in Table 6, for the Random Forest results of Moodle vulnerable
files dataset, several treatments have achieve zero false positive rate
(therefore highlighted in blue color), however, their recall results
are also zero. Thus, these treatments are not recommended.

Since Dazzle optimizes GANs with the goal of increasing g-
measure, which is the harmonic mean of recall and the complement
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Table 6: Median performance results (converted to range 0 - 100) from 10 repeats. Best performances are highlighted.

Moodle Ambari JavaScript

Metric Treatment Vulnerable Files Bug Report Function Code
KNN | LR | DT | RF | SVM | KNN | LR | DT | RF | SVM | KNN | LR | DT | RF | SVM
None 0 0 0 0 0 0 0 14 0 0 63 0 68 68 11
RandomOversampler 0 | 100 0 0| 100 0| 57| 57 0 42 72| 65| 76| 73 22
SMOTE 40 | 100 20 0 100 0 | 100 42 42 0 76 65 78 77 22
ADASYN 60 | 100 0 0 100 0 | 100 57 42 0 78 49 76 77 29
Recall BorderlineSMOTE 40 60 0 0 60 0 | 100 0| 14 0 75 49 76 | 76 30
SVMSMOTE 40 60 0 0 40 0 0 0 28 0 74 58 79 76 23
SMOTUNED 60 | 100 60 60 100 0 57 57 28 57 81 | 100 80 83 100
cWGAN-GP 80 60 60 80 80 28 57 57 43 57 79 79 83 78 49
Dazzle 100 80 | 100 | 100 80 85 71 71 57 71 86 84 83 83 78
None 0 0 0 0 0 0 0 2 0 0 2 0 4 1 1
RandomOversampler 2| 39 1 0 22 0 3 3 0 7 6 | 43 6 3 2
SMOTE 17 40 3 0 24 0 96 4 1 0 9 42 6 4 3
False ADASYN 17 41 0 0 25 0 96 4 2 0 12 33 7 6 9
Positive BorderlineSMOTE 6 19 0 0 8 0| 98 2 0 0 9| 35 7 5 12
Rate SVMSMOTE 5 11 0 0 7 0 0 1 1 0 8 42 6 4 3
SMOTUNED 19 61 14 20 17 0 31 3 1 14 44 | 100 35 38 98
cWGAN-GP 17 12 24 20 21 2 1 3 1 2 17 6 5 17 36
Dazzle 16 20 22 19 24 2 2 2 2 7 11 5 7 12
None 0 0 0 0 0 0 0 24 0 0 77 0 80 80 19
RandomOversampler 0| 75 0 0 87 0| 71 71 0 58 81 61 84 | 83 36
SMOTE 53 74 33 0 86 0 6 59 59 0 83 61 85 85 36
ADASYN 69 74 0 0 85 0 7 71 59 0 82 56 84 85 43
G-Measure BorderlineSMOTE 56 68 0 0 72 0 3 0| 24 0 82 55 83 | 84 45
SVMSMOTE 56 71 0 0 55 0 0 0 44 0 82 57 85 84 37
SMOTUNED 68 55 70 68 90 0 62 71 44 68 69 0 75 73 3
cWGAN-GP 81 71 67 80 79 44 72 72 59 72 81 86 88 80 56
Dazzle 91 79 87 89 79 91 83 82 72 83 89 86 88 87 83
None 0 0 0 0 0 0 0 9 0 0 71 0 68 77 18
RandomOversampler 0 4 0 0 7 0| 26| 29 0 12 67 | 27| 69| 74 31
SMOTE 3 4 8 0 6 0 2 18 35 0 62 27 69 74 31
ADASYN 5 4 0 0 6 0 2 23 26 0 58 25 67 70 29
F-Measure BorderlineSMOTE 8 4 0 0 10 0 2 0| 22 0 61 24 67 | 71 27
SVMSMOTE 9 8 0 0 7 0 0 0 26 0 64 25 70 73 32
SMOTUNED 5 2 6 4 8 0 4 30 22 85 36 21 40 39 22
cWGAN-GP 7 9 4 6 6 19 50 32 35 40 53 70 76 51 24
Dazzle 10 6 7 8 5 52 50 42 42 55 72 64 76 70 58

of false positive rate. Therefore, when the g-measure is increased,
there would be three cases: 1) recall increased, FPR decreased; 2) re-
call increased, FPR increased; and 3) recall decreased, FPR decreased.
Our results would fall into these three groups. When we notice that
some improvements in recall come at the cost of increments in false
positive rate, while the ideal false positive rate is zero. We say that
the trade-off between the increments of recall and false positive
rate is still acceptable, especially in mission-critical security tasks,
as we do not want to miss any security relevant target samples
in the detection. Such a “price” indicates more extra effort to read
more source code or bug reports for security practitioners, and it is
the price of software quality assurance.

RQ2. Will Dazzle (optimized GAN) work even better?

We optimize Dazzle with the goal of g-measure, which ideally
with high recall and lower false positive rate. As we can observe
from the result table, Dazzle works even better than cWGAN-GP.
Benefit from optimizing, Dazzle achieves an average of improve-
ment rate of 30%, 62% and 17% over cWGAN-GP in recall, respec-
tively. This is explainable, as the “default” (with randomly selection
in our case) hyperparameters for GANs might bring in issues in Sec-
tion 3, hence is not one-size-fits-all across all scenarios and should
be deprecated. We would recommend exploring and developing
specialized tools for certain local domain.

Answer

cWGAN-GP is more practical to use in the general cases, as
it is not sensitive to certain machine learning algorithms.

g Answer

| Dazzle (the optimized version) shows even better perfor-
mance than cWGAN-GP across all studied datasets.
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RQ3. Is optimized GANSs (i.e., Dazzle) impractically slow?

As shown in RQ1, Dazzle achieves promising improvement over
baseline treatments in performance with 30 iterations of optimiza-
tion trails. Table 7 lists the average runtime of each treatment
of all machine learning algorithms. Considering the complexity
of optimizing the architecture of neural networks, Dazzle is not
surprisingly takes the most runtime cost. However, considering
the mission-critical nature of the security tasks we are addressing,
we would comment that the trade-off between performance and
runtime is still worth. The experiment is carried out with CPU
resources only, and with the help of GPU or parallel computing,
Dazzle could be configured to be more practical to use.

g Answer

Even with more runtime, Dazzle still worths the trade-off
when considering the improvement in performance.

Lastly, we believe that there are several directions that can be
explored after this work. For example, we would like to try more
security tasks to check and endorse the merits of the proposed meth-
ods in other cases. Secondly, we would plan to compare with other
baselines such as recent improvements on SMOTE and methods
other than oversampling. Thirdly, we would like to perform more
analysis of the new samples generated by the proposed method to
get a better understanding of the methods.

6 THREATS TO VALIDITY
6.1 Evaluation Bias

In our work, we choose some commonly used metrics for evaluation
purpose and set g-measure as our optimization target. We do not use
some other metrics because relevant information is not available to
us or we think they are not suitable enough to this specific task (e.g.,
precision). In addition, we use equal weight in recall and specificity
in the definition of g-measure, which is widely adopted in existing
literature. We agree that it is important for these two elements to
be re-weighted for different tasks, and this can be further explored
as one of our future directions. Our implementation is flexible
and we can adjust to proper metrics or balances with minor code
modification.

6.2 Parameter Bias

We have to note that default hyperparameter values have been used
for the baseline machine learning algorithms, which means that the
performance results reported in Table 6 might be suboptimal for
baseline methods. To some degree, this also might have the effect
of magnifying the advantages of the proposed method. Previous
studies have also indicated that it is a good practice to avoid using
default settings of machine learning algorithms [36] [56] [59]. In
the case if those hyperparameters have been tuned, the conclusions
from the proposed method might be different.

6.3 Learner Bias

Research into automatic classifiers is a large and active field. While
different machine learning algorithms have been developed to solve
different classification problem tasks. Any data mining study, such
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Table 7: Runtime of oversampling treatments in minutes for
each dataset. Note that “<” means the runtime is close but
less than the given results.

Treatment Moodle Ambari JavaScript
Vulnerable Files | Bug Report | Vulnerability
RandomOversampler <1 <1 <1
SMOTE <1 <1 <1
ADASYN <1 <1 <1
BorderlineSMOTE <1 <1 <1
SVMSMOTE <1 <1 <1
SMOTUNED <3 <2 <5
cWGAN-GP <5 <5 <5
Dazzle <25 <25 <30

as this paper, can only use a small subset of the known classification
algorithms. For this work, we select machine learning algorithms
that are commonly used in classification tasks.

6.4 Input Bias

Our results come from the space of hyperparameter optimization
explored in this paper. In theory, other ranges might lead to other
results. That said, our goal here is not to offer the best optimization
but to argue that optimized GANs architecture is better than current
state-of-the-art oversampler in addressing class imbalance. For
those purposes, we would argue that our current results suffice.

6.5 Dataset Bias

This empirical study demonstrates the effectiveness of the proposed
method in security vulnerability/bug report datasets. However, the
internal difference between studied datasets and datasets from other
security tasks (e.g., in Table 1) or from other domains cannot be
ignored. Therefore, there is no guarantee that the findings in this
study would still hold in other datasets.

7 OTHER NOTES ON CLASS IMBALANCE
Class-imbalance learning [43] refers to methods to hancle class
imbalance issues. Data oversampling is not the only effective way
to address data imbalancing issues. Other approaches can mainly
fall into the following categorizations according the the problem
space:

Data Sampling level. Apart from data oversampling, data un-
dersampling [35, 42] is another alternative way to deal with class
imbalance from the data level. In data undersampling, we can re-
move some instances from majority class. Generally, this method is
suggested when there is large number of training instances. How-
ever, data undersampling might suffer from information loss due
to removal of majority class instances.

Model Training level. Many prior work propose various ways
to train efficient models with class imbalanced datasets. For exam-
ple, bagging ensemble [22] is a technique that divides the original
training datasets into several subsets of same size, while each subset
is used to train a single classifier, and then the method aggregates
individual classifiers into an ensemble classifier. This method is
well-known for its simplicity and good generalization ability. Some
other work [56] applies hyperparameter optimization on both data
pre-processors and machine learning models to explore optimal
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hyperparameter settings that work for imbalanced data. Several
studies use cost-sensitive learning [12] [11] in the field of imbal-
anced learning. Cost-sensitive learning takes the costs prediction
errors into consideration and does not treat all classification errors
as equal. This makes sense in some security scenarios, for example,
classifying a benign software as a malware (i.e., false positive case)
is less of a problem than classifying a malware case as a benign
software (i.e., false negative case) since security practitioners do
not hope to miss any malware sample. Furthermore, transfer learn-
ing [3] is another promising technique that use auxiliary data to
augment learning when training samples are not sufficient. This
algorithm works by including a similar and possibly larger dataset,
with which perform knowledge transfer.

Feature Selection level. Using feature-selection for addressing
class imbalance is not a largely explored research area compared to
previous levels. Several few work investigate feature selection with
imbalanced data empirically [26, 68], and researchers [4] warns
that the extra computational cost would be an issue of concern.

We note that the scope of this work is not to explore and com-
pare all data imbalance solutions extensively. It is not fair to offer
a general conclusion that one technique outperforms other tech-
niques in all tasks. Rather, the focus of this work is to explore the
merits of optimized generative adversarial network as an data over-
sampling technique in addressing security dataset imbalance issues.
A hybrid combination of above mentioned approaches (including
this work) might work even better, and we would like to explore as
an interesting future direction.

8 CONCLUSION

When the target class is rare, as it is often within security datasets,
it is hard for a machine learning algorithm to distinguish the goal
(security target) from others (the normal events). To address such
class imbalance issue, prior researchers in software engineering
often use SMOTE (or its variants, see Table 2) as a solution. SMOTE
was first proposed in 2002, nearly two decades ago. This paper seeks
a better method than SMOTE.

One recent alternative to SMOTE is the Generative Adversarial
Networks. This architecture contains two components (the gen-
erator and the discriminator) that “fight it out” to generate new
examples. The experience has been that it is hard to balance these
two components manually, so we experimented with addressing
that problem with automatic hyperparameter optimization.

The empirical study shows that GANs with hyperparameter opti-
mization outperforms prior SMOTE (and its variants) and standard
GANs (without optimization). For example, Dazzle can achieve an
average of about 60% improvement rate over SMOTE in recall on
studied dataset among different classifiers. Based on this study, we
recommend using GANs with hyperparameter optimization (and
not off-the-shelf default settings) to train a good security vulnera-
bility prediction model (from the view of data oversampling). More
generally, we suggest using hyperparameter optimization in other
tasks in SE community.
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