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Continental Patterns of Bird Migration Linked
to Climate Variability
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ABSTRACT: For ~100 years, the continental patterns of avian migration in North America have
been described in the context of three or four primary flyways. This spatial compartmentaliza-
tion often fails to adequately reflect a critical characterization of migration—phenology. This
shortcoming has been partly due to the lack of reliable continental-scale data, a gap filled by our
current study. Here, we leveraged unique radar-based data quantifying migration phenology and
used an objective regionalization approach to introduce a new spatial framework that reflects
interannual variability. Therefore, the resulting spatial classification is intrinsically different from
the “flyway concept.” We identified two regions with distinct interannual variability of spring
migration across the contiguous United States. This data-driven framework enabled us to explore
the climatic cues affecting the interannual variability of migration phenology, “specific to each
region” across North America. For example, our “two-region” approach allowed us to identify
an east—west dipole pattern in migratory behavior linked to atmospheric Rossby waves. Also,
we revealed that migration movements over the western United States were inversely related to
interannual and low-frequency variability of regional temperature. A similar link, but weaker and
only for interannual variability, was evident for the eastern region. However, this region was more
strongly tied to climate teleconnections, particularly to the east Pacific—North Pacific (EP—NP) pat-
tern. The results suggest that oceanic forcing in the tropical Pacific—through a chain of processes
including Rossby wave trains—controls the climatic conditions, associated with bird migration
over the eastern United States. Our spatial platform would facilitate better understanding of the
mechanisms responsible for broadscale migration phenology and its potential future changes.
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migratory birds arrive from south and central America to the contiguous United States

(CONUS) and Canada for breeding (Gauthreaux 1971; Lowery 1945; Dokter et al. 2018;
Lane et al. 2012). Exogenous forces, such as climate and changes in primary productivity,
influence migration speed and phenology, defined as the seasonal timing of life cycle events
(La Sorte et al. 2014a; Zuckerberg et al. 2020; Gordo 2007; Smith and Deppe 2008).
Endogenous forces, such as circadian cycles and site fidelity, also play a role (Gwinner
1996; Cohen et al. 2012; Alerstam et al. 2003). Together, these forces suggest that migratory
pathways should be stable over time, but also reflect broadscale and regular patterns in climate
variability. Traditionally, spatial classification of bird migration in CONUS is viewed in the
context of “flyways,” and the region is commonly divided into four principal routes (Pacific,
Central, Mississippi, and Atlantic), largely derived from waterfowl ecology (Hawkins 1984;
Lincoln 1935; Waller et al. 2018). An alternative representation is three routes, western,
central, and eastern (La Sorte et al. 2014b; Horton et al. 2020), although some similarities
have been identified between the latter two routes that may be indicative of a larger migration
system (La Sorte et al. 2014b).

However, such a large-scale characterization of migratory routes has not been fully under-
stood, and the common spatial classification approaches are either subjective or based on
the time-averaged migratory behavior and therefore neglect year-to-year variability (Hawkins
1984; La Sorte et al. 2014b; Olsen et al. 2006). Those studies that consider interannual
variability are limited to observations from individual sites (Van Buskirk et al. 2009; Oliver
etal. 2020; Ballard et al. 2003). To fill these voids, we have proposed a new geographic frame-
work, which would reflect the interannual variability of bird migration at the continental
scale. This approach would be essential for better understanding how patterns in climate
variability influence broadscale animal movements and migration phenology (Strong et al.
2015; Zuckerberg et al. 2020).

The main obstacle for spatiotemporal analysis of bird migration has been the lack of reliable
data over a sufficiently long period and with broad spatial coverage across CONUS (Horton
etal. 2020). This data limitation has hampered the proper assessments of spatial properties and
annual timing events. Recently published data of migration phenology, derived from weather
radar observations (Horton et al. 2020), provides a unique opportunity to perform such analysis
at the continental scale. Leveraging these data, we have revisited the traditional spatial frame-
work to test whether there is coherent interannual and low-frequency variability in migration
timing across the continent, and whether that exhibits spatial variability that could be used
to improve our knowledge of the drivers of year-to-year variability of bird migration. In other
words, we aim to identify subregions based on similarity of interannual variability of bird mi-
gration and consequently explore regional and remote climatic drivers specific to each region.

The seasonal migration of birds is a prominent feature of the natural world. Every spring,
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Bird migration data
We used nocturnal migration data that have been recently compiled from the NOAA’s Next
Generation Radar (NEXRAD) system (Horton et al. 2020). NEXRAD is a network of 143 stations
across the contiguous United States and provides exceptional spatial and temporal coverage
for continental-scale analysis (Ansari et al. 2018; Dokter et al. 2019; Rosenberg et al. 2019).
Real-time and archived NEXRAD data are shared on Amazon Web Service (AWS) and can be
accessed via simple application program interfaces (APIs). The AWS cloud has facilitated
data access and created new research opportunities, including analysis of avian migration.
The bird migration data have been developed using a convolutional neural network (CNN)
to exclude precipitation contamination and subsequently quantify the phenology of migratory
movements (Lin et al. 2019). This approach employs a neural network trained using per-pixel
labels (biology or weather) derived from a polarimetric variable, specifically correlation
coefficient (p,,). Correlation coefficient quantifies the consistency of the shapes and sizes of
targets within the radar beam and is used to distinguish between meteorological and non-
meteorological objects. If the correlation coefficient exceeds 0.95, reflectivity is classified as
precipitation, otherwise it is classified as biological. Their algorithm also removes stationary
clutter. Following these filtering steps, vertical profiles of radar reflectivity are constructed
to quantify migration activity from 100- to 3,000-m layer above ground level (AGL), from
spring (1 March-15 June) 1995 to spring 2018. Some sites have data over a shorter period.
To analyze the timing of migration, consistent with Horton et al. (2020), we used median
migration date (q50), defined as the date by which 50% of the cumulative passage occurred
at each radar station.

Weather and climate data

Monthly meteorological data are obtained from NASA Modern-Era Retrospective Analysis for
Research and Applications, version 2 (MERRA-2, Gelaro et al. 2017). That includes upper-level
geopotential heights and meridional (north—south) wind as well as 2-m air temperature (T-2m
above the surface), available at 0.5° x 0.625° regular latitude—longitude grids.

We used the 300-hPa pressure level for geopotential heights and winds to capture the
quasi-stationary Rossby waves, although similar wave patterns were also apparent at 500 hPa
(Holton et al. 2003). These waves appear as a series of troughs and ridges looping around
the globe with typical zonal wavenumbers of 4—6. Rossby waves, and in particular, tropi-
cally forced Rossby waves (Hoskins and Karoly 1981), play an important role in modulating
midlatitude weather at subseasonal to seasonal time scales. Since these waves tend to be
barotropic (do not vary in the vertical) in middle latitudes, their impacts extend down to the
near-surface meteorological fields, including T-2m (e.g., Schubert et al. 2011), which we have
used as a proxy for temperature variability within the layer that most of the migration occurs
(up to ~1,500 m AGL). Pressure level corresponding to the top of this layer varies across CONUS
due to the east—west topographic contrast. For this reason, we have verified for the western
and eastern CONUS separately, that temperature patterns remain vertically uniform in the
bird migration layer, so that we would be able to use T-2m to represent that layer.

For composite analysis—focusing on select extreme years—the meteorological variables
were averaged over April and May to represent the peak cumulative flow of migratory birds.
For correlation analysis, we used the entire spring migration season (March—May, MAM). A
regional mean time series was generated for the western and eastern sectors of the United
States, separated at 102°W longitude, using an objective regionalization approach discussed
in the next section. Anomaly time series (subtracting the mean) were used for comparing the
data that have the same unit such as in Fig. 1b. When data with different units were compared
(such as in Fig. 3), each time series was standardized by subtracting the mean and dividing
by the standard deviation. In either case the time series were linearly detrended to focus on
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interannual variability. Note
that because of sporadic data
coverage in space and time,
the time series are normalized
(or standardized) based on the
mean and standard deviation
of the period on which they are
presented, e.g., 2004-18 for
Fig. 1b.

In addition to regional air
temperature, seasonal time
series of the normalized differ-
ence vegetation index (NDVI)
and various climate indices
were correlated with g50. The p
value for each correlation coef-
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Fig. 1. (a) Two regions identified based on interannual vari- o
ability of peak bird migration date (q50) in spring. Circles (Ben]an.llnl.and Hochberg 1995).
show the location of NEXRAD stations in each region. (b) These indices that represent
Regional mean time series of the two regions. Time series  different modes of climate vari-
are detrc_end:il) anomall_ies. Years kw(i}lth _n:tably v_velst—east ability over the Pacific and
contrast in q50 anomalies are marked with open circles. Atlantic Oceans include Nifio-3.4,

Pacific—North American index
(PNA), east Pacific—North Pacific Oscillation (EP-NP), North Pacific pattern (NP), Pacific
decadal oscillation (PDO), North Atlantic Oscillation (NAO), Arctic Oscillation (AO), North Tropi-
cal Atlantic index (NTA), and Atlantic Meridional Mode (AMM). The climate indices data were
obtained from NOAA’s Physical Science Laboratory (https://psl.noaa.gov/data/climateindices/list/).
Monthly NDVI was used from the Moderate Resolution Imaging Spectroradiometer (MODIS)
collection 6 product (MOD13C2), available at https://modis.gsfc.nasa.gov/data/dataprod/mod13.php.

Regionalization based on bird migration
Regionalization is a common practice for climate variability analysis (Fovell and Fovell 1993;
Comrie and Glenn 1998; Dezfuli 2011; Dezfuli and Nicholson 2013). However, to the best of
our knowledge, this is the first study to perform an objective regionalization based on inter-
annual variability of bird migratory phenology at the continental scale. The process involved
multiple steps and quality control measures to ensure the robustness of the spatiotemporal
patterns and properly address the issues arising from the gaps and intrinsic noise in migratory
data. Those efforts have resulted in excluding stations with a large number of missing data
as well as those with noisy behavior that are most likely dominated by local characteristics.
In preparing the data, we first identified and at this initial stage eliminated the years in
which more than half the stations had missing data. A second filter was applied to keep
only stations that had q50 observations over all those years. These restricting criteria were
imposed to meet the minimum requirements for a first estimate of regionalization and pro-
vided a 35 (stations) x 21 (years) matrix used in the regionalization model HiClimR (Badr
et al. 2015). This is an open-source tool that uses hierarchical clustering to regionalize any
number of spatial points such as radar stations into homogeneous regions with respect to
similarity of their temporal variability. Note that the 21 years used in the initial stage may
not necessarily represent a continuous period. This step of the analysis tried to maximize
the number of years, so that the temporal similarity between stations would be meaningful.
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It aimed to simultaneously maintain a minimum number of stations that would provide a
reasonable representation of the spatial variability. This effort would inform us about the op-
timum number of regions and the longitudes at which they should be separated, therefore the
35 x 21 matrix was not used to generate regional time series. The results at this stage are used
as a guideline and suggested an optimum number of two regions, separated at about 102°W
longitude. Using these two pieces of information, we modified the preliminary results in
order to address the known intrinsic shortcoming of hierarchical algorithms that may result
in removing or reassigning inconsistent members. In addition, applying those assumptions
to the q50 data allowed for larger spatial coverage and maintained temporal continuity of
the regional mean q50.

Consequently, 2004-18 was chosen as a period over which most stations (121 of 143) had
continuous observations. Two regional time series were created, by averaging standardized
g50 anomalies of all stations located to the west and east of 102°W, respectively. Pearson
correlation coefficient between each regional time series and all its individual members were
calculated. The stations with a correlation coefficient less than 0.4 (an arbitrary value cor-
responding to p < 0.14) were flagged as noise. Modified regional time series were calculated
after removing those stations, so that they would represent the large-scale spatial signal in bird
migration phenology. The regional time series were then detrended to focus on the interannual
variability. The western and eastern regions consisted of 28 and 38 stations, respectively.

We evaluated the regionalization performance using intraregional and interregional
correlations (Dezfuli 2011; Badr et al. 2015, 2016). A high value of “intraregional,” defined
as the mean correlation between each regional time series and its members, assures homo-
geneity of the regions. A low value of “interregional,” defined as the correlation between
regional mean time series, satisfies separability of the regions. Both these criteria were
simultaneously met in our regionalization (Fig. 1a), as shown in the high intraregional
correlations for western (R, = 0.57) and eastern (R, = 0.62) regions as well as in the low
value for interregional correlation (R, = —0.04).

It is important to emphasize that we have used anomalies rather than absolute values of
g50 because we are interested in regional interannual variability. Using anomalies would
allow equal contribution from all stations to the regional means. Therefore, areal average
time series would represent the entire region and are not biased toward stations with higher
g50 values located in the northern latitudes. To further elaborate on this approach, we have
compared two arbitrary stations in the western region (KMTX, 41.3°N, 112.4°W and KNKX,
32.9°N, 117°W). The correlation coefficient between their time series was 0.75 (p < 0.005),
though they are ~1,000 km apart and the mean 50 of the northern stations is ~13 days
higher. Similarly, the time series of KGRB (44.5°N, 88.1°W) and KTLH (30.4°N, 84.3°W) in
the eastern region—nearly 1,600 km apart—are highly correlated (R = 0.78, p < 0.0001). It is
interesting that some stations in the western region (e.g., KDAX, 38.5°N, 121.6°W) are strongly
negatively correlated (R = —0.69, p < 0.005) with other stations in the eastern region such as
KTLH, located ~3,500 km away. However, this dipole does not seem to be a continental-scale
characteristic since R, is nearly zero and therefore is not further investigated in this study.

We also tried the regionalization for three and four regions, but both were rejected as the
separability criterion was not achieved. At this stage the regionalization process is complete,
and we next explored the differences between the temporal characteristics of the two regions
such as their interannual variability. The standard deviation of regional mean time series of
50 anomalies over the period 2004-18 shows a relatively higher variability in the western
region (2.4 days) than in its eastern counterpart (1.7 days). Using a two-tailed F test, the dif-
ference between variance of the two regional time series takes a p value less than 0.22.

Our two-region compartmentalization is intrinsically different from the previously used
classifications, which are based on three- and four-flyway strategies, both in how it has been
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achieved and its applications. Our approach reflects the interannual variability in timing of
bird arrival and therefore is distinct from migratory corridors. We utilized an objective statisti-
cal approach to define the regions. This work relies on the fact that variability of bird migration
phenology can be divided into two components, “noise” and “signal.” The noise part may be
determined by factors such as local environmental conditions, local geographical features,
and species-specific characteristics (Vardanis et al. 2011; Somveille et al. 2019; Deppe et al.
2015; Youngflesh et al. 2021). On the other hand, common behavioral factors among species
as well as large-scale climatic phenomena would collectively result in a spatiotemporal signal
in interannual variability. We argue that our regionalization approach, reflecting this coher-
ent “spatial signal,” enables us to better identify the drivers of interannual and potentially
decadal variability of migration timing at the continental scale. Here, we provide examples
of large-scale impacts of climate conditions on bird migration, facilitated by our regionaliza-
tion. It is worth noting that the 3-yr running averages are only used to qualitatively discuss
the low-frequency variability in data. All quantitative analysis, including regionalization,
significance tests, and correlations incorporate unsmoothed time series.

Climate-migration association for the two regions

Comparing the mean time series of the two regions (Fig. 1b) allowed us to identify years
with notably east—-west contrast in median passage date anomalies. That contrast was most
evident in 2005 and 2010, when the western and eastern sectors experienced considerably
different median passage dates, with the western region exhibiting an earlier date in 2005
and a later date in 2010. We attribute this zonal (east—west) dipole pattern in q50, in part,
to the near-surface air temperature (Fig. 2a) and, to a lesser degree, the meridional winds
(Fig. 2b) during the peak migration months, April and May. The warmer than normal tem-
peratures and southerly anomalies over the western region in 2005 favor an earlier arrival
than in 2010. The opposite pattern is apparent for the eastern region. The strong linkage
with temperature is likely due to the fact that temperature serves as a surrogate for resources
(Studds and Marra 2011; Van
Doren and Horton 2018). We
speculate that the winds at the
height of migrating birds that are
linked to the gradient of surface
temperature via thermal wind
balance may play a secondary
role. This zonal configuration
of temperature and meridional
winds resembles a pattern that
is consistent with that of a quasi-
stationary atmospheric Rossby
wave. The spatial structure of
geopotential heights captures the
areas of high- and low-pressure
anomalies, associated with the
wave (Fig. 2a). This anomaly
pattern over the United States is

Fig. 2. (a) T-2m (shading) and geopotential heights at the part of a wave train that extends
300-hPa level during April/May (blue and red contour lines) from the central North Pacific
for 2095 minus -2010. (b) As in (.a), t-)ut for 300-hPa meridi- into the North Atlantic (Fig. 2h);
onal wind (shading) over a longitudinally extended area to . . >

capture the Rossby wave train. Regions with high and low it was especially prominent
pressure anomalies are labeled with H and L, respectively. during 2010. The effect of the

150w 120w

v-300 hPa
6 -3 0 3 ms’
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Table 1. Pearson correlation coefficient between regional waves—likely triggered by sea sur-
mean 50 and seasonal (MAM) mean of various climate .
indices. Calculations are made for both 2004-18 (n = 15) face temper?ture (SST) .anomahes
with minimum missing data and the extended period over the Pacific Ocean—is reflected
1996-2018 (n = 23). Corresponding p values, adjusted with at the lower troposphere through
the false discovery rate method (Benjamini and Hochberg . )
1995) are also provided (in parentheses). Only adjusted downward penetration of poten

p values close to or less than 0.1 are shown (in boldface). tial vorticity.
Climateindex  Region 200418 tesorg | Arouher capabiliy of our re-
T-2m West  —0.83(0.0009)  —0.79 (0.000 05) gionalization _appr(,’a(:h is, thfﬂ, it
- _0.55(0.08) ~0.56 (0.02) enables us to %d.entlfy Varlabl%lty
NDVI West  —0.63 (0.04) -0.50 (0.1)* pattems, Spemﬁ,c o each resion
ot o7 o and their associated controlling
Nifo3.4 West 033 o factors. One advantage of objec-
tive regionalization is that once
East 0.28 030 the borders are determined, the
EPINP West =037 017 regions are assumed homoge-
Fast 055 (0.08) 058 (0.02) neous and therefore the time
PDO West =035 ~029 series can be extended over the
East 031 0.42(0.06) years that were excluded from
AO West ~0.02 0.00 the original regionalization due to
Fast  -0.60(0.08) ~0.50 (0.03) the low number of sites with data
L LG UEs) U available. This advantage allowed
Bl el 0S210.05) us to extend the time series of q50

*For 2000-18.

over 1996-2018, recognizing the
potential uncertainties and errors,
arising from using a smaller number of stations for the years prior to 2004. However, we have
computed correlation coefficient between q50 and various climate indices for both periods
(Table 1).

The western region shows a significant negative correlation with T-2m averaged over
the same area (R = -0.79) for 1996-2018. One noticeable pattern in q50 of this region is
its low-frequency variability that is also apparent in the regional T-2m (Fig. 3) and PDO
(not shown), where positive and negative phases of PDO are coincident with early and late
arrival dates, respectively. However, we recognize that the period of this analysis is not
sufficiently long to confidently support this link, which can be considered as a viable hy-
pothesis for further investigation when data become available. In contrast, a low-frequency
pattern is not evident over the eastern region, and g50 over this area shows a weaker in-
terannual association, though statistically significant, with its regional mean temperature

(R=-0.56). This different magni-
L L L L tude of response to temperature
is intriguing because CONUS
can be divided into two homo-
geneous regions with respect to
interannual variability of spring
temperature (MAM), and the sep-
. ] arating longitude is roughly the
2000 2004 2008 2012 2016 same as that of the regions based
— q50 T on g50 (Fig. 4). The regionaliza-

tion was objectively performed
with HiClimR package, using

15+ 1 v v oy ]

Fig. 3. The 3-yr running average of spring q50 and T-2m
seasonal mean (MAM) over the western region. Time series )
are standardized and detrended for better comparison of seasonal T-2m gridded data
variables with different units. from MERRA-2. The two-region
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———— —— : = classification was obtained from
e simultaneous minimization of
interregional and maximization
of intraregional correlations. In
addition, this division closely
corresponds to differences in
patterns of greenness and habi-
o gug ! tat between eastern and west-

120W  110W 100W 90W  8W  70W  ern CONUS (White et al. 2005).
Fig. 4. Climate regions obtained objectively based on simi-  Interannual variability of 50
larity in interannual variability of MAM T-2m (shading). Lo-  in the western region presents
cation of the stations for the two regions identified based a strong negative correlation

on interannual variability of peak migration date (q50) are (R = -0.50) with NDVI—unlike
superimposed for comparison. )

the eastern region (R = -0.12,
Table 1). The latter low correlation may be attributed to several factors including heterogeneity
of interannual variability of greenness within the eastern region and species and latitudinal
dependencies on vegetation patterns (Mayor et al. 2017; Youngflesh et al. 2021).

Although the eastern region shows relatively weaker association with regional variabil-
ity, its link to teleconnection patterns is stronger than that of the western region (Table 1).
The highest correlations are with EP-NP (R = 0.58), NTA (R = 0.52), and AO (R = -0.50)
indices. To assess the extent to which these climate phenomena manifest the impact of
ocean variability on bird migration, we evaluated the spatial correlation between 50 of
the eastern region and large-scale SSTs (Fig. 5a). The spatial patterns of EP-NP and NTA
can be particularly identified from the regions with significant correlations, although the
North Pacific correlations may also resemble the PDO structure. Analysis of spatial correla-
tion between 300-hPa geopotential heights and 50 shows that the impact of SST is likely
reflected through Rossby waves that are excited over the tropical Pacific (Fig. 5b). These
waves are often associated with the North American ridge—trough dipole that controls the
temperature over the eastern CONUS. Although the dipole is commonly known for its influ-

ence on boreal winter tempera-
Eastern Region ture (Wang et al. 2014; Singh
""""""" e S _ : et al. 2016; Schulte et al. 2018),
% 'é: it is also present during spring
(Schulte and Lee 2017).

The western region, on the
1 , other hand, shows strong cor-
il < .~ 4 relation only with geopotential
— : S— e - heights over the same area and
' SSTs along the west coast of
North America (Fig. 6). The nega-
tive correlations with SST imply
that the adjacent waters likely
affect the region through tem-
perature advection. A Rossby
wave train originating from the

tropical Pacific is also apparent
Fig. 5. Correlation patterns between regional g50 time se- (Fig. 6b), but it is much weaker
ries of the eastern region and the large-scale (a) SST and
(b) 300-hPa geopotential heights. All time series are sea-
sonal means (MAM) for 1996-2018. Black dots show areas the one shown for the eastern
with correlation coefficient significant at the 10% level. region. Additional climate modes

o B g
150E 180E 150W 120W  90W 60W 30W
HEEN [ [ .

06 -02 02 0.6

E

and more spatially limited than
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were examined but the results
were not included in Table 1
because they were either not sta-
tistically significant (e.g., PNA)
or considered redundant due to
high covariability with indices
already presented in the table.
For example, NTA was highly
correlated with AMM (R = 0.9),
so was AO with NAO (R = 0.74)
and PDO with NP (R = -0.7).
However, the climate modes
shown in Table 1 would ad-

Western Region

TS

CON %
4NE

20N

EQE
60NE

40NE

20NE

EOE . y ; : s
?5 OE  ISOE  150W _ 120W 90W equately represent variability
over both tropical and extra-

06 -02 02 06
tropical parts of the Pacific and

Fig. 6. As in Fig. 5, but for the western region. Atlantic Oceans.
Discussions and future work

Our analysis approach is different from previous studies of long-term changes, which have
largely focused on the trends of migration phenology; many do not consider year-to-year
variability in these dynamics. In contrast, our approach has incorporated detrended data to
facilitate the study of interannual variability and its drivers. As a by-product, this strategy
detects the years during which the western and eastern United States present an opposite
migratory behavior and attempts to explore climatic processes responsible for such a diploe
pattern.

Some differences were noticed between drivers of interannual variability of the western
and eastern regions. While the western region shows a strong link to the regional tem-
perature, the eastern region presents statistically significant relationships with several
climate modes of variability including atmospheric Rossby waves, which appear to be
excited in the tropical Pacific Ocean. While some covariability may exist between these
modes, some of them can act quite independently, suggesting that bird migration is likely
controlled by combined effect of these teleconnections. Such complex interactions require
further investigation. Also, we speculate that spatial variability of species composition
may partly contribute to different responses of the western and eastern regions to regional
climate conditions (La Sorte et al. 2014b; Horton et al. 2020). However, NEXRAD data are
agnostic to species composition, therefore long-term species-specific observations with
high spatial resolution, for example, from citizen science would be crucial to address this
question. Other potential future work could focus on future projection of spring temperature
variability mainly for the western region, changes in teleconnections affecting the eastern
region, and seasonal prediction skill of atmospheric phenomena, such as Rossby waves,
that influence the migration system. The new spatial framework presented here would
facilitate such follow-up studies.
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