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Abstract
Spectrum technologies are shaping the way our world connects, communicates, and functions. Radio nodes connect through 
a nearly ubiquitous wireless mesh of other nodes, access points, satellites, and base stations to support an ever-expanding 
panorama of applications, spanning communication, autonomous navigation and transportation, radar-based geo-sciences, 
soil-sciences, renewable energy, space surveillance, environment and healthcare, smart buildings and grids, precision agri-
culture, consumer and industrial Internet-of-Things (IoT), and other elements of the emerging smart world. This paper offers 
an overview on the impact of the current and future diverse applications on the radio spectrum. Specific applications to be 
addressed include astronomy, health, atmospheric, geosciences, and wildfire monitoring. These applications along with many 
other emerging applications highlight the critical need of implementation of Intelligent Radios and dynamic spectrum access 
techniques that enable efficient spectrum management.

Keywords  Spectrum management · Interference management · Intelligent radio · Spectrumapplications

1  Introduction

The ever-expanding panorama of electromagnetic (EM) 
spectrum applications, spanning autonomous transporta-
tion, radar-based geosciences, renewable energy, astronomy, 
surveillance.The environment, healthcare, smart buildings 
and grids, precision agriculture, localization and security 
services, consumer, and industrial Internet-of-Things (IoT), 
and other elements of the emerging smart world demand 

a revolution in spectrum management [1–3]. Migration to 
higher frequency bands such as mm-wave, THz, and beyond 
will help, but is not a complete solution to spectrum scarcity. 
We envision a future where all wireless devices are empow-
ered with the information, computational capability, and 
authority to manage their wireless spectrum access in real-
time in a globally efficient, effective, reliable, and secure 
manner. Revolutionizing spectrum management is possible 
via the foundations of Intelligent Radios (IR). IR algorithms 
allow real time Digital Spectrum Twining (DST) and sup-
port location-based interference mitigation. IR will allow 
co-existence of passive and active users and devices. Such 
systems will not require trust from overarching government 
or industry entities leading to spectrum democratization. 
They will support user-central communications [4] that may 
set novel policies and enable vendors to operate efficiently.

Efficient use and sharing of the radio spectrum are key 
to enabling future spectrum applications ranging from 
astronomy, health, atmospheric, geoscience, and environ-
ment studies to engineering systems (e.g., intelligent trans-
portation systems). In this paper, we focus on the spectrum 
management and interference mitigation techniques in six 
representative application areas and with consideration of 
area-specific research challenges. The proposed research will 
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considerably diversify and enrich the theoretical research on 
spectrum management.

Astrophysicists have been studying the properties of the 
Universe using frequencies across most of the electromag-
netic (EM) spectrum. Different EM frequencies and fre-
quency bands encode diverse information about the proper-
ties of the universe, and many times the same band contains 
information about a range of astrophysical phenomena. To 
properly study the received EM signals, astrophysicists must 
avoid all human-made sources of EM interference. Accord-
ingly, proper EM spectrum management has an important 
impact on astronomical research and investigations. In the 
Sect. 2 of this paper, Shaul Hanany, University of Minne-
sota/Twin Cities, and Jacques Delabrouille, CNRS, Uni-
versité de Paris and Université Paris Saclay review the key 
astrophysical signals in the frequency range encompassing 
5G and near future 6G and higher bands.

There are vast applications of EM spectrum. Monitoring 
spectrum usage and the interference across these applica-
tions is critical. An example is the interference across radar 
and other wireless devices such as WiFi. Radar monitor-
ing for cardiopulmonary vital signs promises to provide a 
valuable tool for health and safety, which will become com-
monplace with progress in IoT deployment. Advancement of 
radar-based cardiopulmonary monitoring will be facilitated 
by the extension of the technology to exploit signals over a 
greater range of the electromagnetic spectrum. Similarly, 
communications applications are also poised to exploit the 
higher frequency ranges of the spectrum. While this intro-
duces the potential for increased interference, it also intro-
duces the opportunity to address interference management 
by leveraging communication technologies to directly fulfil 
the role of cardiopulmonary motion sensing. In Sect. 3 of 
this paper, Victor Lubecke, University of Hawaii at Manoa, 
will provide an overview of radar technologies used in health 
monitoring.

Diverse radio frequency devices such as radars, lidars, 
and microwave imaging instruments are used to monitor 
components of Earth’s climate system including the atmos-
phere, ocean, land-surface, and cryosphere. These technolo-
gies rely on different regions of the EM spectrum for atmos-
pheric monitoring. These EM frequency bands are also used 
in other facets key to the health and well-being of Earth 
and societies. Remote sensing technologies used for weather 
and climate applications must have precise recognition of 
these frequencies because those spectral lines associated 
are fixed and immutable by the constituents of the climate 
system (e.g., we cannot change the emission properties of 
water vapor). Therefore, monitoring all elements of spec-
trum interference and designing technologies and algorithms 
that can reduce spectrum interference effects are imperative 
for socioeconomic well-being and for maintaining continu-
ous, accurate monitoring of weather and climate. In Sect. 4 

of this paper, Jason Furtado, University of Oklahoma, 
along with Reza Zekavat, Worcester Polytechnic Institute, 
will offer a detailed review of the role of EM spectrum for 
atmosphere monitoring.

Climate change motivates environmental monitoring 
that is important to the human kind. One of the key con-
sequences of climate change is the emergence of wildfires. 
A key part of wildfire management and suppression suc-
cess is reliable and timely access to data and information 
from remote sensing observations and aircraft reconnais-
sance for firefighters on the ground. Data resources pro-
vide context, status and a wide array of other intelligence 
about a wildfire that needs to be communicated around 
the incident command center and to and from firefighters 
in remote camps and on the fireline. Thus, considerable 
spectrum resources should be available for this applica-
tion and spectrum should be properly managed to support 
this vital application. In the Sect. 5 of this paper, Fatemeh 
Afghah, Clemson University, and Nancy French, Michigan 
Tech Research Institute, will shed light on the details of 
this application.

Additionally, other geoscientists have been using EM 
waves for a variety of applications from analyzing volcanic 
activities and predicting earthquakes to exploring natural 
resources. Geoscientists use variety of devices that uti-
lize EM spectrum sometimes with relatively high powers. 
Consideration of spectrum usage for geosciences is key for 
spectrum management. In the Sect. 5 this paper, Roohollah 
Askari, Michigan Technological University highlights the 
geosciences applications in Spectrum.

Section seven of this paper, will conclude that intelli-
gent spectrum and interference management are vital com-
ponents of future technologies. In addition, it highlights 
that a set of important technologies should be assessed 
in order to enable intelligent spectrum management. In 
addition to technology assessment, economic impacts of 
spectrum technologies will be important.

2 � Astrophysics and Cosmology

2.1 � Introduction

Astrophysicists have been studying the properties of the 
Universe using frequencies across most of the electromag-
netic spectrum, and the need to coordinate usage of the 
spectrum arose soon after 1932 when Karl Jansky made 
the first radio observations at 20.5 MHz of emission from 
the Milky Way. Today this specific frequency is character-
ized by the International Telecommunication Union (ITU) 
as within the ‘High Frequency’ (HF) sub-band of the 
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radio spectrum, which in its entirety spans 12 sub-bands 
between 30 Hz and 300 GHz.1 Article 5 of ITU’s Radio 
Regulations [5] provides detailed designations of sub-
bands starting at 13.36 kHz and extending up to 275 GHz 
for use by various applications including radio astronomy.

5G wireless systems span a frequency range from 0.45 to 
52.6 GHz; 6G wireless and subsequent systems are expected 
to venture into higher frequencies. We review some of the 
most prominent astrophysical signals in this frequency 
range.2 Figure 1 shows the primary sources of emission in 
this frequency band.

2.2 � Sources of Radiation

The most intense source of intensity over much of this spec-
tral range is the ‘cosmic microwave background radiation’ 
(CMB) a relic remnant from the Big Bang. When the Uni-
verse was somewhat younger than about 400,000 years old 

– that is, somewhat earlier than 0.003% of its current age 
of nearly 14 billion years – it was filled by a hot plasma of 
ionized atoms and photons scattering off free electrons. As 
the universe expanded and cooled the energy of the photons 
dropped, allowing electrons and protons to combine and 
form hydrogen atoms. Since the photon-hydrogen scatter-
ing cross section is vastly lower than the photon-electron 
one, photons effectively free stream through the Universe 
reaching our telescopes and conveying information about 
the Universe at its early age. They also carry signatures of 
astrophysical processes taking place throughout the Uni-
verse’s evolution.

The expansion of the Universe has red-shifted the original 
CMB black body spectrum, characterized with an effective 
temperature of ~ 3000 K, to its present effective temperature 
of 2.725 K, as precisely determined by the FIRAS instru-
ment aboard NASA’s COBE mission [6]. The CMB has been 
a treasure trove of cosmological and astrophysical infor-
mation, with measurements conducted on ground-based, 
balloon-borne, and three space missions, COBE, WMAP, 
and most recently Planck. Figure 2 shows sky emissions at 
several frequency bands as revealed by the Planck data [7]. 
Results of CMB measurements have garnered thousands of 
citations and four Nobel prizes, and have constrained the 

Fig. 1   Spectrum of astrophysical emissions at frequency bands close 
to 5G wireless bands and to future 6/7G bands. The dominant source 
is the cosmic microwave background. Other sources are the interstel-
lar medium within the Milky Way, which emits radiation through 
synchrotron and free-free emission (labeled ‘Galactic Synchrotron’ 
and ‘free-free’, respectively) at low frequencies, and emission of dust 
grains at high frequencies that has two components, a thermal emis-
sion component at high frequency (labeled ‘Galactic Dust (thermal)’) 
and a much lower intensity component peaking near 20 GHz (labeled 
‘Galactic Dust (spinning)). Frequencies of some of the main atomic 
and molecular Milky Way emission lines are shown with small 

magenta vertical bars (labeled ‘H-21  cm’ for the 21  cm hydrogen 
line, and ‘CO rotational lines’ for transitions of the CO molecule); 
their vertical position is arbitrary. Similar emission processes in dis-
tant galaxies contribute a background of integrated emission from 
radio (labeled ‘Radio Galaxies’) and infrared dusty galaxies (labeled 
‘Dust Galaxies’), the latter also known as the cosmic infrared back-
ground. Zodiacal emission arises from the thermal emission by inter-
planetary particles in the solar system. The integrated emissions from 
extragalactic carbon monoxide (CO) rotational lines and ionized car-
bon and nitrogen transitions, shown in purple, are a sub-dominant 
part of the continuum extragalactic emission in this frequency range

1  Other organizations such as IEEE and NATO have other designa-
tions for this spectral range.
2  Another review giving a different perspective is provided by a pub-
lication of the National Academy of Sciences, Engineering, and Med-
icine [8].
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cosmological parameters of our Universe with an unprec-
edented accuracy.

At present, intense effort is directed into measurements 
of the polarization of the CMB. Polarization signals encode 
information about the physics of the Universe at fractions of 
a second after the Big Bang, about properties of the neutri-
nos, and they can further constrain the values of a range of 
cosmological parameters that describe the properties of our 
Universe as a whole.

Near 800 GHz thermal radiation from dust grains in the 
Milky Way become the dominant source of emission in 
all sky directions. The dust grains, made primarily of sili-
cates and carbonaceous materials, have a broad distribu-
tion in size peaking around 5 microns, and their integrated 
emission is well described as black body with an effective 
temperature near 18 K multiplied by an emissivity that is 
power low in frequency. Astrophysicists are studying these 
dust grains because they are a fundamental building block 
in the formation of larger rocky objects such as planets, 
as well as an essential ingredient for star formation in the 
Milky Way and other galaxies.

The cosmic infrared background (CIB), which near 
800 GHz is close in intensity to thermal dust, is the inte-
grated emission from unresolved galaxies across the 

Universe. Like our Milky Way, many of these galaxies 
have dust grains and the integrated emission of these 
source peaks in the infra-red band of the spectrum. The 
integrated emission is dominated by ‘star-forming’ gal-
axies, which are galaxies that host a more vigorous star 
formation activity. Studies of the CIB thus are an excel-
lent probe of the properties of such galaxies across cosmic 
history.

Magnetic fields with a strength of few micro-Gauss 
thread the entire Milky Way. Freely propagating energetic 
electrons spiral around these magnetic field lines, a con-
sequence of the Lorentz force, and emit synchrotron radia-
tion. The strength of magnetic fields and distribution of 
electrons’ energy make this radiation peak at much lower 
frequencies, and at frequencies of interest the spectrum 
is falling steeply with increasing frequency. Scattering of 
less energetic free electrons by ionized atoms is another 
source of integrated emission, called free-free emission. 
Both synchrotron and free-free encode information about 
the distribution of matter within our galaxy, the sources 
of free charged particles, and the distribution and source 
of Galactic magnetic fields.

Some of the Galactic dust particles that give rise to the ther-
mal emission, particularly those with nanometer dimensions, 

Fig. 2   Maps of continuum astrophysical emissions at frequencies 
between 30 and 857 GHz as measured by the Planck satellite shown 
in Galactic coordinates; the Milky Way is the middle horizontal strip. 
An isotropic uniform glow of the CMB, which is a black body with 
effective temperature of 2.725  k, has been removed, as well as a 
dipole term with amplitude of about 3 mK that is due to the motion 
of the solar system and the galaxy relative to the CMB frame of ref-

erence. If not removed, they would have dominated the spatial pat-
tern. The fluctuations observed between 30 and 217  GHz are small 
spatial anisotropies of the CMB intensity. At low frequencies Galactic 
emissions are due to synchrotron, free-free, and spinning dust, and at 
high frequencies the signal is dominated by Galactic thermal dust; 
see Fig. 1. The Figure is  adopted from The Planck Collaboration: Y. 
Akramy, et al. [7]
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Fig. 3   Statistical analysis of 
radar respiration monitoring. 
Bland–Altman plots indicate 
parity of radar compared to 
chest strap rate monitor (left) 
and tidal volume spirometer 
(right) [18, 19]
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are hypothesized to have an electron dipole moment and to 
spin rapidly, giving rise to an additional source of emission 
that peaks at few tens of GHz. If identified with high confi-
dence and characterized with better accuracy, this emission 
would shed more light on the physics of dust grains.

The emission mechanisms described so far are inher-
ently broad band. Energy transitions of neutral and ionized 

molecules within our Galaxy and in other galaxies give rise 
to a rich series of emission lines at characteristic, well known 
frequencies. Examples of emission lines include recombina-
tion lines of ionized hydrogen and other atoms, rotational lines 
of polar molecules such as carbon monoxide, and most notably 
the 21 cm hyperfine splitting line of neutral hydrogen, among 
many others; see for example [8, 9]. These emission lines are 
essential to the understanding of the physics and chemistry at 
work in denser regions of the GISM such as molecular clouds, 
and of the dynamics of the cold gas in galaxies. They are also 
essential to understanding the formation of atoms and mol-
ecules in the Milky Way as well as in distant galaxies in the 
Universe.

When observing extragalactic sources, the frequencies at 
which these lines are observable is red-shifted to a lower fre-
quency, and the magnitude of the shift depends on the distance 
of the source. A number of ground-based observatories are 
striving to detect and map the redshifted 21 cm line because 
it traces the evolution of hydrogen gas across cosmic time. 
Because hydrogen is distributed across the entire volume of 
the universe, 21 cm emission occurs over very broad frequency 
range between tens of MHz to 1.4 GHz. Interference by exist-
ing 4G and 5G devices as well as radio and TV stations are 
a significant source of contaminating foreground for these 
experiments.

2.3 � Radio Interference Challenges and Conclusions

Rich astrophysical information about the nature of the Uni-
verse is deposited across the entire 5, 6 and 7G frequency 
bands. Observations are conducted by multitude ground- and 
balloon-based observations, and occasionally by space-based 

Fig. 4   Sleep apnea clinical study (a) and corresponding radar ampli-
tude-time signatures for apnea and hypopnea events measured at 
2.4 GHz (b) and I-Q trace signatures measured at 24 GHz [21]

Fig. 5   Radar authentication concept and examples of respiratory dynamics pattern classifier (upper) and cardiac signal power spectral density 
(PSD) (lower) used for subject recognition [21–23]
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missions. It is essential to understand the drivers and con-
straints of the many clients of the spectrum and optimize its 
use for the benefit of science and of other uses.

3 � Remote Sensing of Cardiopulmonary Vital 
Signs

When wireless signals scatter off a human body, the reflected 
signals are modulated by body motion and thus encoded with 
valuable information related to physiology or activity. The 
collection of such data constitutes remote sensing, whether it 
involves the passive reflection of ambient electromagnetic sig-
nals or the use of an active interrogation signal. As with com-
munications, various wavelengths offer unique measures and 
modes of operation. While current commercial applications 
are mostly limited to traffic and occupancy monitoring, such 
sensing can expand to disrupt the fields of health and security 
monitoring and impact society on a vast level, particularly as 
suitable higher frequency technology matures.

3.1 � Radar Monitoring of Cardiopulmonary Activity

Continuous electromagnetic signals have shown promise for 
cardiopulmonary remote sensing at frequencies ranging from 
the ultrahigh frequency (UHF) range [10] through the terahertz 
(THz) range [11]. Signals at the lower end of this frequency 
range are commonly encountered in communications using 
handheld transceivers and cordless phones, and penetrate par-
ticularly well through building walls yet still provide suitable 
resolution for measurement of respiration or heart activity. In 
fact, the penetrating quality of such signals has even made 
such sensing possible underwater [12]. These operate on the 
Doppler principle and phase demodulation is used to detect 
body surface motion down to the millimeter level. The most 
advanced physiological sensing demonstrations have come 
in the somewhat shorter wavelength microwave spectrum. In 
this range physiological body motion has been measured and 
analyzed to quantify measures such as respiratory and heart 
rates, heart rate variability, pulse pressure, respiratory tidal 
volume (Fig. 3), gait irregularities, sleep apnea (Fig. 4), and 
even identity authentication (Fig. 5). While much of this work 
has involved active radar, there have been various passive 
demonstrations including the leveraging of Wi-Fi signals [13, 
14]. Measurements in the millimeter and submillimeter wave 
spectra (THz) offer increased resolution but present greater 
challenges in signal to noise ratios and demodulation methods. 
This range has also been successfully applied for imaging in 
security and food screening, collision avoidance radar, and 
tissue diagnostics, making possible increased opportunities 
for leveraging in physiological monitoring applications [11].

3.2 � Applications and Challenges

Remote sensing of cardiopulmonary vital signs can be a key 
asset in healthcare and security applications as it offers an 
approach to ubiquitously monitor subjects without interfer-
ence to normal activity [15–17]. Doppler radar cardiopulmo-
nary monitoring technology is based on the sensing of body 
motion associated with cardiac and respiratory activity, and 
thus must not only address the challenge of resolving a wide 
range of small displacements but also that of distinguishing 
motion of interest from interfering motion within the moni-
toring field of view.

Fig. 6   Beamforming to identify multiple subjects. Isolation of two 
subjects (upper) and SNR comparison for millimeter-wave radar 
measurements [24, 25]
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In healthcare, microwave sensors have already demon-
strated parity with industry standard contact sensors for 
measurement of respiratory activity including respiratory 
rate and tidal volume. Figure 3 (left) shows a successful 
Bland–Altman equivalence assessment comparing a micro-
wave radar measurement with a conventional chest strap 
system [18], while Fig. 6 (right) shows parity of a similar 
radar system with a spirometer [19]. Microwave radar has 
also been used to successfully recognize the occurrence of 
obstructive sleep apnea (OSA) events on par with conven-
tional polysomnography methods [20], as shown in Fig. 4.

In security applications microwave and millimeter 
wave technology has been applied well beyond the sens-
ing of motion in restricted areas to the actual recognition 
of a subject based on cardiopulmonary activity. Figure 5a 
illustrates one of the features used in learning to recognize 
individual respiratory pattern dynamics and Fig. 5b shows 
recognition based on cardiac signal power spectral density 
(PSD) [21–23]. These vital signs monitoring demonstra-
tions were conducted with equipment operating in the same 
manner as communications devices within the ISM band 
and thus interference could be managed with conventional 
communications channel management techniques. Extension 
to higher frequencies could offer improved resolution and 
pattern recognition, however an approach for interference 
management must also be implemented for the spectral seg-
ment of interest.

Additional complexity is introduced when multiple sub-
jects are within the field of monitoring, as the combined 
motion of all subjects results in modulation of the reflected 
signals which must be analyzed creatively to extract signals 
for particular individuals. This challenge can be met through 

hardware and software advances. Adaptive beamforming 
can be applied to steer a narrow beam across the area of 
interest in order to reduce the problem to that of monitoring 
a single subject. Such an approach is made more practical 
when conducted at millimeter-wavelengths where the physi-
cal dimensions of antennas elements and arrays can be kept 
small while allowing for a narrow beam-width.

Figure 6a illustrates the separation of two well-sepa-
rated human subjects using a 77-GHz FMCW radar with 
adaptive beamforming [24], while a comparison of signal 
to noise ratio (SNR) for a similar system used to measure 

Fig. 7   Concept for hybrid-based 
separation of subjects (a) and 
performance illustrating the 
proposed method-maintained 
separation accuracy above 93% 
for separations both less than 
and greater than 1 m (b) [26]

Fig. 8   Machine learning pattern recognition examples. Fast measure-
ment of heartrate (upper) and confusion matrix for subject identifica-
tion (lower) after training with known data [27, 29]
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cardiopulmonary vital signs is shown in Fig. 6b [25], with 
and without beam forming. While beam steering can be 
applied for subjects separated by a distance equivalent to the 
antenna beam-width, alternative approaches are needed for 
more closely spaced subjects. Independent component anal-
ysis (ICA) combined with the joint approximation diagonali-
zation of Eigen-matrices (JADE) algorithm has been used 
to successfully separate subjects closely positioned within 
the antenna beam-width [26]. This approach is illustrated 
in Fig. 7 along with the performance of a hybrid approach 
which optimally chooses between direction of arrival (DOA) 
beamforming and ICA/JADE separation. Millimeter-wave 
radar systems facilitating FMCW and beamforming are 
being applied to automotive collision avoidance and are thus 
becoming readily available for vital signs sensing, yet are 
also imposing a challenge for interference mitigation.

3.3 � Emerging Applications

One of the latest developments in cardiopulmonary sens-
ing involves the use of machine learning to aid in the rec-
ognition of distinct patterns of interest. Machine learning 
has been used in applications including the separation of 
heartbeat motion from respiratory motion [27], the recogni-
tion of OSA events (93–100%) [28], and recognition of an 
individual’s identity [29], as illustrated in Fig. 8. In machine 
learning pattern recognition is learned from training data, 
thus the efficacy can be improved with the collection of 
multi-dimensional patterns as well as increased resolution 
within each pattern. Advanced biomedical imaging has been 
demonstrated in the terahertz spectrum [11], and may thus 
contribute powerfully through both mechanisms to these pat-
tern recognition applications.

As a summary, Radar monitoring for cardiopulmonary 
vital signs promises to provide a valuable tool for health 
and security which will become commonplace with progress 
in IoT deployment. Advancement of radar-based cardiopul-
monary monitoring will be facilitated by the extension of 
the technology to exploit signals over a greater range of 
the electromagnetic spectrum. Similarly, communications 
applications are also poised to expand to exploit the higher 
frequency ranges of the spectrum. While this introduces the 
potential for increased interference, it also introduces the 
opportunity to address interference management by lever-
aging communications technology to directly fulfil the role 
of cardiopulmonary motion sensing. Figure 9a illustrates 
methodology for use of channel state information (CSI) 
from a Wi-Fi communications system to monitor respira-
tory activity [13], while the extension of this approach to 
millimeter-wave signals is shown in Fig.  9b [14]. This 
approach bases sensing on the recognition of anomalies in 
the CSI data that normally serves to identify optimal channel 
selection through SNR for communications. This approach 

can amount effectively to a passive radar scenario, where 
no new, or at least no unconventional signal transmissions 
are introduced to spectral traffic. Ultimately the effective 
management of the expanding exploitation of the electro-
magnetic spectrum will depend upon approaches such as 
these to avoid the problems associated with uncoordinated 
competition for spectrum.

4 � Instruments and Spectrum Challenges 
for Atmospheric Remote Sensing

Here, we first introduce an overview of the communication 
systems and Instruments used for atmospheric sensing and 
then investigate the challenges for atmospheric remote sensing.

4.1 � Overview of Communications Systems 
and Instruments Used for Atmospheric Remote 
Sensing

4.1.1 � Satellites

Satellites imagery and Radio Frequency (RF) systems offer 
near-global scale monitoring of the Earth climate. Visible 
and infrared satellite images provide near-real time assess-
ment of cloud types, e.g., [30], storms, land-surface con-
ditions (e.g., snow cover, near-surface temperatures), and 
wildfire monitoring. Additionally, passive radiation allows 
us to detect several other climate system variables, including 
water vapor content, 3-D temperature profiles, ocean surface 
temperatures, and cloud types, e.g., [31]. The frequencies 
at which these variables are captured are determined by the 
properties of Earth’s atmosphere, and as such they cannot 
be changed or altered. Examples of key frequency bands 
include e.g., [32].

 < 10 GHz: At these frequencies, the atmosphere is virtu-
ally transparent, allowing for detection of surface proper-
ties of Earth (e.g., land and ocean surface temperatures, 
soil moisture and temperature, sea ice).
 ~ 24 GHz: This frequency band is a critical band for 
monitoring total column water vapor estimates, important 
for weather and climate applications (e.g., storm forma-
tion, energy balance/the greenhouse effect).
 ~ 31 GHz: This band is sensitive to total cloud liquid 
water, thus allowing detection of warm (i.e., mostly liq-
uid) clouds.
 ~ 50–60 GHz: 3-D temperature profiles are obtained 
around this frequency band because of the strong absorp-
tion by oxygen at these frequencies.
 > 100 GHz: At these higher frequencies, we look for 
single absorption bands for water vapor and ice in order 
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Fig. 9   Leveraging CSI for 
cardiopulmonary monitoring. 
IQ analysis of Wi-Fi CSI (a), 
and statistical analysis of 5G 
NR CSI for respiration measure-
ment (b). [13, 14]
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to determine different forms of precipitation and the 
presence of ice clouds. The ~ 183 GHz frequency band is 
another important band for water vapor.

4.1.2 � Radar and Lidar

Surface-based radar (Radio Detection and Ranging) sys-
tems are the primary tools used for detecting, monitoring, 
and nowcasting (i.e., very near-term forecasts) precipi-
tation, severe weather, and clouds (see [33] for a general 
review). The primary bands used for precipitation detection 
include S-band (2–4 GHz), C-band (4–8 GHz), and X-band 
(8–12 GHz). S-band radars are the most popular used for 
large-scale weather detection by international agencies (e.g., 
the US National Weather Service), as this band receives 
almost no interference or attenuation from other atmospheric 
constituents. Cloud detection radars are at higher frequencies 
– often in the Ka (30–40 GHz) or W bands (75–100 GHz), 
which correspond to maximum atmospheric transmission 
for those phenomena. Conversely, on the other end of the 
spectrum, L-band radars (1–2 GHz) are used mainly by 
aircrafts for clear air turbulence detection. Natural interfer-
ence for atmospheric radars comes mainly in the X-band, as 
other atmospheric constituents can emit/transmit at those 
frequencies. By contrast, lidar (Light Detection and Rang-
ing) systems use lasers for detection of such atmospheric 
science applications like 3-D Earth mapping (natural and 
human-made features), atmospheric aerosols and their opti-
cal properties, and even wind and temperature profiles, e.g., 
[34, 35]. As such, these lidars operate at very high frequen-
cies (e.g., 20,000 GHz) but can only be used for limited 
distances (< 2 km) and can be severely attenuated by the 
presence of thick clouds or vegetation.

4.2 � Challenges

Remote sensing applications for studying Earth’s climate 
and understanding the evolution of global climate change are 
numerous, e.g., [36, 37]. At the fundamental level, under-
standing and accurately capturing energy imbalances on 
Earth impact scientists’ estimation of equilibrium climate 
sensitivity (ECS) – i.e., the total heating which Earth will 
experience because of increased greenhouse gas forcing 
once the system reaches equilibrium. Current estimates of 
ECS range widely from our climate models – from 1.5 to 
4.5 °C for a doubling of CO2 [38]. Therefore, we currently 
have very large uncertainties in our global climate projec-
tions of future temperature and circulation patterns. Ground-
based and space-based instruments monitor and record sev-
eral 3-D climate variables needed for calibrating climate 
model simulations of present and future climate states.

One key variable for monitoring atmosphere is its water 
vapor content, which impacts the hydrological cycle and also 

Earth’s radiative balance, as water vapor is a powerful green-
house gas. As mentioned previously, the ~ 24 GHz channel 
is an important one for monitoring water vapor (water vapor 
also emits at higher frequencies, e.g., ~ 183 GHz). However, 
this frequency channel is currently being considered as part 
of the worldwide 5G wireless network deployment. As such, 
transmission of instruments with this frequency will inter-
fere with satellite measurements of water vapor content in 
Earth’s atmosphere, producing erroneous results for our 
weather and climate models [39].

Related to water vapor content, continuous active moni-
toring of clouds and different cloud types is a very important 
factor for climate change work. Cloud radiative feedbacks 
are one of the largest unknown responses in the climate 
system, e.g., [40, 41]. Current generation satellite and lidar 
retrievals use numerical models and machine learning 
algorithms based on limited (spatial and temporal) data to 
distinguish several cloud properties, including liquid water 
content, thickness, cloud top pressure, and cloud composi-
tion, e.g. [30, 42, 43]. Moreover, in order to fully capture 
accurate 3-D characteristics of clouds in the climate system, 
we must rely on several sensors and instruments as just a 
single instrument cannot distinguish the multiple properties 
needed.

Area of improvement for cloud observing and thus deriv-
ing better estimates of ECS center around understanding and 
quantifying the changing cloud types in response to global 
climate change. The percentage of high altitude (e.g., cir-
rus) versus low altitude (e.g., stratus/stratocumulus) cloud 
cover on Earth has enormous impacts for the Earth radia-
tive balance and can create feedbacks with the land sur-
face and thus with the climate system. As global climate 
change alters surface temperatures and atmospheric circu-
lation patterns, cloud types will also change. Additionally, 
changing cloud types and properties also alter precipita-
tion efficiency and formation, thus, impacting the global 
hydrological water cycle. Atmospheric scientists’ ability to 
monitor these clouds and related precipitation and humidity 
profiles require clear signals from the ~ 24 GHz, 31 GHz, 
50–60 GHz, and ~ 183 GHz channels.

Aerosol-cloud interactions are another major component 
of monitoring for climate change. Detecting atmospheric 
aerosol types and concentrations globally inform scientists 
about several aspects of the climate system, including atmos-
pheric albedo. Aerosols are also of huge concern for public 
health, especially anthropogenic sources of aerosols from 
industry and agriculture, e.g., [37]. Detection of aerosols 
occurs primarily via light scattering. Unfortunately, a sin-
gle remote sensing instrument for aerosols can have trouble 
distinguishing light scattering from aerosols versus clouds 
or even land reflectance. Moreover, clouds and other atmos-
pheric constituents complicate aerosol detection algorithms 
(which are often empirically derived). The current solution 
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is to employ multiple instruments designed for different 
constituent detection (e.g., polarimeters, radiometers) and 
then working to differentiate “noise” (i.e., non-aerosol) from 
the “signal” (i.e., the aerosols themselves). Bridges forward 
would involve not only improvements to the remote sensing 
instruments and spectral detection by the instruments but 
also combining space-derived measurements with exten-
sive, high resolution surface-based observational networks 
of aerosols. Doing so would allow scientists to discern the 
importance of local and regional landscapes (e.g., rural vs. 
urban). The volumes of data and the need for high-frequency 
transmission of this data for retrieval algorithm and near-real 
time monitoring are other significant improvements needed.

For weather applications, challenges arise in two main 
arenas. One is the continued expansion of the communica-
tions into lower frequencies, particularly encroachment into 
S-band frequencies. As these frequency bands are crucial for 
detection of storms and other precipitation, any degradation 
or interferences at these frequencies will hinder effective 
weather monitoring and public weather warnings. Second, 
our ability to monitor weather systems rely heavily on fixed-
radar systems. These systems are generally located near 
major population centers but can suffer beam blockage and/
or false echoes due to topography, urban settings, or other 
human structures (e.g., windfarms). Additionally, our ability 
to monitor storms beyond the radial sweep of a single radar 
is problematic, particularly for storms in the ocean. The abil-
ity to use other devices to fill in the gaps and reduce radar 
“noise” would be extremely useful for advancing both near-
term forecasts of weather hazards and long-term monitoring 
of such events for modeling studies.

As a summary, diverse radio frequency devices such as 
radars, lidars, and various satellite products (e.g., microwave 
imaging) are used to monitor the various components of the 
Earth physical climate system (e.g., the atmosphere, ocean, 
land-surface, cryosphere). These technologies rely on differ-
ent regions of the electromagnetic spectrum for atmospheric 
monitoring that are also used in other facets key to the health 
and well-being of Earth and societies. Precise reading of 
these technologies is important because the spectral lines 
associated with these technologies are fixed and immutable 
by the constituents themselves (e.g., we cannot change the 
emission properties of water vapor). Therefore, monitoring 
all elements of spectrum interference and designing technol-
ogies and algorithms that can reduce spectrum interference 
effects are imperative for socioeconomic well-being and for 
maintaining continuous, accurate monitoring of weather and 
climate.

5 � Spectrum Challenges for Real‑Time 
Wildfire Monitoring

A key part of wildfire management and suppression success 
is reliable and timely access to data and information from 
remote sensing observations and aircraft reconnaissance for 
firefighters on the ground. Incident commanders are reliant 
on data for situational awareness, to plan daily operations, 
and to run predictive models of fire behavior and smoke. 
Data resources provide context, status and a wide array of 
other intelligence about a wildfire that needs to be com-
municated around the incident command center and to and 
from firefighters in remote camps and on the fireline. Cur-
rent data delivery capabilities for operational information 
sharing cannot transmit some very large data resources that 
have potential value for accurate decision-making. Images 
are downgraded or interpreted into point and line graph-
ics to make them small enough for efficient transfer. This 
means that experts are not always able to access important 
information for decision-making, and they rely on derived 
rather than raw information that may convey inaccurate or 
incomplete information.

Because of rapid advances in data collection, remote 
sensing, and geospatial data analysis, requirements of a data 
sharing system for disaster management, including wildland 
fire, have not been fully explored or defined. In fact, data 
sharing limitations of current systems are not well articu-
lated, because technologies to provide large data sets in a 
timely manner to front-line decision-makers are not com-
monly available. A new effort to improve access to critical 
datasets in disconnected situations, such as a wildfire inci-
dent command post and distributed firefighters, is the devel-
opment of the wildfire data logistics network (WildfireDLN 
[58]). The functions of the WildfireDLN storage nodes can 
make use of whatever underlying communication mecha-
nism is available. Collections of such operations that may 
comprise complex communication functions are managed 
by higher level services, each of which has its own assump-
tions and requirements which can use a variety of different 
mechanisms to implement a complex function. The com-
mon layer of shared buffer services that define the lowest 
layer of the WildfireDLN enables a wide variety of policies 
and mechanisms for isolated, disrupted, distributed and het-
erogeneous communication and data management services, 
therefore offering resiliency in the context of disconnected 
network operations.

5.1 � Drone‑Based Fire Monitoring

Wildfires are one of the costliest and deadliest natural disas-
ters in the US and other parts of the world. The southwestern 
U.S. is one of the most fire-prone regions of the world, with 
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approximately 2000 lightning-caused wildfires annually on 
Federal lands [44]. Wildland fires endanger human lives, 
damage the infrastructure, forest lands and other natural 
resources with negative consequences on wildlife, water 
quality, and other ecosystem services [45]. The frequency 
of western U.S. wildfires has increased by 400% since 1970. 
The rapidly increasing risk of fire is mostly due to recent 
widespread extreme drought conditions, and climate warm-
ing which calls for new technologies for early detection and 
management of wildfires [46]. The current wildfire detection 
techniques cannot provide an agile and accurate observation 
of wildfire, in particular in remote and hard-to-reach areas. 
For instance, the satellite images which are commonly used 
in fire detection due to their global coverage, are costly and 
suffer from considerable delay and often low resolutions. 
Wireless sensor networks can offer an affordable solution 
for fire detection but they often cover a limited coverage area 
and a short lifetime.

Unmanned aerial vehicles (UAVs) have been recently uti-
lized in disaster management operations such as fire detec-
tion and management, search-and-rescue and evacuation 
operations to collect data/imagery for a ground command 
station or a rescue team in close proximity [47–52]. The 
UAVs can offer unique features in such operations including 
tracking the fire front line, fast mapping and of wide areas 
even in remote and hard to reach areas, emergency deliver-
ies, real-time video streaming of the impacted areas, search-
and-rescue and many more actuation abilities expected in 
new generations of drones. An important advantage of 
drone-based fire detection and management is the fact that 
the drone can operate in an autonomous or semi-autonomous 
mode, hence it can eliminate the need for firefighters and 
first responders to be in a close proximity of the fire zone.

5.2 � Challenges

One of the main challenges related to the operation of UAVs 
for high-resolution imaging and video streaming in remote 
areas is communication [53]. This issue is even more critical 
during disasters when the communication infrastructure may 
be damaged. The communication of UAVs is divided into 
two categories of control and non-payload communication 
(CNPC) that refers to communications among the UAVs or 
between the UAVs and the ground station for high-propri-
ety delay-intolerant control, coordination, or flight opera-
tion information and the payload communication to transfer 
sensed information to the ground station that requires high 
data rate transmission [54]. Noting the importance of the 
CNPC in the operations of an individual or a group of UAVs, 
it requires reliable communication on a dedicated radio spec-
trum. Such dedicated spectrum for CNPC has been allo-
cated to the medium and large UAVs by the Radio Technical 

Commission for Aeronautics (RTCA), however, there is no 
current policy developed for small UAVs.

Several efforts led by federal agencies and international 
communities currently focus on investigating proper com-
munication technologies for CNPC of UAVs [55, 56]. The 
available candidates include using the cellular communica-
tions (e.g., LTE) and wireless local areas networks (e.g., 
WiFi) that may suffer from a congested network in urban 
areas or lack of services in rural areas. Other recent can-
didates are (i) ultra-reliable low latency communication 
(URLLC) in 5G that is designed for latency sensitive appli-
cations such as autonomous driving, ii) satellite communi-
cations in very remote areas that suffer from long latency, 
and the need for directional antennas, and (iii) long range 
communication (LoRa) that is designed for low data rate 
transmission over long distances with low power consump-
tion [57].

The focus of the majority of current research work is to 
develop communication protocols for UAVs' CNPC com-
munication, however, the success of UAV networks in criti-
cal missions (e.g., real-time monitoring of disaster-impacted 
areas) relies on reliable payload communication. In these 
missions, the pre-allocated spectrum of UAVs may not be 
sufficient to transmit high-throughput imagery, hence on-
demand access to additional spectrum is required. This need 
for additional spectrum calls for novel dynamic spectrum 
sharing technologies.

5.3 � Related Works

A recent nationwide initiative called ‘FirstNet’ aims at pro-
viding prioritized communications for first responders over 
a reliable LTE network in partnership with AT&T, where a 
wireless broadband network dedicated to public safety will 
be established. While this is an invaluable effort, it could be 
years of delay waiting for this broadband communication 
to be available in rural areas. Even when such a network is 
available, if the LTE towers were out of order, the alterna-
tive communication using radio access networks (RANs) 
in mobile vehicles may still take a while to be set up in the 
remote regions or areas impacted by disasters. Therefore, 
in UAV-assisted disaster monitoring, the UAVs should be 
equipped with a flexible communication system that could 
efficiently and rapidly utilize all possible network resources 
available in the impacted region.

MmWave communication has been discussed as an option 
for payload communications of UAVs as a part of 5G, but 
the technology is not widely available yet. Moreover, the 
communication is impacted by high propagation path loss, 
thereby, it requires the UAVs to be equipped with high direc-
tional antennas to avoid blockage zones and maintain a LOS 
communication. The few existing works related to spectrum 
sharing with drones mainly focused on the coexistence of 
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UAV networks with cellular networks and adopted common 
notions of spectrum sharing such as interweave method to 
let the UAVs opportunistically access the spectrum holes 
of other communication systems, or the underlay method 
to allow the UAVs to utilize the spectrum of other systems 
while maintaining a low interference level [59–62]. The 
objective of these methods is to guarantee an expected qual-
ity of service (QoS) for the incumbents noting the imperfec-
tion in spectrum sensing or the synchronization errors. The 
spectrum sensing method is not an ideal option to provide 
additional spectrum for UAV networks noting the consid-
erable energy consumption involved in searching a wide 
range of frequencies to detect the spectrum holes. Due to 
the chance of unexpected return of primary users, it cannot 
assure the required session length. More importantly, these 
spectrum holes are often sparse and appear on different fre-
quencies, therefore it cannot offer continuous communica-
tion for the UAV system or require frequent change of the 
operating frequency. The spectrum sharing trend based on 
databases control (e.g. TV White Space) also require the 
UAVs to have direct access to geolocation databases or be 
enabled through authorized master users. This method can-
not be a practical model for spectrum sharing with autono-
mous UAVs in disaster management missions, because this 
technique only provides spectrum access in limited zones.

5.4 � Cooperative Spectrum Leasing in UAV Networks

One key drawback of these conventional spectrum sharing 
methods is that the spectrum owners are oblivious to the 
presence of the devices seeking for spectrum, but a dynamic 
and efficient practical spectrum sharing model cannot be 
implemented unless different users including the spectrum 
owners and the ones looking for spectrum interactively 
cooperate with one another [63–67]. Moreover, current spec-
trum sharing techniques are biased on a traditional mindset 
that only considers the rights and benefits of spectrum own-
ers (primary networks), however, as new generation of com-
munication technologies and services evolve over time, there 
is a need for novel spectrum sharing techniques that can 
account for the benefits/requirements of both primary and 
secondary networks. This fact is of particular importance 
in disaster monitoring and public safety applications where 
the secondary networks (i.e., the UAVs) carry high-priority 
information.

Cooperative spectrum sharing technologies hold great 
promise for dynamic spectrum access in disaster situations. 
The potential benefits of this model are to use the infrastruc-
ture or resources of other communication networks to extend 
the connectivity, lifetime, or data transmission rate of net-
works with critical missions. In cooperative spectrum sharing 
mechanism, the primary network allow the UAVs to access 
their spectrum for a certain time in exchange for cooperative 

relaying services or adding intentional jamming to enhance 
the physical layer secrecy of the primary users [63, 67]. For 
instance, during disaster situations, the cellular users may not 
have access to the network due to the damage to the communi-
cation infrastructure in their region, or they may need to utilize 
a high transmission power to access other towers (beyond their 
normal range), or the link between the devices in D2D com-
munication may be blocked due to strong shadowing. These 
facts encourage them to participate in spectrum sharing with 
the UAVs to obtain the chance of packet transmission with the 
assistance of flying UAV relays. In this model, both the spec-
trum owners and the UAVs can take into account their current 
QoS requirements, the network and environment conditions as 
well as the type of other communication devices in the envi-
ronment in order to select the best spectrum sharing strategies.

5.5 � Conclusions

Since there are still several open issues related to both 
data access and sharing as well as flight policy, operation, 
coverage, connectivity and communications of the UAVs, 
the problem of spectrum management in UAV networks, 
especially those used for data collection and sharing, has 
been barely investigated so far. However, the spectrum 
scarcity will be a serious challenge in UAV networks given 
the increasing number of UAVs and the requirements of 
advanced wireless services. Developing spectrum sharing 
strategies for UAV communication requires extensive exper-
imental studies to provide more insights on channel models 
between the UAVs and ground stations and the UAV-UAV 
channels, as well as the interference caused by UAVs on ter-
restrial networks. Common spectrum sharing models such 
as underlay seem reasonable for spectrum sharing between 
the terrestrial networks (e.g. cellular networks) and UAV-
to-UAV communications when the UAVs are flying at high 
altitudes. However, new spectrum sharing models such as 
cooperative spectrum leasing where the primary network 
deliberately share a portion of its spectrum access with the 
UAV network would offer a promising solution to avoid 
undesired interference while allowing the primary network 
to benefit from UAV services such as cooperative relaying.

6 � Geosciences Applications

6.1 � Overview

Electromagnetic (EM) waves [68] have been widely used 
by geoscientists for a variety of applications from analyzing 
volcanic activities [69] and predicting earthquakes [70] to 
exploring natural resources [71]. Depending on the signal 
frequency, EM techniques can be divided into two major 
groups of very low frequency (VLF) EM induction [68] and 
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high frequency (radar) reflection methods [72]. The former 
incorporates a primary VLF EM (1–29 kHz) to induce an 
Eddy current into the ground, from which a secondary mag-
netic field is generated. By analyzing secondary magnetic 
field, we can estimate the conductivity of subsurface mate-
rial [68]. Thus, if the target of study has a different conduc-
tivity than that of the surrounding media, it can be studied 
via VLF-based techniques [68]. On the other hand, in the 
high-frequency reflection-based method, which is termed as 
Ground Penetrating Radar (GPR), EM signals in the range 
of the radar frequency (mega to gigahertz) are sent into the 
ground. If two geological interfaces have different permit-
tivities (ε), a fraction of the EM energy is reflected back to 
the surface, from which a detailed image of subsurface can 
be obtained [72].

6.2 � VLF EM Induction

The VLF-based induction methods can be divided into two 
passive and active source subcategories. In passive VLF 
induction, EM signals generated by natural phenomena 
or radio waves from naval communications are utilized, 
whereas in active VLF induction methods, EM signals ini-
tiated from a controllable transmitter are used.

Magnetotelluric (MT) is a passive ultralow frequency 
EM method, stemming from natural phenomena [73]. One 
source of MT is currents within the ionized layers of the 
atmosphere that are generated from solar activities [73]. 
Such currents can induce EM waves with frequencies as low 
as 10–3 Hz to 10 Hz [73]. In addition, MT can be initiated 
from electric discharges of distant thunderstorms [74] with 
frequencies ranging from 10 Hz to 10 kHz, also known as 
Audio Frequency Magnetotelluric (AFMAG). MT is suitable 
to study deep structures (greater than 1 km, [75]), where 
there is a high contrast between electrical conductivities of 
two subsurface structures (e.g., an oil saturated layer over 
a brine aquifer [76]). MT has been widely used to investi-
gate various geological features such as silicate melts in the 
Earth's mantle and crust [77], tectonic activities [78], and 
orogenic processes [79]. Many reports have also indicated 
MT fluctuations before earthquakes [80, 81], and therefore, 
many studies have focused on characterizing MT signals for 
short-term earthquake predictions, e.g., [70]. Geo-explora-
tion applications of MT include hydrocarbon reservoirs [71], 
geothermal resources [82], ore mines [83], CO2 sequestra-
tion [84], and nuclear waste monitoring [85].

Another source of passive EM is VLF radio signals 
(15 kHz to 29 kHz) used in naval communications [86]. 
Due to their large strength and low attenuation, passive 
VLF EM signals are generally detectable around the globe. 
Compared to MT, VLF EM has a shallower depth of penetra-
tion and is suitable to study shallower geological formations 
such as studying near surface faults [87] and fractures [88], 

identifying hydrocarbon contaminated soils [89], exploring 
mineral resources [90], monitoring volcanic processes [69], 
and investigating aquifers [91]. In addition, similar to MT, 
passive VLF EM signals also have shown fluctuations before 
earthquakes, and thus can be used as an earthquake precur-
sor [92].

Active induction methods employ a couple of coils one 
serving as a transmitter and the other as a receiver. to gener-
ate and record VLF signals [68]. The distance between the 
transmitter and receiver depends on the investigation depth 
as for deeper targets, a larger distance is needed [68]. In 
addition to controllability and repeatability of sources, the 
data acquisition of active surveys is fast as the transmitter 
and receiver can be carried by an aircraft, known as airborne 
EM [93]. Given the flexibility of source and receive design, 
active induction methods have found a great range of appli-
cations such as soil characterization (e.g., assessing salt and 
clay level) for agriculture (14–15 kHz, [94]), soil moisture 
estimation for forestry, agriculture, and ecosystem investiga-
tion (8–10 Hz [95]), underground water for hydrology, soil 
contamination assessment in environmental studies [96] and 
exploration of natural resources (~ 0.4–6.4 kHz [97]).

6.3 � Ground Penetrating Radar

As mentioned earlier, a group of methodologies, coined as 
the general term of ground penetration radar (GPR), relies 
on a fraction of EM energy that is reflected back to the sur-
face from geological interfaces. GPR operates within the 
range of UHF/VHF frequencies of the radio spectrum [72]. 
The choice of GPR frequency highly depends on the depth 
of the geological target. For instance, for pavement studies 
where the asphalt layer has a thickness of about a few inches, 
GPR signals with a central frequency of 1–2 GHz are used 
[98], whereas for a target at the depth of 100 m, low-fre-
quency GPR signals (e.g., 270 MHz [99]) should be incor-
porated. Compared to the induction-based methods, GPR 
provides a much higher resolution, and thus, is robust for 
near surface studies. Application of GPR technique include 
but not limited to estimating soil moisture [100], studying 
archeological sites [101], detecting near sinkholes [102] and 
buried wastes [103], evaluating leakage of buried pipelines 
[104] and characterizing soil in forests [105].

6.4 � Challenges: Noise and Signal Interference

Noise and signal interference have been an everlasting prob-
lem in the EM methods that significantly spoil their perfor-
mance. Based on their origin, EM noises are divided into 
two major categories of natural and cultural sources [106]. 
Natural noises mostly stem from natural atmospheric light-
ning discharges that are called radio atmospheric signals 
and/or sferics and have a broad frequency spectrum from 0 
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to 100 kHz [107]. Sferics are ubiquitous in EM geophysi-
cal data due to their frequent occurrences (100 per second 
worldwide [106]). Cultural noises originate from VLF and 
radio transmitters around the globe and machinery (for 
example pumps, generators, vehicles) [108–110]. In addi-
tion, metal tanks, unpowered metallic fences and pipelines 
and power plant facilities pipelines in the vicinity of the 
soundings are another major contributor to the cultural 
noises [111, 112]. Due to the continuous developments 
of residential areas, it is expected that cultural noises and 
spectrum interferences become a major challenge of the EM 
methods in geoscience and environmental studies [112].

6.5 � Conclusions on Geoscience Applications

Due to the continuous developments of residential areas, it 
is expected that cultural noises and spectrum interferences 
become a major challenge of the EM methods in geoscience 
and environmental studies. Given the fact that the spectrum 
overlaps and interferences of cultural noises with EM sig-
nals, removal of those noises is not possible based on the 
Fourier based signals. Developing new methods based on 
matching learning or deep learning can address the challenge 
of spectrum interferences.

7 � Conclusions

In order to address diverse and emerging applications of 
spectrum, new paradigms in intelligent spectrum manage-
ment and regulations should be investigated. This para-
digms need fundamental research in interference science 
and technology. Researchers should tackle the problem of 
overall resource – spectrum, computing, energy, and stor-
age – sharing that is key to network function virtualization 
(NFV) and network slicing [113–115]. Doing so demands a 
multi-disciplinary research effort on new paradigms in intel-
ligent spectrum management and regulation [116, 117]. The 
National Science and Technology Council’s (NSTC) Wire-
less Spectrum R&D interagency working group (WSRD) 
summarizes the problems as [118]: (1) spectrum flexibil-
ity and agility; (2) near real-time spectrum awareness, and 
(3) spectrum efficiency via secure autonomous spectrum 
decision making. Diverse research areas that need to be 
advances include investigation of new algorithms for opti-
mizing spectrum sharing [119, 120], and network virtual-
ization via concepts such as Intelligent Radios (IRs). IRs 
are Ultra-Multi-Band Radio (UMBR) that enable devices to 
measure interference and use information collected in real-
time from a large number of resources, e.g., mobiles, sen-
sors, and use high speed computing to save and analyze data. 
Machine learning and data sciences are key elements of IRs. 
Implementation if IRs would require hardware and software 

design components. We anticipate that many researchers will 
be involved in designing radios and networks that enable 
spectrum management. Educating the workforce to support 
spectrum management technologies would be critical to 
communication industries.
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