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ABSTRACT

We present Breadcrumb, a system that aids developers in debug-
ging queries through query-based explanations for missing answers.
Given as input a query and an expected, but missing, query result,
Breadcrumb identifies operators in the input query that are respon-
sible for the failure to derive the missing answer. These operators
form explanations that guide developers who can then focus their
debugging efforts on fixing these parts of the query. Breadcrumb is
implemented on top of Apache Spark. Our approach is the first that
scales to big data dimensions and is capable of finding explanations
for common errors in queries over nested and de-normalized data,
e.g., errors based on misinterpreting schema semantics.
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1 INTRODUCTION

Data-intensive scalable computing (DISC) systems, e.g., Apache
Spark and Flink, enable scalable processing of queries over (nested)
data stored in a wide variety of data formats. Like database systems,
DISC systems allow developers to express their queries in a high-
level declarative language that abstracts away lower-level details of
data distribution, fault tolerance, and distributed execution. How-
ever, support for debugging queries for these systems is limited
compared to debugging support for programming languages.

One common problem that arises in debugging is that a query
fails to return an expected answer. Several types of explanations for
such missing answers have been studied in past work (as surveyed,
e.g., in [8, 9]). In this work, we focus on query-based explanations
as originally proposed in [4]. Such explanations aid data engineers
in their debugging tasks by identifying parts of the query that
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should be repaired to return an answer that the developer did
expect to see in the result. For instance, a selection operator may
be part of an explanation if the selection condition is too strict,
causing the missing answer of interest to be filtered out. So far,
research on query-based explanations has primarily focused on
relational data and queries limited to subclasses of relational algebra
plus aggregation [2-4, 6]. However, while it would be possible
to implement these algorithms in a DISC system, none of these
approaches addresses the following challenges stemming from the
characteristics of typical DISC workloads:

Challenge 1: Nested data. Nested data formats such as JSON are
common in DISC workloads. Misuse of attributes in operations such
as flattening and nesting that restructure nested data are typical
sources of errors for queries over nested data. Past work neither
supports nested data nor detects such errors.

Challenge 2: Denormalized schemas. One advantage of DISC
systems is that they allow queries to directly access raw data with-
out the need for designing a relational schema and transforming
the data into this schema. The net result is that datasets processed
by such systems are often denormalized and have several hundreds
of attributes. Furthermore, data stored in a data lake is typically
not sufficiently documented. Thus, developers often have to make
educated guesses about the semantics of attributes, leading to errors
when wrong attributes are used in a query. Past work on query-
based explanations does not account for this type of errors, e.g.,
projection operators are not considered as sources of errors.
Challenge 3: Scalability. Typical DISC workloads process 100s of
GBs of data. However, existing solutions for query-based explana-
tions typically only scale to datasets that are a few MBs in size. The
main reason for this lack of scalability is that these methods rely on
tracing full provenance (e.g., [5]) and have to check intermediate
results produced by query operators to determine when tuples that
could have produced the missing answer “got lost”.

In this paper, we present Breadcrumb, a system for explaining
missing answers in Apache Spark that addresses these challenges.
To the best of our knowledge, Breadcrumb is the first system ca-
pable of producing explanations for missing answers over (nested)
datasets of realistic scale (100s of GBs). The system is built upon the
scientific contributions detailed in [7]*, which we briefly summarize
in the following. Breadcrumb is available on GitHub?.

Schema alternatives. Breadcrumb considers attributes of the same
type and structure from the input schema as potential alternatives to

! An extended version is available at https://arxiv.org/abs/2103.07561
Zhttps://github.com/UniStuttgart-DataEngineering/breadcrumb
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Figure 1: Breadcrumb in action: For a given query, query result (a), and an expected but missing answer specified as a tree
pattern (b), Breadcrumb computes and visualizes query-based explanations for missing answers matching the tree pattern (c).

each other. For example, a developer may have accidentally referred
to a home address instead of a work address attribute in their query.
Through reasoning about schema alternatives, Breadcrumb can
identify and explain errors caused by misinterpretation of attribute
semantics in operators such as projection, flattening, and nesting.
Re-parameterizations. To support nested data, we developed
an approach for generating explanations for missing answers over
queries expressed in a nested relational algebra for bags. In previous
work, the lineage [8] of the input query has been used to identify
selection and join operators that filter rows (called compatibles)
which could have contributed to the derivation of the missing data
of interest. Such selections and joins are causes of the missing
answer, because their conditions could be modified to not filter
compatibles, thus repairing the query to return the missing answer.
However, lineage is not sufficient for identifying operators that are
responsible for the failure to derive an answer, because it does not
provide any information about whether replacing a reference to
an attribute with one of its alternatives (e.g., replacing work with
home address) can repair the query to return the missing answer.
To address this shortcoming, we developed a novel formalization of
explanations for missing data based on re-parameterizations which
are repairs of the input query that modify operator parameters.
Defining explanations in this way, we can guarantee that for each
explanation (set of operators) there exists at least one repair of the
query that returns the missing answer and modifies precisely the
operators from the explanation.

Efficiency and scalability. Computing explanations based on our
new formalism is NP-hard in data complexity. However, under some
reasonable restrictions, the problem is in PTIME [7]. Nonetheless,
even the restricted version is still too expensive. Instead, Bread-
crumb computes explanations heuristically in a two-step process.
First, it evaluates a single instrumented version of the input query
that annotates each result tuple with several boolean flags that indi-
cate under which schema alternatives the tuple may be in the result,
which selection operators would have filtered the tuple (under each
schema alternative), and more. This instrumentation rewrites the

original query plan to return a superset of the original query result
with each row annotated with these boolean flags. In a second step,
explanations are extracted from the final annotated query result.
In contrast to prior work, Breadcrumb avoids materializing fine-
grained provenance information and does not require analysis of
intermediate query results. Furthermore, we have taken care to
avoid operations such as cross products that do not scale. While
the approach is heuristic, we have demonstrated [7] that Bread-
crumb typically finds a superset of the explanations produced by
approaches from past work.

Figure 1 shows screenshots of Breadcrumb integrated in a Jupyter
notebook and using Apache Spark as a backend. The screenshots
show the three main steps of using the system to explain missing
answers: (a) the user identifies a missing answer of interest based on
a given query result; (b) the user specifies the missing answers to be
explained as a tree pattern (the user can leave some parts of the miss-
ing answer unspecified); and (c) the system computes explanations
that the user can then explore using Breadcrumb’s interface. Note
that while our system is implemented on top of Spark, many of the
techniques developed for Breadcrumb are of independent interest
and apply to other use cases, e.g., relational databases, as well. We
discuss the individual steps of using Breadcrumb in more detail next
(see our accompanying video: https://youtu.be/YOuWqdtWGGw).

2 EXAMPLE SCENARIO

We explain Breadcrumb’s capabilities using an example session of a
user interacting with our system’s Jupyter UI (https://jupyter.org/)
as shown in Figure 1. Consider the simplified Twitter dataset shown
in Table 1. Each tweet consists of a user, retweeted tweets (that the
user re-posted without further comments), and quoted tweets (that
the user retweeted with additional comments). The example Spark
query shown in Figure 1a returns texts of tweets that are retweeted
more than 10 times paired with a user mentioned in the retweeted
tweet. The corresponding operator pipeline is shown in Figure 2. It
first flattens the retweeted tweets (flattent), then filters tweets
based on the condition count > 10 (selectioncouns>10), next
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Table 1: Example input data: simplified tweets
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Figure 2: Example query

flattens user mentions of the remaining tweets (flatteny), and
finally projects on text and the name of each user mentioned in
the retweet (projection;exs name)-

Breadcrumb programs are specified using Spark’s DataFrame
API. Formally, our approach is based on a nested algebra for bags
similar to [11]. Breadcrumb supports projection, selection, renam-
ing, equi-join and outer-joins, flattening of nested tuples (flattent)
and relations, tuple and relation nesting, aggregation, union, and
deduplication. This set of operators is significantly larger than the
set of operators supported by existing approaches.

Returning to our example, the result of the program over the
example data is shown at the bottom of Figure 1a. Assume that the
developer notices that Jay, a user expected to be in the result, is not
returned by the query and uses Breadcrumb to explain this missing
answer. To initiate this investigation, the developer has to provide
Breadcrumb with the input data and program (shown before) and
a why-not question that expresses what missing answers to focus
on. To this end, Breadcrumb leverages tree-patterns [12]. These
patterns define the nesting structure of the missing answer as well
as permissible values. Placeholders can be used to leave some values
unspecified, i.e., a placeholder can stand in for any value. The
example question can be expressed as the tree pattern shown at the
bottom of Figure 1b. The developer expects an answer with attribute
name bound to value Jay and with any value for attribute text
(placeholder ?). The top part of Figure 1b shows how a tree pattern
is created in Breadcrumb by creating node and edge objects in Scala.
Nested relations in a tree pattern may also contain the placeholder
* that represents any number of tuples. Furthermore, tree patterns
may contain ancestor-decendant relationships in addition to direct
edges (the edge’s boolean flag is set to true).

Having created these inputs, the developer can call Breadcrumb
to compute explanations. Intuitively, each explanation encodes a set
of operators from the query such that there exists a re-parameter-
ization which produces at least one answer matching the tree pat-
tern (the missing answer). Recall that a re-parameterization is a re-
pair that changes parameters of all operators in an explanation, but
preserves the parameters of the other operators and the query struc-
ture. When computing explanations for missing answers, Bread-
crumb considers schema alternatives for re-parameterizations to be
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Figure 3: Breadcrumb’s architecture

able to explain errors caused by misinterpretation of attribute se-
mantics. To efficiently compute explanations, Breadcrumb rewrites
the original query plan to obtain an annotated query result. The
annotated result contains all information necessary for computing
explanations for each possible schema alternative. In Section 3, we
describe this process in more detail.

Breadcrumb returns two explanations for the running example.
The first one only consists of the filter operator (selectioncouns>10
in Figure 2). The filter prevents Jay from appearing in the result
since the retweet mentioning Jay (part of the first nested tuple in Ta-
ble 1) only has a retweet count of 1. Replacing the constant 10 with,
e.g., 0, in the filter operator causes the tuple (Hello,Jay) matching
the tree pattern to be returned. Note that this explanation does not
use a schema alternative, since the fix does not change an attribute
reference. The second explanation contains the first flatten opera-
tor, i.e., flattent in Figure 2. This operator is a potential cause of
the missing answer under the aforementioned schema alternative.
Recall that this schema alternative replaces the retweeted with
the quoted attribute in the parameters of operator flatteny. It
corresponds to the assumption that the developer may actually be
interested in quoted instead of retweeted tweets. When applying a
re-parameterization corresponding to this explanation, the devel-
oper obtains the tweet (Moin,Jay) in the result. For demonstration
purposes, the system provides two implementations to compute
explanations: one that ignores schema alternatives and one that
uses schema alternatives. Figure 1c shows the two corresponding
code snippets (the function call which does not consider schema
alternatives is shown on top). Currently, Breadcrumb requires the
schema alternatives for the input schema to be manually provided
as input to the system, e.g., the user has to specify that the quoted
attribute and retweeted attribute are alternatives for each other.
Integrating schema matching techniques or schema-free query pro-
cessors [1, 10] to automatically identify alternatives is an interesting
avenue for future work. Also note that the visualization of the result
uses labels for nodes in the operator pipeline that differ from the
(internal) operator names to make it easier for users to match the
operator with a line of code in their query.

3 THE BREADCRUMB ARCHITECTURE

Breadcrumb extends Apache Spark with the means to compute
explanations. As depicted in Figure 3, Breadcrumb’s modules (in
blue) are divided into two categories that correspond to the two



main steps mentioned in Section 1: (a) modules that are data inde-
pendent and pre-process the user-provided input, and (b) modules
that leverage the result of pre-processing for the efficient compu-
tation of explanations. These modules extend Spark’s DataFrame
API and rewrite query plans obtained from Spark’s query planner
Catalyst (dark grey). In this demo, we use Jupyter notebooks with
the Apache Toree kernel as an interactive frontend for Breadcrumb
(light grey).

Recall that an explanation is a set of operators such that there ex-
ists a repair of the query that modifies precisely these operators and
returns an answer that matches the why-not question. We call such
repairs successful re-parameterizations. Ideally, the repairs corre-
sponding to an explanation should be minimal, i.e., they should not
unnecessarily modify operators or result in unnecessary side-effects
(changes to the query result). We call such repairs minimal success-
ful re-parameterizations (MSRs). While our formalization requires
explanations to correspond to MSRs, the approach implemented
in Breadcrumb is heuristic and cannot guarantee minimality in all
cases. We now briefly describe each of Breadcrumb’s components
involved in the process of generating explanations.
Pre-processing. Given the query and why-not question provided
via the user interface as well as schema alternatives, Breadcrumb
first calls the modules for static pre-processing. These modules do
not access the input data. Schema backtracing (step 1) determines
selection conditions over the input table by back-propagating con-
straints defined in the why-not questions to attributes in the input
schema. For every query repair, the inferred selection conditions
have to hold for all input tuples that may be involved in the deriva-
tion of the missing answer. Later, these conditions are applied to
prune data that is irrelevant for computing explanations. Schema
backtracing resembles the approach from [3]. During the schema
alternative computation step (step 2), Breadcrumb determines
statically how to substitute attributes in the query with alternatives
and enumerates all possible combinations of such substitutions. It
checks for each combination whether the corresponding combined
attribute substitution yields an executable query.

Query instrumentation and explanation. The two modules ac-
cessing and processing the input data are then used as follows.
Given the constraints, schema alternatives derived during pre-
processing, and the query, forward tracing (step 3) instruments the
query to trace input data matching these constraints through the
query’s operators. For that purpose, Breadcrumb propagates four
types of boolean provenance annotations through the query opera-
tors for each schema alternative. It extends the operator semantics
to propagate the annotations, compute the operator’s output un-
der all schema alternatives simultaneously, and retain tuples that
would be removed by selective operators as explained above. These
operator extensions are carefully designed to keep computational
overhead reasonable. Upon evaluation of the instrumented query
over the input data, Breadcrumb returns a query result with suffi-
cient information to compute explanations. During the last step,
computing explanations (step 4), Breadcrumb extracts successful
re-parameterizations based on the annotated output produced by
the previous step. To identify explanations that correspond to MSRs,
it computes a lower and upper bound for the size of side-effects
caused by any MSR for a set of operators. An exact measure of
side-effects is computationally prohibitive because it would require
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(a) precisely knowing the side-effects caused by each possible re-
parameterization involving an explanation’s operators and (b) an
efficient approach to compare the number of side-effects for each
such re-parameterization.

Overall, our heuristic approach trades accuracy for performance
and, thus, may return explanations that are not minimal and may
miss explanations. See [7] for a discussion under which circum-
stances Breadcrumb returns accurate explanations. Before return-
ing the explanations corresponding to MSRs, Breadcrumb orders
them by the number of operators that need to be modified by re-
parameterizations corresponding to an explanation. If two explana-
tions have the same number of operators, Breadcrumb ranks the
one higher that has a lower upper bound for the side-effects.

4 DEMONSTRATION EXPERIENCE

We showcase Breadcrumb through interactive debugging sessions
running in a Jupyter Notebook. We will use two real world datasets
(Twitter and DBLP data) as well as TPCH datasets of up to 100GB
in size deployed on a cluster with six compute nodes. For each
dataset, we have prepared multiple scenarios (including a scenario
similar to our running example), each comprising a query, a tree
pattern expressing a why-not question, and the schema alternatives
for the dataset. After showcasing a (simple) scenario to familiarize
attendees with the use of the system, we offer attendees the possi-
bility to experience additional pre-cooked scenarios and/or to write
their own scenarios to explore Breadcrumb’s capabilities described
in Section 2, e.g., in terms of expressing tree patterns, queries, or
assessing scalability and explanation quality.
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