Session 22: Provenance and Uncertainty

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Efficient Answering of Historical What-if Queries

Felix S. Campbell Bahareh Sadat Arab Boris Glavic
Illinois Institute of Technology Intuit Illinois Institute of Technology
USA, Chicago USA, San Diego USA, Chicago
fcampbell@hawk iit.edu barab@hawk.iit.edu bglavic@iit.edu
ABSTRACT Customer Countrice ShippingFee
We introduce historical what-if queries, a novel type of what-if o Sian o @ : o
analysis that determines the effect of a hypothetical change to iz I{;:rl; 82 gg Z Zj

the transactional history of a database. For example, “how would
revenue be affected if we would have charged an additional $6 for
shipping?” We develop efficient techniques for answering historical
what-if queries, i.e., determining how a modified history affects the
current database state. Our techniques are based on reenactment,
a replay technique for transactional histories. We optimize this
process using program and data slicing techniques that determine
which updates and what data can be excluded from reenactment
without affecting the result. Using an implementation of our tech-
niques in Mahif (a Middleware for Answering Historical what-IF
queries) we demonstrate their effectiveness experimentally.

CCS CONCEPTS

« Information systems — Data provenance.

KEYWORDS
what-if queries, updates, provenance, program slicing

ACM Reference Format:

Felix S. Campbell, Bahareh Sadat Arab, and Boris Glavic. 2022. Efficient
Answering of Historical What-if Queries. In Proceedings of the 2022 In-
ternational Conference on Management of Data (SIGMOD °22), June 12-17,
2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3514221.3526138

1 INTRODUCTION

What-if analysis [6, 19] determines how a hypothetical update
to a database instance affects the result of a query. Consider the
following what-if query: “How would a 10% increase in sales affect
our company’s revenue this year?” While the result of this query can
help an analyst to understand how revenue is affected by sales, its
practical utility is limited because it does not provide any insights
about how this increase in sales could have been achieved in the
first place. We argue that this problem is not specific to this example,
but rather is a fundamental issue with classical what-if analysis
since the hypothetical update to the database is part of the input.
We propose historical what-if queries (HWQ), a novel type of what-
if queries where the user postulates a hypothetical change to the
transactional history of the database.

©0Re

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA.
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9249-5/22/06..
https://doi.org/10.1145/3514221.3526138

This work is licensed under a Creative Com-
mons Attribution-NonCommercial-ShareAlike In-
ternational 4.0 License.

1556

Figure 1: Running example database instance.

uy

UPDATE Order SET ShippingFee=0 WHERE Price>=50;

UPDATE Order SET ShippingFee=0 WHERE Price>=60;

UPDATE Order SET ShippingFee=ShippingFee+5 WHERE Country='UK'AND Price <=100;
UPDATE Order SET ShippingFee=ShippingFee-2 WHERE Price <=30 AND ShippingFee>=10;

ui
uz

us

Figure 2: History H implementing the shipping fee policy
and a hypothetical change of the policy (update u;’ replaces
u; to raise the price for waiving shipping fees to $60).

Order
ID Customer Country | Price ShippingFee
11 Susan UK 20 8 05
12 Alex UK 50 5 06
13 Jack Us 60 0 07
14 Mark Us 30 4 08
Figure 3: Result of executing the original history H.
Order
ID Customer Country | Price ShippingFee
11 Susan UK 20 8 05
12 Alex UK 50 10 g
13 Jack us 60 0 07
14 Mark Us 30 4 08

Figure 4: Result of executing the hypothetical history H[M].

ExampLE 1. Consider an online retailer that has developed a new
shipping fees policy. An example database instance is shown in Fig. 1.
Fig. 2 shows a transactional history with three updates u1, uy and
u3 that implement this policy which resulted in the database state
shown in Fig. 3. For example, u; waives shipping fees for orders of at
least $50. Bob, an analyst, wants to understand how a larger order
price threshold for waiving shipping fees, say $60, would have affected
revenue. Bob’s request can be expressed as a historical what-if query
which replaces the update uy with update uy’ (highlighted in red in
Fig. 2). Fig. 4 shows the new state of the database after executing
the modified transactional history over the database from Fig. 1. The
hypothetical change results in an increase of the shipping fee for the
record with ID 12 (highlighted in red). By evaluating the effect of
changing a past action (an update) instead of changing the current
state of the database as in classical what-if analysis, the answer to
a historical what-if query can inform future actions. For example, if
revenue is increased significantly by using a $60 cutoff for waiving
shipping fees, then we may apply this higher threshold in the future.

In this paper, we study how to efficiently answer historical what-
if queries (HWQs) such as the one from Ex. 1. A HWQ H is a
triple (H, D, M) where H is a transactional history (a sequence
of insert/update/delete statements), D is the state of the database
before the execution of the transactional history H, and M is a
set of modifications to the history, i.e., it replaces some updates

https://doi.org/10.1145/3514221.3526138
https://doi.org/10.1145/3514221.3526138
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3514221.3526138

Session 22: Provenance and Uncertainty

@- L
:

@-HW HIMI(D)

Figure 5: The naive method requires evaluating the modified
history over a copy of the original database.

Figure 6: Reenactment-based method implemented in Mahif

from H with hypothetical updates (or inserts new / deletes existing
update statements). We use H[M] to denote the history that is
the result of applying M to H. The result of H is the symmetric
difference (A) of the database instances produced by evaluating
H (H[M]) over database D, i.e., the set of tuples in the result of
the history that are affected by the modification. For our running
example, the symmetric difference would contain the two versions
of the tuple with ID 12 produced by the original and modified
history. We focus on deterministic updates (given the same input,
multiple executions of an update are guaranteed to return the same
result). The existence of an update in a transactional history is often
dependent on the existence of other updates in the history and/or
on external events (e.g., user interactions) which are not observed
by the DBMS. For instance, if we delete a statement that inserted
a customer, then this customer could have never submitted any
orders. Consequently, all insert statements corresponding to orders
by this customer should be removed. While dealing with such causal
relationships is important for helping users to formulate realistic
hypothetical scenarios, it is orthogonal to the problem we study in
this work: how to efficiently answer HWQs. Learning such causal
relationships between the updates of a history and then using them
to augment a user-provided HWQ is an interesting and challenging
problem that we leave to future work.

A naive approach for answering a HWQ is shown in Fig. 5. This
method creates a copy of the database as it was before the execution
of the first update that has been modified by M, and then executes
the modified history on this copy. It then computes the symmetric
difference between the current database state (which is the result
of evaluating the original transactional history H over D) and the
database state that is the result of evaluating the modified history
H[M] over the copy of database D. Note that this requires access
to a past database state D before the execution of the first update of
the history, e.g., we can use a DBMS with support for time travel to
access D (e.g., Oracle, SQLsever, DB2). The naive method requires
additional storage to store the copy of D and the evaluation of the
modified history results in a large amount of write I/O. However,
an even larger concern is that the modifications M may only affect
a small fraction of the data and many updates in the history may
be irrelevant for computing the symmetric difference.

1557

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Our proposed method is shown in Fig. 6. In order to overcome
the limitations of the naive method, we propose Mahif as a sys-
tem that answers HWQs using reenactment [3-5], a declarative
technique for replaying transactional histories using queries. Our
approach also uses time travel to access D, the state of the data-
base just before the time the first modified update was executed.
In contrast to the naive method, the database does not need to
be copied. Instead, the modified history is reenacted over D by
running a query Ry p1]- Thus, reenactment has the advantage of
not incurring write I/O. The result of query Ry a1 is equal to the
result of executing H[M] over D. We then compute the symmetric
difference between the result of the modified history (returned by
R m]) and the current database state (H(D)) computed by reen-
acting H over D. Reenacting H, while seemingly redundant, allows
us to develop novel optimizations which exclude irrelevant updates
from the history and irrelevant data from reenactment.

Program Slicing. To be able to identify updates that can safely be
excluded from the evaluation of an HWQ, we introduce the notion
of a slice. A slice fora HWQ H is a subset of the updates from H and
H[M] that is sufficient for computing the result of . We identify a
property called tuple-independence which holds for a large class of
updates (corresponding to SQL update and delete statements with-
out joins and subqueries, and INSERT ... VALUES ... statements).
Tuple independence ensures that we can determine whether a sub-
set of updates is a slice by testing for each individual tuple from the
database whether the subset produces the same result for H than
for the full histories. To improve the efficiency of slicing, we com-
press D into a set of constraints that compactly over-approximate
the database. Inspired by program slicing and symbolic execution
techniques [9, 27], and ideas from incomplete databases [1, 24], we
develop a technique that evaluates updates from a history over a
single tuple symbolic instance (a tuple with variables as attribute
values) subject to the constraints from the compressed database.
The result of symbolic evaluation is a single tuple symbolic instance
that encodes all possible tuples in the result of the history for any
input tuple fulfilling the compressed database constraints. We then
use a constraint solver to determine whether a candidate slice pro-
duces the same result for H as the full histories for every possible
input tuple. If that is the case, then it is safe to use the slice instead
of H and H[M] to answer H. The cost of program slicing only
depends on the number of updates in the history and the size of
the constraints encoding the data distribution of the database.

Data Slicing. We also propose data slicing to prune data that we can
prove is irrelevant for computing the answer to a HWQ. Based on
the observation that any tuple in the symmetric difference has to be
affected by at least one statement that was modified by M, we filter
the input of reenactment to remove tuples which are guaranteed to
not be affected by any update modified by M. In addition to the
class of queries supported by program slicing, data slicing is also
applicable to insert statements with queries (INSERT ... SELECT in
SQL). The main contributions of this paper are:
o We formalize historical what-if queries and present a novel method
for answering such queries based on reenactment.
e We present two optimization techniques, program slicing and
data slicing, which determine which updates and what data can
be safely excluded when answering a HWQ.

Session 22: Provenance and Uncertainty

e :=v|cle{+ —, X, +}e|if ¢ then e else e

¢ =e{=# < <, >, >}e|¢p{A, V}¢|eisnull|-¢|true|false
Figure 7: Syntax of expressions e and conditions ¢

o We demonstrate experimentally that our approach outperforms
the naive approach and that our optimizations result in significant
additional performance improvements.

2 BACKGROUND AND NOTATION

Given a universal value domain D, a relation R (instance) of arity n
is a subset of D". A database instance (or database for short) D is a
set of relations R; to R,. We use ScH(R) to denote the schema of
relation R. We consider three type of update operations: updates,
inserts, and deletes. In the following, we will use the term update
statement, or statement for short, as an umbrella term for updates,
deletes, and inserts. We view statements as functions that take
a relation R (or database in the case of inserts with a query) as
input and return an updated version of R. We use u to denote any
such statement and use u(R) (and sometimes abusing notation also
u(D)) to denote the result of applying statement u to relation R. An
insert J; (R) inserts tuple ¢ with the same arity as R into relation
R. An insert 7o (R) inserts the result of the query Q evaluated over
database D into R. A delete Dgy(R) removes all tuples from R that
do not fulfill condition 6. Finally, an update Us,; o (R) updates the
values of each tuple ¢ that fulfills condition 6 based on a list of
expressions Set and returns all other input tuples unmodified. Set
is a list of expressions (e, ..., e,) with the same arity as R. Each
such expression is over the schema of R. We will sometimes use
(Aj < e1,.., A, < ep) as anotional shortcut assuming that the
expression for each attribute that is not explicitly mentioned is the
identity. For instance, Set = (B < B + 3) over schema (A, B,C)
denotes (A, B + 3, C). For an update or delete u we use 6y, to denote
the update’s (delete’s) condition. Similarly, Set,, for an update u
denotes the update’s list of Set expressions.

A condition 6 (as used in updates and deletions) is a Boolean
expression over comparisons between scalar expressions containing
variables and constants. The grammar defining the syntax of Set and
0 expressions is shown in Fig. 7. For any expression e, ¢/, and e”” we
use e[e’ « e”’] to denote the result of substituting each occurrence
of e’ in e with e”’. We write Set(t) to denote the tuple produced by
evaluating the expressions from Set over input tuple ¢ (required to
be of the same arty as Set). For example, for a relation R(A, B,C),
tuple t = (1,1,1), and Set = (A, A + B, 20) we get Set(t) = (1, 2, 20).
Sometimes, we will use u(t) to denote the tuple that is the result of
applying a statement u to a single tuple ¢. We formally define the
semantics of evaluating statements over a database D below. Note
that the update statements we define here correspond to SQL update
and delete statements without nested subqueries and joins and to

INSERT INTO ... VALUES ... and INSERT INTO ... SELECT
Userg(R) = {Set(t) [t e RAO(H)YU{t |t e RAO(1)} (1)
Do(R) ={t |t € RA-0(t)} ()
1;(R) =RU {t} ®3)
Io(R) =RU Q(D) (4)

1558

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

A history H = uy,...,u, over a database D is a sequence of
updates over D. Given a history H = uy,...,u,, we use H; ; for
i < j € [1,n] to denote u;, ujt1, . .., uj. Similarly, H;, called a prefix
of H, denotes Hj ;. Furthermore, for a set of indices 7 = {iy, ..., im}
such that i; < i if j < k and i}, iy € [1,n], we use Hy to denote
(uiy, ..., ui,,). We use H(D) to denote the result of evaluating the
history H over a database instance D (recursively defined below
using the fact that H, = H) and will use D; to denote H;(D).

D1 =u1(D) D; = u;j(Dj-1) (for1<i<n)

Our program slicing technique relies on a property we call tu-
ple independence. Intuitively, statements that fulfill this property
process each input tuple individually.

DEFINITION 1 (TUPLE INDEPENDENCE). A statement u is tuple
independent if for every database D, we have u(D) = \J;cp u({t})

In SQL, all updates and deletes without nested subqueries or
joins and inserts without queries are tuple independent. Thus, all
of our statements with the exception of 7 are tuple independent.

LEMMA 1 (TUPLE INDEPENDENT STATEMENTS). All updates Us,, g,
deletes Dy, and inserts I; are tuple independent.

Proor SKETCH. Proven by unfolding of definitions and using the
fact that comprehension distributes over union if the conditions
in the comprehension are only over the element that is returned.
That is, for any set S and condition ¢ that only depends on e, the
following equivalence holds: {e | e € S A ¥} = Uges{e | ¢}. For
the full proof please see [12] O

3 HISTORICAL WHAT-IF QUERIES

We now formally define historical what-if queries. Let H be a history
containing an update u. Historical what-if queries are based on
modifications m = u « u’ that replace the statement u in H
with another statement u’, delete the statement u at position i (m =
del(i)), or insert a new statement u at position i (m = ins;(u)). We
use M to denote a sequence of modifications and H[M] to denote
the result of applying the modifications M to the history H. For
example, for a history H = ujy, up, u3 and M = (u3 « u{,del(3))
we get H[M] = u{, uz. Replacing a statement u with a statement
u’ of a different type, e.g., replacing an update with a delete, can be
achieved by deleting u and then inserting u’.

To answer a historical what-if query, we need to compute the
difference between the current state of the database, i.e., H(D)
and the database produced by evaluating the modified history, i.e.,
H|[M](D). For that we introduce the notion of a database delta. A
database delta A(D, D’) contains all tuples that only occur in D or
in D’. Tuples that exclusively are in D’ are annotated with a + and
tuples that exclusively appear in D are annotated with —.

A(D,D’y={+t|t¢DAteD'}U{-t|teDAtgD’'}

We define a historical what-if query and an answer to such query
based on the delta of H(D) and H[M](D).

DEFINITION 2 (HisSTORICAL WHAT-IF QUERIES). A historical
what-if query H is a tuple (H, D, M) where H is a history executed

Session 22: Provenance and Uncertainty

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Algorithm 1 Naive HWQ Algorithm

Algorithm 2 Optimized, Reenactment-based HWQ Algorithm

1: procedure NAIVE-WHATIF(H, D, D¢y, M)
2 D’ « Cory(D)

3 Dpod < HIM](D)

4 return A(D¢yr, Dpyoq)

over database instance D, and M denotes a sequence of modifications
to H as introduced above. The answer to H is defined as:

A(H(D), H{M](D))

ExAMPLE 2. Let D and H be the database shown in Fig. 1 and
history shown in Fig. 3, respectively. Consider the modification M1 =
(u1 < uy’) whereu; and uy’ are the updates shown in Fig. 2. My
increases the minimum price for waving shipping fees. Bob’s his-
torical what-if query from this example can be written as Hp,p, =
(H, D, My) in our framework. Evaluating H[M;] results in the mod-
ified database instance shown in Fig. 4. For convenience, we have
highlighted modified tuple values. The answer of the HWQ Hyp,y, is

A(H(D), H{IM1](D)) = {0, +o¢}

That is, the shipping fee for Alex’s order is increased by $5 because it
is no longer eligible for free shipping under the new policy (u1”).

4 NAIVE ALGORITHM

Before giving an overview of our approach, we briefly revisit the
naive algorithm (Algorithm 1) in more detail. WLOG assume that
M modifies the first update in the history (and possibly others).
If this is not the case, then we can simply ignore the prefix of the
history before the first modified statement and use the state of the
database before that statement instead of the database before first
statement in the history. The input to the algorithm is the history H,
the database state before the first statement of H was executed (D),
the current state of the database D¢, which is assumed to be equal
to H(D), and the modifications M of the historical what-if query H.
We assume that D can be accessed using time travel. The algorithm
first creates a copy of D’ of D. Note that we only need to copy
relations that are accessed by the history. The state of any relation
not accessed by H will be the same in H(D) and H[M](D’). We
rename the relations in D’ to avoid name clashes. We then execute
H[M] over the copy D’ resulting in D,,,; = H[M](D’) (Line 3).
In the last step (Line 3), the delta of D¢y, and Dy,,4 is computed.
The delta computation is implemented as a single query for each
relation of D accessed by H. For instance, a relational algebra query
computing the delta for a relation R with schema ScH(R) = (A, B)
is shown below. Note that + and — are constants, i.e., the projections
add an additional column storing the annotation of a tuple.

1_IA,B,— (Rcur - Rmod) U 1_IA,B,+ (Rmod - Rcur)

5 OVERVIEW OF OUR APPROACH

We now give a high-level overview of our Algorithm 2 for answering
a HWQ H = (H, D, M). To answer a historical what-if query, we
need to compute H(D) and H[M](D), and compute the delta of
H(D) and H[M] (D). As mentioned earlier, we utilize a technique
called reenactment for this purpose. In the following we first give

1559

1: procedure WHATIF(H, D, M)

2 I « PROGRAMSLICING(H, H[M]) > Compute Slice 7
3 R, < GENREENACTMENTQUERY(H7)

4 Rg}s « DaraSLiciNG(H, M, Ry,)

5 Ru[Mm],; < GENREENACTMENTQUERY(H[M] 1)

6: RD?M] « DataSriciNGg(H, M, H{M] 1)

7 return A(RDS Rg“[gM])

an overview of reenactment and then discuss how it is applied by
our approach.

5.1 Reenactment

Reenactment [4, 5] is a technique for simulating a transactional
history through queries. For simplicity we limit the discussion to
a history H over a single relation R even though our approach
supports histories over multiple relations. Using reenactment, we
can construct a query Ry such that H(R) = Ry (R). Reenactment
was originally developed for capturing provenance for transactional
workloads under multiversioning concurrency control protocols.
For our purpose, we only need reenactment for set semantics and
introduce a simplified translation for this case. We use Ry, (Rg) to
denote the reenactment query for a single statement u (history H).

DEFINITION 3 (REENACTMENT QUERIES). Let be a statement u
(update Us,, g, delete Dy, insert Iy, or insert Ig) over a relation R
with schema (A, ..., Ay) and let Set = (e1, . .., en). The reenactment
query Ry, foru is defined as shown below:

Rﬂmﬂ = ILif 9 then e; else Ay,...,if 0 then e, else A, (R)
Rpy=0.p(R) Ry =RU{t} Rz, =RUQ
Let H = (uy, . ..,uyn) be a history. The reenactment query Ry for

n}

H is constructed from the reenactment queries foru; fori € {1,...,
by substituting the reference to relation R in Ry,; with Ry, _, .

An insert is reenacted as the union between the current state
of relation R and the inserted tuple (Z;) or the result of query Q
(for Zp). For a delete Dy, we have to remove all tuples fulfilling the
condition of the delete. This is achieved by using a selection to only
retain tuples that do not fulfill this condition, i.e., we filter based on
—0. To reenact an update, we have to update the attribute values
of all tuples fulfilling the condition 6 using the expressions Set. All
other tuples are just copied from the input. For that, we project on
conditional expressions that for each attribute A; return e; if the
tuple fulfills 6 and A; otherwise. For a history H which accesses
multiple relations, a separate query, Rg, is constructed for each
relation R based on all statements from history H that access R.

ExaMPLE 3. Consider Ex. 1 and let I,U,C, P, and F denote at-
tributes ID, Customer, Country, Price, and ShippingFee of relation
Order (abbreviated as O). The reenactment query Rg for the history
H from Fig. 2 is:

o
Ry =I1u,c,p,if P<30AF>10 then F~2 else F(
I1u,cp,if U=UKAP<100 then F+5 else F(

1,u,c,p,if P=50 then 0 else F(O)))

Session 22: Provenance and Uncertainty

Recall that H[M] differs from H in that uy’ replaces u; and that
the condition of u;” is P > 60. Thus, RI%[M] differs from RIO{ in that
condition P > 50 in the first selection is replaced with P > 60.

5.2 Reenacting Historical What-if Queries

As shown above, we use reenactment to simulate the evaluation of
histories. Given the reenactment queries for H and H[M], what
remains to be done is to compute their delta. Continuing with
our example from above, the result A(Rg (D), RI?I[M] (D)) of H is

computed as shown below.

A(RG(D), R pq) (D)) = My .c,p.p- (R (D) = R 51 (D))
UTILucppas (R 51 (D) = R (D))

We use Algorithm 2 to answer historical what-if queries. This
algorithm applies two novel optimizations that significantly im-
prove performance. Program slicing (Line 2, discussed in Sec. 7)
determines subsets of histories (encoded as a set of positions I
called a slice) which are sufficient for computing the answer to the
what-if query H. We then generate reenactment queries (Lines 3
and 5) for the slices of H and H[M] according to 7. Recall that H
denotes the history generated from H by removing all statements
not in 7. Afterwards (Lines 4 and 6), we apply our second optimiza-
tion, data slicing (discussed in Sec. 6). Data slicing injects selection
conditions into the reenactment query that filter out data that is
irrelevant for computing the result of the HWQ. The result of data
and program slicing is an optimized version of a reenactment query
that has to process significantly less data and avoids reenacting
updates that are irrelevant for . We then calculate the delta of
these two queries and return it as the answer for H (Line 7).

6 DATA SLICING

In this section, we present data slicing, a technique which excludes
data from reenactment for a HWQ H without affecting the re-
sult. Our technique is based on the observation that any difference
between H(D) and H[M](D) has to be caused by a difference be-
tween H and H|[M]. Thus, any tuple that is in the result of { has to
be derived from a tuple that was affected (e.g., fulfills the condition
of an update) by a statement affected by M in either the original
history, the modified history, or both (but in different ways).

For example, in our running example from Fig. 2 the original
update u; and modified update u;’ only modify tuples for which
either Price > 50 or Price > 60. For instance, the tuple with ID
11 does not fulfill any of these two conditions. Even though this
tuple is modified by both histories, the same modifications are
applied and, thus, the final result is the same (see Fig. 3 and Fig. 4):
the shipping fee of this order was changed to $8. Our data slicing
technique determines selection conditions that filter out such tuples.
For instance, for our running example we can apply the condition
shown below (checking that either u; or u1” may modify the tuple):

(Price > 50) V (Price > 60)

Initially, we will limit the discussion to data slicing for a single
modification m = u « u’ where u and u’ are of the same type
(e.g., both are updates). We will show how to construct conditions

Qgs(m) and 912‘[9 M (m) that we apply to filter irrelevant tuples

1560

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

from the inputs of Ry and R p(]- As explained above, for a single
modification u « u’ we can assume WLOG that u is the first update
in H, because any update before u can be ignored for reenactment.
Afterwards, we extend the technique for multiple modifications and
modifications that insert or delete statements (which also covers
modifications that replace a statement with a statement of a differ-
ent type). In the following, we will use Qﬁs to denote TYDS (1m) (R)

and QIPI?M] to denote 692?/\4] (m) (R).

Updates. First, consider a modification m = u « u’ where both
u and u’ are updates. Since only tuples that match the condi-
tion of an update operation (the operation’s WHERE clause) can
be affected by the operation, a conservative overestimation of
A(H(D), H[M](D)) is the set of tuples that are derived from tuples
affected by u in the original history or u’ in the modified history.
Thus, the tuples in D from which such a tuple is derived have to
either match the condition of u (8,) or the condition of u’ (6,/). This
means we can filter the input to the reenactment queries using:

055 (m) = egf g (M) = 0u V O (5)
Deletes. Let us now consider a single modification u « u’ which
replaces a delete u = Dy with a delete u’ = Dy, Foratuple t € R to
contribute to A(Rp (R), Rz pm)(R)), it has to be deleted by either
u or u’, but not by both (such tuples do not contribute to any result
of Rpg(R) or Ry pm(R)). Thus, we can filter from R all tuples that
do not fulfill the condition

005 (m) =eng](m) =(OA=0)V (m0AE) (6)
Inserts with Queries. Recall that an insert 7 is reenacted using
the query RU Q. Only tuples that are returned by the query Q need
to be considered. Thus, if IQ is the only statement that is modified,
then it is sufficient to replace R U Q in the reenactment query with
Q. However, for multiple modifications, tuples from the LHS of the
union of the reenactment query for a statement 7 may be affected
by downstream updates modified by M. Thus, we cannot simply
replace RU Q with Q if 7 is not the first and only statement in the
history that got modified by M. To deal with this case, we need a
condition that selects tuples which may contribute to the result of
Q. We can achieve this by pushing the selection conditions of Q
down to the relations accessed by Q. For that we apply standard
selection move-around techniques from query optimization. The
final result is a selection condition for each input relation of the
query. For instance, for 7, (Rea,_c5)(R) over relations R(A, B)
and S(C, D), the selection can be pushed to both inputs of the join
resulting in a condition A = 5 for R and C = 5 for S. We formally
define the rules for pushing conditions through queries in [12].

Multiple modifications. Data slicing can also be applied to HWQs
with more than one modification. For a tuple to be in the result
of the what-if query, it has to be affected by at least one state-
ment u such that there exists one modification m € M with either
m=u <« u’ orm=u’ < u for some statement u’. However, we
cannot simply use the disjunction of the data slicing conditions
Ggs(m) and 92‘[9 M (m) we have developed for single modifications
to filter the input. To see why this is the case, consider a modifi-
cation m = u « u’ where u is the i update in H. The input of
u (u’) over which the condition of the update is evaluated is the

Session 22: Provenance and Uncertainty

result of H;_1 (or H[M];_;). To be able to derive a selection con-
dition that can be applied to R, we have to “push” the condition
for u down to determine a condition that returns the set of tuples
from R that contribute to tuples in H;_; fulfilling condition 935(m)

(or Ggf M (m)). For that, we iteratively substitute references to at-

tributes in Hgs(m) (or Hgf

previous statement in H that defines them. For instance, consider
a history H = (u1 = Ups,c=5.u2 = Up—B+1,A<4) and modifica-
tion m = uz « u;, with uj, = Up, pi1,4<s. To push the condition
A < 4 of uz, we substitute A with if C = 5 then 3 else A and get
(if C =5 then 3 else A) < 4.

More formally, consider a modification m = u; « u;’ for a

history H = (u1, ..., un). Let us first consider how to push 925(m)

M (m)) with the expressions from the

(the case for 6’3? M (m) is symmetric). We construct 935 (m) |J, the

version of Ggs(m) pushed down through j < i updates as shown
below. We use Qgs(m) 1" to denote Qgs(m) 171, ie., pushing the
condition through all updates of the history before u. Furthermore,
we use an operator (6) |9 to push a condition 6 through a query
Q. See [12] for the formal definition of this operator.

QQS(m) lO — QES(m)
0D (m) [J[A « €] if ui—j = Userp
0% (m) U+ = 005 (m) 1 v(0LS(m) 17) 19 ifu_j =Ig

9§S(m) U otherwise

In the above equation, A denotes (A1,...,Ay) and € denotes
(if 6 then Set(Aq) else Ay,...,if 6 then Set(A,) else A;)

Furthermore, e[g « €] denotes the result of substituting each
reference to A; in e with e; (for all i € [1,n]).

ExaMmPLE 4. Consider our running example history and a modifi-
cation that replaces us (reducing shipping fee by $2 if the shipping fee
is at least $10 and the order price is at most $30) with u3’ which ap-
plies to orders of < $40: u3” = Upf_3 p<aonF>10- The data slicing
condition forus andus’ is (P <30 AF > 10) V(P <40 A F > 10)
which can be simplified to (P < 40 A F > 10). To push this condi-
tion through ugz, we have to substitute F (the shipping fee) with the
conditional update of the shipping fee corresponding to uy and get
(P < 40AF” > 10) for F”" = if C = UKAP < 100 then F+5 else F.
We then have to push this condition through u;. For that we substitute
F again, this time with F’ = if P > 50 then 0 else F. The final
data slicing condition for both H and H[M] and our modification
m=u3 < usz’ is:

0P5(m) |* = eng](m) = (P <40 AF” > 10)

F” =if C=UK AP < 100 then F’ +5 else F’
F’ =if P > 50 then 0 else F

Evaluating this condition over the database from Fig. 1, only the tuple
with ID 11 has a sufficiently low price P < 40 and fulfills the condition
F"” >10 (F=F =5and F"" = F' +5 = 10). Thus, using this slicing
condition we can exclude tuples 12, 13, and 14 from reenactment.

Modifications that insert or delete statements. Recall that we
also allow modifications that insert a new statement at position i
(ins; (u)) or delete the statement at position i (del(i)). Note that it is

1561

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

possible to insert new statements into a history without changing
its semantics as long as these statements do not modify any data,
e.g., a delete Dg,jqe that does not delete any tuples. We refer to
such operations as no-ops. Using no-ops, we can pad the original
history at position i for every insert ins; (). We then can rewrite
ins;(u) in M into a modification u; « u where u; is a no-op. A
deletion del(i) is rewritten into a modification u; « u;” where u;’
is a no-op. Thus, the data slicing method explained above is already
sufficient for dealing with inserts ins;(u) and deletes del(i).

THEOREM 2 (DATA SLICING). Consider a history H, a relation R,
and a sequence of modifications M = (my,...,my). Let Qgs =

T\ 6DS (m,) |+ (R) and QFDIfM] =oyn, 655, ()L (R). Then,

AR (R), Rz p) (R) = ARu (Q° (R, Rer) Q5 pg) (R))

Proor SKETCH. We prove this theorem by induction over the num-
ber of modifications in M. For the base case we prove the claim
by case analysis (update and deletes). We show that any tuple not
fulfilling 6 and 6’ does not contribute to the delta and, therefore
can be excluded. For the inductive step, we prove by induction over
the number of steps a conditions has to be "pushed-down", that the
pushed-down condition (Qgs(mi) l*or Hng] (m;) *) excludes
only irrelevant tuples. For the full proof see [12]. O

7 PROGRAM SLICING

In addition to data slicing, we also optimize the process of an-
swering a historical what-if query H = (H, D, M) by excluding
statements from reenactment if their existence has provably no
effect on the answer of H. This is akin to program slicing [13, 35]
which is a technique developed by the PL community to determine
a slice (a subset of the statements of a program) that is sufficient
for computing the values of variables at a given set of locations in
the program. Analog, we define slices of histories wrt. historical
what-if queries. A slice for a historical what-if query H consists
of subsets of H and H|[M] that can be substituted for the original
history and modified history when evaluating the historical what-if
query without changing its result. Recall that the result of a histori-
cal what-if query is computed as the delta (symmetric difference)
between the result of the original and the modified history. That is,
only tuples in the delta are relevant for determining slices.

DEFINITION 4 (HisTory Sticks). Let H = (H, D, M) be a histor-
ical what-if query over a history H = (u, ..., up). Furthermore, let
I ={i1,...,im} be a set of indexes from [1, n] such thatij < i} for
Jj <k.Wecall (Hy, H[M] 1) aslice for H if

A(H(D),H[M](D)) = A(Hy (Dy,), HIM] 7 (Dy,))

History slices allow us to optimize the evaluation of a historical
what-if query by excluding statements from reenactment. Thus, ide-
ally, we would like slices to be minimal, i.e., the result of removing
any statement from Hy or H[M] 7 is not a slice. A naive method
for testing whether 7 is a slice, is to compute A(H(D), H{M](D))
and compare it against A(Hz (D,), H{LM] 7 (D;,)). However, this is
more expensive then just directly evaluating A(H(D), H[M](D))
which we wanted to optimize. Instead we give up minimality and
restrict program slicing to tuple independent statements (Def. 1)

Session 22: Provenance and Uncertainty

which enables us to check that the slice and full histories pro-
duce the same result one tuple at a time. Furthermore, we design a
method that (lossily) compresses the database D¢ and checks this
condition (same result for each input tuple) over the compressed
database. Since the compression is lossy, a compressed database
D¢ represents all databases D such that compressing D yields D¢.
To ensure that our method produces a slice that is valid for each
such D, we adapt techniques from incomplete databases [24, 37].

8 SLICING WITH SYMBOLIC EXECUTION

We adapt concepts from incomplete databases [24] to reason about
the behavior of updates over a set of possible databases represented
by a compressed database. This is akin to symbolic execution [11, 26]
which is used in software testing to determine inputs that would
lead to a particular execution path in the program. We use Virtual
C-tables [25, 37] (VC-tables) as a compact representation of the set
of possible worlds represented by a compressed database (to be
discussed in Sec. 8.3.1) and demonstrate how to evaluate updates
with possible worlds semantics over such representations. That is,
the result of a history over a VC-table instance encodes all possible
results of the history over every possible world represented by the
VC-table. Using a constraint solver, we can then prove existential
or universal statements over these possible results. Specifically, we
will check that a candidate slice and the full histories produce the
same result for a HWQ H.

8.1 Incomplete Databases and Virtual C-Tables

An incomplete database D = {Dy, ..., Dp} is a set of deterministic
databases called possible worlds. Each D; represents one possible
state of the database. Queries (and updates) over an incomplete
database D are evaluated using possible world semantics where the
result of the query (statement) is the set of possible worlds derived
by applying the query (statement) to every possible world from D:

Q(D)={Q(D) | D € D}

For our purpose, it will be sufficient to use an incomplete database
consisting of possible worlds containing a single tuple, because
we restrict program slicing to tuple independent statements which
process every input tuple independent of every other input tuple.
This incomplete database contains one world for any such singleton
relation. We then evaluate updates from the original and modified
history and their slices over this incomplete database and search
for worlds where the delta for the full histories is different from the
delta for the slice. For efficiency we need a compact representation
of an incomplete database. We employ Virtual C-tables [25, 37]
which extend C-tables [24] to support scalar operations over values.

A VC-table R is a relation with tuples whose values are symbolic
expressions over a countable set of variables ¥ and where each
tuple t (we use boldface to indicate tuples with symbolic values) is
associated with a condition ¢ (t) (the so-called local condition). The
grammar shown in Fig. 7 defines the syntax of valid expressions. A
VC-database D is a set of VC-tables paired with a condition ®, called
a global condition. Let D denote a universal domain of values. A VC-
db D encodes an incomplete database which consists of all possible
worlds that can be generated by assigning a value to each variable
in %, evaluating the symbolic expressions for each tuple in D and

1562

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

including tuples in the possible world whose local condition ¢(t)
evaluates to true. Only assignments for which the global condition
® evaluates to true are part of the incomplete database represented
by D. We use Mod(D) to denote the set of worlds encoded by the
VC-database D (and apply the same notation for VC-tables). For
ease of presentation, we will limit the discussion to databases with
a single relation and for convenience associate a global condition
with this single relation (instead of with a VC-database). However,
our method is not subject to this restriction.

DEFINITION 5 (Mod(D)). Let D be a VC-db and let A be the set of
all assignments ¥ — D.

Mod(D) = {D | 31 € A: A(D) = D A A(®)}

Abusing notation, we apply A to VC-dbs, tuples, and symbolic expres-
sions e using the semantics defined below.

AD) = {A(t) | t e D A A($(1))}

Aleroez) = A(er) o A(eg) foro e {+ — -+ =#<<,>>,AV}
Aoer) = oA(e1) for o € {—, isnull}

A(er,- -+ en)) = (A(er), -+, Aen))

Alez) if A(er)
A(es) otherwise

A(true) = true

A(if eq then e; else e3) = { A(false) = false

ExampLE 5. Consider relation Order from Ex. 1. In this example,
we just consider the three attributes that are used by updates in the his-
tory (Country, Price, ShippingFee). A VC-table over this schema
is shown on the top left in Fig. 8. This VC-table contains a single tuple
with three variables XCountry, Xprice, And XspippingFee and a local
condition true (shown on the right of the tuple). Consider the vari-
able assignment xcountry = UK, Xprice = 10, and XShippingFee = 0.
Applying this assignment, we get the possible world {(UK, 10,0)}.

We will show in Sec. 8.3.1 how to encode information about the
data distribution of the database of a HWQ as part of the global
condition of an VC-database.

8.2 Updates on VC-Tables

Prior work on updating incomplete databases (e.g., [1, 21, 36]) does
not support VC-tables. For our purpose, we need to be able to
evaluate statements over VC-tables with possible world semantics.
That is, the possible worlds of the result of applying a statement
to a VC-table are derived by computing the statement over every
possible world of the input. For an insert 7; we just add the concrete
tuple ¢ with a local condition ¢(t) = true to the input VC-table R.
For a delete Dy, for some assignment A, the concrete tuple A(t)
derived from a symbolic tuple t € R is deleted by the statement if
the tuple’s local condition evaluates to true A(¢(t)) | true and the
tuple does not fulfill condition 8 (A(t) [£ 0). We can achieve this
behavior by setting the local condition of every tuple t to ¢(t) A
—6(t). The symbolic expression 6(t) is computed by substituting
any reference to attribute A in 6 with the symbolic value t.A. An
update Us,; g can affect a tuple t in a VC-table in one of two ways in
each possible world (4): (i) either the update’s condition evaluates
to false and the values of A(t) are not modified or (ii) the update’s

Session 22: Provenance and Uncertainty

condition evaluates to true on A(t) and Set is applied to the values
of A(t). We have to provision for both cases.

One option is to encode each case as a separate output tuple,
but this would result in an exponential blow-up of the number of
tuples since each update in a history would double the number of
tuples (because it produces two output tuples for each input tuple).
We can avoid this exponential blow-up by introducing tuples with
fresh variables to represent the updated versions of tuples and by
assigning values to these new variables using the global condition.
We show these semantics for statements below. To ensure that there
are no name clashes between variables, we generate fresh variables
{xt,4,} to represent the value of attribute A; of the tuple produced
by applying the statement to tuple t from the input VC-table. We
use ¢(R, t) to denote the local condition of tuple t in relation R and
for convenience define ¢ (R, t) = false for any t ¢ R.

DEFINITION 6 (UPDATES OVER VC-TABLES). Let R be a VC-table
and ScH(R) = (A1, ...,Apn). Update statements over VC-tables are
defined as shown below. Let Set = (e, . .., en). Given a tuple t, we use

tnew to denote (xy 4, ..., Xt A,)-
(uSet,@(R) = {tnew | te R} ¢((L(Set,9(R),tnew) = ¢(R: t)

n
O(Userg(R)) = D(R) A A A X4, = if O(t) then e;(t) else t.A;
teR i=1

Dop(R) ={t[teR} $(Dy(R),t) = ¢(Rt) A =0(t)

$(Z:(R), 1) = ¢(R, 1)
(fort #1)

I;(R) =RU{t} ¢(L(R),t) = true

®(1:(R)) = 2(Dy(R)) = ©(R)

Using these semantics, the result of a sequence of n statements
over a relation with m attributes has the same number of tuples
as the input and the number of conjuncts in the global condition
is bound by n - m. Furthermore, each conjunct is of size linear in
the size of the expressions of the statements (6 or Set). For our use
case we execute a sequence of statements over an instance with a
single tuple. Thus, it will be convenient to use a different naming
schema for variables. We use x4 ; to denote the value of attribute A
of the version of this single input tuple after the ith update.

ExaMmpLE 6. Continuing with Ex. 5, consider the first two updates
from Fig. 2 (we abbreviate attribute names as in previous examples):
u; = Upo,p>s50 anduz = Urp pys5,c=UKAP<100- After execution of
u1 and ug over Do shown in Fig. 8a, we get an instance with a single
tuple. Since both updates only modify attribute ShippingFee, all
other attributes can reuse the same variable as in the input. The value
of attribute ShippingFee is a new variable XspippingFee,z Which is
constrained by the global condition that ensures that it is equal to
the previous value of this attribute (XspippinFee,1) if the condition
of up does not hold and otherwise is the result of applying Set,, to
XShippingFee,1- Furthermore, xspippingree,1 is related to the value of
attribute ShippingFee in the input in the same way using a con-
ditional expression based on u;’s condition and update expression
(setting the shipping fee to 0 if the price is at least 50).

We now prove that our definition of update semantics for VC-
tables complies with possible world semantics.

1563

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

THEOREM 3. Let D be a VC-database and u a statement. We have:
Mod(u(D)) = u(Mod(D))

Proor SKETCH. Using the definitions of Mod(D) and A(D), we
demonstrate equivalence over updates, inserts, and deletes. Note
that A factors through expressions (conditions 6 and Set for updates)
which we exploit to prove that any assignment A that corresponds to
a possible world of the input can be extended into an assignment A’/
over the update’s result such that: (i) A" fulfills the global condition
for the updated database and (ii) A’ assigns through the global
condition to each variable appearing in tuples in this database the
values from the tuple(s) produced by evaluating the update over
the possible world A(D). The full proof is shown in [12]. O

Note that by induction, Thm. 3 implies that evaluating a history
H over a VC-database also has possible world semantics.

8.3 Computing Slices with Symbolic Execution

To compute a slice for a historical what-if query H = (H, M, D)
where H consists of tuple independent statements only, we create
a VC-database Dg with a single tuple with fresh variables for each
relation in the database’s schema. Even though they are tuple inde-
pendent, we do not consider inserts of the form 7; here, because,
as we will show in Sec. 9, we can split a reenactment query for a
history with such inserts into a union of two queries — one that
is the reenactment query for the history restricted to updates and
deletes and a second one that only operates on tuples inserted by
inserts Z; from the history. Since the second query only operates
on an instance of size at most |H|, its cost is too low to warrant
spending time on slicing it.

8.3.1 Compressing the Input Database. Optionally, we compress
the input database D into a set of range constraints that restrict
the variables of the single tuple in Dy. For that, we decide on a
number of groups and for each table select an attribute to group
on. We then compute the minimum and maximum values of each
non-group-by attribute A for each group and use them to constrain
the values of A in this group. For each group we then generate
a conjunction of these range constraints for each attribute. The
disjunction of the constraints generated for the groups, which we
denote as ®p, is then added to the global condition. Note that every
tuple from a table of the database D corresponds to an assignment
of the variables from Dy to the constants of the tuple that fulfills
the condition. For attributes with unordered data types, we just
omit the range condition for this attribute.

ExAMPLE 7 (COMPRESSING DATABASES). Let us compress the in-
stance from Fig. 1 into two tuples by grouping on Country. We get the
following constraint that we add to the global condition to constrain
the worlds of Dg. Here, we omit the constraint for the name attribute
and abbreviate attribute names as in previous examples.

®p :=(xc = UK Axip € {11,12} A xp € [20,50] A xp =5)
V(xc =US Axip € {13,14} A xp € [30,60] A xF € [3,4])
For instance, the first two tuples (group UK) get compressed into one

conjunction of range constraints. Since the smallest (greatest) price in
this group is 20 (50), the range constraint for xp is xp € [20,50].

Session 22: Provenance and Uncertainty

Price
XPrice

Country ShippingFee

XCountry XShippingFee | true

D =P AD,
d = true

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Country Price ShippingFee
XCountry | XPrice | XShippingFee2 | true
@ := (XShippingFee1 = if Xprice 2 50 then 0 else XspippingFee)

0, = (xShippingFee.Z =if (xCountry = UK A xprice < 100) then XShippingFee,1 +5 else xShippingFee,l)
(b) VC-table after evaluating H = (u3, up).

(a) Initial VC-database Dy.

Figure 8: Running example for evaluating updates over VC-Tables.

@y = (xp,1 = if xp > 60 then 0 else x)

Oy = (xpy =if xc = UK A xp < 100 then xp 1/ + 5 else xp 1/)

(a) VC-database H|[M] (Do)

Country | Price ShippingFee @ =Dy ADy ADp
xc xp XF, 2 true
Country | Price ShippingFee
xc xp XF1” true

@ = ®p A xpy = if xp > 50 then 0 else xp
(b) VC-database H{;} (Do)

Country Price
Xc Xp

ShippingFee

XF,2 true

""" = dp A xpym = if xp > 60 then 0 else xp
(c) VC-database H[M]y,

Figure 9: VC-database instances for our slicing example. Attributes names are abbreviated as: (C)ounty, (P)rice, Shipping(F)ee.

8.3.2 Computing Slices. To determine whether a given set of in-
dices I is a slice for H, we have to test whether:

A(H(D), H{IM](D)) = A(Hz (D), H[M] 7 (D)) ™)

Recall that we restrict program slicing to tuple independent
statements (Def. 1). That is, the result produced by such a statement
for an input tuple only depends on the values of this tuple and is
independent of what other tuples exist in the input. Thus, if both
deltas return the same result for every input tuple, then the two
deltas are guaranteed to be equal. Thus, 7 is a slice if for all input
tuples from D, both deltas return the same result (see Eq. (8) below).
Note that this is only a sufficient, but not necessary condition. To
see why this is the case, consider two input tuples #; and f and
assume that the delta of the results of the full histories returns s
for t; and s; for t, but the delta of the results of the sliced histories
returns sy for t; and s; for t». The final result is the same, even
though the results for the individual input tuples is different.

¥t € D : A(H({t}), HIM]({t}))
=A(Hy ({t}), HIM] 7 ({t}))

For each t € D, by construction of Dy (the VC-database we use
as input for program slicing), there exists a world D; € Mod(Dy)
such that D; = {t}. Note that since Dy is generated by compressing
the input database into a set of range constraints, some worlds
may not correspond to a tuple from D. However, our argument
only requires that for each t € D there exists a world in Dy which
implies that if the condition from Eq. (9) evaluates to true for every
such Dy, then Eq. (8) holds. Thus, the formula shown below is a
sufficient condition for I to be a slice.

®)

VD; € Mod(Dy) : A(H(Dy), H{LM](Dy))

= AH; (D). HIMI (D) O

For an input tuple ¢, based on the definition of symmetric differ-
ence, A(H(D;), H{LM](Dy)) isequal to A(Hy (D;), HIM] r (Dy)) if
either (i) H(D;) = H{M](D;) and Hy (D;) = H[M] (D) which
means that both deltas return the empty set for D; or (ii) both

1564

deltas return the same set of tuples over D; which is the case when
H(D;) # H[M](Dy) and one of the conditions shown below holds.

(] (a) H(Dt) = HI (Dt) A H[M](Dt) = H[M]](Dt)
e (b) H(D;) = H{M] 7 (Dy) AH[M](D;) = Hr (Dy)

Thus, Eq. (9) is equivalent to:
VD; € Mod(Dy) :
(H(Dy) = HIMI(Dy) AHz (Dy) = HIM] £ (Dy))
V(H(Dy) # HM](Ds)A
(H(D¢) = Hp (D) AH[IM](Dy) = HIM] 1 (D¢)
VH(Dt) = HIM] 1 (Dy) NH[M](Dy) = Hr (Dy)))

(10)

Based on the semantics of updates over VC-tables, the result
of a history over a single tuple instance Dy is an instance with
a single tuple whose local condition governs the existence of the
tuple in any particular world D;. For a history H let us denote this
tuple as tzy. Consider the valuation A; generating D;. Then for two
histories H and H’, the condition H(D;) = H’(Dy) is equivalent
to the equation shown below as long as we appropriately rename
variables such that the two VC-databases do not share any variables
except for the variables from Dy.

(Ae(trr) = Ae (tr) A (e (tm) A G (A ()
V(=g (At (tm)) A =P (Ae (ta)))

Intuitively, this condition means that for the two histories to return
the same result over Dy, either (i) they both return the same result
tuple (equal values and the local condition of the result tuple eval-
uates to true for both histories) or (ii) they both return the empty
set (the local condition evaluates to false for both histories).

If we substitute this equation into Eq. (10), then we get a uni-
versally quantified first order sentence (a formula without free
variables) over the variables from the VC-database Dg. We will
use {(H,Z,Pp) to denote the resulting formula (recall that ®p
denotes the constraints encoding the compressed database). We can
now use a constraint solver to determine whether {(H, Z,®p) is
true by checking that its negation is unsatisfiable. We use an MILP-
solver for this purpose. The translation rules for transforming a
logical condition into an MILP program are mostly well-known

(11)

Session 22: Provenance and Uncertainty

rules applied in linear programming and many have been used in
related work (e.g., [29]). We refer the interested reader to [12] for
the details. We are now ready to state the main result of this section.

THEOREM 4 (SLICING CONDITION). Let H = (H, D, M) be a his-
torical what-if query where H is a history with n statements (updates
and deletes). If {(H, I, Dp) is true, then I is a slice for H.

Proor SKETCH. We first prove that Eq. (8) implies Eq. (7) for histories
consisting of updates and deletes which are both tuple independent.
This follows from the definition of tuple independence (Def. 1).
Eq. (8) is implied by Eq. (9), because the worlds of Dy encode a
superset of D by construction and Thm. 3 (updates have possible
world semantics). The equivalence of Eq. (10) and Eq. (9) follows
from the definition of database deltas. Finally, the equivalence of
H(Dy) = H'(D;) and Eq. (11) follows from Thm. 3. O

ExAMPLE 8 (TESTING SLICE CANDIDATES). Consider our running
example database (Fig. 1) and the history H = {uy, uz} from Ex. 6 and
letur” = UspippingFeeco,Price>60- Let Do be as shown in Fig. 8, but
with® = @1 ADy ADp where Op is the database constraint from Ex. 7.
Furthermore, consider a HWQ H = (H, M) for M = (u1 « uj)
(higher price requirements for waiving shipping fees). To test whether
I = {1} is aslice, we first have to construct { (H, I, ®p) for which we
have to evaluate H, H[M], H1y, and H[M] (1} over Dy. The results
are shown in Fig. 9. We use ® to denote the global condition of H(Dy),
@' for HLM](Do), @' for H{1}(Do), and ®"" for H[M] (1} (Do).
Since the local condition of the result tuple is true in the result of
both histories and their slices, we do not have to test whether the local
condition is true or false as done in Eq. (11) and can instead directly
test equality of two history’s result tuples to test whether the histories
return the same result. Furthermore, observe that all four histories only
modify attribute ShippingFee. Thus, it is sufficient to compare tuples
on attribute ShippingFee to determine whether the result tuples are
the same. Applying these simplifications, { (H,I,®p) is equal to:

7

Vxr, xp, XF : (DD/\(D/\CD//\(DH/\(P A

((xF2 = xp2 A xp17 = XE1m)
V (xp2 # xp2 A ((XF2 = Xp17 A XF2 = XF,1m)
V (xg2 = xp17 A XE2 = XF17))))

This formula is not true for all possible input tuples. For instance,
if the shipping fee is xp = 55 and country is xc = UK, then the final
shipping fee for H (x 3) is $5 and for H[M] is $50. Thus, H(A(Dy)) #
H[M](A(Dy)). Since the slice candidate I = {1} does not apply the
second update, we get $0 (for Hy) and $45 (for H{M] 1). Thus, the
slice candidate may produce a result for this database that is different
to the one returned by H which means that I is not a valid slice.

8.3.3 Our Slicing Algorithm. Given a set of indexes I, we now
have a sound method for testing whether 1 is a slice for a historical
what-if query H. A brute force approach for computing a slice
would be to test all possible subsets of indexes to determine the
smallest possible slice. Note that even this method is not guaranteed
to return a minimal slice, because the test we have devised is not
complete. The disadvantage of the brute force approach is that
there is an exponential number of candidates (all subsets of the
histories). We propose instead a greedy algorithm that considers

1565

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

a linear number of candidates. The algorithm starts with a trivial
slice 7y = [1, n] where n is the number of updates in the history
(recall from Sec. 6 that we can pad histories such that both H
and H[M] have n statements). It then iterates for n steps. In each
iteration, we remove index i from the current slice 7; and test
whether 7; — {i} is still a slice. If yes, then we set Z;41 = Z; — {i}.
Otherwise, J;4+1 = J;. The final result produced by this algorithm is
I, which is guaranteed to be a valid slice.

In [12], we present an additional optimized version of the slicing
condition {(H, I, ®p) that only works for single modifications.

9 OPTIMIZING HISTORIES WITH INSERTS

In Sec. 7 and Sec. 8.2 we have limited the discussion to histories
consisting only of update and delete statements. We now introduce
an optimization that splits a reenactment query for a history into
two parts that can be optimized individually: (i) one part that only
simulates update and delete statements over the database at the
time of the beginning of the history and (ii) a second part that
evaluates the whole history, but only over tuples inserted by insert
statements. We use program slicing to optimize (i). The input data
size for (ii) is bound by the number of statements in the history
and, thus, typically negligible. Note that our symbolic execution
technique required by program slicing requires solving a MILP
program (an NP-hard problem) whose size is polynomial in the size
of the history. Thus, while it may be possible to extend program
slicing techniques to deal with inserts, the costs of evaluating (ii) is
polynomial in the size of the history and, thus, it is not possible to
amortize the cost of program slicing for this part.

We first introduce the idea underlying our optimization, then for-
mally define it, and finally prove its correctness. Recall from Def. 3
that the reenactment query for an insert statement Z; (R) is a union
between the state of the relation before the insert and a singleton
relation containing the inserted tuple. Updates are reenacted using
projections and deletions using selection. As an example consider
a history H consisting of a single insert ug followed by n update
statements u to up. Fig. 10a shows the structure of the reenactment
query for this history. Using the standard algebraic equivalences
shown below which allow us to pull a union through a projection
or selection, we can pull the union up through the projections reen-
acting the updates of the history. The algebra tree for the resulting
query is shown in Fig. 10b. Note that in the rewritten query (i) the
right branch only accesses the tuple inserted by the insert state-
ment and (ii) the left input to the union is equal to the reenactment
query for a history Hyops that is the result of deleting the insert
statement from H.

A(Q1 U Q2) =M4(Q1) UITE4(0Q2)
09(Q1 U Q2) = 09(01) U 0(Q2)

Generalizing this example, the algebraic equivalences shown
above are sufficient for rewriting the reenactment query of any
history H without insert statements with queries into a query
RH,orns Y Re/r Where Ry g is derived from Ry by replacing the
subquery (union) corresponding to the first insert u in the history
with the singleton relation {t} containing the tuple inserted by u.
Importantly, we can apply program slicing to optimize Hyo1pns-

Session 22: Provenance and Uncertainty

(b) After optimization

(a) Before optimization

Figure 10: Structure of an example reeactment query for a
history with a single insert. The unions can be pulled up to
create two separate queries: the left query accesses R and is
the same as the reeactment query for the history without
inserts while the right one only accesses inserted tuples.

10 RELATED WORK

What-if queries determine the effect of a hypothetical change to
an input database on the results of a query. To avoid having to
reevaluate the query over the full input including the hypothetical
changes, incremental view maintenance is often applied to answer
what-if queries [6, 7, 19, 39]. The how-to queries of Tiresias [29]
determine how to translate a change to a query result into modifica-
tions of the input data. Similar to their approach, our system utilizes
Mixed Integer Programming to express a set of possible worlds.
The QFix system [34] is essentially a variation on this where the
change to the output has to be achieved by a change to a query
(update) workload. The query slicing technique of QFix is similar
to our program slicing optimization. The main difference is that we
apply symbolic execution to a single tuple instance, i.e., the number
of constraints we produce is independent of the database size.

Several provenance models for relational queries have been stud-
ied such as Why-provenance, minimal Why-provenance [10], and
Lineage [16]. The K-relations introduced by Green et al. [23] gener-
alize these models for positive relational algebra. In [3-5] we have
introduced MV-semirings [3-5] as an extension of K-relations that
supports transactional updates. Furthermore, we did introduce reen-
actment as a technique for replaying histories using queries. The
reenactment query for a history is equivalent to the history under
MV-semiring semantics [3-5], i.e., it returns the same database state
and provenance. [8] did study extensions of semiring-annotated
relations for updates that allow updates to be deleted from a history.
However, this approach only supports a limited class of updates.

The connection of provenance and program slicing was first
observed in [13]. We present a method that statically analyzes
potential provenance dependencies among statements in the his-
tory using a method which borrows ideas from symbolic execu-
tion [9, 26, 27], incomplete databases [1, 24, 25, 37], program slic-
ing [35], and expressive provenance models [2]. Symbolic execution
has been used extensively in software testing [11]. Cosette [14] is an
automated prover for checking equivalences of SQL queries which
converts input queries to constraints over symbolic relations. [38]
use a symbolic representation of a query result to prove two queries
to be equivalent using an SMT solver [18]. Rosette [33] is a language
for building DSL with built-in support for symbolic evaluation. The
transaction repair approach from [17] also detects dependencies
between update operations like our optimized program slicing tech-
nique for single modifications. However, transaction repair operates
on concrete data while we reason about the interactions of updates
for a set of inputs encoded compactly as VC-tables.

1566

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

11 EXPERIMENTS

We have conducted experiments to 1) evaluate the performance of
our approach and compare it with the naive approach, 2) examine
the effectiveness of the proposed optimizations, and 3) study how
our approach scales in database size and other important factors. All
experiments were performed on a machine with 2 x AMD Opteron
4238 CPUs (12 cores total), 128 GB RAM, and 4 x 1TB 7.2K HDs
in a hardware RAID 5 configuration. We used PostgreSQL 11.4
as the database backend. Based on preliminary experiments, the
variance of runtimes was determined to be low. We repeated each
experiment at least 3 times and report average runtimes.

11.1 Datasets and Workloads

Datasets. We use a taxi trips dataset from the Chicago’s open data
portal !, as well as the standard TPC-C 2 and YCSB [15] benchmarks
to evaluate the performance of our approach. The original taxi
dataset has ~ 100M rows and 23 attributes. The dataset contains
trip information such as the Company (the taxi company), the Taxi
ID, Trip Start Timestamp (when the trip started), Trip Seconds
(duration of the trip in seconds), Trip Miles (distance of the trip in
miles), Pickup Community Area, Tips, Tolls, Extras (tips, tolls
and extra charges for the trip), and Trip Total (total cost of the
trip). We used samples from these tables amounting to 10% (5M)
and 50% (50M) of the entire taxi dataset in some of the experiments.
The TPC-C and YCSB benchmark databases were generated with
OLTP-Bench [20]. For TPC-C, we used the stock relation consisting
of 10M rows (scale factor 100). For YCSB database we used scale
factor 5000, resulting in a single relation consisting of 5M rows. The
workloads generated by OLTP-Bench for each benchmark were
modified to control the proportion of affected tuples.

Workloads. Unless stated otherwise, we use HWQs with a single
modification that modifies the first update in a history over a single
relation. We vary the following parameters. U is the number of
updates in the history (e.g. U100 for 100 updates). M is the number
of modifications made to the history. D is the percentage of updates
that are dependent on the update(s) modified by the historical what-
if query. We use 10% as the default (D10). T is the percentage of
tuples in the relation that are affected by each dependent update
(the default is 10%), where T0 means that a small, constant number
of tuples was affected. I and X are the percentage of statements in
the history that are inserts and deletes, respectively. Non-dependent
statements affect a fixed fraction of the data equal to T, though
independent from the tuples modified by dependent updates.

11.2 Compared Methods

We compare the following methods in our experiments. Naive (N):
This method creates a copy of the database as of the start time
of the history which is modified by the what-if query (Creation),
executes M over this copy (Exe), and then computes the delta
A(H(D),H[M](D)) by running a query over the current database
state and the updated copy (Delta). Reenactment Only (R) cre-
ates a reenactment query for H and for H[M]. We use run both
reenactment queries over the database, and then compute the delta.

!https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew (2020-10-13)
2TPC-C is an On-Line Transaction Processing Benchmark: http://www.tpc.org/tpce/

Session 22: Provenance and Uncertainty

WiNaive = R+PS+DS OTaxi (5M)ETaxi (50M)EATPCC YCSB]

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

1 5

10 20

T T T
3 12 38 68 80

5M 50M #Updates
1000 — 1000 4 Size Method 10 20 50 100 200
° o E B Creation PS 0.07 018 1.30 846 62.13
£ £ q Exe s Exe 808 829 915 1876 1236
< R T LR B B S 100 E | mm Delta R+PS+DS 8.14 847 1045 27.23 7449
4 4 E E R 6363 8112 13329 21887 400.71
10+ A—1- 55— — - IS | 5| NN R] || — PS 007 0.8 1.29 846 6222
1 T T T T
Exe 9011 9033 8332 10807 132.07
10 20 50 100 200 10 20 50 100200 10 20 50 100200 50M p.psiDS | 90.18 9051 8461 11653 19429
Updates # Updates # Updates R 72223 87870 1414.94 231084 4173.17
Figure 11: Naive vs. Mahif (sec) Figure 12: Breakdown Naive Figure 13: Breakdown Mahif
|- REIRPSEIRDS R+PS+DS l EER R+PS+DS [JTaxi(5M) B3 Taxi (50M) ZITPCC YCSB] [- R R+PS mm R+DS R+PS+DS]
600 +—— —N— 1000 - 200
0) 2001 5 R1PS+0s
€ ® / o [}
£ 4 N S
= 400 £ / £ £
< = 100 — = E
& S g S100 — g 100
20— 0—P Bl € \ ¥ g i 7 &
i \ i 0 i
1055 |- 09— P [(P I
0- ¥ ' ! i g A 0 T 0
1

50 100
Updates
Figure 15: Optimization

0 20

Modifications
Figure 14: Mult. Modifications

Reenactment with Data Slicing (R+DS): same as R except that
we restrict reenactment to the part of data that is determined to be
relevant by our data slicing optimization. Reenactment with Pro-
gram Slicing (R+PS): same as the R method except that we only
reenact the subset of updates from a slice determined by our pro-
gram slicing optimization. Reenactment with Program Slicing
+ Data Slicing (R+PS+DS): we apply both optimizations.

Fig. 11 shows the naive method’s performance in comparison to
R+PS+DS. Fig. 15 shows the runtime of reenactment (R) and reen-
actment with all optimizations enabled (R+PS+DS). Fig. 13 breaks
down the cost of R+PS+DS into PS and Exe, and together they form
the runtime of R+PS+DS which should be compared to the cost of
R (Reenact All). Given the clear efficiency gains of R+PS+DS over
N and R, we omit N and R from most remaining experiments and
focus on evaluating our optimizations.

11.3 Optimization Methods

We now evaluate our optimization techniques varying the parame-
ters introduced in Sec. 11.1 over update-only workloads to observe
which workload characteristics benefit which optimization.

Varying Datasets (at D10). We vary number of updates and
amount of tuples affected per update (T0, T10, T25). Overall, we
see that our approach scales very well in dataset size. As the cost of
program slicing is independent of the database size, larger datasets
benefit much more from program slicing. For lower selectivity
(Fig. 18), we see that R+DS is very competitive with R+PS+DS for
the smaller Taxi dataset (5M) as reenactment of the entire history
over a small relation and an even smaller proportion of affected
input data is cheaper than the cost of solving the MILP problem for
program slicing. Notably, for the YCSB dataset, the MILP cost ex-
ceeds the cost of R+DS, as data slicing is well-served by the physical
correlation of the key used to update the data. For larger proportions
of data to be reenacted (Fig. 19 and Fig. 20), R+PS+DS consistently
outperforms R+PS and R+DS. The optimal case for R+PS+DS is when
the size of the affected input data as determined by data slicing is
large enough that calculating and reenacting over a slice is worth
the execution cost of the generated MILP.

20

1567

1 10 100
% Dependent Updates (D)
Figure 16: Dependent Updates

% Selectivity (T)
Figure 17: Affected Data

Varying Percentage of Dependent Updates (at T10). Fig. 16
demonstrates the effect the proportion of dependent updates (D)
in a given history has on R+PS, and how the addition of data slic-
ing (R+PS+DS) is an effective way to mitigate these effects. This
experiment uses the 5M row taxi trip table, with defaults T10 (10%
of tuples affected by modified updates) and U100 (100 updates in
the history). As the proportion of dependent updates in the history
increases, program slicing becomes less effective as more updates
have to be included in the slice over the history. At D100 (100% of
updates are dependent), program slicing is not beneficial at all, but
still incurs the MILP solver cost. However, data slicing mitigates
this effect, as the input to reenactment is filtered to include only a
fraction of the data, making it more effective than R+PS at D100.

Varying Affected Data (at U100, D1). The effect of the percent-
age of tuples affected by the updates modified by the HWQ (T) is
examined in Fig. 17. This experiment is executed for 100 updates
on the taxi trips relation with 5M rows. For example, T3 means 3%
of tuples (~ 150K out of 5M) are modified by the HWQ. The result
demonstrates that varying T does not change the performance of
R+PS, as the whole history is evaluated over the full input table in
all cases. However, increasing T, increases the runtime of R+DS and
R+PS+DS considerably as data slicing becomes less efficient due
to the greater amount of input data that needs to be accessed dur-
ing reenactment. However, at moderate selectivity (T68), R+PS+DS
provides enough filtering over the history and data to be more
performant than either optimization alone.

11.4 Mixed Workloads with Deletes and Inserts

We now consider workloads that contain deletions, inserts, and
updates. Since deletes are handled in a similar fashion to updates,
we mainly focus on evaluating the impact of the fraction of inserts
on performance. We use the taxi trip tables for this experiment.
As shown in Fig. 22, R+PS+DS outperforms the other methods for
mixed workloads. When comparing to similar workloads presented
in Fig. 18 to 20, we see that introducing deletes and inserts into
our workload in lieu of updates reduces the cost of reenactment
and our optimizations. Note that delete statements result in fewer

Session 22: Provenance and Uncertainty

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

5M 50M TPCC YCSB 5M 50M TPCC YCSB
1000 1000 4 4 4 4
100 T ————— 11— ——— |7 N1 11—]]]]
10 4j——1—1—-1I- (e-e-te-ae- i — ==t -1 10— 13 - E = e
1'|'|'|'|'|'H' WAL 1 ||EH HHHH
L | OO OO O | OO (O (O ot | O O N O OO O N OO O O e ™
01 |||| | Azl] || A b by byl
T T
10 20 50 100200 10 20 50 100200 10 20 50 100200 10 20 50 100200 10 20 50 100200 10 20 50 100200 10 20 50 100200 10 20 50 100200
Updates # Updates # Updates # Updates # Updates # Updates # Updates # Updates
Figure 18: Datasets with TO Figure 19: Datasets with T10
5M 50M TPCC YCSB
1000 3 E E =4
3 3 E i S:gg through a long history is sometimes expensive. R+PS+DS remains
. . 1 1l = R+Ps+DS an effective optimization compared to R, though its cost is higher
100 3 WEL 0N O O W | W WE than for single modifications. In part this is due to the effect of slic-
1 LU I I I | T 1o e 1l ing the history which also reduces the size of conditions produced
10 20 50 100200 10 20 50 100200 10 20 50 100200 10 20 50 100200 by pushing down data slicing conditions. It should be noted that as
Updates # Updates # Updates # Updates the amount of modifications grows, the program slicing time goes
Figure 20: Datasets with T25 down as these modifications are inherently dependent. That being
said, an inflection point is possible where the gains in program
5M 50M 5M 50M slicing execution speedup results in a slowdown from the longer
o |mpibg " RePSDS I RIFS M RsPSHDS history the data slicing conditions need to be pushed through.
£ 1004 100 3
g '3 3
2]]
103yl 10 wly=ly=l|=-l- 11.6 Summary

10 20 50 100200
Updates

10 20 50 100200
Updates

Figure 21: Inserts: 110, T10 Figure 22: Mixed: 110, X10, T10

10 20 50 100200
Updates

10 20 50 100200
Updates

constraints in the program slicing MILP than update statements.
Inserts are much cheaper to process than program slicing an update
as we are able to reenact the unsliced prefix of the history on a very
small amount of tuples (only the tuples being inserted, typically a
very small fraction of a given workload).

11.5 Varying the number of modifications

So far we have evaluated HWQs with a single modification. We
now evaluate how multiple modifications affect the performance
of Mabhif and of the proposed optimizations.

Fig. 14 depicts the effect of changing the number of modifica-
tions per HWQ. Program slicing is more expensive than its single
modification counterpart, given that we have to test each update by
comparing the state of its symbolic tuple not only between H and
H[M], but duplicating these histories while removing the update
being tested, in order to not falsely classify an update as indepen-
dent. This effectively quadruples the individual MILP program size
over the single modification case. Data slicing also becomes more
expensive as we employ the push down technique described in
Sec. 6, which in turn creates a selection operator with a larger,
more complicated condition. Recall that such selection conditions
basically include some partial reenactment in order to capture every
tuple that would be modified by modifications that occur after the
first modification in the HWQ. That is, program slicing and data
slicing are less efficient for multiple modifications.

The data from Fig. 14 shows a decrease in performance from a
single modification to the multiple modification case. The nature
of the modification (attributes updated, conditions, selectivity, de-
pendencies across updates) significantly impacts the performance
of R+DS, as evaluating the data slicing conditions pushed down

Our approach outperforms the naive method in most cases despite it
not needing any additional storage. Even reenactment without opti-
mizations is already considerably faster than the naive method. The
proposed optimizations are very effective, especially for large num-
ber of updates and larger databases. However, for small relations or
very low selectivity, the cost of program slicing will outweigh the
cost of reenactment or reenactment with data slicing. Data slicing
is very effective for single modifications, but less so for multiple
modifications, because the size and complexity of the data slicing
conditions increases when these conditions are pushed through the
updates upstream from a modification. Our experiments also show
that our approach scales well with respect to database size.

12 CONCLUSIONS

We propose historical what-if queries, a new type of what-if queries
which allow users to explore the effects of hypothetical changes
to the transactional history of a database. Our system Mabhif ef-
ficiently answers such queries using reenactment and two novel
optimization techniques (program and data slicing) that exclude ir-
relevant data and updates from the computation. Our experimental
evaluation demonstrates the effectiveness of our approach and of
our optimizations. In future work, we will explore how to augment
a user's HWQ based on information about unobserved external
factors and dependencies between updates, e.g., if a HWQ deletes
the statement creating a customer from history, then the statements
creating the orders of this customer should be removed too. Further-
more, we will explore novel application of our symbolic evaluation
technique such as proving equivalence of histories.

REFERENCES

[1] Serge Abiteboul and Gosta Grahne. 1985. Update semantics for incomplete
databases. In VLDB. 1-12.

[2] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for Aggre-
gate Queries. In PODS. 153-164.

1568

Session 22: Provenance and Uncertainty

[10]
[11]

[12

[13]

[14

[15]

[16

(17

(18]

[19

[20]

[21

[22]

[23

[24]

[25

[26]

[27

[28]

[29

[30]
[31]

[32

[33]

™
&

[35]
[36]

[37

Bahareh Sadat Arab, Dieter Gawlick, Vasudha Krishnaswamy, Venkatesh Rad-
hakrishnan, and Boris Glavic. 2016. Reenactment for Read-Committed Snapshot
Isolation. In CIKM. 841-850.

Bahareh Sadat Arab, Dieter Gawlick, Vasudha Krishnaswamy, Venkatesh Rad-
hakrishnan, and Boris Glavic. 2018. Using reenactment to retroactively capture
provenance for transactions. TKDE 30, 3 (2018), 599-612.

Bahareh Sadat Arab, Dieter Gawlick, Venkatesh Radhakrishnan, Hao Guo, and
Boris Glavic. 2014. A Generic Provenance Middleware for Database Queries,
Updates, and Transactions. In TaPP.

Andrey Balmin, Thanos Papadimitriou, and Yannis Papakonstantinou. 2000. Hy-
pothetical Queries in an OLAP Environment. In VLDB. 220-231.

Pierre Bourhis, Daniel Deutch, and Yuval Moskovitch. 2016. Analyzing data-
centric applications: Why, what-if, and how-to. In ICDE. 779-790.

Pierre Bourhis, Daniel Deutch, and Yuval Moskovitch. 2020. Equivalence-
Invariant Algebraic Provenance for Hyperplane Update Queries. In SIGMOD.
415-429.

Stefan Bucur, Johannes Kinder, and George Candea. 2014. Prototyping symbolic
execution engines for interpreted languages. SIGARCH Comput Archit News 42,
1(2014), 239-254.

Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. 2001. Why and Where:
A Characterization of Data Provenance. In ICDT. 316-330.

Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing:
three decades later. CACM 56, 2 (2013), 82-90.

Felix S. Campbell, Bahareh S. Arab, and Boris Glavic. 2022. Efficient Answering of
Historical What-if Queries (extended version). (2022). arXiv:2203.12860 [cs.DB]
James Cheney. 2007. Program slicing and data provenance. IEEE Data Eng. Bull.
30, 4 (2007), 22-28.

Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017.
Cosette: An Automated Prover for SQL. In CIDR.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In SoCC. 143-154.
Yingwei Cui, Jennifer Widom, and Janet L. Wiener. 2000. Tracing the Lineage of
View Data in a Warehousing Environment. TODS 25, 2 (2000), 179-227.
Mohammad Dashti, Sachin Basil John, Amir Shaikhha, and Christoph Koch. 2017.
Transaction Repair for Multi-Version Concurrency Control. In SIGMOD. 235-250.
Leonardo Mendonga de Moura and Nikolaj Bjerner. 2011. Satisfiability Modulo
Theories: Introduction and Applications. CACM 54, 9 (2011), 69-77.

Daniel Deutch, Zachary G Ives, Tova Milo, and Val Tannen. 2013. Caravan:
Provisioning for What-If Analysis. In CIDR.

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Relational
Databases. PVLDB 7, 4 (2013), 277-288.

Ronald Fagin, Gabriel M. Kuper, Jeffrey D. Ullman, and Moshe Y. Vardi. 1986.
Updating Logical Databases. Adv. Comput. Res. 3 (1986), 1-18.

Su Feng, Aaron Huber, Boris Glavic, and Oliver Kennedy. 2021. Efficient Uncer-
tainty Tracking for Complex Queries with Attribute-level Bounds. In SIGMOD.
528-540.

Todd J. Green, Gregory Karvounarakis, and Val Tannen. 2007. Provenance
Semirings. In PODS. 31-40.

Tomasz Imielinski and Witold Lipski Jr. 1984. Incomplete Information in Rela-
tional Databases. JACM 31, 4 (1984), 761-791.

Oliver Kennedy and Christoph Koch. 2010. PIP: A database system for great and
small expectations. In ICDE. 157-168.

James C King. 1976. Symbolic execution and program testing. CACM 19, 7 (1976),
385-394.

Kasper Luckow, Corina S Pasareanu, Matthew B Dwyer, Antonio Filieri, and
Willem Visser. 2014. Exact and approximate probabilistic symbolic execution for
nondeterministic programs. In ASE. 575-586.

A. Meliou, W. Gatterbauer, K.F. Moore, and D. Suciu. 2010. The Complexity of
Causality and Responsibility for Query Answers and non-Answers. PVLDB 4, 1
(2010), 34-45.

Alexandra Meliou and Dan Suciu. 2012. Tiresias: The Database Oracle for How-To
Queries. In SIGMOD. 337-348.

J. Pearl. 2000. Causality: models, reasoning, and inference. Cambridge Univ Pr.
Sudeepa Roy and Dan Suciu. 2014. A formal approach to finding explanations
for database queries. In SIGMOD.

Bruhathi Sundarmurthy, Paraschos Koutris, Willis Lang, Jeffrey Naughton, and
Val Tannen. 2017. m-tables: Representing Missing Data. In ICDT, Vol. 68.
Emina Torlak and Rastislav Bodik. 2014. A lightweight symbolic virtual machine
for solver-aided host languages. In ACM SIGPLAN Notices, Vol. 49. 530-541.
Xiaolan Wang, Alexandra Meliou, and Eugene Wu. 2017. Qfix: Diagnosing errors
through query histories. In SIGMOD. 1369-1384.

M. Weiser. 1981. Program slicing. ICSE (1981), 439-449.

Marianne Winslett. 1986. Updating Logical Databases Containing Null Values.
In ICDT, Vol. 243. 421-435.

Ying Yang, Niccolo Meneghetti, Ronny Fehling, Zhen Hua Liu, and Oliver
Kennedy. 2015. Lenses: An on-demand approach to etl. PVLDB 8, 12 (2015),
1578-1589.

1569

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

[38] Qi Zhou, Joy Arulraj, Shamkant B. Navathe, William Harris, and Dong Xu. 2019.

Automated Verification of Query Equivalence Using Satisfiability Modulo Theo-
ries. PVLDB 12, 11 (2019), 1276-1288.

[39] Yue Zhuge, Hector Garcia-Molina, Joachim Hammer, and Jennifer Widom. 1995.

View maintenance in a warehousing environment. SIGMOD Record 24, 2 (1995),
316-327.

https://arxiv.org/abs/2203.12860

	Abstract
	1 Introduction
	2 Background and Notation
	3 Historical What-if Queries
	4 Naïve Algorithm
	5 Overview of Our Approach
	5.1 Reenactment
	5.2 Reenacting Historical What-if Queries

	6 Data Slicing
	7 Program Slicing
	8 Slicing with Symbolic Execution
	8.1 Incomplete Databases and Virtual C-Tables
	8.2 Updates on VC-Tables
	8.3 Computing Slices with Symbolic Execution

	9 Optimizing Histories with Inserts
	10 Related Work
	11 Experiments
	11.1 Datasets and Workloads
	11.2 Compared Methods
	11.3 Optimization Methods
	11.4 Mixed Workloads with Deletes and Inserts
	11.5 Varying the number of modifications
	11.6 Summary

	12 Conclusions
	References

