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ABSTRACT
Dataset discovery can be performed using search (with a query or
keywords) to �nd relevant data. However, the result of this discov-
ery can be overwhelming to explore. Existing navigation techniques
mostly focus on linkage graphs that enable navigation from one
data set to another based on similarity or joinability of attributes.
However, users often do not know which data set to start the nav-
igation from. RONIN proposes an alternative way to navigate by
building a hierarchical structure on a collection of data sets: the user
navigates between groups of data sets in a hierarchical manner to
narrow down to the data of interest. We demonstrate RONIN, a tool
that enables user exploration of a data lake by seamlessly integrat-
ing the two common modalities of discovery: data set search and
navigation of a hierarchical structure. In RONIN, a user can perform
a keyword search or joinability search over a data lake, then, navi-
gate the result using a hierarchical structure, called an organization,
that is created on the �y. While navigating an organization, the
user may switch to the search mode, and back to navigation on an
organization that is updated based on search. This integration of
search and navigation provides great power in allowing users to
�nd and explore interesting data in a data lake.
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1 INTRODUCTION
The sheer number of available data sets has fueled the need for data
set discovery [1–3, 7, 8]. Yet, despite this research in data discovery
and information retrieval, �nding relevant data sets for a task is
still a challenge. Consider the following scenario.

Example 1.1. A user wants to �nd data sets about smart city. A
search engine, like Google data set search [2], returns more than one
hundred data sets for this query that the user has to go through and
manually examine for relevance. Similar problems occur with join or
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union searches, a user may �nd too many data sets that are hard to
explore manually.

Data set search has been studied as a threshold-based or top-:
nearest neighbor search problem. The result of this search is often
presented to the user in a �at structure, potentially a long list of
data sets. Some data portals may provide limited �ltering function-
alities on metadata �elds. A well-known complementary approach
to search is navigation in a linkage graph. The links/edges in a
linkage graph indicate relevance (metadata similarity or joinability)
of two data sets/attributes. Navigation is done by path traversal
in materialized linkage graphs [3] or a chain of searches done on
demand [9]. In this model of navigation, users navigate from one
data set to another relevant data set. Yet, search and navigation on
other forms of data such as products and video contents can be
done using directory structures (e.g., Yahoo! and Amazon).

In RONIN, we demo an alternative way to navigate by integrating
navigation into search. Moreover, RONIN uses organizations, where
navigation is done in a hierarchical manner to guide the user to data
sets of interest. The root of an organization is the most common and
generic topic in a search (query) result. The data sets are located
at the most granular levels. Navigating from one topic to a more
granular topic means that the user �lters some less interesting
data sets from the result. This hierarchy is �rst modeled as a DAG
where nodes are sets of data sets and edges indicate the inclusion
of data sets of a child in its parents. The nodes are then labeled
automatically with relevant topics. Unlike other approaches that
provide a single static hierarchy for a data lake [5], RONIN generates
organizations on the �y based on user searches. Data set search
techniques make sure that the result is relevant to the query (a data
set, an attribute, or keywords), and the on-the-�y navigation helps
users explore the result, even if it is large.

Example 1.2. The e�ectiveness of keyword search relies heavily on
the selected keywords. However, the user may not be familiar with all
topics related to smart city, therefore, may not choose an optimal set
of query keywords for her needs. For example, data sets about green
energymay be found relevant to a smart city query, but the user may
not know that. A user searching for smart city would therefore miss
the green energy data sets.

In RONIN, navigation and search are integrated. An organization
provides a hierarchy on the data sets retrieved by a query. Using
RONIN, at any time during the navigation of an organization, the
user can switch back to the search mode. During navigates, the
user can pick a data set and issue a query using its data (for exam-
ple, to �nd joinable data sets) or use its metadata to re�ne query
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Table 1: Percentage of Data Sets with Metadata Fields.

Name Descrip. Attribution Categories Tags Cat. or Tags

100.0% 82.44% 69.2% 86.02% 70.33% 88.9%

keywords. This is only possible via a set of optimizations to speed
up organization construction on the �y.

We demonstrate RONIN, a data lake exploration tool that enables
integrated search and navigation. The main component of RONIN is
an algorithm for constructing an organization on a set of data sets.
An e�ective organization maximizes the expected probability of
�nding data sets by navigating this organization. RONINmodels nav-
igation as a Markov model. The key idea is to view the organization
problem as combinatorial optimization where we want to �nd the
DAG that maximizes e�ectiveness. We represent the organization
using metadata of data sets and adapt our prior work [4] to perform
an e�cient local search on the space of organizations.

In our demonstration scenario, the attendees impersonate a data
scientist. They are free to specify their own query topics. The par-
ticipants observe �rst-hand how RONIN e�ciently builds a directory
structure on their search result and combines navigation and search.
We proceed to discuss related work and how RONIN di�ers from the
prior art (§ 2), provide a solution sketch (§ 3), and conclude with a
detailed outline of our demonstration (§ 4).

2 RELATEDWORK
Our work relates to data set discovery systems that exploit data val-
ues [6, 8], metadata [2] or both [1, 3, 7]. Unlike existing navigation
work that provides a linkage graph where links indicate one-to-one
similarity or joinability of data sets [3, 9], RONIN enables navigation
in a hierarchical structure. Unlike navigating a linkage graph, the
user does not need to know or �nd a data set as the start point of
navigation. Navigation in RONIN is exploratory and starts from a
broad topic which is the root node. The hierarchical structure of
RONIN is closest to the hand-curated directory structures of Yahoo!
on web pages and amazon on products. Previous work studies the
generation of a static organization on a data lake of thousands of
data sets [4]. RONIN applies a similar organization and navigation
model, from which RONIN di�ers in three aspects. First, unlike a
data lake organization, where nodes are represented with attribute
values, RONIN exclusively relies on metadata which is available and
clean and additionally results in faster construction time. Second,
RONIN organizes the result collection of a search; this collection gets
updated as the user performs various searches. Finally, RONIN builds
and updates organizations on the �y, as the user discovers data sets.
The dynamic and e�cient generation of an organization facilitates
seamless interaction of search and navigation.

3 SOLUTION SKETCH
Figure 1 depicts RONIN’s architecture.
Preprocessing RONIN pre-processes a data lake of 40,431 relational
data sets with 780,921 attributes crawled from the Socrata open data
portal1 by �rst generating the minhash data sketches of attribute
values using LSH Ensemble2. Then, it extracts metadata �elds from
data sets. The metadata is often available as values for �elds: name,
1https://dev.socrata.com
2https://github.com/ekzhu/lshensemble/

description, categories, attribution, and tags. Table 1 shows
the ratio of data sets that have values for each metadata �eld. A
total of 88.9% of the data sets are accompanied by at least one value
in category or tag. Figure 2 shows the distribution of the data sets
with values for these two �elds. This source of metadata gives us the
opportunity to use metadata for search and navigation. RONIN rep-
resents each data set with a semantic vector. Given a set of metadata
�elds M = {<1, . . . ,<: } for data set ⇡8 , the semantic vector of ⇡8
is computed by averaging the word embedding vectors of tokens in
< 9 ’s. RONIN uses the pre-trained vectors of fasttext3 which are
trained on the English corpus of Wikipedia. The data sketches and
metadata of data sets are stored into a SQLite database.
Data Set Search RONIN supports two existing variations of search:
keyword search over metadata and search for joinable data sets.
Here, we brie�y explain these variations. Similar to the idea of se-
mantic vectors, RONIN represents a keyword query with the average
vector of the word embedding of query tokens. Then, it returns
top-: data sets with semantic vectors similar to the query vector.
To speed up the search, upon server startup, we index vectors in
a faiss index4 that we later use to pose top-: similarity queries.
The pro�le of a data set enables searching for joinable data sets
with any of its attributes. RONIN incorporates LSH Ensemble which
uses set containment as the measure of joinability and enables high
precision containment search over attributes [8].

Keyword search in metadata [2] or joinability/unionability
search [6, 8], particularly in a threshold-based paradigm, can result
in an arbitrary number of data sets. For a given collection of data
sets, L = {⇡1, . . . ,⇡=}, RONIN constructs a hierarchical structure
for e�ective navigation. This structure is constructed using the
previous model proposed for navigating data lake attributes [4].

3.1 Navigation in an Organization
An organization is a DAGwith nodes that represent sets of data sets.
An edge indicates that the data sets in a parent node form a superset
of the data sets in a child node. A user �nds a data set by traversing a
path from a root node to the leaf that contains the data set. To make
an organization readable for users, each node is annotated with
descriptive text. Each data set ⇡8 2 L has a set of metadata values
that we call a domain and denote by dom(⇡8 ). For an organization
O = (+ , ⇢), let ch(.) be the child relation mapping a node to its
children, and par(.) be the parent relation mapping a node to its
parents. Each node B corresponds to a set of data sets DB ✓ L.
For a leaf node B , the cardinality of DB is one. If 2 2 2⌘(B), then
D2 ✓ DB , we call this the inclusion property, and DB =

–
222⌘ (B) ⇡2 .

We denote the domain of a node B by dom(B) which is dom(DB )
when B is a leaf node and

–
⇡8 2DB dom(⇡8 ) otherwise.

RONIN represents the domain of a data set with its semantic vec-
tor. The domain of a node is similarly computed by aggregating the
embedding vectors of the metadata �elds of its data sets. Alterna-
tively, a data set (and a node) can be represented by the set of word
embedding vectors instead of an aggregated vector. The similarity
can then be calculated as the average similarity of pairs of vectors.
In this demo, we implement the former representation.

3https://github.com/facebookresearch/fastText
4https://github.com/facebookresearch/faiss

2864



Open Data Lake
(dataset and

metadata files)

Metadata Extraction & 
Vectorization

Crawler

Metadata Vectors
& Data SketchesPreprocessing

OrganizationData 
sets

LSH
Ensemble

Organization
Construction [4]

Keyword Search

LSH Indexes

Data Sketch Library

Dataset Search

Query 

Join/Union
Search [5,7]

Navigation

Figure 1: The RONIN Architecture. Figure 2: Metadata Distribution in Data Lake.
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Figure 3: Construction Time.

Navigation Model Previous work models a user’s experience dur-
ing navigation in an organization as a Markov model where states
are nodes and transitions are edges [4]. Suppose the user has a
query topic - in mind and, for now, suppose there is a way of
modeling- with a semantic vector. Starting at the root node, a user
navigates through sets of data sets by following edges. Because of
the inclusion property, each transition �lters some of the data sets.
The navigation stops once the user reaches a leaf node. The proba-
bility of a user’s transition from state B to 2 2 ch(B) is determined
by the similarity between - and the state 2 . Since semantic vectors
are constructed on word embedding vectors, we use the common
cosine similarity measure. The transition probability function from

B to 2 is % (2 |B,- ,O) = 4
W

| ch(B ) | .cosine(2,- )

Õ
C22⌘ (B ) 4

W
| ch(B ) | .cosine(C ,- )

. The constant W is

hyper parameter with a strictly positive number. The term | ch(B) |
is to penalize having nodes with too many children. Plugging in this
transition funtion into markov model, the probability of reaching
state B: through a discovery sequence A = B1, . . . , B: , while search-
ing for- is % (B: |A ,- ,O) =

Œ:
8=1 % (B8 |B8�1,- ,O). Since O is a DAG,

the probability of reaching a state B in O while searching for - is
% (B |- ,O) =

Õ
A 2?0C⌘B (B) % (B |A ,- ,O), where ?0C⌘B (B) is the set of

all paths in O that reach B from the root. Note that this model natu-
rally penalizes long paths. A data set is found when the navigation
reaches the leaf node that contains that data set.

Given an organization O de�ned on L, the e�ectiveness of O is
the expected probability of �nding a data set in L while navigating
O, de�ned as e�(O) =

Õ
⇡8 2L

@8 . % (⇡8 |O), where % (⇡8 |O) is the
probability of reaching the leaf node containing data set ⇡8 while
searching for⇡8 , i.e.- =⇡8 , and @8 is the probability or signi�cance
of ⇡8 . Currently, RONIN assumes a uniform distribution for @. As
the user search history becomes available, we can learn @. Given L,
our goal is to �nd an organization with the highest e�ectiveness.

3.2 Organization Construction
Finding an organizationwith optimal e�ectiveness requires a search
in the powerset lattice of all data sets, while computing the e�ec-
tiveness of each candidate organization. Note that calculating the
e�ectiveness requires traversing all paths and calculating the reach-
ability probability for each data set; this has complexity in the size
of graph. An organization on = data sets can have as many as 2= � 1
nodes. To solve the combinatorial optimization of �nding the most

e�ective organization, previous work proposes a local search algo-
rithm that starts from an initial DAG with nodes as subsets of data
sets that satis�es the inclusion property. And, it iteratively enhances
the e�ectiveness by changing the structure of the DAG [4].

For an initial organization, RONIN generates an agglomerative
hierarchical clustering on the semantic vectors of data sets. This is
a deep tree structure with a branching factor of two. The algorithm
starts by de�ning a node for each data set. At each iteration, the
algorithm �nds the most similar pair of nodes and creates a new
node as their parent. This guarantees that the �nal tree satis�es the
inclusion property. The semantic vector of a node is computed by
aggregating its children. The number of similarity computations to
build an initial organization is in the order of O(=2). RONIN lever-
ages the nearest neighbor search index of faiss to speed up �nding
the next pair of nodes to merge.

Then, RONIN iteratively changes the organization by intelligently
removing nodes and adding edges. RONIN traverses the DAG in a
bottom-up fashion and at each level (depth of the DAG) picks a node
with the smallest reachability probability. The reachability of the
node can be improved by either adding an edge between an upper
level node and the node (increasing the number of paths leading to
the node) or eliminating the node and assigning its children to its
parents (decreasing path lengths in the DAG). RONIN makes these
changes while guaranteeing the inclusion property and updating
the node vectors. Both changes may or may not increase the ef-
fectiveness. For instance, adding a new parent increases the path
lengths, and eliminating a node increases the branching factors,
both have the potential of reducing the e�ectiveness. RONIN only
accepts the change if it leads to a DAG with higher e�ectiveness.
The complexity of the calculation of e�ectiveness is in the size of
DAG. For future work, we plan to implement an incremental way
of evaluating the e�ectiveness by exclusively recomputing reach-
ability probability for the subset of nodes a�ected by the change.
In our implementation, this process is terminated when the e�ec-
tiveness of the organization has plateaued (changed less than 1e�9)
for V .|L| or the algorithm has made X .|L| updates, where V = 14
and X = 2000, i.e. stricter condition for larger organizations. Our
implementation is in gonum library for the vast majority of compu-
tations, including its implementation of the BLAS speci�cation for
vector computations, as well as graph traversal.

Figure 3 shows the average construction time of organizations
with various number of data sets. This plot considers 30 random
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Figure 4: The RONIN demo: 1) the user performs a keyword search, 2) the user navigates an organization of the results to reach
a data set of interest, 3) the user performs a similarity search using this data set as a query, selects another data set, and �nds
joinable data sets with it, 4) the user navigates the updated organization on joinable search results.

queries. For each value = in the x-axis (number of data sets), we
consider = similar data sets returned by RONIN for each query. Note
that the x-axis is the number of leaf nodes. In fact, the number
of nodes of the initial organization is exponential in =. RONIN is
currently interactive for result sets containing 100 data sets, which
indicates a large enough result set presented by existing search
engines [2]. This experiment is conducted on an Intel Xeon @ 2.30
GHz with 512Gb of memory.

To make an organization human-readable, RONIN annotates each
node with a descriptive label. RONIN considers the collection of
all values for the categories metadata �eld as possible labels.
The number of considered labels is 978. As shown in Table 1, the
categories are prevalent in the data lake. Each label is expressed
with a semantic vector. RONIN traverses an organization in breadth-
�rst manner and annotates a node with the non-duplicate label that
has the highest cosine similarity to the node. To perform an e�cient
similar label search, in our implementation, we leverage the faiss
index on the vector of all labels. It is also possible to consider other
sources of labels such as Wikipedia categories. An alternative way
of annotating a node is topic modeling of the data sets in the node.

4 DEMONSTRATION DESCRIPTION
We demonstrate RONIN on a crawl of approximately 40K data sets
from Socrata API. We describe user activities in four steps (Figure 4).
Step 1: keyword search The user performs a keyword search.
RONIN displays all of the relevant data sets to the keyword and a
link to an organization that is constructed on the result on the �y.
In our screenshot, the user �rst enters the keyword smart city.
Step 2: navigation in organization Instead of manually examin-
ing the list of result data sets, the user starts the navigation from
the root node of the organization until reaching data sets of interest.
In our screenshot, the user starts from root smart city and nav-
igates to the node city infrastructure. Since the user is tech
savvy, the user chooses to �nally navigate to the node internet
connectivity that contains data sets internet master plan and
broadband adoption and infrastructure by zip code.
Step 3: data set search At any time during navigation, the user
can switch to the search mode using a data set or a keyword as a

query. For example, the user may choose to perform a search using
the new keyword internet connectivity or perform a similarity
search on the data sets of a node. In our screenshot, the user re-
quests RONIN for similar data sets to broadband adoption by zip
code. Among the result, the user �nds broadband adoption and
infrastructure by council district. The search continues
by a request for joinable data sets with one of the attributes of this
data set. This is particularly interesting as the user may now �nd
data sets that were not in the results of the original search.
Step 4: updating organization The user can now navigate the or-
ganization of the joinability search result or choose a new keyword
to search with from.
Demonstration engagement In addition to our guided demonstra-
tion, participants can request for results of their data set search.
Moreover, they can navigate the organizations of their search result.
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