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ABSTRACT

In this paper, we analyze the impact of data freshness on real-time
supervised learning, where a neural network is trained to infer a
time-varying target (e.g., the position of the vehicle in front) based
on features (e.g., video frames) observed at a sensing node (e.g.,
camera or lidar). One might expect that the performance of real-
time supervised learning degrades monotonically as the feature
becomes stale. Using an information-theoretic analysis, we show
that this is true if the feature and target data sequence can be closely
approximated as a Markov chain; it is not true if the data sequence
is far from Markovian. Hence, the prediction error of real-time
supervised learning is a function of the Age of Information (Aol),
where the function could be non-monotonic. Several experiments
are conducted to illustrate the monotonic and non-monotonic be-
haviors of the prediction error. To minimize the inference error
in real-time, we propose a new “selection-from-buffer” model for
sending the features, which is more general than the “generate-at-
will” model used in earlier studies. By using Gittins and Whittle
indices, low-complexity scheduling strategies are developed to min-
imize the inference error, where a new connection between the
Gittins index theory and Age of Information (Aol) minimization is
discovered. These scheduling results hold (i) for minimizing general
Aol functions (monotonic or non-monotonic) and (ii) for general
feature transmission time distributions. Data-driven evaluations
are presented to illustrate the benefits of the proposed scheduling
algorithms.
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1 INTRODUCTION

In recent years, the proliferation of networked control and cyber-
physical systems such as autonomous vehicle, UAV navigation,
remote surgery, industrial control system has significantly boosted
the need for real-time prediction. For example, an autonomous
vehicle infers the trajectories of nearby vehicles and the intention
of pedestrians based on lidars and cameras installed on the vehi-
cle [19]. In remote surgery, the movement of a surgical robot is
predicted in real-time. These prediction problems can be solved by
real-time supervised learning, where a neural network is trained to
predict a time varying target based on feature observations that are
collected from a sensing node. Due to data processing time, trans-
mission errors, and queueing delay, the features delivered to the
neural predictor may not be fresh. The performance of networked
intelligent systems depends heavily on the accuracy of real-time
prediction. Hence, it is important to understand how data freshness
affects the performance of real-time supervised learning.

To evaluate data freshness, a metric Age of information (Aol) was
introduced in [15]. Let Uy be the generation time of the freshest fea-
ture received by the neural predictor at time ¢. Then, the Aol of the
features, as a function of time ¢, is defined as A(t) = t — Uy, which is
the time difference between the current time ¢ and the generation
time U; of the freshest received feature. The age of information
concept has gained a lot of attention from the research commu-
nities. Analysis and optimization of Aol were studied in various
networked systems, including remote estimation, control system,
and edge computing. In these studies, it is commonly assumed that
the system performance degrades monotonically as the Aol grows.
Nonetheless, this is not always true in real-time supervised learning.
For example, it was observed that the predictor error of day-ahead
solar power forecasting is not a monotonic function of the Aol,
because there exists an inherent daily periodic changing pattern in
the solar power time-series data [24].

In this study, we carry out several experiments and present an
information-theoretic analysis to interpret the impact of data fresh-
ness in real-time supervised learning. In addition, we design buffer
management and transmission scheduling strategies to improve the
accuracy of real-time supervised learning. The key contributions
of this paper are summarized as follows:
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e We develop an information-theoretic approach to analyze
how the Aol affects the performance of real-time supervised
learning. It is shown that the prediction errors (training error
and inference error) are functions of Aol, whereas they could
be non-monotonic Aol functions — this is a key difference
from previous studies on Aol functions, e.g., [17, 26, 28, 29].
When the target and feature data sequence can be closely
approximated as a Markov chain, the prediction errors are
non-decreasing functions of the Aol. When the target and
feature data sequence is far from Markovian, the prediction
errors could be non-monotonic in the Aol (see Sections 2-3).

e We conduct several experiments and observe that, due to
long-range dependence, response delay, and/or communica-
tion delay, the target and feature data sequence can be far
from Markovian and the corresponding prediction errors are
non-monotonic Aol functions. In certain scenarios, even a
fresh feature (Aol=0) may generate larger prediction errors
than stale features (Aol > 0), i.e., the freshest feature may
not be the best feature; see Fig. 2 for an illustration.

e We propose buffer management and transmission schedul-

ing strategies to minimize the inference error. Because the

inference error could be a non-monotonic Aol function, we
introduce a novel “selection-from-buffer” model for feature
transmissions, which is more general than the “generate-at-

will” model used in many earlier studies, e.g., [26, 28, 32].

If the Aol function is non-decreasing, the “selection-from-

buffer” model achieves same performance as the “generate-

at-will” model; if the Aol function is non-monotonic, the

“selection-from-buffer” model can potentially achieve better

performance.

In the single-source case, an optimal scheduling policy is de-

vised to minimize the long-term average inference error. By

exploiting a new connection with the Gittins index theory

[9], the optimal scheduling policy is proven to be a threshold

policy on the Gittins index (Theorems 4.1-4.2), where the

threshold can be computed by using a low complexity algo-
rithm like bisection search. This scheduling policy is more

general than the scheduling policies proposed in [26, 28].

e In the multi-source case, a Whittle index scheduling policy
is designed to reduce the weighted sum of the inference
errors of the sources. By using the Gittins index obtained in
the single-source case, a semi-analytical expression of the
Whittle index is obtained (Theorems 5.1-5.2), which is more
general than the Whittle index formula in [29, Equation (7)].

e The above scheduling results hold (i) for minimizing general
Aol functions (monotonic or non-monotonic) and (ii) for
general feature transmission time distributions. Data driven
evaluations show that “selection-from-buffer” with optimal
scheduler achieves up to 3 times smaller inference error
compared to “generate-at-will,” and 8 times smaller infer-
ence error compared to periodic feature updating (see Fig.
5). Whittle index policy achieves up to 2 times performance
gain compared to maximum age first (MAF) policy (see Fig.
6.
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1.1 Related Works

In recent years, Aol has become a popular research topic [33]. Av-
erage Aol and average peak Aol are studied in many queueing
systems [15, 28, 32]. As surveyed in [26], there exist a number of
applications of non-linear Aol functions, such as auto-correlation
function [17], estimation error [16, 20, 27], and Shannon’s mutual
information and conditional entropy [26]. In existing studies on
Aol, it was usually assumed that the observed data sequence is Mar-
kovian and the performance degradation caused by information
aging was modeled as a monotonic Aol function. However, practical
data sequence may not be Markovian [12, 26, 30]. In the present
paper, theoretical results and experimental studies are provided to
analyze the performance of real-time supervised learning for both
Markovian and non-Markovian time-series data. In [34], impact of
peak-Aol on the convergence speed of online training was analyzed.
Unlike online training in [34], our work considers offline training
and online inference.

Moreover, there are significant research efforts on the optimiza-
tion of Aol functions by designing sampling and scheduling policies.
Previous studies [1, 14, 20, 26, 28, 29] focused on non-decreasing
Aol functions. Recently, a Whittle index based multi-source sched-
uling policy was derived in [2] to minimize Shannon’s conditional
entropy that could be a non-monotonic function of the Aol. The
Whittle index policy in [2] requires that (i) the state of each source
evolves as binary Markov process, (ii) the Aol function is concave
with respect to the belief state of the Markov process, and (iii) the
packet transmission time is constant. The results in [1, 2, 14, 20,
26, 28, 29] are not appropriate for minimizing general (potentially
non-monotonic) Aol functions, as considered in the present paper.

2 INFORMATION-THEORETIC MEASURES
FOR REAL-TIME SUPERVISED LEARNING

2.1 Freshness-aware Learning Model

Consider the real-time supervised learning system illustrated in
Fig. 1, where the goal is to predict a label Y; € YV (e.g., the location
of the car in front) at each time ¢ based on a feature X;_»(;) (e.g.,
a video clip) that was generated A(t) seconds ago. The feature,
Xe-a@t) = Vea(t)s - - - » Ve—A(t)-u+1) is @ time sequence with length
u (e.g., each video clip consisting of u consecutive video frames). We
consider a class of popular supervised learning algorithms called
Empirical Risk Minimization (ERM) [10]. In freshness-aware ERM
algorithms, a neural network is trained to construct an action a =
A(Xi—a(r), A(t)) € Awhere ¢ : XXD — Ais afunction of feature
Xi—a(r) € X and its Aol A(t) € D. The performance of learning
is measured by a loss function L : Y X A +— R, where L(y, a)
is the incurred loss if action a is chosen by the neural network
when Y; = y. We assume that Y/, X, and D are discrete and finite
sets. The loss function L is determined by the targeted application
of the system. For example, in neural network based estimation,
the loss function is usually chosen as the square estimation error
La(y,¥) = |ly — ¥l|%, where the action a = 4 is an estimate of
Y; = y. In softmax regression (i.e., neural network based maximum
likelihood classification), the action a = Qy is a distribution of
Y; and the loss function Lj,e(y, Qy) = —log Qy(y) is the negative
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Figure 1: Performance of supervised learning based video prediction. The experimental results in (b) and (c) are regenerated from [18]. The

training and inference errors are non-decreasing functions of the Aol.

log-likelihood of the label value Y; = y. Therefore, the loss function
L characterizes the goal and purpose of a specific application.

2.2 Offline Training Error

The real-time supervised learning system that we consider con-
sists of two phases: offline training and online inference. In the
offline training phase, the neural network is trained using a train-
ing dataset. Let P?O, % 6.0 denote the empirical distribution of the

label 170, feature )2_@, and Aol © in the training dataset, where the
Aol © > 0 of the feature X_g is the time difference between Y, and
X_g. In ERM algorithms, the training problem is formulated as

€ITtraining = glelg EY’X’E‘)“P%,)"(_@,@ [L(Y’ ¢(X7 @))], (1)

where A is the set of functions that can be constructed by the neural
network, and eITrajining is the minimum training error. The optimal

solution to (1) is denoted by ¢7, .
Y9, X_g,0

Letd={f : X XD — A} bgthe set of all functions mapping
from X X D to A. Any action @(x, 0) constructed by the neural
network belongs to ®, whereas the neural network cannot produce
some functions in ®. Hence, A C ®. By relaxing the feasible set A
in (1) as @, we obtain a lower bound of ertiraining, i.-€.,

Hi(Yo|X_0,©) = gleigEY,x,@w%’X_@’@[L(Y, $X,0)L ()

where Hy (Yo|X_g,©) is a generalized conditional entropy of Yy
given (X_0,0) [5, 8, 11]. Compared to erTiraining, its information-
theoretic lower bound Hj (Yp|X_g, ©) is mathematically more con-
venient to analyze. The gap between ertiraining and the lower bound
H; (YolX_e, ©) was studied recently in [23], where the gap is small
if the function spaces A and ® are close to each other, e.g., when
the neural network is sufficiently wide and deep [10].

For notational convenience, we refer to Hy(Yy|X_g, ©) as an
L-conditional entropy, because it is associated with a loss function
L. The L-entropy of a random variable Y is defined as [8, 11]

Hi(Y) = min Ey-py [L(Y, a)]. ®)

Let ap, denote an optimal solution to (3), which is called a Bayes
action [11]. The L-conditional entropy of Y given X = x is

H(Y|X =x) = Crlréi%EhPY‘X:x [L(Y, a)]. ©)

Using (4), we can get the L-conditional entropy of Y given X [8, 11]

HL(Y]X) = ) Px()HL(Y|X = x). 5)
xeX
Similar to (5), (2) can be decomposed as

Z Pg o.0(% O)HL(YolX_g = x,0 = 0). (6)
xeX,0€D

Hi(Yo|X_e.0) =

We assume that in the training dataset, the Aol © is independent of
the label Yy and feature X_, for all z > 0. By this assumption and
(6), one can get (see our technical report [25] for its proof)

HL(Yo|X_0,0)= " Po(6) HL(To|X_p). )
0eD

By choosing different L in (3), a broad class of L-entropies is
obtained. In particular, Shannon’s entropy is derived if L is the log-
arithmic loss function Liog(y, Qy) = —log Qy (y). More examples
of the loss function L, the definitions of L-divergence Dy (Py||Qy),
L-mutual information Iy (Y; X), and L-conditional mutual informa-
tion I (Y; X|Z) are provided in [25]. In general, I1 (X;Y) # IL(Y; X),
which is different from f-mutual information. Moreover, a com-
parison among the L-divergence, Bregman divergence [6], and the

f-divergence [4] is provided in [25].

2.3 Online Inference Error

In the online inference phase, the neural predictor trained by (1) is
used to predict the target in real-time. We assume that {(Y;, X;), t €
Z} is a stationary process that is independent of the Aol process
{A(t),t € Z}. Using this assumption, the time-average expected

inference error during the time slots t = 0,1,...,T — 1is given by
T-1
p(A@) | ®)

1
€ITinference (T) = T E
t=0

where
p(8) = By, x~Py, x, ; [L (Y, ¢3390’X7®’®(X, 5))] ; ©)

p(A(t)) is the expected inference error in time slot ¢, and A(t) is the
inference Aol at time ¢, i.e., the time difference between label Y;
and feature X;_(s). The proof of (8) is provided in [25].

Let us define L-cross entropy between Y and Y as

Hy(Y;V) = Ey_p, [L (Y, ap?)] , (10)
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and L-conditional cross entropy between Y and Y given X as
HL(VT1X) = 3 Px(0Bypy, [L(Voary )] (D)
xeX

where ap, and ap

and Pl?\f(:x’

by the Bayes action ay, 1% s

fiko, AT€ the Bayes actions associated with Py
respectively. If the neural predictor in (9) is replaced
> 1-e., the optimal solution to (2), then
p(8) becomes an L-conditional cross entropy

Hp(Y:; ?0|Xt75):ZPXt,5(X)EY~Pyt|Xt75:X[L (Y, ay, ‘g_ézx)] (12)
xeX
If the function spaces A and ® are close to each other, the difference
between p(5) and Hy (Yy; Yo|X;_s) is small.

3 INTERPRETATION OF FRESHNESS IN
REAL-TIME SUPERVISED LEARNING

In this section, we study how the training Aol © and the inference
Aol A(t) affect the performance of real-time supervised learning.

3.1 Training Error vs. Training Aol

We first consider the case of deterministic training Aol © = 0.
Given © = 0, Hy(Yp|X_e, ©) in (7) becomes simply Hy (Yo|X_g),
which is a function of 8. One may expect that the training error
would grow with the Aol 6. If Yo & )Z_ﬂ - X_y_v is a Markov
chain for all y,v > 0, by the data processing inequality for L-
conditional entropy [5, Lemma 12.1], one can show that Hy (Yo|X_g)
is a non-decreasing function of 6. Nevertheless, the experimental
results in Figs. 1-2 and [24, 25] show that the training error is a
growing function of the training Aol 6 in some applications (e.g.,
video prediction), whereas it is a non-monotonic function of 8 in
other applications (e.g., temperature prediction and actuator state
prediction with delay). As we will explain below, a fundamental
reason behind these phenomena is that practical time-series data
could be either Markovian or non-Markovian. For non-Markovian
(?O,f(_l,,f(_y_v), Hj (Yo|X_g) is not necessarily monotonic in 6.
Next, we develop an e-data processing inequality to analyze
information freshness for both Markovian and non-Markovian time-
series data. To that end, the following relaxation of the standard
Markov chain model is needed, which is motivated by [13]:

Definition 3.1 (e-Markov Chain). Given € > 0, a sequence of
three random variables Z, X, and Y is said to be an e-Markov chain,
denotedas Z 5 X 5 Y, if

IXZ(Y’Z|X) = EX,Z~PX,Z [DXZ (PY|X,Z||PY|X)] < 625 (13)
where

(Py(y) - Oy @))*

0r(w) a4

D (PyliQy) =
yey

is Neyman’s y2-divergence and IXz(Y; Z|X) is y?-conditional mu-
tual information.

A Markov chain is an e-Markov chainwithe = 0.If Z > X —» Y
is a Markov chain, then Y — X — Z is also a Markov chain [3, p.
34]. A similar property holds for the e-Markov chain.

LEMMA3.2. IfZ S5 X S Y, thenY S X S Z.

Md Kamran Chowdhury Shisher and Yin Sun

Due to space limitation, all the proofs are relegated to our techni-
cal report [25]. By Lemma 3.2, the e-Markov chain can be denoted

as Y SxSz . In the following lemma, we provide a relaxation of
the data processing inequality for e-Markov chain, which is called
an e-data processing inequality.

LEMMA 3.3 (€-DATA PROCESSING INEQUALITY). IfY SxS
Z is an e-Markov chain, then
Hi(Y|X) < HL(Y|Z) + O(e). (15)
If, in addition, H (Y) is twice differentiable in Py, then
Hr(Y|X) < HL(Y|Z) + O(e?). (16)

Lemma 3.3(b) was mentioned in [24] without proof. Lemma
3.3(a) is new to the best of our knowledge. Now, we are ready to
characterize how H(Yy|X_p) varies with the Aol 6.

THEOREM 3.4. The L-conditional entropy
Hr(YolX_g) = 91(0) - g2(6) (17)

is a function of 6, where g1(0) and g2(0) are two non-decreasing
functions of 6, given by

6-1

91(0) =H(TolXo) + > 1.(Yos X_e|X_g_y),
k=0
6-1 o 3
92(0) = > I.(Yos Xy 1R ). (18)
k=0

Ifffo S X_# S )Z_”_v is an e-Markov chain for every y, v > 0, then
92(0) = O(e) and

Hr(YolX_g) = 91(6) + O(e). (19)

According to Theorem 3.4, the monotonicity of H 1 (Yo|X_g)in 0
is characterized by the parameter € > 0 in the e-Markov chain
model. If € is small, then Yp S )N(,ﬂ S )Z,ﬂ,v is close to a
Markov chain, and Hy (Yo]X_p) is nearly non-decreasing in 6. If
€ is large, then Yo S )Z_ﬂ S )Z_ﬂ_v is far from a Markov chain,
and Hy (Yo)X_g) could be non-monotonic in . Theorem 3.4 can be
readily extended to random Aol © by using stochastic orders [22].

Definition 3.5 (Univariate Stochastic Ordering). [22] A ran-
dom variable X is said to be stochastically smaller than another
random variable Z, denoted as X <;; Z, if

P(X > x) < P(Z > x), Vx eR. (20)

THEOREM 3.6. If Y, S )N(,# S )Z,N,V is an e-Markov chain for
all p, v > 0, and the training Aols in two experiments 1 and 2 satisfy
01 <st Oy, then

Hi(Yo|X_e,,01) < HL(Yo|X_g,,02) + O(e). (21)

According to Theorem 3.6, if ©1 is stochastically smaller than O3,
then the training error in Experiment 1 is approximately smaller
than that in Experiment 2. If, in addition to the conditions in Theo-
rems 3.4 and 3.6, Hy (Y;) is twice differentiable in P{,O, then the last

term O(e) in (19) and (21) becomes O(e?).
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Figure 2: Robot state prediction in a leader-follower robotic system. The leader robot uses a neural network to predict the
follower robot’s state. The training and inference errors decrease in the Aol < 25 and increase when Aol > 25.

3.2 Inference Error vs. Inference Aol

According to (4), (5), and (11), Hr (Ys; YolX;_s) is lower bounded
by Hr (Y¢|X;_s). In addition, Hy (Y;; Yo|X;_s) is close to its lower
bound HL(Y¢|X;_s), if the conditional distributions Py, |x, , and
P?O X5 Are close to each other, as shown by the following lemma.

LEMMA 3.7. If forallx € X

D, (PYt|X,,5:x||PyU‘K§=x)S B2 (22)
then
Hy(Ye: YolX,_5) =HL(Y:1X;_5) + O(B). (23)

By combining Theorem 3.4 and Lemma 3.7, the monotonicity of
Hy (Yy; Yo|X;_s) versus § is characterized in the next theorem.

THEOREM 3.8. The following assertions are true:

(@) If{(Y:,X:),t € Z} is a stationary process, then Hp (Yy; YolX;_s)
is a function of the inference Aol .

(b) If, in addition, Y; S Xty S Xi—p-v is an e-Markov chain
forall p,v > 0 and (22) holds for allx € X and § € D, then
forall0 < 81 < &2

Hy(Ye; YolX,-s,) < HL(Ye; YolX,—s,) + O(max{e, B}). (24

According to Theorem 3.8, Hy (Y; 1?0|Xt_5) is a function of the
inference Aol 8. If € and f are close to zero, Hy (Yy; Yol X;_g) is
nearly a non-decreasing function of &; otherwise, Hy (Y¢; Yol X;_s)
can be far from a monotonic function of §.

3.3 Interpretation of Experimental Results

We conduct several experiments to study how the training and
inference errors of real-time supervised learning vary with the Aol.
The code of these experiments is provided in an open-source Github
repository.!

Fig. 1 illustrates the experimental results of supervised learning
based video prediction, which are regenerated from [18]. In this
experiment, the video frame V; at time ¢ is predicted based on a
feature X;_s = (V;_s, Vy_s_1) that is composed of two consecutive
video frames, where A(t) = § is the Aol. A pre-trained neural
network model called “SAVP" [18] is used to evaluate on 256 samples
of “BAIR" dataset [7], which contains video frames of a randomly

!https://github.com/Kamran0153/Impact-of-Data-Freshness-in-Learning

moving robotic arm. The pre-trained neural network model can be
downloaded from the Github repository of [18]. One can observe
from Fig. 1(b)-(c) that the training and inference errors are non-
decreasing functions of the Aol, because the video clips V; are
approximately a Markov chain.

Fig. 2 depicts the performance of robot state prediction in a
leader-follower robotic system. As illustrated in a Youtube video
2, the leader robot sends its state (joint angles) X; to the follower
robot through a channel. One packet for updating the leader robot’s
state is sent periodically to the follower robot every 20 time-slots.
The transmission time of each updating packet is 20 time-slots. The
follower robot moves towards the leader’s most recent state and
locally controls its robotic fingers to grab an object. We constructed
a robot simulation environment using the Robotics System Toolbox
in MATLAB. In each episode, a can is randomly generated on a
table in front of the follower robot. The leader robot observes the
position of the can and illustrates to the follower robot how to
grab the can and place it on another table, without colliding with
other objects in the environment. The rapidly-exploring random
tree (RRT) algorithm is used to control the leader robot. Collision
avoidance algorithm and trajectory generation algorithm are used
for local control of the follower robot. The leader robot uses a
neural network to predict the follower robot’s state Y;. The neural
network consists of one input layer, one hidden layer with 256
ReLU activation nodes, and one fully connected (dense) output
layer. The dataset contains the leader and follower robots’ states in
300 episodes of continue operation. The first 80% of the dataset is
used for the training and the other 20% of the dataset is used for the
inference. In Fig. 2, the training and the inference error decreases
in Aol, when Aol < 25 and increases in Aol when Aol > 25. In this
case, even a fresh feature with Aol=0 is not good for prediction.
In this experiment, (Y¢, X;—p, X¢—p—v) is not a Markov chain for
all y,v > 0. Hence, the training and the inference error are not
non-decreasing functions of Aol.

To facilitate understanding the experimental results in Fig. 2, we
provide a toy example to interpret it: Let X; be a Markov chain and
Y; = f(X;_q)- One can view X; as the input of a causal system with
delay d > 0, and Y; as the system output. Because Y; = f(X;_4), a
stale system input X;_ at time ¢ —d is informative for inferring the
current output Y; at time ¢. If the training and inference datasets

Zhttps://youtu.be/_z4FHuu3-ag
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have similar empirical distributions, we can use data processing
inequality to show that HL(Y/OPZ_&) and Hy (Yy; Yo |X;_s) decrease
with § when 0 < § < d and increase with § when § > d, which
is similar to Fig. 2. Moreover, Hi (Yo |)~(_d) is close to zero if the
function space A is sufficiently large. It is equal to zero if A = ®. The
leader-follower robotic system in Fig. 2 can be viewed as a causal
system, where the system input is the leader robot’s state, and
the system output is the follower robot’s state. Non-monotonicity
occurs in Fig. 2 because the input of a causal system is used to
predict the system output in this experiment, which is similar to
the toy example. However, the relationship between the system
input and output in Fig. 2 is more complicated than the toy example,
due to the control algorithms used by the follower robot.

Besides these experiments, if there exists response delay, long-
range dependence, and periodic patterns in the target and feature
data sequence, the training and inference errors could also be non-
monotonic functions of the Aol. This phenomenon is observed in
actuator state prediction, temperature prediction, wireless channel
state information prediction, and solar power prediction [24, 25].

4 SINGLE-SOURCE SCHEDULING FOR
INFERENCE ERROR MINIMIZATION

As shown in Section 3, the inference error is a function of the Aol
A(t), whereas the function is not necessarily monotonic. To reduce
the inference error, we devise a new scheduling algorithm that
can minimize general functions of the Aol, no matter whether the
function is monotonic or not.

4.1 System Model

We consider the networked supervised learning system in Fig. 3,
where a source progressively sends features through a channel to a
receiver. The channel is modeled as a non-preemptive server with
iid. service times. At any time t, the receiver uses the latest received
feature to predict the current label Y;. To minimize the inference
error, we propose a new “selection-from-buffer” model for feature
transmissions, which is more general than the “generate-at-will”
model [32]. Specifically, at the beginning of time slot ¢, the source
generates a fresh feature X; and appends it to a buffer that stores
the B most recent features (X;, X;—1, . .., X;—p+1); meanwhile, the
oldest feature X;_p is removed from the buffer. The transmitter
can pick any feature from the buffer and submit it to the channel
when the channel is idle. A transmission scheduler determines (i)
when to submit features to the channel and (ii) which feature in the
buffer to submit. When B = 1, the “selection-from-buffer” model
reduces to the “generate-at-will” model.

We assume that the system starts to operate in time slot t =
0 with B features (X, X_1,...,X_g+1) in the buffer. Hence, the
feature buffer is full at all time ¢ > 0. The i-th feature sent over the
channel is generated in time slot G;, is submitted to the channel
in time slot S;, is delivered and available for inference in time
slot D; = S; + T;, where T; > 1 is the feature transmission time,
G;j < S; < Dj,and D; < Sj41 < Djy+1. The feature transmission
times T; could be random due to time-varying channel conditions,
congestion, random packet sizes, etc. We assume that the T;’s are
ii.d. with a finite mean 1 < E[T;] < oo. In time slot t = S;, the
(b; + 1)-th freshest feature in the buffer is submitted to the channel,
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Figure 3: A networked real-time supervised learning system. At
each time slot ¢, the transmitter generates a feature X; and keeps it
in a buffer that stores B most recent features (X;, X;_1, . . ., X¢—B+1)-
The scheduler decides when to submit features to the channel and
which feature in the buffer to submit.

where b; € {0,1,...,B~1}. Hence, the submitted feature is Xg,_p,
that was generated at time G; = S; — b;. Once a feature is delivered,
an acknowledgment (ACK) is fed back to the transmitter in the
same time slot. Thus, the idle/busy state of the channel is known at
the transmitter.

4.2 Scheduling Problem

Let U(¢) = max;{G; : D; < t} be the generation time of the latest
received feature in time slot ¢. The age of information (Aol) at time
t is given by [15]

A(t) =t —-U(t) =t —max{G; : D; < t}. (25)

Because D; < Dj41, A(t) can be also written as
At)=t—-G;j=t—S;+bj, if D <t < Djy1. (26)

The initial state of the system is assumed to be Sy = 0, Dy = Ty, and
A(0) is a finite constant.

A scheduling policy is denoted by a 2-tuple (f, g), where g =
(51, Sz, . . .) determines when to submit the features and f = (b1, by,
...) specifies which feature in the buffer to submit. We consider the
class of causal scheduling policies in which each decision is made
by using the current and historical information available at the
transmitter. Let IT denote the set of all causal scheduling policies.
We assume that the scheduler has access to the distribution of
{(Y:,X;),t € Z} but not its realization, and the T;’s are not affected
by the adopted scheduling policy.

Our goal is to find an optimal scheduling policy that minimizes
the time-average expected inference error among all causal sched-
uling policies in IT:

T-1
1
popt = inf limsup =E E (A®))] - (27)
Papt (f,g)el’l T—)oopT (f’g) [:op

where p(A(t)) is the inference error at time slot ¢, defined in (9),
and pop is the optimum value of (27). Because p(-) is not neces-
sarily a non-decreasing function, (27) is more challenging than the
scheduling problems in [26, 28].

4.3 Optimal Single-source Scheduling

We solve (27) in two steps: (i) Given a fixed feature selection pol-
icy fp = (b,b,...) with b; = b for all i, find the optimal feature
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submission times g = (51, S2, . . .) that solves

, (28)
(fp.9)€l THoo

T-1

- . . 1

pp = inf limsup <5 g [z (A1)
=0

(ii) Use the solution to (28) to describe an optimal solution to (27).

It turns out that optimal solution to (28) can be obtained by
using the Gittins index of the following Aol bandit process with a
random termination delay T1: A bandit process A(t) is controlled by
a decision-maker that chooses between two actions CONTINUE and
SToP in each time slot. If the bandit process is not terminated in
time slot ¢, its state evolves according to

Al)=At—-1)+1, (29)

and a reward [r — p(A(t))] is collected, where p(-) is defined in (9)
and r is a constant reward. If the CONTINUE action is selected, the
bandit process continues to evolve. If the STOP action is selected, the
bandit process will terminate after a random delay T; and no more
action is taken. Once the bandit process terminates, its state and
reward remain zero. The total profit of the bandit process starting
from time ¢ is maximized by solving the following optimal stopping
problem:

v+T1—-1
sup B| D [r—p(At+ k))]'A(t) = 5} : (30)
vel | (o

where v > 0 is a history-dependent stopping time and I is the set
of all stopping times of the bandit process {A(t + k),k =0, 1,...}.
Following the derivation of the Gittins index in [9, Chapter 2.5],
the decision-maker should choose the Stop action at time

min{t > 0: y(A(t) = 1}, (31)
where
E [Zi;éP(A(t +k+Tp) l At) = 5]
y(6)= inf 62

E[v | A(t) = 0]

is the Gittins index, i.e., the value of reward r for which the Con-
TINUE and STOP actions are equally profitable at state A(t) = §. As
shown in [25], (32) can be simplified as

ve, v#0

-1
y(§) = inf }%kZ::‘)E[p(5+k+Tl)], (33)

re{l,2,...
where 7 is a positive integer.

THEOREM 4.1. If|p(8)| < M for all § and the T;’s are i.i.d. with a
finite meanE|[T;), theng = (S1(Bp), S2(Bp), - - .) is an optimal solution
to (28), where

Sini(By) = min {t 2 Di(By) : y(AW) 2 B}, ()

Di(Bp) = Si(Pp)+Ti is the delivery time of the i-th feature submitted
to the channel, A(t) = t — Si(Bp) + b is the Aol at time t, y(5) is the
Gittins index in (33), and fy, is the unique root of

Dis1(Bp)-1

E| > p(A®)|- By EIDisa(By) - Di(Bp)l = 0. (35)
t=D;(Bp)
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The optimal objective value to (28) is given by
Di+1(Bp)-1
o =505 paw)]
E[Di+1(Bp) — Di(Pp)]
Furthermore, By, is exactly the optimal value to (28), i.e., B = pp.

. (36)

The optimal scheduling policy in Theorem 4.1 has an intuitive
structure. Specifically, a feature is transmitted in time-slot ¢ if two
conditions are satisfied: (i) The channel is idle in time-slot t, (ii) the
Gittins index y(A(t)) exceeds a threshold S, (i.e., y(A(t)) = Bp),
where the threshold f;, is exactly equal to the minimum time-
averaged inference error p,. The optimal objective value pj, is
computed by solving (35). Three low-complexity algorithms for
solving (35) were provided in [20, Algorithms 1-3]. In practical
supervised learning algorithms, the features are shifted, rescaled,
and clipped during the data preprocessing step, which can improve
the convergence speed. Because of these operations, the inference
error is finite in practice (See Figures 1-2 for a few example), and
the condition [p(6)] < M for all § in Theorem 4.1 is not restrictive
in practice.

Theorem 4.1 is proven by directly solving the Bellman optimality
equation of the Markov decision process (28), whereas the tech-
niques for minimizing non-decreasing Aol functions in, e.g., [26, 28],
could not solve (28). We remark that if p(§) is non-monotonic, then
y(6) is not necessarily monotonic. Hence, (34) in general could not
be rewritten as a threshold policy of the Aol A(t) in the form of
A(t) > f. This is a key difference from the minimization of non-
decreasing Aol functions, e.g., [26, Eq. (48)]. The adoption of the
Gittins index y(§) as a tool for solving (28) is motivated by a similar-
ity between (28) and the restart-in-state formulation of the Gittins
index [9, Chapter 2.6.4]. This connection between the Gittins index
theory and Aol minimization was unknown before.

Next, we present an optimal solution to (27).

THEOREM 4.2. If the conditions of Theorem 4.1 hold, then there
exists an optimal solution (f*, g*) to (27) that satisfies:

(@) f*=(b*,b",...), whereb" is obtained by solving

b = i , 37
argbe{o’{f{l.rl&l}ﬁb (37)

and By, is the unique root to (35).
(b) 9" = (S*,S;, ...), where

Si, = Itnei% {t >S5+ Ti : y(A®)) > Popt }, (38)

S} +Ti is the delivery time of the i-th feature, y(6) is the Gittins
index in (33), and pop; is the optimal objective value of (27),
determined by

Popt = B- (39)

min

be{0,1,...,B-1}

Theorem 4.2 tells us that, to solve (27), a feature is transmitted
in time-slot ¢ if two conditions are satisfied: (i) The channel is idle
in time-slot ¢, (ii) the Gittins index y(A(t)) exceeds a threshold pop¢
(i.e., y(A(t)) = popt), where the threshold pop; is the optimal objec-
tive value of (27). The optimal objective value pop; is determined
by (39).

In the special case of non-decreasing p(-) studied in [26, 28], the
Gittins index in (33) can be simplified as y (&) = E[p(d +T1)] and the
optimal solution to (37) is b* = 0 such that it is optimal to always
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Figure 4: A networked intelligent system, where m sources send
features over a shared channel to the corresponding neural predic-
tors. At any time, at most one source can occupy the channel.

select the freshest feature from the buffer. Hence, Theorem 3 in [26]
is recovered from Theorem 4.2, and the “generate-at-will” model
can achieve the minimum inference error in this special case.

If p(-) is non-monotonic, as in the cases of Fig. 2, the “selection-
from-buffer” model could achieve better performance than the
“generate-at-will” model, and the optimal scheduler is provided
by Theorem 4.2.

5 MULTIPLE-SOURCE SCHEDULING
5.1 System Model and Scheduling Problem

Consider the networked intelligent system in Fig. 4, where m sources
send features over a shared channel to the corresponding neural
predictors at the receivers. At time slot ¢, each source [ maintains a
buffer that stores the B; most recent features (X ;, ..., X t_B,+1)-
When the channel is free, at most one source can select a feature
from its buffer and submit the selected feature to the channel.

A centralized scheduler makes two decisions in each time slot:
(i) which source should submit a feature to the shared channel
and (ii) which feature in the selected source’s buffer to submit. A
scheduling policy is denoted by 7 = (77, p, )i=1,2,...,m,b;=0,1,..., B;15
where 7; p, = (dj p,(0),d} p,(1),...)and dy ,(t) € {0, 1} represents
the scheduling decision for the (b; + 1)-th freshest feature X; ;_,
of source [ in time slot ¢. If source I submits the feature Xj ;_, in
its buffer to the channel in time slot ¢, then dl, by (t) = 1; otherwise,
djp,(t) = 0. Let ¢; 3,(t) € {0,1} denote the channel occupation
status of the (b; + 1)-th freshest feature X; ;_, of source [ in time
slot . If source [ submits the feature X; ;_p, in its buffer to the
channel in time slot ¢, then the value of ¢; ;, (t) becomes 1 and
remains 1 until it is delivered; otherwise, ¢; p,(t) = 0. It is required
that 77| Zfl’:_é ¢1,p,(t) < 1 for all t. Let IT denote the set of all
causal scheduling policies.

Let Gy ;, Sy,4, Dy ;, and Tj ; denote the generation time, channel
submission time, delivery time, and transmission time duration of
the i-th feature sent by source [, respectively. The feature trans-
mission times T; ; > 1 are independent across the sources and
i.i.d. among the features from the same source. We assume that the
T;,;’s are not affected by the adopted scheduling policy. The age of
information (Aol) of source [ at time slot t is given by

A(t)=t - maX{Gl,i :Dp; < t}. (40)
i
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Algorithm 1 Whittle Index Policy with Selection-from-Buffer

1: Do forever:

2. Update Aj(¢) foralll € {1,2,...m}.

3: Calculate the Whittle index W 5, (A;(t)) forall I € {1,2,...m}
and b; € {0,1,...,B; — 1} using (45)-(47).

4: if the channel is idle and max; 3, W p,(A;(t)) > 0 then

5= (I",b],) « argmaxy p, Wy 5, (A(1)).

6 Source [* submits its feature X t-b7, to the channel.

7: else

8: No source is scheduled, even if the channel is idle.

9: end if

Our goal is to minimize the time-average weighted sum of the
inference errors of the m sources, which is formulated by

T-1
1 m
inf limsup = » w; E pi(Ar ()|, (41)
mell T—oo T; 4 ;}
m Bj-1
st Y ey, t=0,12..., (42)
=1 b;=0

where p;(A;(t)) is the inference error of source [ at time slot ¢ and
wy > 0 is the weight of source 1.

5.2 Multiple-source Scheduling

Problem (41) can be cast as a Restless Multi-arm Bandit (RMAB)
problem by viewing the features stored in the source buffers as
arms, where (I, by) is an arm associated with the (b; + 1)-th freshest
feature of the source [ and the state of the arm (I, b;) is the Aol
Aj(t) in (40). Finding the optimal solution for RMAB is generally
PSPACE hard [21]. Next, we develop a low-complexity scheduling
policy by using both Gittins and Whittle indices.

By relaxing the per-slot channel constraint (42) as the following
time-average expected channel constraint

T-1 m B;-1

lim sup% Z Z Z Elesp,(0] < 1, (43)

Toeo © 420 1=1 by=0

and taking the Lagrangian dual decomposition of the relaxed sched-
uling problem (41) and (43), we obtain following per-arm scheduling
problem:
T-1
inf  limsup =B, Zwlpl(Al(t))+/1cl b (1) (44)
7 €y, Tooo 1 Lby = o ’
where I1; p, is the set of all causal scheduling policies of arm (I, by).

Definition 5.1 (Indexability). [31] Let Q; 5, (1) be the set of all
Aol values ¢ such that if the channel is idle and Aj(¢) = J, the opti-
mal action to (44) is dj p,(¢) = 0. Then, the arm (I, b;) is indexable
if 11 < Ay implies Ql,bl(/ll) Cc Ql’b[(/lz).

THEOREM 5.2. If |p;(8)| < M for all § and the T; ;’s are indepen-
dent across the sources and i.i.d. among the features from the same
source with a finite mean E[T} ;], then all arms are indexable.

Given indexability, the Whittle index W} p,(5) [31] of the arm
(I, by) at state § is Wy, (6) = inf{l e R: 5 € Q; 3, (D)}
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Figure 5: Time average inference error (MSE) vs. the scale parame-
ter o of discretized i.i.d. log-normal transmission time distribution
for single-source scheduling (in robot state prediction task).

THEOREM 5.3. Ifthe conditions of Theorem 5.2 hold, then the Whit-
tle index W ,(8) is given by

w
Wi (=g, B 2T 1.9 + Tiz] 1®)
Tl’1+Z(Tl’1,bl,5)+T1’2*1
E D prb)|, (@)

tiTLl

where y;(9) is the Gittins index of an Aol bandit process for source I,
determined by

) 1 -1
@)= _nf o ;)E 6 +k+Tip)], o)

and

ATy 1.00:0) = inf {2 02 yy(Ty g + b +2) 2 (O} (@)

Finding a (semi-)analytical expression of the Whittle index for
minimizing non-monotonic Aol functions is in a challenging task.
In Theorem 5.3, this challenge is resolved by using the Gittins
index y;() to solve (44), where the solution techniques of (28) are
employed. The Whittle index scheduling policy for reducing the
weighted-sum inference error is described in Algorithm 1, where all
sources remain silent when the channel is idle, if Wj 3,(A;(t)) < 0
for all [ and b;.

In the special case that (i) the Aol function p(-) is non-decreasing
and (ii) the transmission time is fixed as T; ; = 1, it holds that
Y1(8) = py(6 + 1) and 2(T}, 1, by, §) = max{d — b; — 1, 0}. Hence,

S
SpiE+1)= ) pit) (48)

t=1

for § > 1 and b; = 0. By this, the Whittle index in Section IV of [29,
Equation (7)] is recovered from Theorem 5.3.

Wi0(8) = wy

6 DATA DRIVEN EVALUATIONS

In this section, we illustrate the performance of our scheduling
policies, where the inference error function p(9) is collected from
the data driven experiments in Section 3.3.
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Figure 6: Time-average weighted sum of the inference errors (Nor-
malized MSE) vs. the weight w; of Source 1 for multi-source schedul-
ing, where the number of sources is m = 2 and the weight of Source
2is wy = 1.

6.1 Single-source Scheduling Policies
We evaluate the following four single-source scheduling policies:

1. Generate-at-will, zero wait: The (i + 1)-th feature sending
time S;4+1 is given by Sj+1 = D; = S; + T; and the feature
selection policy is f = (0,0, ...),ie., b; = 0 for all i.

2. Generate-at-will, optimal scheduling: The policy is given by
Theorem 4.1 with b; = 0 for all i.

3. Selection-from-buffer, optimal scheduling: The policy is given
by Theorem 4.2.

4. Periodic feature updating: Features are generated periodi-
cally with a period T}, and appended to a queue with buffer
size B. When the buffer is full, no new feature is admitted to
the buffer. Features in the buffer are sent over the channel
in a first-come, first-served order.

Fig. 5 illustrates the time-average inference error achieved by the
four single-source scheduling policies defined above. The inference
error function p(d) used in this evaluation is illustrated in Fig. 2(c),
which is generated by using the leader-follower robotic dataset and
the trained neural network as explained in Section 3.3. The i-th
feature transmission time T; is assumed to follow a discretized i.i.d.
log-normal distribution. In particular, T; can be expressed as T; =
[ae®Zi [E[e®%i]], where Z;’s are i.i.d. Gaussian random variables
with zero mean and unit variance. In Fig. 5, we plot the time average
inference error versus the scale parameter o of discretized i.i.d. log-
normal distribution, where ¢ = 1.2, the buffer size is B = 30,
and the period of uniform sampling is T, = 3. The randomness
of the transmission time increases with the growth of ¢. Data-
driven evaluations in Fig. 5 show that “selection-from-buffer” with
optimal scheduler achieves 3 times performance gain compared
to “generate-at-will,” and 8 times performance gain compared to
periodic feature updating.

6.2 Multiple-source Scheduling Policies
Now, we evaluate the following three multiple-source scheduling
policies:

1. Generate-at-will, maximum age first (MAF), zero wait: At
time slot ¢, if the channel is free, this policy will schedule
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the freshest generated feature from source arg max; Aj(t);
otherwise no source is scheduled.
2. Generate-at-will, Whittle index policy: Denote

Wo(t) = mlaXWl,o(Al(t)), ly = arg m;iXWl,O(Al(t)) (49)

If the channel is free and Wy(t) > 0, the freshest feature of
the source l(’)" is scheduled; otherwise no source is scheduled.

3. Selection-from-buffer, Whittle index policy: The policy is
described in Algorithm 1.

In Fig. 6, we plot the time average weighted sum of inference
errors versus weight wy, where the number of sources is m = 2
and weight wo = 1. The inference error function p;(9) is illustrated
in Fig. 2(c). The inference error function py(9) is illustrated in Fig.
1(c), which is generated by using the pre-trained neural network
on “BAIR" dataset from [18]. The transmission times for Source 1
and Source 2 are T1,; = 1 and Tz ; = 4 for all i, respectively. The
buffer sizes are By = By = 30. The weight w; is associated with a
non-monotonic Aol function. The performance gain of “selection-
from-buffer, Whittle index policy” increases as w; grows. Due to
limited space, more numerical results are provided in [25].

7 CONCLUSIONS

In this paper, we interpreted the impact of data freshness on the
performance of real-time supervised learning. We showed that the
training error and the inference error of real-time supervised learn-
ing could be non-monotonic Aol functions if the target and feature
data sequence is far from a Markov model. Our experimental results
suggested that the data sequence can be far from Markovian due
to response delay, communication delay, and/or long-range depen-
dence. To minimize the time-average inference error, we adopted a
new feature transmission model called “selection-from-buffer” and
designed an optimal single-source scheduling policy. The optimal
single-source scheduling policy is found to be a threshold policy
on the Gittins index. Moreover, we developed a Whittle index pol-
icy for multiple-source scheduling and provided a semi-analytical
expression for the Whittle index. Our numerical results validated
the efficacy of the proposed scheduling policies.
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