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ABSTRACT: For ~100 years, the continental patterns of avian migration in North America have 
been described in the context of three or four primary flyways. This spatial compartmentaliza-
tion often fails to adequately reflect a critical characterization of migration—phenology. This 
shortcoming has been partly due to the lack of reliable continental-scale data, a gap filled by our 
current study. Here, we leveraged unique radar-based data quantifying migration phenology and 
used an objective regionalization approach to introduce a new spatial framework that reflects 
interannual variability. Therefore, the resulting spatial classification is intrinsically different from 
the “flyway concept.” We identified two regions with distinct interannual variability of spring 
migration across the contiguous United States. This data-driven framework enabled us to explore 
the climatic cues affecting the interannual variability of migration phenology, “specific to each 
region” across North America. For example, our “two-region” approach allowed us to identify 
an east–west dipole pattern in migratory behavior linked to atmospheric Rossby waves. Also, 
we revealed that migration movements over the western United States were inversely related to 
interannual and low-frequency variability of regional temperature. A similar link, but weaker and 
only for interannual variability, was evident for the eastern region. However, this region was more 
strongly tied to climate teleconnections, particularly to the east Pacific–North Pacific (EP–NP) pat-
tern. The results suggest that oceanic forcing in the tropical Pacific—through a chain of processes 
including Rossby wave trains—controls the climatic conditions, associated with bird migration 
over the eastern United States. Our spatial platform would facilitate better understanding of the 
mechanisms responsible for broadscale migration phenology and its potential future changes.
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The seasonal migration of birds is a prominent feature of the natural world. Every spring, 
migratory birds arrive from south and central America to the contiguous United States 
(CONUS) and Canada for breeding (Gauthreaux 1971; Lowery 1945; Dokter et al. 2018; 

Lane et al. 2012). Exogenous forces, such as climate and changes in primary productivity, 
in�uence migration speed and phenology, de�ned as the seasonal timing of life cycle events 
(La Sorte et al. 2014a; Zuckerberg et al. 2020; Gordo 2007; Smith and Deppe 2008). 
Endogenous forces, such as circadian cycles and site �delity, also play a role (Gwinner 
1996; Cohen et al. 2012; Alerstam et al. 2003). Together, these forces suggest that migratory 
pathways should be stable over time, but also re�ect broadscale and regular patterns in climate 
variability. Traditionally, spatial classi�cation of bird migration in CONUS is viewed in the 
context of “�yways,” and the region is commonly divided into four principal routes (Paci�c, 
Central, Mississippi, and Atlantic), largely derived from waterfowl ecology (Hawkins 1984; 
Lincoln 1935; Waller et al. 2018). An alternative representation is three routes, western, 
central, and eastern (La Sorte et al. 2014b; Horton et al. 2020), although some similarities 
have been identi�ed between the latter two routes that may be indicative of a larger migration 
system (La Sorte et al. 2014b).

However, such a large-scale characterization of migratory routes has not been fully under-
stood, and the common spatial classification approaches are either subjective or based on 
the time-averaged migratory behavior and therefore neglect year-to-year variability (Hawkins 
1984; La Sorte et al. 2014b; Olsen et al. 2006). Those studies that consider interannual 
variability are limited to observations from individual sites (Van Buskirk et al. 2009; Oliver 
et al. 2020; Ballard et al. 2003). To fill these voids, we have proposed a new geographic frame-
work, which would reflect the interannual variability of bird migration at the continental 
scale. This approach would be essential for better understanding how patterns in climate 
variability influence broadscale animal movements and migration phenology (Strong et al. 
2015; Zuckerberg et al. 2020).

The main obstacle for spatiotemporal analysis of bird migration has been the lack of reliable 
data over a sufficiently long period and with broad spatial coverage across CONUS (Horton 
et al. 2020). This data limitation has hampered the proper assessments of spatial properties and 
annual timing events. Recently published data of migration phenology, derived from weather 
radar observations (Horton et al. 2020), provides a unique opportunity to perform such analysis 
at the continental scale. Leveraging these data, we have revisited the traditional spatial frame-
work to test whether there is coherent interannual and low-frequency variability in migration 
timing across the continent, and whether that exhibits spatial variability that could be used 
to improve our knowledge of the drivers of year-to-year variability of bird migration. In other 
words, we aim to identify subregions based on similarity of interannual variability of bird mi-
gration and consequently explore regional and remote climatic drivers specific to each region.
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Bird migration data
We used nocturnal migration data that have been recently compiled from the NOAA’s Next 
Generation Radar (NEXRAD) system (Horton et al. 2020). NEXRAD is a network of 143 stations 
across the contiguous United States and provides exceptional spatial and temporal coverage 
for continental-scale analysis (Ansari et al. 2018; Dokter et al. 2019; Rosenberg et al. 2019). 
Real-time and archived NEXRAD data are shared on Amazon Web Service (AWS) and can be 
accessed via simple application program interfaces (APIs). The AWS cloud has facilitated 
data access and created new research opportunities, including analysis of avian migration.

The bird migration data have been developed using a convolutional neural network (CNN) 
to exclude precipitation contamination and subsequently quantify the phenology of migratory 
movements (Lin et al. 2019). This approach employs a neural network trained using per-pixel 
labels (biology or weather) derived from a polarimetric variable, specifically correlation 
coefficient (ρHV). Correlation coefficient quantifies the consistency of the shapes and sizes of 
targets within the radar beam and is used to distinguish between meteorological and non-
meteorological objects. If the correlation coefficient exceeds 0.95, reflectivity is classified as 
precipitation, otherwise it is classified as biological. Their algorithm also removes stationary 
clutter. Following these filtering steps, vertical profiles of radar reflectivity are constructed 
to quantify migration activity from 100- to 3,000-m layer above ground level (AGL), from 
spring (1 March–15 June) 1995 to spring 2018. Some sites have data over a shorter period. 
To analyze the timing of migration, consistent with Horton et al. (2020), we used median 
migration date (q50), defined as the date by which 50% of the cumulative passage occurred 
at each radar station.

Weather and climate data
Monthly meteorological data are obtained from NASA Modern-Era Retrospective Analysis for 
Research and Applications, version 2 (MERRA-2, Gelaro et al. 2017). That includes upper-level 
geopotential heights and meridional (north–south) wind as well as 2-m air temperature (T-2m 
above the surface), available at 0.5° × 0.625° regular latitude–longitude grids.

We used the 300-hPa pressure level for geopotential heights and winds to capture the 
quasi-stationary Rossby waves, although similar wave patterns were also apparent at 500 hPa 
(Holton et al. 2003). These waves appear as a series of troughs and ridges looping around 
the globe with typical zonal wavenumbers of 4–6. Rossby waves, and in particular, tropi-
cally forced Rossby waves (Hoskins and Karoly 1981), play an important role in modulating 
midlatitude weather at subseasonal to seasonal time scales. Since these waves tend to be 
barotropic (do not vary in the vertical) in middle latitudes, their impacts extend down to the 
near-surface meteorological fields, including T-2m (e.g., Schubert et al. 2011), which we have 
used as a proxy for temperature variability within the layer that most of the migration occurs 
(up to ~1,500 m AGL). Pressure level corresponding to the top of this layer varies across CONUS 
due to the east–west topographic contrast. For this reason, we have verified for the western 
and eastern CONUS separately, that temperature patterns remain vertically uniform in the 
bird migration layer, so that we would be able to use T-2m to represent that layer.

For composite analysis—focusing on select extreme years—the meteorological variables 
were averaged over April and May to represent the peak cumulative flow of migratory birds. 
For correlation analysis, we used the entire spring migration season (March–May, MAM). A 
regional mean time series was generated for the western and eastern sectors of the United 
States, separated at 102°W longitude, using an objective regionalization approach discussed 
in the next section. Anomaly time series (subtracting the mean) were used for comparing the 
data that have the same unit such as in Fig. 1b. When data with different units were compared 
(such as in Fig. 3), each time series was standardized by subtracting the mean and dividing 
by the standard deviation. In either case the time series were linearly detrended to focus on 
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interannual variability. Note 
that because of sporadic data 
coverage in space and time, 
the time series are normalized 
(or standardized) based on the 
mean and standard deviation 
of the period on which they are 
presented, e.g., 2004–18 for 
Fig. 1b.

In addition to regional air 
temperature, seasonal time 
series of the normalized differ-
ence vegetation index (NDVI) 
and various climate indices 
were correlated with q50. The p
value for each correlation coef-
ficient was then adjusted using 
the false discovery rate method 
(Benjamini and Hochberg 1995). 
These indices that represent 
different modes of climate vari-
ability over the Pacific and 
Atlantic Oceans include Niño-3.4, 
Pacific–North American index 

(PNA), east Pacific–North Pacific Oscillation (EP–NP), North Pacific pattern (NP), Pacific 
decadal oscillation (PDO), North Atlantic Oscillation (NAO), Arctic Oscillation (AO), North Tropi-
cal Atlantic index (NTA), and Atlantic Meridional Mode (AMM). The climate indices data were 
obtained from NOAA’s Physical Science Laboratory (https://psl.noaa.gov/data/climateindices/list/). 
Monthly NDVI was used from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
collection 6 product (MOD13C2), available at https://modis.gsfc.nasa.gov/data/dataprod/mod13.php.

Regionalization based on bird migration
Regionalization is a common practice for climate variability analysis (Fovell and Fovell 1993; 
Comrie and Glenn 1998; Dezfuli 2011; Dezfuli and Nicholson 2013). However, to the best of 
our knowledge, this is the �rst study to perform an objective regionalization based on inter-
annual variability of bird migratory phenology at the continental scale. The process involved 
multiple steps and quality control measures to ensure the robustness of the spatiotemporal 
patterns and properly address the issues arising from the gaps and intrinsic noise in migratory 
data. Those e®orts have resulted in excluding stations with a large number of missing data 
as well as those with noisy behavior that are most likely dominated by local characteristics.

In preparing the data, we first identified and at this initial stage eliminated the years in 
which more than half the stations had missing data. A second filter was applied to keep 
only stations that had q50 observations over all those years. These restricting criteria were 
imposed to meet the minimum requirements for a first estimate of regionalization and pro-
vided a 35 (stations) × 21 (years) matrix used in the regionalization model HiClimR (Badr 
et al. 2015). This is an open-source tool that uses hierarchical clustering to regionalize any 
number of spatial points such as radar stations into homogeneous regions with respect to 
similarity of their temporal variability. Note that the 21 years used in the initial stage may 
not necessarily represent a continuous period. This step of the analysis tried to maximize 
the number of years, so that the temporal similarity between stations would be meaningful. 

Fig. 1. (a) Two regions identified based on interannual vari-
ability of peak bird migration date (q50) in spring. Circles 
show the location of NEXRAD stations in each region. (b) 
Regional mean time series of the two regions. Time series 
are detrended anomalies. Years with notably west–east 
contrast in q50 anomalies are marked with open circles.
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It aimed to simultaneously maintain a minimum number of stations that would provide a 
reasonable representation of the spatial variability. This effort would inform us about the op-
timum number of regions and the longitudes at which they should be separated, therefore the 
35 × 21 matrix was not used to generate regional time series. The results at this stage are used 
as a guideline and suggested an optimum number of two regions, separated at about 102°W 
longitude. Using these two pieces of information, we modified the preliminary results in 
order to address the known intrinsic shortcoming of hierarchical algorithms that may result 
in removing or reassigning inconsistent members. In addition, applying those assumptions 
to the q50 data allowed for larger spatial coverage and maintained temporal continuity of 
the regional mean q50.

Consequently, 2004–18 was chosen as a period over which most stations (121 of 143) had 
continuous observations. Two regional time series were created, by averaging standardized 
q50 anomalies of all stations located to the west and east of 102°W, respectively. Pearson 
correlation coefficient between each regional time series and all its individual members were 
calculated. The stations with a correlation coefficient less than 0.4 (an arbitrary value cor-
responding to p < 0.14) were flagged as noise. Modified regional time series were calculated 
after removing those stations, so that they would represent the large-scale spatial signal in bird 
migration phenology. The regional time series were then detrended to focus on the interannual 
variability. The western and eastern regions consisted of 28 and 38 stations, respectively.

We evaluated the regionalization performance using intraregional and interregional 
correlations (Dezfuli 2011; Badr et al. 2015, 2016). A high value of “intraregional,” defined 
as the mean correlation between each regional time series and its members, assures homo-
geneity of the regions. A low value of “interregional,” defined as the correlation between 
regional mean time series, satisfies separability of the regions. Both these criteria were 
simultaneously met in our regionalization (Fig. 1a), as shown in the high intraregional 
correlations for western (RW = 0.57) and eastern (RE = 0.62) regions as well as in the low 
value for interregional correlation (RW-E = −0.04).

It is important to emphasize that we have used anomalies rather than absolute values of 
q50 because we are interested in regional interannual variability. Using anomalies would 
allow equal contribution from all stations to the regional means. Therefore, areal average 
time series would represent the entire region and are not biased toward stations with higher 
q50 values located in the northern latitudes. To further elaborate on this approach, we have 
compared two arbitrary stations in the western region (KMTX, 41.3°N, 112.4°W and KNKX, 
32.9°N, 117°W). The correlation coefficient between their time series was 0.75 (p < 0.005), 
though they are ~1,000 km apart and the mean q50 of the northern stations is ~13 days 
higher. Similarly, the time series of KGRB (44.5°N, 88.1°W) and KTLH (30.4°N, 84.3°W) in 
the eastern region—nearly 1,600 km apart—are highly correlated (R = 0.78, p < 0.0001). It is 
interesting that some stations in the western region (e.g., KDAX, 38.5°N, 121.6°W) are strongly 
negatively correlated (R = −0.69, p < 0.005) with other stations in the eastern region such as 
KTLH, located ~3,500 km away. However, this dipole does not seem to be a continental-scale 
characteristic since RW-E is nearly zero and therefore is not further investigated in this study.

We also tried the regionalization for three and four regions, but both were rejected as the 
separability criterion was not achieved. At this stage the regionalization process is complete, 
and we next explored the differences between the temporal characteristics of the two regions 
such as their interannual variability. The standard deviation of regional mean time series of 
q50 anomalies over the period 2004–18 shows a relatively higher variability in the western 
region (2.4 days) than in its eastern counterpart (1.7 days). Using a two-tailed F test, the dif-
ference between variance of the two regional time series takes a p value less than 0.22.

Our two-region compartmentalization is intrinsically different from the previously used 
classifications, which are based on three- and four-flyway strategies, both in how it has been 
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achieved and its applications. Our approach reflects the interannual variability in timing of 
bird arrival and therefore is distinct from migratory corridors. We utilized an objective statisti-
cal approach to define the regions. This work relies on the fact that variability of bird migration 
phenology can be divided into two components, “noise” and “signal.” The noise part may be 
determined by factors such as local environmental conditions, local geographical features, 
and species-specific characteristics (Vardanis et al. 2011; Somveille et al. 2019; Deppe et al. 
2015; Youngflesh et al. 2021). On the other hand, common behavioral factors among species 
as well as large-scale climatic phenomena would collectively result in a spatiotemporal signal 
in interannual variability. We argue that our regionalization approach, reflecting this coher-
ent “spatial signal,” enables us to better identify the drivers of interannual and potentially 
decadal variability of migration timing at the continental scale. Here, we provide examples 
of large-scale impacts of climate conditions on bird migration, facilitated by our regionaliza-
tion. It is worth noting that the 3-yr running averages are only used to qualitatively discuss 
the low-frequency variability in data. All quantitative analysis, including regionalization, 
significance tests, and correlations incorporate unsmoothed time series.

Climate-migration association for the two regions
Comparing the mean time series of the two regions (Fig. 1b) allowed us to identify years 
with notably east–west contrast in median passage date anomalies. That contrast was most 
evident in 2005 and 2010, when the western and eastern sectors experienced considerably 
di®erent median passage dates, with the western region exhibiting an earlier date in 2005 
and a later date in 2010. We attribute this zonal (east–west) dipole pattern in q50, in part, 
to the near-surface air temperature (Fig. 2a) and, to a lesser degree, the meridional winds 
(Fig. 2b) during the peak migration months, April and May. The warmer than normal tem-
peratures and southerly anomalies over the western region in 2005 favor an earlier arrival 
than in 2010. The opposite pattern is apparent for the eastern region. The strong linkage 
with temperature is likely due to the fact that temperature serves as a surrogate for resources 

(Studds and Marra 2011; Van 
Doren and Horton 2018). We 
speculate that the winds at the 
height of migrating birds that are 
linked to the gradient of surface 
temperature via thermal wind 
balance may play a secondary 
role. This zonal configuration 
of temperature and meridional 
winds resembles a pattern that 
is consistent with that of a quasi-
stationary atmospheric Rossby 
wave. The spatial structure of 
geopotential heights captures the 
areas of high- and low-pressure 
anomalies, associated with the 
wave (Fig. 2a). This anomaly 
pattern over the United States is 
part of a wave train that extends 
from the central North Pacific 
into the North Atlantic (Fig. 2b); 
it was especially prominent 
during 2010. The effect of the 

Fig. 2. (a) T-2m (shading) and geopotential heights at the 
300-hPa level during April/May (blue and red contour lines) 
for 2005 minus 2010. (b) As in (a), but for 300-hPa meridi-
onal wind (shading) over a longitudinally extended area to 
capture the Rossby wave train. Regions with high and low 
pressure anomalies are labeled with H and L, respectively.
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waves—likely triggered by sea sur-
face temperature (SST) anomalies 
over the Paci�c Ocean—is re�ected 
at the lower troposphere through 
downward penetration of poten-
tial vorticity.

Another capability of our re-
gionalization approach is that it 
enables us to identify variability 
patterns specific to each region 
and their associated controlling 
factors. One advantage of objec-
tive regionalization is that once 
the borders are determined, the 
regions are assumed homoge-
neous and therefore the time 
series can be extended over the 
years that were excluded from 
the original regionalization due to 
the low number of sites with data 
available. This advantage allowed 
us to extend the time series of q50 
over 1996–2018, recognizing the 
potential uncertainties and errors, 

arising from using a smaller number of stations for the years prior to 2004. However, we have 
computed correlation coefficient between q50 and various climate indices for both periods 
(Table 1).

The western region shows a significant negative correlation with T-2m averaged over 
the same area (R = −0.79) for 1996–2018. One noticeable pattern in q50 of this region is 
its low-frequency variability that is also apparent in the regional T-2m (Fig. 3) and PDO 
(not shown), where positive and negative phases of PDO are coincident with early and late 
arrival dates, respectively. However, we recognize that the period of this analysis is not 
sufficiently long to confidently support this link, which can be considered as a viable hy-
pothesis for further investigation when data become available. In contrast, a low-frequency 
pattern is not evident over the eastern region, and q50 over this area shows a weaker in-
terannual association, though statistically significant, with its regional mean temperature 

(R = −0.56). This different magni-
tude of response to temperature 
is intriguing because CONUS 
can be divided into two homo-
geneous regions with respect to 
interannual variability of spring 
temperature (MAM), and the sep-
arating longitude is roughly the 
same as that of the regions based 
on q50 (Fig. 4). The regionaliza-
tion was objectively performed 
with HiClimR package, using 
seasonal T-2m gridded data 
from MERRA-2. The two-region 

Table 1. Pearson correlation coefficient between regional 
mean q50 and seasonal (MAM) mean of various climate 
indices. Calculations are made for both 2004–18 (n = 15) 
with minimum missing data and the extended period 
1996–2018 (n = 23). Corresponding p values, adjusted with 
the false discovery rate method (Benjamini and Hochberg 
1995) are also provided (in parentheses). Only adjusted 
p values close to or less than 0.1 are shown (in boldface).

Climate index Region 2004–18 1996–2018

T-2m West −0.83 (0.0009) −0.79 (0.000 05)

East −0.55 (0.08) −0.56 (0.02)

NDVI West −0.63 (0.04) −0.50 (0.1)*

East −0.17 −0.12

Niño-3.4 West −0.33 −0.24

East 0.28 0.30

EP/NP West −0.37 −0.17

East 0.55 (0.08) 0.58 (0.02)

PDO West −0.35 −0.29

East 0.31 0.42 (0.06)

AO West −0.02 0.00

East −0.60 (0.08) −0.50 (0.03)

NTA West 0.34 0.21

East 0.49 (0.11) 0.52 (0.03)

*For 2000–18.

Fig. 3. The 3-yr running average of spring q50 and T-2m 
seasonal mean (MAM) over the western region. Time series 
are standardized and detrended for better comparison of 
variables with different units.
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classification was obtained from 
simultaneous minimization of 
interregional and maximization 
of intraregional correlations. In 
addition, this division closely 
corresponds to differences in 
patterns of greenness and habi-
tat between eastern and west-
ern CONUS (White et al. 2005). 
Interannual variability of q50 
in the western region presents 
a strong negative correlation 
(R = −0.50) with NDVI—unlike 
the eastern region (R = −0.12, 

Table 1). The latter low correlation may be attributed to several factors including heterogeneity 
of interannual variability of greenness within the eastern region and species and latitudinal 
dependencies on vegetation patterns (Mayor et al. 2017; Youngflesh et al. 2021).

Although the eastern region shows relatively weaker association with regional variabil-
ity, its link to teleconnection patterns is stronger than that of the western region (Table 1). 
The highest correlations are with EP–NP (R = 0.58), NTA (R = 0.52), and AO (R = −0.50) 
indices. To assess the extent to which these climate phenomena manifest the impact of 
ocean variability on bird migration, we evaluated the spatial correlation between q50 of 
the eastern region and large-scale SSTs (Fig. 5a). The spatial patterns of EP–NP and NTA 
can be particularly identified from the regions with significant correlations, although the 
North Pacific correlations may also resemble the PDO structure. Analysis of spatial correla-
tion between 300-hPa geopotential heights and q50 shows that the impact of SST is likely 
reflected through Rossby waves that are excited over the tropical Pacific (Fig. 5b). These 
waves are often associated with the North American ridge–trough dipole that controls the 
temperature over the eastern CONUS. Although the dipole is commonly known for its influ-

ence on boreal winter tempera-
ture (Wang et al. 2014; Singh 
et al. 2016; Schulte et al. 2018), 
it is also present during spring 
(Schulte and Lee 2017).

The western region, on the 
other hand, shows strong cor-
relation only with geopotential 
heights over the same area and 
SSTs along the west coast of 
North America (Fig. 6). The nega-
tive correlations with SST imply 
that the adjacent waters likely 
affect the region through tem-
perature advection. A Rossby 
wave train originating from the 
tropical Pacific is also apparent 
(Fig. 6b), but it is much weaker 
and more spatially limited than 
the one shown for the eastern 
region. Additional climate modes 

Fig. 4. Climate regions obtained objectively based on simi-
larity in interannual variability of MAM T-2m (shading). Lo-
cation of the stations for the two regions identified based 
on interannual variability of peak migration date (q50) are 
superimposed for comparison.

Fig. 5. Correlation patterns between regional q50 time se-
ries of the eastern region and the large-scale (a) SST and 
(b) 300-hPa geopotential heights. All time series are sea-
sonal means (MAM) for 1996–2018. Black dots show areas 
with correlation coefficient significant at the 10% level.
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were examined but the results 
were not included in Table 1 
because they were either not sta-
tistically significant (e.g., PNA) 
or considered redundant due to 
high covariability with indices 
already presented in the table. 
For example, NTA was highly 
correlated with AMM (R = 0.9), 
so was AO with NAO (R = 0.74) 
and PDO with NP (R = −0.7). 
However, the climate modes 
shown in Table 1 would ad-
equately represent variability 
over both tropical and extra-
tropical parts of the Pacific and 
Atlantic Oceans.

Discussions and future work
Our analysis approach is di®erent from previous studies of long-term changes, which have 
largely focused on the trends of migration phenology; many do not consider year-to-year 
variability in these dynamics. In contrast, our approach has incorporated detrended data to 
facilitate the study of interannual variability and its drivers. As a by-product, this strategy 
detects the years during which the western and eastern United States present an opposite 
migratory behavior and attempts to explore climatic processes responsible for such a diploe 
pattern.

Some differences were noticed between drivers of interannual variability of the western 
and eastern regions. While the western region shows a strong link to the regional tem-
perature, the eastern region presents statistically significant relationships with several 
climate modes of variability including atmospheric Rossby waves, which appear to be 
excited in the tropical Pacific Ocean. While some covariability may exist between these 
modes, some of them can act quite independently, suggesting that bird migration is likely 
controlled by combined effect of these teleconnections. Such complex interactions require 
further investigation. Also, we speculate that spatial variability of species composition 
may partly contribute to different responses of the western and eastern regions to regional 
climate conditions (La Sorte et al. 2014b; Horton et al. 2020). However, NEXRAD data are 
agnostic to species composition, therefore long-term species-specific observations with 
high spatial resolution, for example, from citizen science would be crucial to address this 
question. Other potential future work could focus on future projection of spring temperature 
variability mainly for the western region, changes in teleconnections affecting the eastern 
region, and seasonal prediction skill of atmospheric phenomena, such as Rossby waves, 
that influence the migration system. The new spatial framework presented here would 
facilitate such follow-up studies.
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