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Abstract—Recently, a connection between the age of infor-
mation and remote estimation error was found in a sampling
problem of Wiener processes: If the sampler has no knowledge
of the signal being sampled, the optimal sampling strategy is to
minimize the age of information; however, by exploiting causal
knowledge of the signal values, it is possible to achieve a smaller
estimation error. In this paper, we generalize the previous study
by investigating a problem of sampling a stationary Gauss-
Markov process named the Ornstein-Uhlenbeck (OU) process,
where we aim to find useful insights for solving the problems of
sampling more general signals. The optimal sampling problem is
formulated as a constrained continuous-time Markov decision
process (MDP) with an uncountable state space. We provide
an exact solution to this MDP: The optimal sampling policy
is a threshold policy on instantaneous estimation error and the
threshold is found. Further, if the sampler has no knowledge of
the OU process, the optimal sampling problem reduces to an
MDP for minimizing a nonlinear age of information metric. The
age-optimal sampling policy is a threshold policy on expected
estimation error and the threshold is found. In both problems,
the optimal sampling policies can be computed by low-complexity
algorithms (e.g., bisection search and Newton’s method), and the
curse of dimensionality is circumvented. These results hold for
(i) general service time distributions of the queueing server and
(ii) sampling problems both with and without a sampling rate
constraint. Numerical results are provided to compare different
sampling policies.

Index Terms—Age of information, Ornstein-Uhlenbeck pro-
cess, sampling policy, threshold policy.

I. INTRODUCTION

T IMELY updates of the system state are of significant
importance for state estimation and decision making in

networked control and cyber-physical systems, such as UAV
navigation, robotics control, mobility tracking, and environ-
ment monitoring systems. To evaluate the freshness of state
updates, the concept of Age of Information, or simply age, was
introduced to measure the timeliness of state samples received
from a remote transmitter [1]–[3]. Let Ut be the generation
time of the freshest received state sample at time t. The age of
information, as a function of t, is defined as ∆t = t−Ut, which
is the time difference between the freshest samples available
at the transmitter and receiver.

Recently, the age of information concept has received
significant attention, because of the extensive applications of
state updates among systems connected over communication
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networks. The states of many systems, such as UAV mobility
trajectory and sensor measurements, are in the form of a signal
Xt, that may change slowly at some time and vary more
dynamically later. Hence, the time difference described by
the age ∆t = t − Ut only partially characterize the variation
Xt − XUt of the system state, and the state update policy
that minimizes the age of information does not minimize
the state estimation error. This result was first shown in [4],
where a sampling problem of Wiener processes was solved and
the optimal sampling policy was shown to have an intuitive
structure. As the results therein hold only for signals that can
be modeled as a Wiener process, one would wonder how to,
and whether it is possible to, extend [4] for handling more
general signal models.

In this paper, we generalize [4] by exploring a problem
of sampling an Ornstein-Uhlenbeck (OU) process Xt. From
the obtained results, we hope to find useful structural prop-
erties of the optimal sampler design that can be potentially
applied to more general signal models. The OU process Xt

is the continuous-time analogue of the well-known first-order
autoregressive process, i.e., AR(1) process. The OU process is
defined as the solution to the stochastic differential equation
(SDE) [5], [6]

dXt = θ(µ−Xt)dt+ σdWt, (1)

where µ, θ > 0, and σ > 0 are parameters and Wt represents a
Wiener process. It is the only nontrivial continuous-time pro-
cess that is stationary, Gaussian, and Markovian [6]. Examples
of first-order systems that can be described as the OU process
include interest rates, currency exchange rates, and commodity
prices (with modifications) [7], control systems such as node
mobility in mobile ad-hoc networks, robotic swarms, and UAV
systems [8], [9], and physical processes such as the transfer
of liquids or gases in and out of a tank [10].

As shown in Fig. 1, samples of an OU process are forwarded
to a remote estimator through a channel in a first-come, first-
served (FCFS) fashion. The samples experience i.i.d. random
transmission times over the channel, which is caused by
random sample size, channel fading, interference, congestions,
and etc. For example, UAVs flying close to WiFi access points
may suffer from long communication delay and instability
issues, because they receive strong interference from the WiFi
access points [11]. We assume that at any time only one sample
can be served by the channel. The samples that are waiting
to be sent are stored in a queue at the transmitter. Hence,
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Fig. 1: System model.

the channel is modeled as an FCFS queue with i.i.d. service
times. The service time distributions considered in this paper
are quite general: they are only required to have a finite mean.
This queueing model is helpful to analyze the robustness of
remote estimation systems with occasionally long transmission
times.

The estimator utilizes causally received samples to construct
an estimate X̂t of the real-time signal value Xt. The quality
of remote estimation is measured by the time-average mean-
squared estimation error, i.e.,

mse = lim sup
T→∞

1

T
E

[∫ T

0

(Xt − X̂t)
2dt

]
. (2)

Our goal is to find the optimal sampling policy that minimizes
mse by causally choosing the sampling times subject to a
maximum sampling rate constraint. In practice, the cost (e.g.,
energy, CPU cycle, storage) for state updates increases with
the average sampling rate. Hence, we are striking to find the
optimum tradeoff between estimation error and update cost.
In addition, the unconstrained problem is also solved. The
contributions of this paper are summarized as follows:

• The optimal sampling problem for minimize the mse
under a sampling rate constraint is formulated as a
constrained continuous-time Markov decision process
(MDP) with an uncountable state space. Because of the
curse of dimensionality, such problems are often lack
of low-complexity solutions that are arbitrarily accurate.
However, we were able to solve this MDP exactly: The
optimal sampling policy is proven to be a threshold policy
on instantaneous estimation error, where the threshold is
a non-linear function v(β) of a parameter β. The value of
β is equal to the summation of the optimal objective value
of the MDP and the optimal Lagrangian dual variable
associated to the sampling rate constraint. If there is no
sampling rate constraint, the Lagrangian dual variable is
zero and hence β is exactly the optimal objective value.
Among the technical tools developed to prove this result
is a free boundary method [12], [13] for finding the
optimal stopping time of the OU process.

• The optimal sampler design of Wiener process in [4] is
a limiting case of the above result. By comparing the
optimal sampling policies of OU process and Wiener
process, we find that the threshold function v(β) changes
according to the signal model, where the parameter β is
determined in the same way for both signal models.

• Further, we consider a class of signal-agnostic sampling
policies, where the sampling times are determined with-
out using knowledge of the signal value of the observed
OU process; the parameters of the OU process are

known. The optimal signal-agnostic sampling problem is
equivalent to an MDP for minimizing the time-average of
a nonlinear age function p(∆t), which has been solved
recently in [14]. The age-optimal sampling policy is a
threshold policy on expected estimation error, where the
threshold function is simply v(β) = β and the parameter
β is determined in the same way as above.

• The above results hold for (i) general service time dis-
tributions with a finite mean and (ii) sampling problems
both with and without a sampling rate constraint. Nu-
merical results suggest that the optimal sampling policy
is better than zero-wait sampling and the classic uniform
sampling.

One interesting observation from these results is that the
threshold function v(β) varies with respect to the signal model
and sampling problem, but the parameter β is determined in
the same way.

A. Related Work

The results in this paper are tightly related to recent studies
on the age of information ∆t, e.g., [1], [14]–[35], which does
not have a signal model. The average age and average peak age
have been analyzed for various queueing systems in, e.g., [1],
[18], [20], [21]. The optimality of the Last-Come, First-Served
(LCFS) policy, or more generally the Last-Generated, First-
Served (LGFS) policy, was established for various queueing
system models in [24]–[26], [30]. Optimal sampling policies
for minimizing non-linear age functions were developed in,
e.g., [14], [15], [19], [35]. Age-optimal transmission schedul-
ing of wireless networks were investigated in, e.g., [22], [23],
[27]–[29], [31], [32].

On the other hand, this paper is also a contribution to the
area of remote estimation, e.g., [10], [36]–[41]. In [37], [39],
optimal sampling of Wiener processes was studied, where the
transmission time from the sampler to the estimator is zero.
Optimal sampling of OU processes was also considered in
[37], which is solved by discretizing time and using dynamic
programming to solve the discrete-time optimal stopping
problems. However, our optimal sampler of OU processes is
obtained analytically. Remote estimation over several different
channel models was recently studied in, e.g., [40], [41]. In
[10], [36]–[41], the optimal sampling policies were proven
to be threshold policies. Because of the queueing model,
our optimal sampling policy has a different structure from
those in [10], [36]–[41]. Specifically, in our optimal sampling
policy, sampling is suspended when the server is busy and
is reactivated once the server becomes idle. In addition, we
are able to characterize the threshold precisely. The optimal
sampling policy for the Wiener process in [4] is a limiting case
of ours. Remote estimation of the Wiener process with random
two-way delay was recently considered in [42]. In [43], a
jointly optimal sampler, quantizer, and estimator design was
found for a class of continuous-time Markov processes under
a bit-rate constraint. A recent survey on remote estimation
systems was presented in [44].
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Fig. 2: Evolution of the age ∆t over time.

II. MODEL AND FORMULATION

A. System Model

We consider the remote estimation system illustrated in
Fig. 1, where an observer takes samples from an OU process
Xt and forwards the samples to an estimator through a
communication channel. The channel is modeled as a single-
server FCFS queue with i.i.d. service times. The system starts
to operate at time t = 0. The i-th sample is generated at
time Si and is delivered to the estimator at time Di with a
service time Yi, which satisfy Si ≤ Si+1, Si + Yi ≤ Di,
Di + Yi+1 ≤ Di+1, and 0 < E[Yi] < ∞ for all i. Each
sample packet (Si, XSi) contains the sampling time Si and
the sample value XSi . Let Ut = max{Si : Di ≤ t} be the
sampling time of the latest received sample at time t. The age
of information, or simply age, at time t is defined as [1], [2]

∆t = t− Ut = t−max{Si : Di ≤ t}, (3)

which is shown in Fig. 2. Because Di ≤ Di+1, ∆t can be
also expressed as

∆t = t− Si, if t ∈ [Di, Di+1), i = 0, 1, 2, . . . (4)

The initial state of the system is assumed to satisfy S0 = 0,
D0 = Y0, X0 and ∆0 are finite constants. The parameters µ,
θ, and σ in (1) are known at both the sampler and estimator.

Let It ∈ {0, 1} represent the idle/busy state of the server
at time t. We assume that whenever a sample is delivered,
an acknowledgement is sent back to the sampler with zero
delay. By this, the idle/busy state It of the server is known at
the sampler. Therefore, the information that is available at the
sampler at time t can be expressed as {Xs, Is : 0 ≤ s ≤ t}.

B. Sampling Policies

In causal sampling policies, each sampling time Si is
determined based on the up-to-date information that is avail-
able at the sampler, without using any future information. In
probability theory, such sampling times are represented by
stopping times.

To define stopping time precisely, the concepts of σ-field
and filtration are needed. Let us define the σ-field

Nt = σ(Xs, Is : 0 ≤ s ≤ t),

which is the set of events whose occurrence are determined by
the realization of the process {Xs, Is, 0 ≤ s ≤ t} up to time
t. A filtration is a non-decreasing sequence of σ-fields. Our

analysis requires a strong Markov property, which is satisfied
when the filtration is right-continuous. Define

N+
t = ∩s>tNs, (5)

then {N+
t , t ≥ 0} is a right-continuous filtration of the

information process {Xs, Is, t ≥ 0} [45]. In a causal sampling
policy, each sampling time is a stopping time with respect to
{N+

t , t ≥ 0}, i.e.,

{Si ≤ t} ∈ N+
t , ∀t ≥ 0. (6)

In other words, whether sample i has been generated by time
t (i.e., whether {Si ≤ t} or {Si > t}) is determined by the
realization of the process {Xs, Is, 0 ≤ s ≤ t} up to time t.

Let π = (S1, S2, ...) represent a sampling policy. We use Π
to represent the set of causal sampling policies that satisfy two
conditions: (i) Each sampling policy π ∈ Π satisfies (6) for
all i. (ii) The sequence of inter-sampling times {Ti = Si+1 −
Si, i = 0, 1, . . .} forms a regenerative process [46, Section
6.1]: There exists an increasing sequence 0 ≤ k1 < k2 < . . .
of almost surely finite random integers such that the post-kj
process {Tkj+i, i = 0, 1, . . .} has the same distribution as the
post-k0 process {Tk0+i, i = 0, 1, . . .} and is independent of the
pre-kj process {Ti, i = 0, 1, . . . , kj − 1}; further, we assume
that E[kj+1 − kj ] < ∞, E[Sk1 ] < ∞, and 0 < E[Skj+1

−
Skj ] <∞, j = 1, 2, . . .1

From this, we can obtain that Si is finite almost surely for all
i. We assume that the OU process {Xt, t ≥ 0} and the service
times {Yi, i = 1, 2, . . . } are mutually independent, and do not
change according to the sampling policy.

A sampling policy π ∈ Π is said to be signal-agnostic
(signal-aware), if π is (not necessarily) independent of
{Xt, t ≥ 0}. Let Πsignal-agnostic ⊂ Π denote the set of signal-
agnostic sampling policies, defined as

Πsignal-agnostic ={π∈ Π : π is independent of {Xt, t ≥ 0}}.(7)

C. MMSE Estimator

According to (6), Si is a finite stopping time. By using [52,
Eq. (3)] and the strong Markov property of the OU process
[12, Eq. (4.3.27)], Xt is expressed as

Xt =XSie
−θ(t−Si) + µ

[
1− e−θ(t−Si)

]
+

σ√
2θ
e−θ(t−Si)We2θ(t−Si)−1, if t ∈ [Si,∞). (8)

At any time t ≥ 0, the estimator uses causally received
samples to construct an estimate X̂t of the real-time signal
value Xt. The information available to the estimator consists
of two parts: (i) Mt = {(Si, XSi , Di) : Di ≤ t}, which
contains the sampling time Si, sample value XSi , and delivery
time Di of the samples that have been delivered by time t

1We will optimize lim supT→∞ E[
∫ T
0 (Xt−X̂t)2dt]/T , but operationally

a nicer criterion is lim supi→∞ E[
∫Di
0 (Xt−X̂t)2dt]/E[Di]. These criteria

are corresponding to two definitions of “average cost per unit time” that are
widely used in the literature of semi-Markov decision processes. These two
criteria are equivalent, if {T1, T2, . . .} is a regenerative process, or more
generally, if {T1, T2, . . .} has only one ergodic class. If not condition is
imposed, however, they are different. The interested readers are referred to
[47]–[51] for more discussions.
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and (ii) the fact that no sample has been received after the
last delivery time max{Di : Di ≤ t}. Similar to [4], [37],
[53], we assume that the estimator neglects the second part of
information.2 Then, as shown in Appendix C, the minimum
mean square error (MMSE) estimator is determined by

X̂t = E[Xt|Mt] =XSie
−θ(t−Si) + µ

[
1− e−θ(t−Si)

]
,

if t ∈ [Di, Di+1), i = 0, 1, 2, . . . (9)

Hence, the estimation error of the MMSE estimator is

Xt − X̂t =
σ√
2θ
e−θtWe2θt−1,

if t ∈ [Di, Di+1), i = 0, 1, 2, . . . (10)

D. Problem Formulation

The goal of this paper is to find the optimal sampling policy
that minimizes the mean-squared estimation error subject to an
average sampling-rate constraint, which is formulated as the
following problem:

mseopt = inf
π∈Π

lim sup
T→∞

1

T
E

[∫ T

0

(Xt − X̂t)
2dt

]
(11)

s.t. lim inf
n→∞

1

n
E

[
n∑
i=1

(Si+1 − Si)

]
≥ 1

fmax
, (12)

where mseopt is the optimum value of (11) and fmax is the
maximum allowed sampling rate. When fmax = ∞, this
problem becomes an unconstrained problem.

III. MAIN RESULTS

A. Signal-aware Sampling without Rate Constraint

Problem (11) is a constrained continuous-time MDP with a
continuous state space. However, we found an exact solution
to this problem. To present this solution, let us consider an
OU process Ot with the initial state Ot = 0 and parameter
µ = 0. According to (8), Ot can be expressed as

Ot =
σ√
2θ
e−θtWe2θt−1. (13)

Define

mseYi = E[O2
Yi ] =

σ2

2θ
E[1− e−2θYi ], (14)

mse∞ = E[O2
∞] =

σ2

2θ
. (15)

In the sequel, we will see that mseYi and mse∞ are the lower
and upper bounds of mseopt, respectively. According to (10)
and (13)-(15), mseYi represents the estimation error when the

2We note that this assumption can be removed by considering a joint
sampler and estimator design problem. Specifically, it was shown in [10], [36],
[38], [40], [41] that when the sampler and estimator are jointly optimized in
discrete-time systems, the optimal estimator has the same expression no matter
with or without the second part of information. As pointed out in [36, p. 619],
such a structure property of the MMSE estimator can be also established for
continuous-time systems. The goal of this paper is to find the closed-form
expression of the optimal sampler under this assumption. The remaining task
of finding the jointly optimal sampler and estimator design can be done by
further using the majorization techniques developed in [10], [36], [38], [40],
[41]; see [43] for a recent treatment on this task.

estimation is made based on a sample that was generated Yi
seconds ago, and mse∞ represents the estimation error for the
case that no sample has been delivered to the estimator before.
We will also need to use the function3

G(x) =
ex

2

x

∫ x

0

e−t
2

dt=
ex

2

x

√
π

2
erf(x), x ∈ [0,∞), (16)

where erf(·) is the error function [54], defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (17)

We first consider the unconstrained optimal sampling prob-
lem, i.e., fmax =∞, such that the rate constraint (12) can be
removed. In this scenario, the optimal sampler is provided in
the following theorem.

Theorem 1. (Sampling without Rate Constraint). If fmax =
∞ and the Yi’s are i.i.d. with 0 < E[Yi] < ∞, then
(S1(β), S2(β), . . .) with a parameter β is an optimal solution
to (11), where

Si+1(β) = inf
{
t ≥ Di(β) :

∣∣Xt − X̂t

∣∣≥v(β)
}
, (18)

Di(β) = Si(β) + Yi, v(β) is defined by

v(β) =
σ√
θ
G−1

(
mse∞ −mseYi
mse∞ − β

)
, (19)

G−1(·) is the inverse function of G(·) in (16) and β is the
unique root of

E

[∫ Di+1(β)

Di(β)

(Xt − X̂t)
2dt

]
−βE[Di+1(β)−Di(β)]=0. (20)

The optimal objective value to (11) is given by

mseopt =
E
[∫Di+1(β)

Di(β)
(Xt − X̂t)

2dt
]

E[Di+1(β)−Di(β)]
. (21)

Furthermore, β is exactly the optimal value to (11), i.e., β =
mseopt.

The proof of Theorem 1 is explained in Section IV. The
optimal sampling policy in Theorem 1 has a nice structure.
Specifically, the (i+1)-th sample is taken at the earliest time t
satisfying two conditions: (i) The i-th sample has already been
delivered by time t, i.e., t ≥ Di(β), and (ii) the estimation
error |Xt− X̂t| is no smaller than a pre-determined threshold
v(β), where v(·) is a non-linear function defined in (19). In
Section IV, it is shown that mseYi ≤ β < mse∞. Further, it
is not hard to show that G(x) is strictly increasing on [0,∞)
and G(0) = 1. Hence, its inverse function G−1(·) and the
threshold v(β) are properly defined and v(β) ≥ 0.

1) Three Algorithms for Solving (20): We now present three
algorithms for computing the root of (20). Because the Si(β)’s
are stopping times, numerically calculating the expectations in
(20) appears to be a difficult task. Nonetheless, this challenge
can be solved by resorting to the following lemma, which is
obtained by using Dynkin’s formula [13, Theorem 7.4.1] and
the optional stopping theorem.

3If x = 0, G(x) is defined as its right limit G(0) = limx→0+ G(x) = 1.
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Fig. 3: f(β) in (30) for i.i.d. exponential service time with
E[Yi] = 1, where the parameters of the OU process are σ = 1
and θ = 0.5. For these parameters, mseYi = 0.5 and mse∞ =
1.

Lemma 1. In Theorem 1, it holds that

E[Di+1(β)−Di(β)]

=E[max{R1(v(β))−R1(OYi), 0}] + E[Yi], (22)

E

[∫ Di+1(β)

Di(β)

(Xt − X̂t)
2dt

]
=E[max{R2(v(β))−R2(OYi), 0}]

+ mse∞[E(Yi)− γ] + E
[
max{v2(β), O2

Yi}
]
γ, (23)

where

γ =
1

2θ
E[1− e−2θYi ], (24)

R1(v) =
v2

σ2 2F2

(
1, 1;

3

2
, 2;

θ

σ2
v2

)
, (25)

R2(v) = −v
2

2θ
+
v2

2θ
2F2

(
1, 1;

3

2
, 2;

θ

σ2
v2

)
. (26)

Proof. See Appendix I.

In (25) and (26), we have used the generalized hypergeo-
metric function, which is defined by [55, Eq. 16.2.1]

pFq(a1, a2, · · · , ap; b1, b2, · · · bq; z)

=
∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bp)n

zn

n!
, (27)

where

(a)0 = 1, (28)
(a)n = a(a+ 1)(a+ 2)· · ·(a+ n− 1), n ≥ 1. (29)

Using Lemma 1, the expectations in (20) can be evaluated by
Monte Carlo simulations of scalar random variables OYi and
Yi, which is much simpler than directly simulating the entire
random process {Ot, t ≥ 0}.

For notational simplicity, we rewrite (20) as

f(β) = f1(β)− βf2(β) = 0, (30)

where f1(β) = E
[∫Di+1(β)

Di(β)
(Xt − X̂t)

2dt
]

and f2(β) =

Algorithm 1 Bisection search method for solving (20)

given l = mseYi , u = mse∞, tolerance ε > 0.
repeat
β := (l + u)/2.
o := f1(β)− βf2(β).
if o ≥ 0, l := β; else, u := β.

until u− l ≤ ε.
return β.

Algorithm 2 Newton’s method for solving (20)

given tolerance ε > 0.
Pick initial value β0∈[mseopt,mse∞).
repeat
βk+1 := βk − f(βk)

f ′(βk) .

until | f(βk)
f ′(βk) | ≤ ε.

return βk+1.

Algorithm 3 Fixed-point iterations for solving (20)

given tolerance ε > 0.
Pick initial value β0∈[mseopt,mse∞).
repeat
βk+1 := f1(βk)

f2(βk) .

until |βk+1 − f1(βk)
f2(βk) | ≤ ε.

return βk+1.

E[Di+1(β)−Di(β)]. The function f(β) has several nice
properties, which are asserted in the following lemma and
illustrated in Fig. 3.

Lemma 2. The function f(β) has the following properties:
(i) f(β) is concave, continuous, and strictly decreasing in

β,
(ii) f(mseYi) > 0 and lim

β→mse−∞

f(β) = −∞.

Proof. See Appendix A.

The uniqueness of the root of f(β) follows immediately
from Lemma 2.

Because f(β) is decreasing and has a unique root, one can
use a bisection search method to solve (20), which is illustrated
in Algorithm 1. The bisection search method has a globally
linear convergence speed.

To achieve an even faster convergence speed, we can use
Newton’s method [56]

βk+1 = βk −
f(βk)

f ′(βk)
(31)

to solve (20), as shown in Algorithm 2. We suggest choos-
ing the initial value β0 of Newton’s method from the set
[mseopt,mse∞), i.e., β0 is larger than the root mseopt. Such an
initial value β0 can be found by taking a few bisection search
iterations, or by using the mse of a sub-optimal sampling
policy [57]. Because f(β) is a concave function, the choice
of initial value β0 ∈ [mseopt,mse∞) ensures that βk is a
decreasing sequence converging to mseopt [58]. Moreover,
because R1(·) and R2(·) are twice continuously differentiable,
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the function f(β) is twice continuously differentiable. There-
fore, Newton’s method is known to have a locally quadratic
convergence speed in the neighborhood of the root mseopt [56,
Chapter 2].

Newton’s method requires to compute the gradient f ′(βk),
which can be solved by a finite-difference approximation, as
in the secant method [56]. In the sequel, we introduce another
approximation approach of Newton’s method, which is of
independent interest. In Theorem 1, we have shown that

mseopt = argmax
β∈[mseYi

,mse∞)

f1(β)

f2(β)
. (32)

Hence, the gradient of f1(β)/f2(β) is equal to zero at the
optimal solution β = mseopt, which leads to

f ′1(mseopt)f2(mseopt)− f1(mseopt)f
′
2(mseopt) = 0. (33)

Therefore,

mseopt =
f1(mseopt)

f2(mseopt)
=
f ′1(mseopt)

f ′2(mseopt)
. (34)
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Fig. 6: The function h(β) in (36) for i.i.d. exponential service
time with E[Yi] = 1, where the parameters of the OU process
are σ = 1 and θ = 0.5. For these parameters, mseYi = 0.5
and mse∞ = 1.
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Fig. 7: The function g(β) in (40) for i.i.d. exponential service
time with E[Yi] = 1 and fmax = 0.8, where the parameters of
the OU process are σ = 1 and θ = 0.5. For these parameters,
mseYi = 0.5 and mse∞ = 1.

Because f1(β) and f2(β) are smooth functions, when βk is
in the neighborhood of mseopt, (34) implies that f ′1(βk) −
βkf

′
2(βk) ≈ f ′1(mseopt) − mseoptf

′
2(mseopt) = 0. Substituting

this into (31), yields

βk+1 =βk −
f1(βk)− βkf2(βk)

f ′1(βk)− f2(βk)− βkf ′2(βk)

≈βk −
f1(βk)− βkf2(βk)

−f2(βk)

=
f1(βk)

f2(βk)
, (35)

which is a fixed-point iterative algorithm (see Algorithm
3) that was recently proposed in [57]. Similar to Newton’s
method, the fixed-point updates in (35) converge to mseopt
if the initial value β0∈[mseopt,mse∞). Moreover, (35) has a
locally quadratic convergence speed, see [57] for a proof of
this result. A numerical comparison of these three algorithms
is shown in Fig. 4 and Fig. 5. One can observe that the
fixed-point updates and Newton’s method converge faster than
bisection search.

We note that although (20), and equivalently (30), has a



7

unique root mseopt, the fixed-point equation

h(β) =
f1(β)

f2(β)
− β =

f1(β)− βf2(β)

f2(β)
= 0 (36)

has two roots mseopt and mse∞. See Fig. 6 for an illustration
of the two roots of h(β). As shown in Appendix O, the
correct root for computing the optimal threshold is mseopt.
Interestingly, Algorithms 1-3 converge to the desired root
mseopt, instead of mse∞. Finally, we remark that these three
algorithms can be used to find the optimal threshold in the
age-optimal sampling problem studied in, e.g., [14], [15].

B. Signal-aware Sampling with Rate Constraint

When the sampling rate constraint (12) is taken into con-
sideration, a solution to (11) is expressed in the following
theorem:

Theorem 2. (Sampling with Rate Constraint). If the Yi’s are
i.i.d. with 0 < E[Yi] < ∞, then (18)-(20) is an optimal
solution to (11). The value of β ≥ 0 is determined in two
cases: β is the unique root of (20) if the root of (20) satisfies

E[Di+1(β)−Di(β)] > 1/fmax; (37)

otherwise, β is the unique root of

E[Di+1(β)−Di(β)] = 1/fmax. (38)

The optimal objective value to (11) is given by

mseopt =
E
[∫Di+1(β)

Di(β)
(Xt − X̂t)

2dt
]

E[Di+1(β)−Di(β)]
. (39)

The proof of Theorem 2 is explained in Section IV. One
can see that Theorem 1 is a special case of Theorem 2 when
fmax =∞.

In Theorem 2, the calculation of β falls into two cases: In
one case, β can be computed by solving (20) via Algorithms
1-3. For this case to occur, the sampling rate constraint (12)
needs to be inactive at the root of (20). Because Di(β) =
Si(β)+Yi, we can obtain E[Di+1(β)−Di(β)] = E[Si+1(β)−
Si(β)] and hence (37) holds when the sampling rate constraint
(12) is inactive.

In the other case, β is selected to satisfy the sampling rate
constraint (12) with equality, as required in (38). Before we
solve (38), let us first use f2(β) to express (38) as

g(β) =
1

fmax
− f2(β) = 0. (40)

Lemma 3. The function g(β) has the following properties:
(i) g(β) is continuous and strictly decreasing in β,
(ii) g(mseYi) ≥ 0 and lim

β→mse−∞

g(β) = −∞ if the root of

(20) does not satisfy (37).

Proof. See Appendix B.

According to Lemma 3, (38) has a unique root in
[mseYi ,mse∞), which is denoted as β∗. In addition, the nu-
merical results in Fig. 7 suggest that g(β) should be concave,
for which we do not have a proof.

Algorithm 4 Bisection search method for solving (38)

given l = mseYi , u = mse∞, tolerance ε > 0.
repeat
β := (l + u)/2.
o := E[Di+1(β)−Di(β)].
if o ≥ 1/fmax, u := β; else, l := β.

until u− l ≤ ε.
return β.

Algorithm 5 Newton’s method for solving (38)

given tolerance ε > 0.
Pick initial value β0∈[β∗,mse∞).
repeat
βk+1 := βk − g(βk)

g′(βk) .

until | g(βk)
g′(βk) | ≤ ε.

return βk+1.

The root β∗ can be solved by using bisection search and
Newton’s method, which are explained in Algorithms 4-5,
respectively. Similar to the discussions in Section III-A1,
the convergence of Algorithm 4 is ensured by Lemma 3.
Moreover, if g(β) is concave and β0 ∈ [β∗,mse∞), βk in
Algorithm 5 is a decreasing sequence converging to the root
β∗ of (38) [58].

ter

C. Special Case: Sampling of the Wiener Process

In the limiting case that σ = 1 and θ → 0, the OU process
Xt in (1) becomes a Wiener process Xt = Wt. In this case,
the MMSE estimator in (9) is given by

X̂t = WSi , if t ∈ [Di, Di+1). (41)

As shown in Appendix E, v(·) defined by (19) tends to

v(β) =
√

3(β − E[Yi]). (42)

Theorem 3. If σ = 1, θ → 0, and the Yi’s are i.i.d. with
0 < E[Yi] <∞, then (S1(β), S2(β), . . .) with a parameter β
is an optimal solution to (11), where

Si+1(β) = inf
{
t ≥ Di(β) :

∣∣Xt − X̂t

∣∣≥√3(β − E[Yi])
}
,

(43)

Di(β) = Si(β) + Yi. The value of β≥0 is determined in two
cases: β is the unique root of

E

[∫ Di+1(β)

Di(β)

(Xt − X̂t)
2dt

]
−βE[Di+1(β)−Di(β)]=0, (44)

if the root of (44) satisfies E[Di+1(β) − Di(β)] > 1/fmax;
otherwise, β is the unique root of E[Di+1(β) − Di(β)] =
1/fmax. The optimal objective value to (11) is given by

mseopt =
E
[∫Di+1(β)

Di(β)
(Xt − X̂t)

2dt
]

E[Di+1(β)−Di(β)]
. (45)

Theorem 3 is an alternative form of Theorem 1 in [4] and
hence its proof is omitted. The benefit of the new expression
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in Theorem 3 is that it allows to character β based on the
optimal objective value mseopt and the sampling rate constraint
(12), in the same way as in Theorems 1-2. This appears to
be more fundamental than the expression in [4]. The new
form of optimal sampling policy of Wiener processes was also
discovered in [42] without considering the constraint on (12).

D. Signal-agnostic Sampling
In signal-agnostic sampling policies, the sampling times Si

are determined based only on the service times Yi, but not on
the observed OU process {Xt, t ≥ 0}.

Lemma 4. If π ∈ Πsignal-agnostic, then the mean-squared
estimation error of the OU process Xt at time t is

p(∆t) =E
[
(Xt − X̂t)

2
∣∣π, Y1, Y2, . . .

]
=
σ2

2θ

(
1− e−2θ∆t

)
,

(46)

which is a strictly increasing function of the age ∆t.

Proof. See Appendix D.

According to Lemma 4, for every policy π ∈ Πsignal-agnostic,

E

[∫ T

0

(Xt − X̂t)
2dt

]
= E

[∫ T

0

p(∆t)dt

]
. (47)

Hence, minimizing the mean-squared estimation error among
signal-agnostic sampling policies can be formulated as the
following MDP for minimizing the expected time-average of
the nonlinear age function p(∆t) in (46):

mseage-opt = inf
π∈Πsignal-agnostic

lim sup
T→∞

1

T
E

[∫ T

0

p(∆t)dt

]
(48)

s.t. lim inf
n→∞

1

n
E

[
n∑
i=1

(Si+1 − Si)

]
≥ 1

fmax
,

(49)

where mseage-opt is the optimal value of (48). By (46), p(∆t)
and mseage-opt are bounded. Because Πsignal-agnostic ⊂ Π, it
follows immediately that mseopt ≤ mseage-opt.

Problem (48) is one instance of the problems recently solved
in Corollary 3 of [14] for general strictly increasing functions
p(·). From this, a solution to (48) for signal-agnostic sampling
is given by

Theorem 4. If the Yi’s are i.i.d. with 0 < E[Yi] < ∞, then
(S1(β), S2(β), . . .) with a parameter β is an optimal solution
to (48), where

Si+1(β) = inf
{
t ≥ Di(β) :E[(Xt+Yi+1

−X̂t+Yi+1
)2]≥β

}
,

(50)

Di(β) = Si(β) + Yi and β is the unique root of

E

[∫ Di+1(β)

Di(β)

(Xt − X̂t)
2dt

]
−βE[Di+1(β)−Di(β)]=0, (51)

if the root of (51) satisfies E[Di+1(β) − Di(β)] > 1/fmax;
otherwise, β is the unique root of

E[Di+1(β)−Di(β)] = 1/fmax. (52)

The optimal objective value to (48) is given by

mseage-opt =
E
[∫Di+1(β)

Di(β)
(Xt − X̂t)

2dt
]

E[Di+1(β)−Di(β)]
. (53)

Theorem 4 follows from Corollary 3 of [14] and Lemma
4. Similar to the case of signal-aware sampling, the roots
of (51) and (52) can be solved by using Algorithms 1-5. In
fact, Algorithms 1-5 can be used for minimizing general non-
decreasing age penalty [14].

E. Discussions of the Results

The difference among Theorems 1-4 is only in the ex-
pressions (18), (43), (50) of threshold policies. In signal-
aware sampling policies (18) and (43), the sampling time is
determined by the instantaneous estimation error

∣∣Xt − X̂t

∣∣,
and the threshold function v(·) is determined by the specific
signal model. In the signal-agnostic sampling policy (50), the
sampling time is determined by the expected estimation error
E[(Xt+Yi+1 − X̂t+Yi+1)2] at time t + Yi+1. We note that if
t = Si+1(β), then t + Yi+1 = Si+1(β) + Yi+1 = Di+1(β)
is the delivery time of the new sample. Hence, (50) requires
that the expected estimation error upon the delivery of the
new sample is no less than β. The parameter β in Theorems
1-4 is determined by the optimal objective value and the
sampling rate constraint in the same manner. Later on in
(69), we will further see that β is exactly equal to the
summation of the optimal objective value of the MDP and the
optimal Lagrangian dual variable associated to the sampling
rate constraint. Finally, it is worth noting that Theorems 1-
4 hold for all distributions of the service times Yi satisfying
0 < E[Yi] < ∞, and for both constrained and unconstrained
sampling problems.

IV. PROOF OF THE MAIN RESULTS

We first provide the proof of Theorem 2. After that The-
orem 1 follows immediately because it is a special case of
Theorem 2. We prove Theorem 2 in four steps: (i) We first
show that sampling should be suspended when the server is
busy, which can be used to simplify (11). (ii) We use an
extended Dinkelbach’s method [59] and Lagrangian duality
method to decompose the simplified problem into a series of
mutually independent per-sample MDP. (iii) We utilize the
free boundary method from optimal stopping theory [12] to
solve the per-sample MDPs analytically. (iv) Finally, we use a
geometric multiplier method [60] to show that the duality gap
is zero. The above proof framework is an extension to that
used in [4], [14], and the most challenging part is Step (iii).

A. Preliminaries

The OU process Ot in (13) with initial state Ot = 0 and
parameter µ = 0 is the solution to the SDE

dOt = −θOtdt+ σdWt. (54)

In addition, the infinitesimal generator of Ot is [61, Eq. A1.22]

G = −θu ∂

∂u
+
σ2

2

∂2

∂u2
. (55)
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According to (8) and (9), the estimation error (Xt − X̂t) is
of the same distribution with Ot−Si , if t ∈ [Di, Di+1). By
using Dynkin’s formula and the optional stopping theorem,
we obtain the following lemma.

Lemma 5. Let τ ≥ 0 be a stopping time of the OU process
Ot with E [τ ] <∞, then

E
[∫ τ

0

O2
t dt

]
= E

[
σ2

2θ
τ − 1

2θ
O2
τ

]
. (56)

If, in addition, τ is the first exit time of a bounded set, then

E [τ ] = E[R1(Oτ )], (57)

E
[∫ τ

0

O2
t dt

]
= E[R2(Oτ )], (58)

where R1(·) and R2(·) are defined in (25) and (26), respec-
tively.

Proof. See Appendix F.

B. Suspend Sampling When the Server is Busy

By using the strong Markov property of the OU process
Xt and the orthogonality principle of MMSE estimation, we
obtain the following useful lemma:

Lemma 6. Suppose that a feasible sampling policy for prob-
lem (11) is π, in which at least one sample is taken when the
server is busy processing an earlier generated sample. Then,
there exists another feasible policy π′ for problem (11) which
has a smaller estimation error than policy π. Therefore, in
(11), it is suboptimal to take a new sample before the previous
sample is delivered.

Proof. See Appendix G.

A similar result was obtained in [4] for the sampling of
Wiener processes. By Lemma 6, there is no loss to consider
a sub-class of sampling policies Π1 ⊂ Π such that each
sample is generated and sent out after all previous samples
are delivered, i.e.,

Π1 = {π ∈ Π : Si = Gi ≥ Di−1 for all i}.

For any policy π ∈ Π1, the information used for determining
Si includes: (i) the history of signal values (Xt : t ∈ [0, Si])
and (ii) the service times (Y1, . . . , Yi−1) of previous samples.
Let us define the σ-fields Ft = σ(Xs : s ∈ [0, t]) and
F+
t = ∩r>tFr. Then, {F+

t , t ≥ 0} is the filtration (i.e., a
non-decreasing and right-continuous family of σ-fields) of the
OU process Xt. Given the service times (Y1, . . . , Yi−1) of
previous samples, Si is a stopping time with respect to the
filtration {F+

t , t ≥ 0} of the OU process Xt, that is

[{Si ≤ t}|Y1, . . . , Yi−1] ∈ F+
t . (59)

Hence, the policy space Π1 can be expressed as

Π1 ={Si : [{Si ≤ t}|Y1, . . . , Yi−1] ∈ F+
t ,

Ti is a regenerative process}. (60)

Let Zi = Si+1 −Di ≥ 0 represent the waiting time between
the delivery time Di of the i-th sample and the generation time

Si+1 of the (i + 1)-th sample. Then, Si =
∑i−1
j=0(Yj + Zj)

and Di =
∑i−1
j=0(Yj + Zj) + Yi for each i = 1, 2, . . .

Given (Y0, Y1, . . .), (S1, S2, . . .) is uniquely determined by
(Z0, Z1, . . .). Hence, one can also use π = (Z0, Z1, . . .) to
represent a sampling policy.

Because {Xt − X̂t, t ∈ [Di, Di+1)} and {Ot−Si , t ∈
[Di, Di+1)} are of the same distribution, for each i = 1, 2, . . .,

E

[∫ Di+1

Di

(Xt − X̂t)
2dt

]

=E

[∫ Di+1

Di

O2
t−Sidt

]
= E

[∫ Yi+Zi+Yi+1

Yi

O2
sds

]
. (61)

Because Ti is a regenerative process, the renewal theory [62]
tells us that 1

nE[Sn] is a convergent sequence and

lim sup
T→∞

1

T
E

[∫ T

0

(Xt − X̂t)
2dt

]

= lim
n→∞

E
[∫Dn

0
(Xt − X̂t)

2dt
]

E[Dn]

= lim
n→∞

∑n
i=1 E

[∫ Yi+Zi+Yi+1

Yi
O2
sds
]

∑n
i=1 E [Yi + Zi]

. (62)

Hence, (11) can be rewritten as the following MDP:

mseopt = inf
π∈Π1

lim
n→∞

∑n
i=1 E

[∫ Yi+Zi+Yi+1

Yi
O2
sds
]

∑n
i=1 E [Yi + Zi]

(63)

s.t. lim
n→∞

1

n

n∑
i=1

E [Yi + Zi] ≥
1

fmax
,

where mseopt is the optimal value of (63).

C. Reformulation of Problem (63)

In order to solve (63), let us consider the following MDP
with a parameter c ≥ 0:

h(c)= inf
π∈Π1

lim
n→∞

1

n

n∑
i=1

E

[∫ Yi+Zi+Yi+1

Yi

O2
sds− c(Yi + Zi)

]
(64)

s.t. lim
n→∞

1

n

n∑
i=1

E [Yi + Zi] ≥
1

fmax
,

where h(c) is the optimum value of (64). Similar with Dinkel-
bach’s method [59] for nonlinear fractional programming, the
following lemma holds for the MDP (63):

Lemma 7. [4] The following assertions are true:

(a). mseopt T c if and only if h(c) T 0.

(b). If h(c) = 0, the solutions to (63) and (64) are identical.

Hence, the solution to (63) can be obtained by solving (64)
and seeking c = mseopt ≥ 0 such that

h(mseopt) = 0. (65)
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D. Lagrangian Dual Problem of (64)

Next, we use the Lagrangian dual approach to solve (64)
with c = mseopt. We define the Lagrangian associated with
(64) as

L(π;λ)

= lim
n→∞

1

n

n∑
i=1

E
[ ∫ Yi+Zi+Yi+1

Yi

O2
sds− (mseopt + λ)(Yi+Zi)

]
+

λ

fmax
, (66)

where λ ≥ 0 is the dual variable. Let

e(λ) = inf
π∈Π1

L(π;λ). (67)

Then, the dual problem of (64) is defined by

d = max
λ≥0

e(λ), (68)

where d is the optimum value of (68). Weak duality [60]
implies d ≤ h(mseopt). In Section IV-F, we will establish
strong duality, i.e., d = h(mseopt).

In the sequel, we decompose (67) into a sequence of
mutually independent per-sample MDPs. Let us define

β = mseopt + λ. (69)

As shown in Appendix H, by using Lemma 5, we can obtain

E

[∫ Yi+Zi+Yi+1

Yi

O2
sds−β(Yi+Zi)

]

=E

[∫ Yi+Zi

Yi

(O2
s − β)ds+ γO2

Yi+Zi

]

+
σ2

2θ
[E(Yi+1)− γ]− βE[Yi+1], (70)

where γ is defined in (24). For any s ≥ 0, define the σ-
fields Fst = σ(Os+r − Os : r ∈ [0, t]) and the right-
continuous filtration Fs+t = ∩r>tFsr . Then, {Fs+t , t ≥ 0} is
the filtration of the time-shifted OU process {Os+t −Os, t ∈
[0,∞)}. Define Ms as the set of integrable stopping times of
{Os+t −Os, t ∈ [0,∞)}, i.e.,

Ms = {τ ≥ 0 : {τ ≤ t} ∈ Fs+t ,E [τ ] <∞}. (71)

By using a sufficient statistic of (67), we can obtain

Lemma 8. An optimal solution (Z0, Z1, . . .) to (67) satisfies

inf
Zi∈MYi

E

[∫ Yi+Zi

Yi

(O2
s − β)ds+ γO2

Yi+Zi

∣∣∣∣OYi , Yi
]
, (72)

where β ≥ 0 and γ ≥ 0 are defined in (69) and (24),
respectively.

Proof. See Appendix J.

By this, (67) is decomposed as a series of per-sample MDP
(72).

E. Analytical Solution to Per-Sample MDP (72)

We solve (72) by using the free-boundary approach for
optimal stopping problems [12].

Let us consider an OU process Vt with initial state V0 = v
and parameter µ = 0. Define the σ-fields FVt = σ(Vs : s ∈
[0, t]), FV+

t = ∩r>tFVr , and the filtration {FV+
t , t ≥ 0}

associated to {Vt, t ≥ 0}. Define MV as the set of integrable
stopping times of {Vt, t ∈ [0,∞)}, i.e.,

MV = {τ ≥ 0 : {τ ≤ t} ∈ FV+
t ,E [τ ] <∞}. (73)

Our goal is to solve the following optimal stopping problem
for any given initial state v ∈ R

sup
τ∈MV

Ev
[
−γV 2

τ −
∫ τ

0

(V 2
s − β)ds

]
, (74)

where Ev[·] is the conditional expectation for given initial state
V0 = v, γ and β are given by (24) and (69), respectively.
Hence, (72) is one instance of (74) with v = OYi , where
the supremum is taken over all stopping times τ of Vt. In
this subsection, we focus on the case that β in (74) satisfies
mseYi ≤ β < mse∞. Later on in Section IV-F, we will show
that this condition is indeed satisfied by the optimal solution
to (64).

In order to solve (74), we first find a candidate solution to
(74) by solving a free boundary problem; then we prove that
the free boundary solution is indeed the value function of (74):

1) A Candidate Solution to (74): Now, we show how to
solve (74). The general optimal stopping theory in Chapter I
of [12] tells us that the following guess of the stopping time
should be optimal for Problem (74):

τ∗ = inf{t ≥ 0 : |Vt| ≥ v∗}, (75)

where v∗ ≥ 0 is the optimal stopping threshold to be found.
Observe that in this guess, the continuation region (−v∗, v∗)
is assumed symmetric around zero. This is because the OU
process is symmetric, i.e., the process {−Vt, t ≥ 0} is also
an OU process started at −V0 = −v. Similarly, we can also
argue that the value function of problem (74) should be even.

According to [12, Chapter 8], and [13, Chapter 10], the
value function and the optimal stopping threshold v∗ should
satisfy the following free boundary problem:

σ2

2
H ′′(v)− θvH ′(v) = v2 − β, v ∈ (−v∗, v∗), (76)

H(±v∗) = −γv2
∗, (77)

H ′(±v∗) = ∓2γv∗. (78)

In Appendix K, we use the integrating factor method [63, Sec.
I.5] to find the general solution to (76), which is given by

H(v) =− v2

2θ
+

(
1

2θ
− β

σ2

)
2F2

(
1, 1;

3

2
, 2;

θ

σ2
v2

)
v2

+ C1erfi

(√
θ

σ
v

)
+ C2, v ∈ (−v∗, v∗), (79)

where C1 and C2 are constants to be found for satisfying
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(77)-(78), and erfi(x) is the imaginary error function, i.e.,

erfi(x) =
2√
π

∫ x

0

et
2

dt. (80)

Because H(v) should be even but erfi(x) is odd, we should
choose C1 = 0. Further, in order to satisfy the boundary
condition (77), C2 is chosen as

C2 =
1

2θ
E
(
e−2θYi

)
v2
∗−
(

1

2θ
− β

σ2

)
2F2

(
1, 1;

3

2
, 2;

θ

σ2
v2
∗
)
v2
∗,

(81)

where we have used (24). With this, the expression of H(v) is
obtained in the continuation region (−v∗, v∗). In the stopping
region |v| ≥ v∗, the stopping time in (75) is simply τ∗ = 0,
because |V0| = |v| ≥ v∗. Hence, if |v| ≥ v∗, the objective
value achieved by the sampling time (75) is

Ev
[
−γv2 −

∫ 0

0

(V 2
s − β)ds

]
=−γv2. (82)

Combining (79)-(82), we obtain a candidate of the value
function for (74):

H(v) =


−v

2

2θ +
(

1
2θ −

β
σ2

)
2F2

(
1, 1; 3

2 , 2; θσ2 v
2
)
v2 + C2,

if |v| < v∗,
−γv2, if |v| ≥ v∗.

(83)

Next, we find a candidate value of the optimal stopping
threshold v∗. By taking the gradient of H(v), we get

H ′(v) = −v
θ

+

(
σ

θ
3
2

− 2β

σ
√
θ

)
F

(√
θ

σ
v

)
, v ∈ (−v∗, v∗),

(84)

where

F (x) = ex
2

∫ x

0

e−t
2

dt. (85)

The boundary condition (78) implies that v∗ is the root of

−v
θ

+

(
σ

θ
3
2

− 2β

σ
√
θ

)
F

(√
θ

σ
v

)
= −2γv. (86)

Substituting (14), (15), and (24) into (86), yields that v∗ is the
root of

(mse∞ − β)G

(√
θ

σ
v

)
= mse∞ −mseYi , (87)

where G(·) is defined in (16). Because mseYi ≤ β < mse∞,
G(x) is strictly increasing on [0,∞), and G(0) = 1, we know
that (87) has a unique non-negative root v∗. Further, the root
v∗ can be expressed as a function v(β) of β, where v(β) is
defined in (19). By this, we obtain a candidate solution to (74).

2) Verification of the Optimality of the Candidate Solution:
Next, we use Itô’s formula to verify the above candidate
solution is indeed optimal, as stated in the following theorem:

Theorem 5. If mseYi ≤ β < mse∞, then for all v ∈ R, H(v)
in (83) is the value function of the optimal stopping problem
(74). In addition, the optimal stopping time for solving (74) is
τ∗ in (75), where v∗ = v(β) is given by (19).

In order to prove Theorem 5, we need to establish the
following properties of H(v) in (83), for the case that mseYi ≤
β < mse∞ is satisfied in (74):

Lemma 9. H(v) = Ev
[
−γV 2

τ∗ −
∫ τ∗

0
(V 2
s − β)ds

]
.

Proof. See Appendix L.

Lemma 10. H(v) ≥ −γv2 for all v ∈ R.

Proof. See Appendix M.

A function f(v) is said to be excessive for the process Vt
if

Evf(Vt) ≤ f(v),∀t ≥ 0, v ∈ R. (88)

By using Itô’s formula in stochastic calculus, we can obtain

Lemma 11. The function H(v) is excessive for the process
Vt.

Proof. See Appendix N.

Now, we are ready to prove Theorem 5.

Proof of Theorem 5. In Lemmas 9-11, we have shown that
H(v) = Ev

[
−γV 2

τ∗ −
∫ τ∗

0
(V 2
s − β)ds

]
, H(v) ≥ −γv2, and

H(v) is an excessive function. Moreover, from the proof of
Lemma 9, we know that Ev[τ∗] < ∞ holds for all v ∈ R.
Hence, Pv(τ∗ <∞) = 1 for all v ∈ R. These conditions and
Theorem 1.11 in [12, Section 1.2] imply that τ∗ is an optimal
stopping time of (74). This completes the proof.

Because (72) is a special case of (74), we can get from
Theorem 5 that

Corollary 1. If mseYi ≤ β < mse∞, then a solution to (72)
is (Z1(β), Z2(β), . . .), where

Zi(β) = inf{t ≥ 0 : |OYi+t| ≥ v(β)}, (89)

and v(β) is defined in (19).

F. Zero Duality Gap between (64) and (68)

Strong duality is established in the following thoerem:

Theorem 6. If the service times Yi are i.i.d. with 0 < E[Yi] <
∞, then the duality gap between (64) and (68) is zero. Further,
(Z0(β), Z1(β), . . .) is an optimal solution to both (64) and
(68), where Zi(β) is determined by

Zi(β) = inf{t ≥ 0 : |OYi+t| ≥ v(β)}, (90)

v(β) is defined in (19), β ≥ 0 is the root of

E

[∫ Yi+Zi(β)+Yi+1

Yi

O2
t dt

]
− βE[Yi + Zi(β)] = 0, (91)

if E[Yi +Zi(β)] > 1/fmax; otherwise, β is the root of E[Yi +
Zi(β)] = 1/fmax. In both cases, mseYi ≤ β < mse∞ is
satisfied, and hence (19) is well-defined. Further, the optimal
objective value to (63) is given by

mseopt =
E
[∫ Yi+Zi(β)+Yi+1

Yi
O2
t dt
]

E[Yi + Zi(β)]
. (92)
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Fig. 8: MSE vs fmax tradeoff for i.i.d. exponential service time
with E[Yi] = 1, where the parameters of the OU process are
σ = 1 and θ = 0.5.

Proof. We use [60, Prop. 6.2.5] to find a geometric multiplier
for (64). This suggests that the duality gap between (64) and
(68) must be zero, because otherwise there exists no geometric
multiplier [60, Prop. 6.2.3(b)]. The details are provided in
Appendix O.

Hence, Theorem 2 follows from Theorem 6. Because The-
orem 1 is a special case of Theorem 2, Theorem 1 is also
proven.

V. NUMERICAL COMPARISONS

In this section, we evaluate the estimation error achieved by
the following four sampling policies:

1. Uniform sampling: Periodic sampling with a period given
by Si+1 − Si = 1/fmax.

2. Zero-wait sampling [1], [19]: The sampling policy given
by

Si+1 = Si + Yi, (93)

which is infeasible when fmax < 1/E[Yi].
3. Age-optimal sampling [14]: The sampling policy given

by Theorem 4.
4. MSE-optimal sampling: The sampling policy given by

Theorem 1.
Let mseuniform, msezero-wait, mseage-opt, and mseopt, be the MSEs
of uniform sampling, zero-wait sampling, age-optimal sam-
pling, MSE-optimal sampling, respectively. We can obtain

mseYi ≤ mseopt ≤ mseage-opt ≤ mseuniform ≤ mse∞,

mseage-opt ≤ msezero-wait ≤ mse∞, (94)

whenever zero-wait sampling is feasible, which fit with our
numerical results. The expectations in (25) and (26) are
evaluated by taking the average over 1 million samples. The
parameters of the OU process are given by σ = 1, θ = 0.5,
and µ can be chosen arbitrarily because it does not affect the
estimation error.

Figure 8 illustrates the tradeoff between the MSE and fmax

for i.i.d. exponential service times with mean E[Yi] = 1.
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Fig. 9: MSE vs. the scale parameter α of i.i.d. normalized log-
normal service time distribution with E[Yi] = 1 and fmax =
0.8, where the parameters of the OU process are σ = 1 and
θ = 0.5. Zero-wait sampling is not feasible here as fmax <
1/E[Yi] and hence is not plotted.

Because E[Yi] = 1, the maximum throughput of the queue
is 1. The lower bound mseYi is 0.5 and the upper bound
mse∞ is 1. In fact, as Yi is an exponential random variable
with mean 1, σ2

2θ (1 − e−2θYi) has a uniform distribution on
[0, 1]. Hence, mseYi = 0.5. For small values of fmax, age-
optimal sampling is similar to uniform sampling, and hence
mseage-opt and mseuniform are close to each other in the regime.
However, as fmax grows, mseuniform reaches the upper bound
mse∞ and remains constant for fmax ≥ 1. This is because the
queue length of uniform sampling is large at high sampling
frequencies. In particular, when fmax ≥ 1, the queue length
of uniform sampling is infinite. On the other hand, mseage-opt
and mseopt decrease with respect to fmax. The reason behind
this is that the set of feasible sampling policies satisfying the
constraint in (11) and (48) becomes larger as fmax grows, and
hence the optimal values of (11) and (48) are decreasing in
fmax. As we expected, msezero-wait is larger than mseopt and
mseage-opt. Moreover, all of them are between the lower bound
mseYi and upper bound mse∞.

Figures 9 and 10 depict the MSE of i.i.d. normalized
log-normal service time for fmax = 0.8 and fmax = 1.2,
respectively, where Yi = eαXi/E[eαXi ], α > 0 is the scale
parameter of log-normal distribution, and (X1, X2, . . . ) are
i.i.d. Gaussian random variables with zero mean and unit
variance. Because E[Yi] = 1, the maximum throughput of the
queue is 1. In Fig. 9, since fmax < 1, zero-wait sampling is
not feasible and hence is not plotted. As the scale parameter α
grows, the tail of the log-normal distribution becomes heavier.

In both figures, mseage-opt and mseopt drop with α. This phe-
nomenon may look surprising at first sight, because mseage-opt
and mseopt grow quickly in α in the previous study [4] on
the Wiener process. To understand this phenomenon, let us
consider the age penalty function p(∆t) in (46) for the OU
process. As the scale parameter α grows, the service time tends
to become either shorter or much longer than the mean E[Yi],
rather than being close to E[Yi]. When ∆t is small, p(∆t)
reduces quickly in ∆t, and hence the service time smaller
than E[Yi] leads to a fast decrease in the average age penalty;
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Fig. 10: MSE vs. the scale parameter α of i.i.d. normalized log-
normal service time distribution E[Yi] = 1 and fmax = 1.2,
where the parameters of the OU process are σ = 1, θ = 0.5.

when ∆t is quite large, p(∆t) cannot increase much because
it is upper bounded by mse∞, hence the service time much
longer than E[Yi] would not increase the average age penalty
by much. By combining these two trends, the average age
penalty mseage-opt decreases in α. The dropping of mseopt in α
can be understood in a similar fashion. On the other hand, the
age penalty function of the Wiener process is p(∆t) = ∆t,
which is quite different from the case considered here. We
also observe that in both figures, the gap between mseopt and
mseage-opt increases as α grows.

VI. CONCLUSION

In this paper, we have studied the optimal sampler design
for remote estimation of OU processes through queues. We
have developed optimal causal sampling policies that minimize
the estimation error of OU processes subject to a sampling
rate constraint. These optimal sampling policies have nice
structures and are easy to compute. A connection between
remote estimation and nonlinear age metrics has been found.
The structural properties of the optimal sampling policies shed
lights on the possible structure of the optimal sampler designs
for more general signal models, such as Feller processes,
which is an important future research direction.
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