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ABSTRACT

In this paper, we study an online sampling problem of the Wiener
process. The goal is to minimize the mean squared error (MSE) of the
remote estimator under a sampling frequency constraint when the
transmission delay distribution is unknown. The sampling problem
is reformulated into a renewal reward optimization problem, and
we propose an online sampling algorithm that can adaptively learn
the optimal sampling policy through stochastic approximation. We
show that the cumulative MSE regret grows with rate O(Ink),
where k is the number of samples. Through Le Cam’s two point
method, we show that the worst-case cumulative MSE regret of
any online sampling algorithm is lower bounded by Q(In k). Hence,
the proposed online sampling algorithm is minimax order-optimal.
Finally, we validate the performance of the proposed algorithm via
numerical simulations.
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1 INTRODUCTION

The omnipresence of the autonomous driving and the intelligent
manufacturing systems involve tasks of sampling and remotely
estimating fresh status information. For example, in autonomous
driving systems, status information such as the position and the
instant speed of cars keep changing, and the controller has to es-
timate the update-to-date status based on samples collected from
the surrounding sensors. To ensure efficient control and system
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safety, it is important to estimate the fresh status information pre-
cisely under limited communication resources and random channel
conditions.

To measure the freshness of the status update information, the
Age of Information (Aol) metric has been proposed in [12]. By
definition, Aol captures the difference between the current time
and the time-stamp at which the freshest information available at
the destination was generated. It is revealed that the Aol minimum
sampling and transmission strategies behave differently from utility
maximization and delay minimization [33]. Samples with fresher
content should be delivered to the destination in a timely manner
[25].

When the evolution of the dynamic source can be modeled by
a random signal process, the mean square estimation error (MSE)
based on the available information at the receiver can be used to
capture freshness. Sampling to minimize the MSE of the random
process in different communication networks are studied in [10,
16, 18, 24, 31]. When the random process can be observed at the
sampler, the optimum sampling policy is shown to have a threshold
structure, i.e., a new sample should be taken once the difference
between the actual signal value and the estimate based on past
samples exceed a certain threshold. The optimum threshold can be
computed by iterative thresholding [30] or the bi-section search
[24] if the delay distribution and the statistics of the channel are
known in advance.

When the statistics of the communication channel is unknown,
the problem of sampling and transmissions for data freshness opti-
mization can be formulated into a sequential decision making prob-
lem [3-5, 15, 29]. By using the Aol as the freshness metric, [3-5]
design online link rate selection algorithms based on stochastic ban-
dits. When the channels are time-varying and the transmitter has
an average power constraint, [1, 6, 7, 11, 14] employ reinforcement
learning algorithms to minimize the average Aol under unknown
channel statistics. Notice that in applications such as the remote
estimation, a linear Aol cannot fully capture the data freshness. To
solve this problem, Tripathi et al. model the information freshness
to be a time-varying function of the Aol [29], and a robust online
learning algorithm is proposed. The above research tackles with
unknown packet loss rate or utility functions, the problem of de-
signing online algorithms under unknown delay statistics are not
well studied. The iterative thresholding algorithm proposed in [30]
can be applied in the online setting when the delay statistics is
unknown, whereas the convergence rate and the optimality of the
algorithm are not well understood.
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In this paper, we consider an online sampling problem, where a
sensor transmits status updates of the Wiener source to a destina-
tion through a channel with random delay. Our goal is to design
a sampling policy that minimizes the estimation error when the
delay distribution is unknown a priori. The main contributions of
this paper are as follows:

o The design of the MSE minimum sampling policy is refor-
mulated as an optional stopping problem. By analyzing the
sufficient conditions of the optimum threshold, we propose
an online sampling policy that learns the optimum thresh-
old adaptively through stochastic approximation. Compared
with [26, 27, 30], the operation of the proposed algorithm
does not require prior knowledge of an upper bound of the
optimum threshold.

e We prove that the time averaged MSE of the proposed algo-
rithm converges almost surely to the minimum MSE if the
fourth order moment of the transmission delay is bounded
(Theorem 1). In addition, it is shown that the MSE regret,
i.e., the sub-optimality gap between the expected cumula-
tive MSE of the proposed algorithm and the optimum offline
policy, grows at a speed of O(In k), where k is the number
of samples (Corollary 1). The perturbed ordinary differential
equation (ODE) method is a popular tool for establishing
the convergence rate of stochastic approximation algorithms
[13]. However, this tool requires either the threshold being
learned is in a bounded closed set, or the second moment of
the updating directions are bounded. Because our algorithm
does not require an upper bound on the optimum threshold,
and the essential supremum of the transmission delay could
be unbounded, we need to develop a new method for con-
vergence rate analysis, which is based on the Lyapunov drift
method for heavy traffic analysis.

e Further by using the classic Le Cam’s two point method,
we show that for any causal algorithm that makes sampling
decision based on historical information, under the worst
case delay distribution, the MSE regret is lower bounded by
Q(Ink) (Theorem 4). By combining Theorem 1 and Theorem
4, we obtain that the proposed online sampling algorithm
achieves the minimax order-optimal regret.

o We validate the performance of the proposed algorithm via
numerical simulations. In contrast to [30], the proposed algo-
rithm could meet an average sampling frequency constraint.

2 SYSTEM MODEL AND PROBLEM
FORMULATION

2.1 System Model

As is depicted in Fig. 1, we revisit the status update system in
[2, 24, 25], where a sensor takes samples from a Wiener process and
transmits the samples to a receiver through a network interface
queue. The network interface serves the update packets on the
First-Come-First-Serve (FCFS) basis. An ACK is sent back to the
sensor once an update packet is cleared at the interface. We assume
that the transmission duration after passing the network interface
is negligible.

Let X; € R denote the value of the Wiener process at time
t € R*. The sampling time-stamp of the k-th sample, denoted by
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Figure 1: System model.

Sk is determined by the sensor at will. Based on the FCFS principle,
the network interface will start serving the k-th packet after the
(k — 1)-th packet is cleared at the network interface and arrived at
the receiver. We assume that the service time Dy are independent
and identically distributed (i.i.d) with a probability distribution Pp.
The reception time of the k-th packet, denoted by Ry satisfies the
following recursive formula: Ry = {Sg, Rx_1} + Dy and we define
Ry = 0 for simplicity. We assume the average transmission delay
D= Ep-~pp, [D] is lower bounded by Dy, > 0.

2.2 MMSE Estimation

Let i(t) := maxgen{k|Rg < t} be the index of the latest sample re-
ceived by the destination at time ¢. The information available at the
receiver at time ¢ can be summarized as follows: (i). The sampling
time-stamps, transmission delay and the values of previous samples
My = {(S},Dj, ij)};(:tl); (ii). The fact that no packet was received
during (R;(y),t]. Similar to [23, 25], we assume that the receiver
estimates X; only based on M; and neglects the second part of
information. The minimum mean-square error (MMSE) estimator
[19] in this case is:

X =E[X:IM;] = XSy - (0

We use a sequence of sampling time instants 7 = {S} | to rep-
resent a sampling policy. The expected time average mean square
error (MSE) under 7 is denoted by &, i.e.,

— 1 T 2
ﬂzllmsupE[leo (Xz—Xsl.(,)) dt]. @)

T—o0

2.3 Problem Formulation

Our goal in this work is to design one sampling policy that can
minimize the MSE for the estimator when the delay distribution
Pp is unknown. Specifically, we focus on the set of causal policies
denoted by IT, where each policy 7 € II selects the sampling time Sy
of the k-th sample based on the transmission delay {D } < and
Wiener process evolution {X; };<s, from the past. The transmission
delay and the evolution of the Wiener process in the future cannot
be used to decide the sampling time. Due to the energy constraint,
we require that the sampling frequency should below a certain
threshold. The optimal sampling problem is organized as follows:

PROBLEM 1 (MMSE MINIMIZATION).

1T, 2
msegpt 2 inf limsup E [T_/ (Xt —X;) dt] , (3a)
¢

mell T 400 =0
i(T

s.t. limsupE —l( )] < fmax- (3b)
T—o0 T
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3 PROBLEM SOLUTION

In this section, the MSE minimization problem (i.e., Problem 1)
is reformulated into an optional stopping problem. Let 7* be an
optimum policy whose average MSE achieves mseopt. Sufficient con-
ditions for 7* are provided in Subsection 3.2. The online sampling
algorithm 7,y ine is provided in Subsection 3.3 and Subsection 3.4
characterizes the behaviors of the online sampling policy.

|frame 1,  frame 2 frame 3

Xi
— X,

Value

i H
P H
| W | Wai LW

I i i
St RS, R, S3 Rs S.
Time, t

Figure 2: Illustration of the Wiener process and the estima-
tion error. The sampling and reception time-stamp of the k-
th sample are denoted by S; and Ry, respectively. For MMSE
estimator, X; = Xs,,Vt € [R, Riy)-

3.1 Markov Decision Reformulation 1

According to [24, Theorem 1], policy z#* should not take a new
sample before the previous sample is delivered to the destination.
As is depicted in Fig. 2, the waiting time between the delivery time
of the k-th sample and the sampling time of the (k + 1)-th sample
is denoted by W. Define frame k as the time interval between
the sampling time-stamp of the k-th and the (k + 1)-th sample.
The following corollary enables us to reformulate Problem 1 into a
Markov Decision Process.

LemMA 1. Let Iy := (Dg, (Xs 4+ — X5, )t>0) denote the recent
information of the sampler in frame k. The set of sampling policies
that determine the waiting time Wy only based on the recent informa-
tion 1. is denoted by Iliecent. Since for each frame k, the difference
Xs,+t — Xs, evolves as a Wiener process that is independent of the
past {Xsy++ — Xs;, b <k Problem 1 can be reformulated into the
following Markov decision process:

PROBLEM 2 (MARKOV DECISION PROCESS REFORMULATION).

Z:f=1 E [%(Xskﬂ _Xsk)4]

msegpt= inf limsu +D|, (4a)
P e recent K—)oop ZleE[(SkH - 51)]
1 S 1
st. liminf — » E[(Sg41 —Sp)] = . 4b
im int K; [(Sers =501 = =—. (@b)

The proof is provided in Appendix E.

According to [24, Theorem 1], there exists a stationary policy
7* that selects the waiting time W}, using a conditional probability
distribution given the recent 7. The average MSE & ;+ achieves
mseopt. Therefore, we can restrict our search of * within the set
of stationary policies. Next, we will reveal the sufficient conditions
for the optimal stationary policy.
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3.2 Designing 7* with Known Pp

Let IT¢ons denote the set of policies that satisfy the sampling fre-
quency constraint. Since 7* achieves the minimum expected time-
average MSE among Il¢ons, we have:

K 1 4
lim sup Zk:] E [5 (X-Sk+1 - XSk) ]
K—oo Shi BID + Wi

2 gn* -D,me Heons.  (5)

For simplicity, denote y* := &, — D, which is the average
cost of the MDP when the optimum policy 7* is used, i.e., y* =
lim supg- Zic 2[5 Xy ~X5,)'] .Because + 3K E[Dp+W,] >

LK EDe W] K =1 = 7K TE
0, for any policy 7 € Ilcons, inequality (5) can be rewritten as:

K
NN 1
0x(y*) =lim inf (1? >E [E(Xskﬂ - Xsk)4]
k=1
1 K
—y*- I_(ZE[Dk+Wk]) > 0. (6)
k=1

Inequality (6) takes the minimum value 0 if and only if policy 7 is
optimum. Therefore, if the ratio y* is known, an optimum policy 7*
can be obtained by solving the following functional optimization:

PrROBLEM 3 (FUNCTIONAL OPTIMIZATION PROBLEM).

K
P 1 1 4
mseopt = ;Ié% lim sup (} Z E [g (X5k+1 - XSk) ]
k=1

K—oo
1 K
_Y*f ZE [(Dg + Wk)]) ; (7a)
k=1
1 K
st. liminfB | — " (Dg+W) | > (7b)
—00 K k=1 max

To solve Problem 3, we can take the Lagrangian duality of the
constraint (7b) with a dual variable v and obtain the Lagrange
function L(m,y, v):

K—o

K
A 1: 1 1
L(m,y,v) £ lim sup (E DE [g<x5k+l —Xskr*]
k=1

1

fmax ’

We say that a stationary policy 7 has a threshold structure, if
the waiting time Wy is determined by:

K
~(r+ ) 2 B[Sk —skn) v ®
k=1

Wi = inf{w > 0[|Xs,+Dsw — X5, | 2 7). )

Let Z; be a Wiener process staring from t = 0. Let D be the
transmission delay following distribution Pp and the value of the
Wiener process at time D is denoted by Zp. Using the threshold
policy (9), the expected frame-length Ly := Dy + Wj and %(Xsk+1 -
Xs,.)* has the following properties:

LEmMMA 2. [24, Corollary 1 Restated]
E[Ly] =E [max{rz, Zg}] , (10a)

E [%(xs,ﬁ1 —Xsk)“} = %E [max{z% Z%}?] . (10b)
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As is revealed by [24], the optimum policy 7* has a threshold
structure as in equation (9). To design an off-line algorithm that
can learn the updating threshold 7* of 7*, we then reveal the
necessary conditions that 7 should satisfy. With slightly abuse of
notations, let £(z,y, v) denote the expected value of the Lagrange
function £(r,y, v) when a stationary policy 7 with threshold 7 is
used. According to Lemma 2, £(7, y, v) can be computed as follows:

1
L(z,y,v) =E [g max{rz,Zé}z] -(y+ V)E[max{rz,Zf’)}]
1
. 11
Fr v
Condition 1: [24, Theorem 5 Restated] Let 7(y, v) be the optimum

sampling threshold that minimizes function £L(z, y, v), which can
be computed as follows:

7(y,v) := arg ;I;%,L(T, v-v) =3y +v). (12)

Condition 2: [24, Eq. (123, 125)]

+v

1
0,v* > 0. (13)

fmax - -
Recall that for any policy 7 € Ilcons With threshold 7, inequality
(5) implies

v* | B [max{3(* +v*), Z}}] -

0, (y*) = %E [max{fz,le)}z] -v'E [max{fz,le)}] >0. (14)

According to (12), inequality (14) holds with equality if and only
if 7* with threshold 7* = +/3(y* + v*) is used. Adding the CS
condition (13) on both sides of (14), the necessary condition for y*
then becomes:

3,(r") =0+(y*) =0, (15)
where functiong,, (y) := E[gy(y; Zp)] is the expectation of function
gv(y; Zp) defined as follows:

gv(y;Zp) = %maX{S(y + v),Zl%}2 — ymax{3(y + V),Zé}. (16)

As is shown by [24, Theorem 7], the duality gap between & ;«
and sup 5 inf; L(, ¥*,v) is zero, and (15) becomes a necessary
and sufficient condition.

3.3 An Online Algorithm 7ypjine

When Pp is unknown but v* is known, we can approximate y* by
solving equation (15) through stochastic approximation [13, 17, 21].
Notice that the role of v* is to satisfy the sampling frequency
constraint. To achieve this goal, we approximate v* by maintaining
a sequence {Uy } that records the sampling constraint violations up
to frame k.

The algorithm is initialized by selecting y; = 0 and U; = 0. In
each frame k, the sampling and updating rules are as follows:
1. Sampling: We treat vy := %U; as the dual optimizer v, where
V > 0 is fixed as a constant. The waiting time Wy, is selected to
minimize the Lagrange function (8), and according to the statement
after equation (14), Wy is selected by:

Wk = lnf{W 2 0| |X5k+Dk+W —XSkl 2 VS (Yk + Vk)}~ (17)
2. Update yy: To search for the root y > 0 of equation g,, (y) =0,
we update yg through the Robbins-Monro algorithm [21]. In each
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frame k, we are given an i.i.d sample X = Xg, +p, — Xs, ~ Zp,
and the Robbins-Monro algorithm operates by:

Yerr = (e +meYe) ™ (18)
where Y. = gy, (yx; 6X) and function g, (+) is defined in (16). Recall

that Dy, is a non-zero lower bound of the average delay, the step-
size {ny} is selected by:

1
e = —k % ae(051]. (19)
2Dy,

3. Update Ug: To guarantee that the sampling frequency constraint

is not violated, we update the violation Uy up to the end of frame k
by:

U1 = U + - (D +We) |- (20)

max

3.4 Theoretical Analysis

We analyze the convergence and optimality of algorithm 7mypjine-
We assume there is no sampling frequency constraint, i.e., fmax = 0
and make the following assumption on distribution Pp:

AssuMPTION 1. The fourth order moment of the transmission delay
is upper bounded by B, i.e.,

E[D*] < B < w.

The convergence behavior of the optimum threshold 3y* and
the MSE performance are manifested in the following theorems:

THEOREM 1. The proposed algorithm learns the optimum parame-
ter y* almost surely, ie.,

lim yp =y*, wp.L (21)
k—o0

The proof of Theorem 1 is obtained by the ODE method in [13,
Chapter 5] and is provided in Appendix A.

THEOREM 2. The second moment of (yi — y*) satisfies:
%2
supz |1 | o (22
k Mk

Specifically, ifa = 1 and i = ﬁ, then the mean square error
Ib

decays with rate E[(yr — y*)%] = O(1/k).

One challenge in the proof of Theorem 2 is that yj is unbounded
and the second moment of Y. is unbounded. We notice that Y. could
become very large when yy is much larger than the true value y*,
but the truncation of (yx + 7xYx)* to non-negative part actually
prevents the actual update |(yx + 7 Ye)™ — yx| from becoming
too large. Based on this observation, we adopt a method from the
heavy-traffic analysis by introducing the unused rate y; = (—(yx +
nkYx))T, then prove that the variance of the amount of the actual
updating (9 Yy + yx) is finite. Detailed proofs are provided in
Section 5.2.

THEOREM 3. The average MSE under policy mypnjine converges to
&+ almost surely, i.e.,

Sk+ >
20 (Xe = Xp)2de 5.

lim sup , wp.l (23)

b4
k—o0 Sk+1
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With the mean-square convergence of yj., the proof of Theorem 3
is a direct application of the perturbed ODE method [13] and is
provided in Appendix D.

By using Theorem 2 and Theorem 3, we can upper bound the
growth rate of the cumulative MSE optimality gap in the following
corollary:

COROLLARY 1. Ifa = 1, then the growth rate of the cumulative
MSE optimality gap up to the k-th sample can be bounded as follows:

Sk+1
(E[/ (Xt—Xt)zdt]—EH*E[Sk])zO(lnk). (24)
0

The proof of Corollary 1 is provided in Appendix E.

THEOREM 4. For any distribution P, let n* (P) denote the MSE
minimum sampling policy when the delay D ~ P. The threshold
obtained by solving equation (15) is denoted by y* (P). Afterk-samples
are taken, the minimax estimation error y* (P) is lower bounded by:

inf sup B [ = y*®)?] = Q(1/k). (25)

Let pry(P) := Pr(Z% < 3y*(P)|D ~ P) denote the probability of
waiting by using policy 7*(P) and let Py (p) = {P|pw(P) > p}.
Specifically, let pY, . = Pr(Z% < 3y%.ID ~ Uni([0,1])). Let IT,
denote the set of policies which the sampling decision Sy is made

based on historical information Hy._;. We have the following result
foru < p;’um/z:

inf  sup

Sk+1 n —
(E [/ (X: —X,)zdt] = Enx (p) ElSk41]
mellhpep,( \ 1o

> %;ﬁQ(lnk). (26)

As the transmission delay Pp considered in the paper does not
belong to a specific family and could be quite general, obtaining a
point-wise converse bound on E[(y—y* (P))?] for each distribution
P is impossible. As an alternative, a minimax risk bound E[(y —
v*(P))?] over a general distribution set # can be obtained using
Le Cam’s two point method for non-parametric estimation [32].
The core idea is to construct two distributions Py, Py, whose #;
distance |P?k - P?k |1 can be upper bounded by a constant, but
(y*(P1) — y*(P2))? = Q(1/k) is difficult to distinguish. Such a
construction is still challenging because y* (P) cannot be obtained
in closed form even for the simpliest distribution families such as
the delta distribution or exponential distribution. Notice that the
estimation error of y* is closely related to the estimation error
g,(-) at a given point. Therefore, the construction of P; and P
for obtaining the converse bound of Holder smooth functions [32,
Chapter 2] are adopted. The proof of inequality (26) is a direct
application of the minimax estimation error (25). Detailed proof of
Theorem 4 is provided in Section 5.3.

4 SIMULATION RESULTS

In this section, we provide simulation results to verify the theoretic
findings and illustrate the performance of our proposed algorithms.
We notice that the MSE minimization problem is closely related to
the Aol minimization problem, where the Aol at time ¢, denoted
by A(t) =t — (). For signal-ignorant sampling policies (i.e., the
sensor cannot always observe the time-varying process), according
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Figure 3: The time average MSE evolution as a function of
frame k.

to the analysis in [25, Section IV-B], policies that minimize the
average Aol achieves the minimum MSE. Therefore, we choose
both offline and online Aol minimization policies (ﬁXOI from [25],
ity from [30]) for comparison. To show the convergence of online
learning algorithm, we plotted the average MSE performance of
the optimum off-line algorithm 7* from [24].

The transmission delay follows the log-normal distribution pa-
rameterized by y and o such that the density function of the proba-
bility measure Pp is:

_Pp(dx) 1 B (Inx — p)?
p(x) = - ~Non exp( o7 )

In simulations, we set y = 0.8 and 0 = 1.2, the expected time-
averaged MSE is computed by taking the average of 20 runs. Fig. 3
depicts the time-average MSE performance up to the k-th frame
of different sampling policies. The evolution of {y;} and the MSE
regret B [fosk“ Xy — Xt)zdt] — E,«E[S1] are depicted in Fig. 4.
From Fig. 3, with 5 X 10* samples, the time averaged MSE is almost
the same as using the optimum policy. From Fig. 4, the MSE regret
is almost a logarithm function of frame k. The asymptotic MSE
behaviour is consistent with the convergence results in Theorem 3
and Corollary 1.

When there is a sampling frequency constraint, the average
MSE and the average sampling interval achieved by policy 7ypline
are depicted in Fig. 5 and Fig. 6, respectively. We set fimax = b
From these figures, one can observe that the average MSE of 7ypine
is close to the optimum MSE &+ and the sampling frequency
can be satisfied. In addition, by choosing a larger V, a smaller MSE
performance can be achieved, whereas a larger number of iterations
are needed to meet the sampling frequency constraint.
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Table 1: Notations

Notation Meaning
Zy a Wiener process staring from time 0
L length of running time using stopping rule 7, :=
inf{t > D||Z;| = 3y}
1. Xk = X5, 4D, — X5,
Ok Ok = L (Xspapy — Xs;)*
Ly Ly := Sgy1 — Sk = Dg + Wy, frame length k
Ep Ep = Sik“ (X; — X;)2dt, cumulative estimation error
in frame k
q(y) q(y) := %E [max{Byk,Zé}z], the expectation of Qg
when y, =y
I(y) I(y) = E[max{3y, le)}], expected frame length L
when y, =y
I (Dk, (Xt — Xs,.)s; <t <S> information in frame k
Hi Hy := {Zx } <k historical information up to the end of
frame k
Er[-] Conditional expectation E[-|Hj_;]
e I = Zle Nk or by = Zle €k, the cumulative step-sizes
depending on the context
m(t) m(t) is the unique k so that ;. <t <ty

The proof is provided in Appendix F.

LEMMA 4. For threshold y < oo, the first, second and fourth order
moments of the stopping time 7, are bounded, i.e.,
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g g
S 20 & 20
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Figure 6: The average sampling interval under different con-
stant V. (Left: V = 10, Right: V = 1.)

5 PROOFS OF MAIN RESULTS
5.1 Notations and Preliminary Lemmas

In Table 1, we summarize the notations used in the following proofs.
Throughout the proofs, we use Nj, Ny, - - - to denote absolute con-
stants and C; (), C2(-) to denote polynomials with finite order. For
ease of exposition, the specific values and expressions of the con-
stants and functions may vary across different context.

LEMMA 3. Let M := E[D?], the optimum ratio y* is upper and
lower bounded by:
DL + L
M+ 2Dfmax + m

n 1
D+z2

— 1
DSy*SE (27)

[

E[l] <3y +D, (28a)
E[12] < % ((3y)2 +3«/§), (28b)
E [l;‘] <43 ((3y)4 + 105B) < 0. (28¢)

The proof of Lemma 4 is provided in Appendix G.
LEMMA 5. Function gy(y) = q(y) — yl(y) and has the following
properties:
(i) go(y) is concave and monotonically decreasing. The second
order derivative =3 < g (y) < 0.
(ii) go(y*) =0
(iif) Fory # y*, (y =y*)go(y) < ~l(y*)(y —y*)* < 0.
The proof of Lemma 5 is provided in Appendix H.

COROLLARY 2. For each yy. < oo, if the fourth order moment of the
delay satisfies E[D*] < B < oo, given historical transmission Hy._;,
the conditional second order moment of the cumulative error in frame

Ep = S‘Zk“ (X; — X¢)%dt can be bounded as follows:
Ex[EZ] = 3(Xs, — Xs,_,)*VB
+12C1 (v B) (X5, — Xs,_,)? +3Ca(y. B) < 00, (29)
where C1 and Cy are fourth order polynomials of y.

The proof of Corollary 2 is provided in Appendix L
With these Lemmas we can proceed to prove main results in
Section 3:
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5.2 Proof of Theorem 2

The analysis of the convergence rate is obtained through Lyapunov
analysis, where the Lyapunov function is denoted by V(y) := % (y—
¥*)2. The proof is divided into two steps: first we will upper bound
the Lyapunov drift for each y; by showing the following equation
holds:

Ere[V(yke)] = V(i) < —mieDipV(yi) + O(ngN1).  (30)
Then, based on (30), we can then compute E[V (y;)] directly.
Step 1: Bounding the Lyapunov Drift: The analysis is divided
into two cases, for y, < 3y*, inequality (30) can be verified eas-
ily; for yx > 3y* we will first establish the relationship between
Er [V (y+1)] =V (yx) and Var[ Y ], then upper bound Var[ Yy ] using
the fact that Z E) is sub-Gaussian when D is fourth order bounded.
Case 1: If y;. < 3y*, we have:

Ee[V(yes)] = V(ye)
=Eg [% (v +meYe)* = }’*)2] - %(Yk -r*)?

<Ej

1 1
E(Yk AR E(Yk - Y*)z]

@ _
2 (v — Y medo(ve)

1,
+ EnkEk

2
1
(g max {3y, X} }* - y max{3yy, 5X,§})

(b)
< =2l (Y)V(ve)
+ %ni (%((9)/*)4 +B) + (3y)2((9y*)* + 3‘/13)) )

where equality (a) is because Eg [Yi] = Ex[go (vk; 6Xk)] = 9o (vk);
inequality (b) is obtained because according to Lemma 5-(iii), (yx —
Y*)90(vk) < =1(y*) (yk—y*)? = =2I(y*)V (yx) and the assumption
that y < 3y*.

Case 2: If y. > 3y™, yg41 = (yk + 1k Y)™ is truncated into the non-
negative real number. We can view the evolution of i as a queueing
system, where the queue yi is non-negative, and n; Y% is the arrival
rate minus the service rate. Therefore, it is natural to introduce the
“unused rate” from [9], which is denoted by yx := (= (yx + 7 Yi))™*.
If e = 0, (v +micYi) X = 0 = —x and if ype > 0,y + 1 Vie = —x,
therefore

(Vi + MY xe = —xi- (32)
Since yi + i Yr + xx = 0, we have:
= Erlye +micYie] < Bxelxiel- (33)

We can then upper bound E [V (yr41) — V(yr)] by:
Ex [V(yies1) = V(yi)]

1 2 1 2
=Ex E(Yk—)’*+’7kyk+)(k) _E(Yk_)’*)]

[1 2 1
=B |5 (e —v* +meYe)” - 5k = r*)?
1
2 X+ (Vi + M) e = Y*Xk]

©, [1 1 1
=B |5 = v+ meYi)® = S = v = S - Y*Xk]
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(d1 2 1 1
<5 e =y +meBil%l)” - 5 (e - r)?+ EniVar[Yk]

1
- EEk[)(k]z -V ExLxe]

1 2 1 1

=5 (v = v* + meBee[Ye])™ - 50— Y%+ EﬂiVar[Yk]
1 2 1

=5 (Bl =v*) "+ S ()% (34)
where equality (c) is because equation (32); inequality (d) is ob-
tained because Ek[)(/%] > Belxkl? = 0;

We then further divide the analysis into two cases:
Case 2(a): If By [yr+ni Yi] < v*, we then have By [y —y* +n Y] <
0. According to (33), | = Ex [kl = v*I = lyk = v* + meBi [Ye]l.
Therefore, inequality (34) can be upper bounded by:

Ex [V(¥k+1) = V(yi)]
<- %(Yk )P+ %(y

() 1 1
U AT

1
*)2+ SnEVar[¥e]

= 1
< = 2meDiV (1) + S Var[ i, (35)

where inequality (e) is obtained because %(yk -2 > ()% >
7(y*)? by assumption that y; > 3y* and the last inequality is
obtained because 73Dy < % by the step-size selection rule in
equation (19).

Case 2(b): IfEy [y +nx Yg] > y*, considering that By [ Y] = go(yx) <
0 for y > y*, we have 0 > Er [ Ye] = —(yx — v*). Inequality (34)
can be bounded by:

Er[V(yks1) = V(re)]
N1 1 1
<s(k- Y) (e = v* + B [Ye]) - 5k = Y%+ EU;ZCVar[Yk]

1 _ 1
<oMe(e = Y)Go(re) + 5 nicVar [Yi]

(@9 1 1
< = omel () (e = Y+ EniVar[Yk]
1
== ml(y)V (vi0) + 5 mVar [Yil, (36)

where equality (f) is because (—Ey [ yx] — y*)z > (y*)? and (i —
Y+ mBe[YaD? < (v = v* + meBe [Ya]) (v — v*); inequality (g)
is due to Lemma 5-(iii).

For proceed to show inequality (30) for y; > 3y*, we need to
upper bound Var[ Y] in inequalities (35) and (36). First, we compute
the expectation E[Y] as follows:

1
Ey [Y] =E [E max{3yy, Zp}* — yi max{3y, Zf)}]

_ 3, 1,4 2 32
== SV *E(2Zp —vieZp + 51z s3p)
_ 3, ) 2
__Eyk +E E(ZD_3Yk) ]I(Z?)Zﬂ/k)
35 1 2.2
S—E}/k +E E(ZD) ]

3, 1
<-Zy2+-E[D*] < —5y£+5\/§. (37)
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Given historical information Hj_;, the variance of Y; can be
computed by:

Var[ Vi |H_1]
=By [ (Ve — Ex[%])?]

2
3
—E, (_Eyz—Ek[Yk]) 1(212333)%)}

2
14 2,3 2 35
+Ex (EZD -vZp+ ka + (_E}’k = Er[Yi]) ]I(Zf)zSyk)

(M1 1., , 3 ,\°
< ZB+2Ek (EZD_YkZD-'-EYk H(ZE>3)’k)

+ 2B

2
3 2
(_EY’C - Ek[Yk]) Lizz >3y

3 1 2 4
SZB + 5Ek [(ZD - 3yx) H(z,g zm)]

SZB + %E[Zf)] < (35+ Z)B, (38)
where (h) is because Ep[Y;] < —%yﬁ + % B implies (—%yz -
Ex[Yk])? < 3B and (a+b)? < 2(a® +b?).

Denote Ny := max{(35+ 2)B, 2 ((9y*)* +B) + (3y*)?((9y*)* +
3VB)}, inequalities (31), (35) and (36) then lead to:

B[V ()] = Vv < —meDipV () + mgN. - (39)
Step 2: Computing E[V(y,)] through iteration Taking the ex-
pectation on both sides of (39), we have:

E[V(yes1)] < (1= D) E[V (ye)] + ni Ny (40)
Multiplying inequality (40) from i = 1 to k yields:
k _ k k _
E[V (k)] < [ |1 =nDi)V (o) + D niNe- [ ] (1=n,D)-
i=1 i=1 j=itl
(41)
Since the stepsize selected by (19) satisfies
. Mk _
min — =1

Nk — 0,lim inf =
k  kzizm(4-T) Ni

according to [13, p. 343, Eq. (4.8)], term [—[i?:l(l —niDp) = O(np)-
Therefore,

_ ., x)2
supE[(Yk Ye)
k Nk

This finishes the proof of Theorem 2.

] = S‘;pE[ZV(Qk)/Uk] =0(1). (42

5.3 Proof of Theorem 4
5.3.1 Proof of Inequality (25). Let P1,P; be two delay distributions

and let yf, Yz* be the solution to (15) when D ~ P; and D ~ Py,
respectively. Through Le Cam’s inequality [34], we have:

infsup [ (7 - * ()] = (vF —y)? - (P aSE).  (a3)
Yy P

where PA Q := /Q min{p(x), q(x)}dx and P®* is the product of
distribution k i.i.d random variables drawn from P.

To use Le Cam’s inequality (65), we need to find two distributions
P; and PPy, whose #; distance |Pf’k - P?kll is bounded, and the

Tang, Sun and Tassiulas

difference ()/1* —)/2* )2 is of order 1/k. We consider P; to be a uniform
distribution on [0, 1] and let y7 be the optimum ratio of distribution
P;. Through Corollary 3, we can obtain a loose upper bound on y}*

as follows:

1E[D?] 1
i<y E[D] 3 (44)

Letc < % be a constant and we denote

& =min{1 -3y}, 1/3,p}; .i/2}- (45)

Let P, be a probability distribution with probability density function
p2(x) defined as follows:

1-cy1/k, x <16

1 1s.
s 25<X§1—§5,
1+ cy/1/k, x>1—%5;

0, otherwise.

pa(x) = (46)

We will first bound (y} — y3)? (in Step 1) and P?k A P?k (in
Step 2) as follows:
Step 1: Lower bounding y; —y;‘: For notational simplicity, denote
function h1(y) := Ep-p, [é max{3y, le)}z — y max{3y, Zf) ] and
h2(y) = Ep~p, [% max{3y, ZZD}2 — ymax{3y, Z%)}]. According to
the definition of P, in (46), for each y, the difference between h1(y)
and hy(y) can be computed by:

ha(y) = hi(y)

1
c 1
= —E | = max{3y, Z3}? - y max{3y, Z2 }|D = x] dx
./1—5/2 vk L6 b o)l

o ¢ 242 2
- —E gmax{Sy,ZD} —ymax{Sy,ZD}Isz dx
0

Vk
@ [ ¢ _[1,., ,
= —E |-(Z; - 3y)°1 |D = x|dx
152 Nk L6 DTV Nz
S5/2 c 1, ,
- A %E [E(ZD—?))/) ]I(ZZDZ?))/)lD:x] dx, (47)

where inequality (a) is obtained because

1 212 2y _ 32 1. 2

5 max{3y, Z,}* — ymax{3y, Zp} = -5V + g(ZD - 3y) ]I(ZZDZ3)/)'
(48)

Since y} is the optimum ratio for delay distribution Py, we have

h1(yf) = 0. According to equation (47), function hy(y") can be
lower bounded by:

ha (y7)
(2 1 [1
> — - E|=(Z% = 3y7)%, 2 oq . |D = x| dx
Vi Jisp L6 D~ N (ZD23)/1)|
82 o q
- = X%y
o Vk2
c 1 [1 ¢ 1(68\
>—- E|-(Z% -3y “|D=x dx———(—)
vk /1-5/2 [g' P~ @237 %6(2)
49

where inequality () is because E[%(ZIZD - 3)/)2]1(212)23),) ID=x] <
E[%Z‘[‘)|D =x]= %xz.
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We then proceed to lower bound E [% (Zé - 3)/;)211(22 23y

for each delay realization x € [1 — §/2,1] as follows:
(12 *)2 _
E E(ZD - 3)/1 ) I[(Z?)Z?))/l*) |D = x]

0
B|-(Zh

1
- 3)’;)21(3)/1* <Z2<x) T g(Zé - x)ZI(ZZsz) ID = x

(1, 2
2E 7g(ZD -3r7) I(3y1* <72 <x)

1
+ = (Var[Z%|D =x] — x*Pr (Zf) <x|D = x))
d
(_) 1, 51 (
6
where inequality (c) is because § >
and for the conditional mean E[ZE)|D =x]=x2>1-6§/2 >
1-6 = 3)/;‘; inequality (d) is because Var[ZZD|D = x] = 2x?
and xZPr(ZLZ) <x) <x*andE [%(Zé

-6§/2)%, (50)

we have the lower bound of h(y7):

2 2
ha(y] )_%gé((l—g) —(é)) %E(l—ébo (51)

By Lemma 5-(i), function h3(-) is monotonically decreasing. Since
ha(yF) > 0 and ha(yy) = 0, we can conclude that yy > yJ. We
then proceed to bound y

ha(v3) = ha(y]) + hy (N (v3 — i (52)
where y € [y}, y;]. Therefore, yJ can be computed by:
ha(y)
*_ 1
—yr = (53)
T TG

To lower bound y; , we will first find a loose upper bound of y;
using Lemma 3:

1Ep-p,[D?] 1 (1
r<-—/ —<-|=+5§- 1/k|, 54

YZ_ZEDNPZ[D] T2 3+ vt/ 54
Therefore, since § < 1/3, we have |h(y)| < [k} (y;)| = E[max{3y},

D+ 3y2,ub < 1+ % + %C\/%5 < 2. Then by inequality (51), we have

Rt —(1 — 8)o¢ \/; (55)

hy(vy)
Step 2: Lower bounding P?k A P?k: Let |P-Q| = fQ |dP — dQ|

be the #; distance between probability distribution P and Q. Then

* *

Yo =V 2

POk A POk = / min{P® (dx), PF¥ (dx)}

= [ P®(dx) - |1
/ p P& (dx)

- / (P$¥ (dx) - IED?k(dx))+

1
=1- - |p®k
2

(B5 (dx) - P;@k(dx))+

- BSK;. (56)

*) |D = x] Equality (56) enables us to lower bound P}

1 — 3y} by equation (45),

- 3)/;)2]1(3”' <Z% <x) 2 0.
Plugging inequality (50) into (49) and recall that § < 1 by definition,

—y7 through Taylor expansion at y = y}'.

Z2Y <
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P&k A P? k by upper bound-

ing the #; distance |P?k—P?k |1, which is done through the Pinsker’s
inequality:

1
- P®k—P®k‘
2| 1 20

1

<y 3 DL (BEFIIEEF)
1

=/ EkDKL(PZH]Pl)

1

(2\/%k p2(x) Inpa(x)dx

0

1 1 1

S\/E" -1+ sy nc 7)o
@ |1

s\/ikmqupz( - / (p2(x) - 1dx

< Voc?, (7)

1

2 1-c\1 /
where inequality (e) is because the density function p;(x) = 1 for
uniform distribution, therefore Dy (P2||P1) = /01 p2(x) Inpa(x);
inequality (f) is because function g(t) := (tInt) is convex, its
derivative g(t)”” = 1/, therefore, through Taylor expansion we
have g(t) < g(l)+(t—1)+%m0—l)2 = (t—1)+%m0—
1)?; inequality (g) is because fol pa(x)dx = 1.

By choosing ¢ = 1/2 and recall that § < 1, inequality (57) can be

upper bounded by:

1 1
SIBPF - PP < o (58)
Plugging (58) into (56) yields:
®k ok o 1
PPYARS 2 o (9

Finally, plugging (59) and (55) into the Le Cam’s inequality (43)
finishes the proof of inequality (25):

2
. N 1(1 1
i sup(7 = 782 3 (350 00%0) 5 60

5.3.2  Proof of Inequality (26). The proof is divided into three steps:
consider a delay distribution P € Py, (p), first we will show for each
sample policy 7 with a random sampling interval 7, let I, := E[7] =
E[Z2] denote the expected running length, the following inequality
holds:

E [/ zfdt] —y*E[r] > %pW(P) (e —1*(®))?, (61
t=0

where I*(P) := Ep.p[max{3y*(P), Z2 1] is the average frame
length when the optimum policy 7* (IP) 1s used. Next, We will

show that given k samples 6Xj, - - 5Xk g Z D, where D ~ P, the

minimax estimation error satisfies:

inf sup E [(i— l*(IP’))2 >N- % (62)

I PePy(p)
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where N is a constant independent of k and p with expressions
provided in equation (60).
Finally, notice that:

Sk . _
E [/O (X — Xp)%dt — (y* + D)Sk]

k
1
= Z E [(X5k1+1 - XSk/)ZDk + E(Xsk/ﬂ - Xsk/)4]

k
= (y*+D) ) ElSp1 — Sk']
k,_

pwaP) Z

Take inf suppcp, () on both sides of inequality (63), we have:

[Le] - l* (63)

min max E
T PePy(p)

Sk _
/0 (Xp = Xp)2dt = (y* + D)Sk]

>6ynllf]P€s]Pu;()ﬂ)E[(l —I*(P)?] > pN Z — > Q(Ink). (64)

Proof of inequality (61) follows similar ideas as [26, Lemma 4].
Details are provided in Appendix K due to space limitations. The
proof of the minimax risk bound (62) is based on Le Cam’s two
point method as follows:

5.3.3  Proof of inequality (62). Let P1,P2 € P, (p), through Le
Cam’s inequality [34], we have:

inf  sup E[(i—l*(P))z z(zl*—I;)Z.(P;@kw?k). (65)

I PePy(p)

Similarly to the proof of bounding (y—y* (P)), let P; be a uniform
distribution and P, through the density function in equation (46).

For yt < pw uni/ 2 it is easy to show that p., (P2) € Py (p) as follows:
Pr(Z% < 3y5|D ~ P2)
_ /0 Pr(Z < 371D = X)pa(x)dx
_ /0 Pr(Z < 371D = X)pr (x)dx
- /5/2 Pr(Z% <3yyID = x)—=dx
0 vk
+ /1_15/2 Pr(Z2 < 3yy|D = x)%dx
Q /0 " Pr(Z < 371D = py (e — ¢/ VRS
2% uni — ¢/ VkS
g)P;, uni/ 2 (66)

where inequality (i) holds because yf < y;‘ from inequality (55); in-
equality (j) holds because § < p‘: uni/2 by definition from equation

Tang, Sun and Tassiulas

(45). The difference between [y — I can be computed by:
1
Iy -1r :/ E [max{3y}, Z5}ID = x| dx
0

1
+/ ‘Er [max{Sy;,le)}lD = x] dx
1-6/2

Vk
/5/2 CE[ ( . 2}' ]d
— —FE [max{3y,, ZA}|D = x| dx
0k e
1
—/ E[max{Byf,le)HD:x] dx. (67)
0

Notice that if x; > x2,

E[max{3y, Z3 }|D = x1] — E[max{3y, Z4}|D = x2] > 0.  (68)

Therefore, inequality (67) can be bounded by:
1
l; - lf 2/ E [max{?,y;,Z]%HD = x] dx
0

1
- / E [max{3yf,Z]ZJ}|D = x] dx
0

>3(yy = y)Ep~p, [Pr(Z5 < 3y])]

@1 1
> 2, (1= 8)ep], um\/; (69)

where inequality (g) is obtained by equation (55).
Finally, plugging (58) and (69) into Le Cam’s inequality (65) fin-
ishes the proof of inequality (62):

2
inf sup (l - I*(P))? > 1 (—(1 - 5)6pwum) - (70)

I Pep,(p) kK

6 CONCLUSIONS

In this work, we studied the problem of sampling a Wiener process
for remote estimation over a channel with unknown delay statistics.
By reformulating the MSE minimization problem as a renewal-
reward process, we proposed an online sampling algorithm that can
adaptively learn the optimum algorithm as the number of samples
grows. We showed that the average MSE obtained by the proposed
algorithm converges to the minimum MSE almost surely, and the
cumulative MSE has an order of O(Ink), where k is the number
of samples. We then prove that the cumulative MSE regret of any
algorithm is at best Q(In k). Numerical simulation results validate
the convergence behaviors of the proposed algorithm.
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A PROOF OF THEOREM 1

To show that y; converges to y* almost surely, we use the sufficient condition from [13, p.190, Theorem 7.1]. Recall that the step-size ka:%.

Define ty = 0 and denote the sum of step-sizes up to frame k by #; = Zile k. For t > 0, let m(t) be the unique k € N* so that t. <t < tjy;.
Without a sampling constraint, v = 0, Vk. Then the update rule for y; from equation (18) can be rewritten in the following recursive form:

Yik+1 = Vi + 1k (9o (vi) + SMg), (71)
——

Yie

where we recall that Y = % max {3y, 6X ]z }2 —y max {3y, 5X. ]f } and M, is the difference between realization and the conditional expectation
Eg[Yr] = 9o(yx)- Notice that the difference M. := Yy — E[Y;] depends only on the transmission delay and the Wiener process evolution
(Xt — Xs,) in frame k and yj, which can be predictable given H._; and is therefore a martingale sequence. We then show that {Y; }, {0M.}
have the following properties,

(1.1) For each constant N' < oo, supy E[| Yy [I(|y,|<an] is bounded, ie.,

sup B (1Y (1<) |

1
< sipE [g max{3yy, (SXE}Z Tpe<ny | + st}ipE [yk max{3yg, 5X}§}H(kaISN)]

<% (9N2 +E[Z;‘)]) +N- (3N+E[ZIZJ]) (;) oo. (72)

where inequality (a) is because ]E[Zf)] =3E[D?] < 34/E[D4] < 0 and E[ZIZJ] =E[D] < oo.
(1.2) Function Yy = g(y; dx) is continuous in yj. for each dx.

(1.3) The martingale sequence 6MI(|y,|<n) can be bounded as follows:

Var[SMI(y, 1 <)) < BIV Ly <))

2
1
<E (g max{3y, 6X£}2 — Yk max{3yk,5X£}) Iy 1<)
® 1 02\ 2 21)?
<E|2 gmax{3yk, XL Y| +vg (max{3yk, 6Xk}) Ly 1<)
@ (1
<y (£(3N)4 +105B + N2(ON? + 3\/5)) < Ni. (73)

where inequality (b) is because E[(a — b)?] < E[2(a® + b?)]; inequality (c) is because §X; ~ Zp is a Wiener process starting from t = 0 and
therefore, E[Z8 | = 105E[D*] < 105B.
Since sequence 6MgI (|, |<n) has mean zero. Its value only depends on yj and the Wiener process evolution in frame k. The correlation

E |6Mil(jy;1<N) '5Mjﬂ(|yj|§N)] = 0,Vi # j. As the variance of MI(;, <n) is bounded in inequality (73), the stepsizes n satisfies

Zle ﬁk’za = ﬁ (1 + ﬁ), according to [13, Chapter 5, Eq. (5.3.18)], for each 1 > 0 we have

m(jT+t)-1

lim P OMily,,. > =0. 74
Paress jgiorsntaSXT . Z OV ril=N)| = K )
= i=m(jT)

Let yx (w) be the value of ratio y on sample path . Recall that the stepsizes {n; } selected in (19) satisfies 3177 g = 00, X7 | ’7]2< < oo.
According to [13, p.170, Theorem 1.2], with probability 1, the limit limy_,, ¢ (w) are trajectories of the following ordinary differential
equation (ODE), i.e.,

7=90(y)- (75)

The next step is to show the solution of the ODE in equation (75) converges to y* as time diverges. Equation (15) implies g, (y*) = 0 and
therefore, y* is an equilibrium point of ODE (75). To show that the ODE is stationary at y = y*, we use the Lyapunov approach by defining
function V(y) := % (y- y*)z,whose time derivative V = %V(y(t)) can be computed by;

V=(r=v)ir=-v)3%W. (76)

According to Lemma 5-(iii), V = (y — y*)g,(y) < 0, the stability of y* is verified through Lyapunov theorem.
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B PROOF OF THEOREM 3
Notice that the waiting time W > 0, Vk, we have:

k k
o1 .1 —
hknl)lolif % kZ_:l(Dkr + W) > llkrri}gf % kZ_:le, =D > 0,wp.l. (77)

{/Osk+1 (Xt—Xt)zdt

S } converges to & ,+ with probability 1, it is sufficient to show that the following sequence

Therefore, to show sequence

1 Sk+1 5 9 . =
0k I:E / (Xt - Xt) dt - ()/ + D)Sk+1
0

L&
ZEZ

Sk 41 —
(./s G ACATI +D)Lk’) (78)
k'=1

k/
converges to 0 with probability 1.

Recall that B, = /i’f'

*1(Xy — Xz)2dt is the cumulative error in frame k’, we can rewrite O in the following recursive form:
1 —
0 = (k= 101 + B — (* + D)Ly
1 —
=0r_1 + % (_Qk—l +Ep — (y* + D)Lk) . (79)

For notational simplicity, denote Gy := (—Gk_l +E. - (y* + B)Lk), which can be viewed as the descent direction and can be further

decomposed into:

Sk+Dy ) Sk+Di+Wi ) _
Ge==ta+ [ (= Xs e [ (X; - X5t - (v* + D)L
Sk Sk+Dx

Sk+Drx , Sk+1 5 . =
=—0r_1 +4/5' Xy — Xs, +Xs, _X5k71) dt +/; (Xy — Xsk) dt — (y* + D)L
13 I3
) Sk+Dy Sk+1 2 —
==+ (X, =X DR (s =X ) [ (= Xspdee [T - Xsta- 074D (60
e ————— Sk Sk ————
=3Gk,1 =:ka4
=G 2 =:Gr3
Give historical transmissions Hj_1, yy can be predicted and X5, — X5, | is fixed, X; — X, evolves like a Wiener process and is independent
of X5, — Xs,_,. Therefore, the conditional mean of G 1, - - , G 4 can be computed as follows:
Ex [Gr1] =D(Xs, — Xs,_,)% (81a)
Ex [Gr2] =0, (81b)
1
By [Gis] = Bx [max{3y. 25 ] = a(re), (81¢)
Ex [Gra] =(r* + D)Ey. [max{3yy. ZB}] = (v* + D)l(yx)- (81d)

where equation (81a) is because Dy, is independent of X5, — X, | ; equation (81b) is because X; — X, is independent of X5, — Xs, | and has
mean 0 for all t > Sy; equation (81c) and (81d) is because of Lemma 2. With equation (81a)-(81d), given historical transmissions Hj._;, we
can compute the conditional expectation of Gy as follows:

B [Gi]
=By [~0k_1 + Gi1 + 2Gk 2 + G5 — Gra]
== Op—1 + (X5, — Xs,.)*D +q(yx) — (y* + D)l (yx)

== 01 +q(vi) — vil(y) + D (I(yk-1) = Lyx)) + D ((Xsk - X, ) - l()’kfl)) + (v = Y (yi) - (82)
—_— —
=fr1 =fra =fr3
Denote function
f(B,y) =—0+E % max{3y, le)}z — y max{3y, le)}] , (83)

and let function j_f() be: 3
f(0) = f(0,y"). (84)
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In the following analysis, we will prove that sequence {6} converges to the stationary point of an ODE induced by function ?(9), Let
OMy. = Gy — Ex[Gy] and let My ; := Gy ; — By [Gk,i] be the difference between each term and their conditional mean. We view % =: € as

the updating step-sizes, which satisfies:
Zekzoo,Zei < oo, (85)
k k
With e, By 1, Bk 2 and M, the recursive equation (80) can be rewritten as follows:
Ok = Ok—1 + €k (f (k=1 ¥k) + Brca + Prez + Brs + M) . (86)

Similarly, denote tp = 0 and #; := Zf;ol €; to be the cumulative step-size sequences. Let m(t) be the unique k € N* such that tm(r) St <
tm(t) + 1. We then state the following characteristics of G and My, detailed proofs are in Appendix C:

Cramv 1. Sequences {Gy} and {SMy} have the following properties:

(2.1) For each constant N, sup; E [|Gk|]I(|9k |5N)] < 0.
(2.2) Function f (e, y) is continuous in e for each y.
(2.3) For any T > 0, the following limit hold for all 0:

m(jT+t)-1 _
klgr;OPr jﬁio?f‘é‘f _72 € (f(G,Yi)—f(G)) > pl=0. (87)
= i=m(jT)

(2.4) For any T > 0, the difference sequence satisfies:

J
klgr;q Pr (sgz OrSn[anT Z €i0M;| > ,u) =0. (88)
Jz i=k
(2.5) The bias sequence satisfies:
m(jT+t)-1
lim Prsup max Z €i(fi1+Piz+Piz)| = pl=0. (89)
k—oo jszStST i=m(jT)
(2.6) For each 0, function f can be bounded as follows:
£0.9) = F(0) +p(y). (90)
where p(y) = —=(q(y) — yl(y)) and for any 7 > 0 we have the following inequality:
m(jr+r)—1
lim Pr|sup Z leip(yi)l | = 0. (91)
k—o0 jn .
i=m(jr)
(2.7) For each 64, 02, the difference
If(01,y) = f(O2, )| = 101 = O2] . (92)

When 6; — 0, — 0, the absolute difference |6; — 02| — 0.
Denote 0. (w) as the time averaged MSE up to frame k of sample path «. Then according to [13, p.166, Theorem 1.1], with probability 1,
sequence {6y (w)} converges to some limit set of the ODE

6=7(0) =-0. (93)

Because ]_‘(0) = 0, the minimum error § = 0 is an equilibrium point of the ODE in equation (93). Moreover, as ]_‘() is a monotonic
decreasing function, it can be easily verified through Lyapunov stability criterion that 0 is a unique stability point of the ODE (93). Therefore,
O converges to 0 with probability 1, and the time averaged MSE converges to &+ with probability 1.

C PROOF OF CLAIM 1

Before we starts to prove each condition in Claim 1, we provide the following corollary from Theorem 2:

COROLLARY 3. There exists aT < oo so that E[(yx — y*)?/nk] < T,Vk. Recall that the step-sizes is selected to be n = m, where
a € (0.5, 1], we then have:
DT
El(rx -y < T oo, B[yl < 2(E[(y - y*)’1+ (r*)?) < oo. (94)
Through Cauchy-Schwarz inequality, we have:
DI’
E vk —v*I] < Bl = v)? <4 57 (95)

2k
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(2.1): According to the definition of G from equation (79), the expectation E [|Gk Ljg 1< N] can be upper bound as follows:

Skt n
E [IGkIL(j6,1<n) | < E[10kIL(j0,1<n) | +E / . (Xp — Xp)2dt| +E [yeLy] - (96)
t=Sk
The first term on the RHS of inequality (96) satisfies
ssz [16k I <n) ] < N < o0 (97)
The expectation of the second term can be computed as follows,
Sk+1 n
E [ (Xy — Xp)?de
t=Si
Sk+Dy Sk+Di+Wie
=E [/ (X; - Xsk +X5k - Xsk_l)zdt +/ (X —Xsk)zdt]
t=Sk Sk+Dx
) Sk+Dx Sk+1 ,
=E [(Xs, — Xs,,)*Di| +2E | (Xs, — Xs,,) / (X; — X5, )dt| +E / (Xr — Xs,)%dt
t=Sk t=Sk
— 1
=E [max{3yk_,. le)}] D+ gE [max{3yy, Zé}z]
— 1 — 1
<E[3yx_;1D + g]E[(Syk)z] +DBY* + 5«/3. (98)

Inequality (94) and (95) implies inequality (98) is bounded for all k. Therefore, the second term on the RHS of inequality (96) can be upper
bounded as follows:

Skt . _ 1
supE [/ (X¢ —Xt)zdt] = sup (E [max{3yk_1,212)}] D+ EE [max{Syk,le)}] < o0, (99)
k =S k

Similarly, since E[y]i] < o0 is bounded by (94) is bounded, we can upper bound the third term on the RHS of inequality (96) as follows:

supE [ygLi] = sup E |y max{3yy, Zé}] < oo. (100)
k k

Taking the supremum of inequality (96) and then plugging equality (97)-(99) into the inequality verifies Claim (2.1).

Notice that statement (2.3)-(2.7) has similar forms,

J

Z €ivi

—00 j>k Pt

lim Pr (sup

> y) =0. (101)

where ;. can be the bias term f ;, the martingale sequence oM. or the difference f(0, yx) — j_f(@) and p(yg). We then provide the following
lemma: (101) to hold true:

LEMMA 6. If one of the following condition holds, then (101) holds:
(5.1) Y. is a martingale sequence and sup;. E[l//z] < co. The correlation satisfies E[};y;] = 0,Vi # j.

(S-2)E[lyxl] = 0(k%),¢ > 0.

Proor. If condition (S.1) holds, since ¢ = % satisfies )y ei < o0, equality (101) holds because of [13, p. 172, example 3].

If condition (S.2) holds, there exists a ¥ so that E[y] = ¥k~¢. For each 4 > 0, we first upper bound Pr (supjzk Zz]':k €Y

k as follows:

> ,u) for each

Pr [ sup Zj:em >ul| <Pr ieih//ﬂ > u 91y irl A by irl—? X k-t (102)
Jzk|izk i=k iz i=k K

where inequality (a) is from the Markov inequality; inequality (/) is from statement (S.2). Finally, taking the limit of (102) yields (101). O

(2.2): Since function f (6, y; 6X) = —9+% max{3y, 6X?}?—y max{3y, 5X?} is continuous for each 5X, the expectation ]_‘(9) =E[f(6,y*;6X%)]
is continuous for 6. _ _

(2.3): Recall the definition of f(6,y) and f(y) from equation (83), (84). The absolute difference between f(6,y) and f(6) can be upper
bounded by:

— (a) —
f(6.y) - f(9)‘ =[50(n) = 9,(yM)| < 3(r—y)*+3ly - y*ID, (103)

where inequality (a) is because function g, (y) is concave and |§6’ (y)| < 3 according to Lemma 5-(i). Therefore E[|f (6, y) —T(G) 1=0 (k_“/ 2,
which satisfies statement (S.2) in Lemma 6. This verifies inequality (87).
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(2.4): The difference oMy = My 1 + 20My 5 + OMy 3 — 6Mj 4 consists of four parts. Through the union bound, the probability that

Z elSM,’ > y1 can be upper bounded by:

SUp >k
J 4 J
hm Pr (sup Z iOM;| > y) Z Pr (sup Z €i0M;q| 2 ,u/S) . (104)
j>k —k a= j>k i—k

We will then show that each item on the RHS of inequality (104) has limit 0. The first term 6My ; = (X5, — X. S,H)Z (Dk - 5) Since

Dy — D depends only on the delay in frame k and has mean zero, term E[6Mj16Mjeyi1] = 0,Vi > 0. The second moment of §M.; can be
upper bounded as follows:

E [(Xsk — X5, ) (Dg - B)Z] = E[(Xs, - Xs,_,)*] Var[D?] < B [max{3y, 23 }2] B[D?]. (105)

By Theorem 2, the expectation E[ (yx —y*)?/ni] = O(1). Since ng. — 0, ]E[yi] is bounded. Therefore, sup; E [(SMi 1] < co. Then according
to [13, p.142, Eq. (5.3.18)]
J
Z E,’(SMM

lim Pr (sup
i=k

k—oo jxk

> p/5) =0. (106)
Similarly, recall that My ; = (Xs, — Xs,_,) - ( SikJer Xy — ng)dt). Sequence 6Mj, ; is a martingale sequence with mean zero. Moreover,
E[Mj 9My4i2] = 0,Vi > 1. The variance Var[dM ;] can be bounded as follows:

Sk+Dy
(/ (Xt —Xsk)dt)
t=Si

Inequality (95) upper bounds E[max{3y;_1, Z%)}] and verifies (S.1) in Lemma 6. Therefore, we have:

2

Var[Mj. 5] = E[(SM]%,Z] =E|(Xs, - X5, ,)*] ' E = E [max{3y;_;, Z3}| - E[D?]. (107)

J

Z Ei(sMi’g

lim Pr (sup
i=k

k—o0 ik

> u/5) =0. (108)

It can be verified that the sequence 6Mj 3 = Sk” (X — Xsk)zdt - Bk [fsik“ (X: - Xsk)zdt] is a martingale sequence. It then remains to

Sk+Dpg Sk+1 2
(/ (Xp — Xs,)2dt - / (X - Xsk)zdt)
S S,

k k+Drk

upper bound its variance, which is as follows:

Var[6Mj 3] =E

(c) Sk+Dj 2 Sk+1 2
<2E (/ (Xy —Xsk)zdt) +2E (/ (Xy —Xsk)zdt)

Sk Sk+Dy
(d) Sk+Dx 2
<2E (/5 Xy —Xsk)zdt) +2E [Pr(Z} > 3y) Byi) “Ex [L7]]

k

(e) 10
<N;+E E[ZE](?G)/;C)Z +3VB)|, (109)

where inequality (c) is because E[ (a—b)?] < 2E[a®+b?]; inequality (d) is because if Ly, > Dy, then (X; —Xsk)2 < 3y fort € [Sg+Dg, Sgs1l;
inequality (e) is because through Markov inequality Pr(Z2 > 3y;) < E[Z})]/(Syk)2 and Ey [Li] < (%0 (37%)% + 3VB) from Lemma 4. Since
E[Z4D] < 3E[D?] < 3VBand E[yi] is bounded according to inequality (94), Var[dM 3] is bounded according to inequality (109). Condition
(S.1) in Lemma 6 is satisfied and we have

Jj
lim Pr|sup Z€i5Mi,3 >pu/5|=0. (110)
—00 ]Zk Py
Following similar approaches, the second order expansion of the fourth term is bounded, i.e.,
Var[6My. 4] < Ex[Gral < (y* + D)2 - (Syk + 3\/_) (111)
Again using Lemma 6 condition (S.1), we have:
Jj
lim Pr|sup Z€i5Mi,4 >pu/5|=0. (112)
—00 _]Zk Py

Plugging inequalities (106), (108), (110) and (112) into (104) completes the proof of (89).
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(2.5): Through the union bound we have:

J

Z €ifia

i=k

J
Z €i(Bi1 + Piz2 + Bis)

i=k

sup

lim Pr (sup
jzk

—00 j>k

3
>ul < lim Pr > p/3]|. (113)
) azzlk—mo

From the definition of f ; in equation (82), f 1 = D (E[Syk_l, le)] - E[3yx, le)]) =D (E[3yk_1, le)] -E[3y*%, le)] +E[3y*, le)] - E[3y, le)]).

Then we can upper bound the expectation of |fy ;| as follows:

B [1Beal] < 3DE [yt = v*1 + Iy = v*1] £ 00,

where equality (f) is from inequality (95). Since a € (0.5, 1], which satisfies condition (S.2) in Lemma 6. We have:

J

Z €ifia

lim Pr (sup
i=k

k—o0 =k

> /,1/3) =0. (114)

Next we upper bound limg_,., Pr (sup Iy

Z{:k eiﬁi,z’ > ,u/S) = 0. First, f , has mean zero because Ej [(XS,HJ,D,F1 —Xsk,l)z] =

max{3yr_1, ZE)}, and its variance is upper bounded by

— —2 9
Var [D ((xsk — X )t - l(yk_l))] =D°E [max{3yx_, 23 }?] < o, (115)
where inequality (g) is due to (94). Using condition (S.1) Lemma 6, we have:
J
lim Pr (sup Z €ifia| = ,u/3) =0. (116)
—00 >k pary

Finally the third bias term satisfies E[|fx 3] = E[I(yx) - lyx — y*I] < \/E[max{3}’k,212)}]2E[(yk —y*)2]. Since ]E[maX{3}’k,Z%}] <

E[3y)] + D is bounded according to (95) and E[ (yx — y*)?] = O(k™9), E[|Bk 3l] = O(k™%). Condition (S.2) in Lemma 6 is verified and we
have

J

lim Pr (supz €ifiz > y/3) =0. (117)

k—oo jzk %
Plugging (114), (116) and (117) into (113) verifies statement (2.5).

(2.6): Function p(y) < I(y*)|y — y*| + %(y —y*)2. Since E[|y — y*|?] = O(k™%) and E[|y — y*|] = O (k™%/2) satisfies condition (S5.2) in

Lemma 6, statement (2.6) is verified.

D PROOF OF COROLLARY 1

The cumulative MSE up to the beginning of frame k + 1 can be decomposed into:

Sk R
E[/O ‘ (Xt—Xt)Zdt]

Sxr+Dyr ) Sk’ 41 )
E /; (Xt — X5, ,)7dt +/ (Xt = Xs,) dt]

, Sgr+Dyps

A
s
M~

X
0
-

Sk’+Dk1 ) Sk’+1 ,
/S (Xe — Xs + X5, — X )20+ / (X, - Xs,, )%t

P”ﬂ»
o

=1 1% Sir+Dys
k Spr+Dyr ) ) Spra )
= Z E / ((Xt - Xsk,) +2(Xy — Xsk,)(Xsk, _Xsk’—l) + (Xsk, - Xsk'—l) ) dt + / (Xr — Xsk,) dt
kK'=1 N Sy’ +Dyr
(b) k 2 Sk 2
= Z E|(Xs, — Xs,,_,) Dy +/ (Xp = Xg,,)dt
k=1 Sk/
© k k 1
N2 217D 4
= kZ_lE[(xsk, ~Xs,,)ID + kzl B [(Xse,, ~ X5, (118)

where equality (a) is because X; = X5, 1>Vt € [Sg + Dy) and X; = X5, Vt € [Sk + Dy, Sgey1); equality (D) is because E[X; — Xs,, ] = 0 and
because Xs,, — Xs,,_, is independent of Dy/; equality (c) is because Dy is independent of (Xs,, — Xs,,_, )
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With equation (118), we proceed to bound the difference E [/Osk“ (Xr — Xt)zdt] - (y*+ D)E [ZIIE’:I Lk'] as follows:

k
ZLk,]
k'=1

k 1 _ k

Bl(Xserr=Xs ) 1D + ) <E [(Xs,, = X5,)*] =y BL(Xs41 = X5,)] =D ) B[(Xsrai — X, )°]
k'=1 =1

Sk
E [/ ‘ (X —Xt)zdt] - (y*+D)E
0

A
s
M=
i
Lo

b”ﬂ?r‘

(Elg(yx) = v 1(yi)])

X
0
Y

b”ﬂ?r‘

E [q(yk) = virl(yie) + (e = YLy |

X
If
n

NS
M~

E [q(r*) = yil(y*) + (yer = YOy ]

X
If
Y

E[(y* = ye) U(G) = U(ye)]

A
(1K)
Ngle

x

v
M~ L

—

d
<3 > El(ye - v?

(119)
k'=1

where equality (a) is because of equation (118) and by martingale stopping theorem, E[(Xs,,,, — Xsk,)z] = E[Ly]; inequality (b)
is because choosing threshold y;, minimizes function q(y) — yil(y); inequality (c) is obtained because q(y*) — yl(y*) = q(y*) —
Y¥I™) + (r* = yi)l(y*) and q(y*) — y*I(y*) = 0 according to Lemma 5-(ii); inequality (d) is obtained because |I(y*) — I(yx)| =
[Elmax{3y*, 23 }] - Elmax{3y, Z3 }1| < 3lyie — y*I.

E PROOF OF LEMMA 1

Proor. First we will turn the time-averaged MSE computation into frame-level computation. For stationary policy  that decides sampling

. . . . . N
time Sg.,1 only on information 7, tuple {(Ix, (Sk+1 — Sk))} is a generative sequence. Recall that Ey. = fskk“ (Xt —Xs, )2dt and Ly, := Sgyq — Sk
are the cumulative estimation error and length of frame k, which are both generative because policy 7 is stationary. Therefore, sequence

{%E [Zlk(:l Ek]} and {%E [Zlk(:l Lk]} have limits. Then according to the renewal reward theory [22], the time averaged MSE can be

computed by:
T L \2
/ (% - %) dt]
=0

Sk
B|Z, o (X = Xs )%t

limsupE

T—o0

=lim sup

Koo B[ZK (S - 50|
Sk
KB [ 0 - X, )2
=lim sup e . (120)
K—oo Zk:l E [(Sk+1 - Sk)]

To simplify the computation of equation 120, we will first introduce the following lemma:

LEMMA 7 (LEMMA 6, [24]RESTATED). Let Z; be a Wiener process starting from time zero, let T be a stopping time of Z;, we have:

1 T
“E|z}] =E / ZEdt (121)
6 0
Using Lemma 7, we can then compute the expected cumulative estimation error during interval [Sg, Ri]. Notice that during the interval,
the k-th sample has not been received. Therefore, the estimation error X; — X; = X; — X5, | can be viewed as a Wiener process starting from
time Sg_;. We can decouple and compute the cumulative estimation error as follows:

R
/ (Xt —X[)Zdt]
Sk

E
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Ry , Sk )
=E / (Xt _Xsk—l) dt] -E [/ (Xt _XSk—l) dt
Sk-1 Sk-1
1 1
=EE [(XRk _X5k71)4] - gE [(Xsk _X5k71)4] : (122)
Similarly, we can then obtain that:
Sk+1 . 1 4 1 4
E A (X; — Xp)%dt| = EE [(Xsp,, — Xs)*] - gE [(Xr, — Xs)%] - (123)

k

Notice that the transmission delay Dy, is i.i.d across all slots, since we only focus on stationary policies whose waiting time W relies only
on recent information 7y := {Yg, (Ws, 4 — Ws, ), Vt > 0}, we have:

E[(Xsk _XSk_1 )4] = E[(X.Sk+1 - XSk)4]

Therefore, by summing up (122) and (123), for any policy 7 that makes decisions only on i, the expected cumulative estimation error in
frame k can be computed by:

Sk+1 n
E[E] =E [/S (X - Xt)zdt]

%E [(XRk _XSk-1)4] - %E [(XRk _XSk)4]

éE [((XRk _XSk) + (XSk _XSk,l))‘l:I - %E [(XRk —XSk)4]

%E [(XRk - X.Sk)4] + ;E [(XRk - XSk)3(XSk - XS;H)] +E [(XRk - XSk)Z(XSk - XS;H)Z]

# 2B [ (X, X5 (X, ~ X5 )] + B[ (X, = X5, )*] = B[ (X = Xs,)?]
B, - X5)* (X5, ~ X5, ]+ 2B [, - X))
@B [0, — X5)?] BIKs, — X5, )1+ 28 [ (X5, ~ X5, )"

(c) 1
< E[Rg — Skl - E[Skyq — Sl + EE [(Xs, = Xs,)*]

= B[] - D+ 2B [(Xs, - X5, )"], (120

where equality (a) is obtained because (Xg, — Xs, ) is independent of (Xs, — Xs, ) and E[Xg, — X5, ] = E[Xs, — X5, ,] = 0 due to Wiener
process evolution; equality (b) is obtained because (Xg, — X5, ) and X5, — X5, , are independent; and equality (c) is because the Wald’s
Lemma.

Therefore, for any stationary policy & that makes sampling decision only on 7}, with probability 1, the objective function in the MSE
minimization problem 1 can be rewritten as:

1T X
limsupE [— (Xt —Xt)zdt}
T Ji=o

T—o0

2 (B[, ~ X5, + EILID)

=lim sup

K00 SR E[L]
S BlEXs = X5, )Y —
=lim sup k=1 [; x M ]+D. (125)
K—oo 2o BlLk]
m]

F PROOF OF LEMMA 3

Proor. Consider a constant wait policy 7const that chooses Wy = fL regardless of the transmission delay and estimation error
I = (Dg, (X5, +t = Xs,)). Let Z; be a Wiener process starting from time 0. Then according to equation (4a) from Corollary 1, the

time-average MSE by using policy 7const can be computed by:
= . Zf:l E [%(Xsk B X5k71)4] =
E reonee =lim sup e +D
K—oo Zk:1 E[Lk]
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iyk E[z‘*
@ g L o
K—o X8 E[L]

®) . 2 Tkt B [(Dk + fmlax)z] =
= lim sup T—F +D
Koo 23K Bl

M+2D- + ( : )2 _
(Q% Bfi 1 Jo) LB, (126)
fmax
where equality (a) is because by using policy 7const, given transmission delay Dy, the difference X5, 4+ — Xs,_, evolves like Wiener
process Z; starting from ¢t = 0 and S, — Sp = Di + Jﬁ due to the constant wait policy; equality (b) is obtained because given delay

Dy, Zp, ~ N(0,Dy + fL) is a zero-mean Gaussian distribution with variance Dy + fl , and therefore the fourth order moment
max max

_1
Kt Frnax

2
E [Z;) L |Dk] =3 (D]< + fL) ; equality (c) is obtained because Dy is i.i.d following distribution Pp, by definition M = Ep, [D?]
k fma)( max

and D = Ep,, [D]. Since 7const may not be the MSE minimum sampling policy, we have g”* < g,,mns[. Therefore, recall the definition

Y*= gﬂ* — D from Subsection 3.2, we have:

— 1 \2
_ lM+2D—+( )
—-D==-

Tlconst 2

<& =: Yub- (127)

We then derive the lower bound of & ;«. Recall that the optimum decision rule of policy 7* is given in equation (9), according to [24,

Theorem 1], &, can be computed by

_ 1B [max{3 (y* +v*),Z2}2] _(a) 1 _ 1 _ 7
J [max{3 v ). Zp¥] D > -E[max{3(y* +v*),Z5}] +D > ~E[Z}] +D = -D, (128)
6 E [max{3 (y* + v*),le)}] 6 6 6
where inequality (d) is from Cauchy-Schwartz inequality.
Finally, y* can be lower bonded by:
_ - 1=
y*=Em#-D> gD. (129)
O

G PROOF OF LEMMA 4
For any time ¢, the value Z; of the Wiener process Z; ~ N(0,t), according to [8, Theorem 7.5.6], V0 € R, sequence M;(0) := exp (QZt - %Zt)

is a martingale with initial value My (0) = 1, V0.
Let T > 0 fixed as a constant, then 7, A T is a stopping time, where a A b = min{a, b}. Then according to the optional stopping theorem
[8, Theorem 7.5.1], denote ¢1(6) to be the expected value of MTYAT(H), we have:

$1(6) = E [Me 17(0)] =B [Mo(0)] = 1,0. (130)

Therefore, the n-th order derivative of function ¢7(8), denoted by ¢¥l) (0) can be computed by:

o8 [Mo i ®)]

o (0) = ——7

(131)

"My, 17(6)

< +/3y. Therefore the derivative E

For each sample path w, the absolute value is bounded and continuous. Then

Zly/\T

according to Leibniz rule we have

(132)

"M, ar(0)|  O"E [MTYAT(G)]
= =0.
aon aon

First according to [8, Theorem 7.5.1& Theorem 7.5.5], Vy < oo, the mean of stopping time Ty is bounded, i.e.,

E[L] = ]E[ley] = E[max{3y, Z5}] =3y + D < .. (133)
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To obtain the second-order moment of 7y, we compute the 4-th order derivative of M, AT)(0), ie.,

My \7(0)

4 2 2
0 lo—o =2 =6(ly AT) -2 g +3(hy AT)™.

0=0 I, AT
Plugging (134) into (132), we have:

1
V2

Therefore, for each T < oo, the second order moment of ([, A T) can be upper bounded by:

I, AT) - V2Z?

E[(l, AT)?*] =2E [( LT

1, AT

E[(, AT)?] < %E [ZZ ] - %E [max{3y, 23}] < %0(3y+5) <o

I, AT

Finally, we can upper bound the fourth order moment of 7, by computing the 8-th order derivative of M, AT(0) at 0 =0, ie.,

My a7 (0) s . S 3
5 =2y~ 28y AT)  Z5 42000y AT 2 = 4200y AT)?
Plugging equation (137) into (132), we have:
1
B[y D] =- B [szAT = 28( AT) - Z8 g+ 2100 ATY? - Z2 = 420(L AT)?
3
3 2 6
<aB |y AT 2 |+ ZE[ AT) - 28 ]

3/4 3

<a(2[g, DY) (5|2 AT])1/4 + = (B[ A T)4])1/4 (2]

(E [(1y A T)4])1/4 : ((3)/)4 + 1053)3/4

v
<4 (E [(Ly A T)4])3/4 . ((3y)4 + 1053)1/4 + %
Inequality (138) implies

E[(ly AT)!] < 4° ((3y)4 + 1053) 4

Let T — oo and then use the dominated convergence theorem on the LHS of inequality (138), we conclude that E[l;f] is bounded.

1 277
E[r4] = —— (1 - 28+ 350 — 1708) (3y)* = == (3p)*.
(5] =755 ( ) (B)" = —-0Gr)

H PROOF OF LEMMA 5

ProOOF.

d_|1 2 4 _ 2
d_}/E |:g ((3)/) . I[(ZIZ)S?)Y) +ZD - ]I(lej>3y>):| = 3)/PI' (ZD < 3)/) .

diyE [(Sy Tz <o) + 7 11(212)>3y))] = 3Pr (7} < 3y)
Therefore, the monotonic decreasing characteristics can be verified through

§6(y) =-E [max{3y, Zg}] <0

gy (v) = —3Pr(Z% < 3y) < 0.
Through Taylor expansion, since g, (y) is monotonically decreasing, for y < y* we have:

90(1) 25 (y) + () =y = -1y =y 2 0.
Since y — y* < 0, inequality (145) implies
(=51 < =1y -y

And for y > y*, we have:

90(¥)

(@_[1
; E 5 max{?»y*,ZIZJ}2 - ymax{Sy*,Zé}

G~ ™.

- %]E |7 7] < %IE, [y AT)?] + ZE[

+105(1, AT)*.
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(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)
(144)

(145)

(146)

(147)

where inequality (a) is obtained because choosing the stopping time to be 7 = inf{t > D||Z;| > 4/3y} minimizes function E [%Zﬁ - yr] and

equality (b) is because E [ § max{3y*, Z3 }* — y* max{3y*, Z3 }| = 0.
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Multiplying (y — y*) on both sides of (147) we have:

(r=v%m < 10 =i vy > v (148)
Combining (146) and (148) finishes the proof of Lemma 5-(iii).

m]
I PROOF OF COROLLARY 2
Proor. The first conclusion follows directly from Lemma 1.
The conditional expectation of (Xg,,, — ng)4 can be upper bounded by:
Ex[(Xsy,, — Xs,)%] = Bx [max{3y, Z4}] < ((3y1<)4 + 105E[D4]) = (3yx)* +105B. (149)
Finally, we can upper bounded the second order moment of Ej. as follows:
Ej [Eg]
Sk+Dy Sk+1 2
:Ek (/ (Xt - Xsk_l)zdt +/ (Xt - Xsk)zdt)
Sk Sk+Dy
Si+Dy ) Sk+1 , 2
=E; (/ (X¢ - X5, +Xs, —Xsk_l) dt +/ (Xr —Xsk) dl’)
Sk Sk+Dx
, Sk+D Sk+1 ) 2
B[Ot = XDk 205, < X5 [ G- xsoare [0 - xs0%)
I /3 k
(¢) 42 ) Sk+Dy 2 Sk , 2
< 3B [(Xs, — Xs,,)*Di] + 12B | (X5, — Xs,_,) ( /S (X¢ - ng)dt) + 3B ( /S (Xt — Xs,) dt) , (150)
13 I3
where inequality (c) is from Cauchy-Schwartz E[(a + b + ¢)?] < 3E[a? + b? + ¢?].
Since the transmission delay Dy, is independent of X5, — Xg, |, the first term on the RHS of inequality (150) can be upper bounded by:
Ex | (Xs, — Xs,,)*DE] = (X5, — Xs,_)*E[D?] < (X5, — Xs,_,)*VB. (151)

To upper bound the second and third term on the RHS of inequality (150), we introduce the following Lemma, whose proof is provided in
Appendix J

LemMA 8. Recall that Z; is a wiener process staring from time 0 and let I, := inf{t > D||Z;| > +/3y} be the frame length when threshold y is
used. When E[D*] < B, we have the following results:

1 2
Y
/ Zdt
t=0
I 2
/ Z2dt
t=0

Plugging inequality (152) and (153) into (150), we can upper bound E[Ei|yk,Xsk - Xs,_,1 by:

E

4
< (%(3)/)4 - B) : ((3)/)2 + (g) - 3\/3) =: C1(y. B), (152)

E

8
< (%(3)/)4 +B) . ((3y)4+ (g) -1053) =: C3(y, B). (153)

Bi[Ef] = 3(Xs, — Xs;,_,)*VB+12C1 (v, B) (X5, — Xs;._,)? +3Ca(y, B). (154)

J PROOF OF LEMMA 8
Recall that [, = inf{t > D| |VZ;| > 43y} is a stopping time of the Wiener process Z; starting from time 0. Then for any time 7 > 0 we have:

1, 2
/ ZPdt
=0

I P2
<E / sup |Zp|| dt
0

o<t'<ly,

E
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|

=E

2 2
2| sup 1zol
osr'<l,

(a)
<4|E [l)‘f] “E| sup |Zy|*P|, (155)
0<t'<l,
where inequality (a) from the Cauchy-Schwartz inequality.
From Lemma 4, E[l;}] can be bounded as follows:
E[l,] < 256 ((3y)4 + 1053) ) (156)

Next, we prove E[supy, <, |Z¢|*P] is bounded. Recall that the stopping rule is obtained by:
l, = inf{t > D||Z;| > \/3y}. (157)

Then E SUPo<y/<l, | Zyr |4P] can be upper bounded by:

E| sup |Zy|*
o<t'<ly,
=E|| sup |Zv|*"|-1(l, > D)|+E|| sup |Z¢|*|-1(l, < D)
o<t <l 0<t’'<l
® ., 4
<GP +E| sup [Zy|], (158)
0<t'<D

where inequality (b) is because if [, > D, then we have |Z;| < /3y, Vt € [D, ) and therefore SUPg <y <1, |Zo %P < (3}’)2p+5upost'sD |Zy|%P.

For each D < oo, since the Wiener process Z is a martingale and D is a stopping time, for each d < co, we can upper bound E [supy <, <y [Z¢|*? ]
as follows:

E| sup |Zy[*

0<t'<d

4p 4p !
(4 \Tg Ed @ (_4p “p)! op. (159)
4p -1 4p -1 220 (2p)!

where inequality (c) is because of the Doob’s maximal inequality [20, p.54, Theorem 1.7] and equality (d) is because Z; follows a Guassian
distribution.

When the transmission delay D is fourth order bounded, for p = 1 and 2, plugging E[D*] < B and E[D?] < VB into inequality (159) and
(158), we have:

] 4 4
4 4
E| sup |Zp|* S(3y)2+(—) -3E[D2]:(3y)2+(—) -3VB, (160)
0<t' <l 3 3
=" = J
87 . (8)° 4 . (8)°
E| sup |Zp|°| < By)*+(=] -105E[D*] = (3y)*+|=| -105B. (161)
0<r'<l, 7 7

Plugging inequality (161), (160) and (156) into inequality (155), we have:

I, 2 4
E (/t:O Zpdt] | < 256 ((3y)4 + 1053) . ((3)/)2 + (g) -3\/13), (162)

1 2
Y
E / Z2dt
t=0

K PROOF OF INEQUALITY (61)

ProOF. Forl > D, letII; £ {7|E[Z2] = |,Vx € IT} whose squared error at the time of sample is I. Next, we establish the lower bound of

8
< 256 ((3)/)4 + 1053) . ((3y)4 + (;) . 1053) ) (163)

E [ /OT thdt] for any policy 7 € II;, which can be formulated into the following optimization problem:

T
infE [/ zfdt], st.E[c] =17 >D. (164)
4 0

As is shown in [24, Theorem 7], the optimum solution to (164) has a threshold structure, and the optimum sampling policy for each
sample path is as follows:
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T =inf{t > D||Z;] = 1*}, (165)
where the selection of A* satisfies:

E[r] = E[Z2] =L (166)
Through Lemma 7, we can compute the optimum solution to (164) as follows:

E [/O Zfdt] = éE[Zj] = %E [max{ZZ,3y}?].

(167)
To finish the proof of inequality (61), it then remains to lower bound (167) as follows:

1

gE [max{3y, Zé}z] -vE [max{Sy, le)}] . (168)

The analysis is divided into the following two cases. For simplicity, denote y; to be the threshold such that E[max{Z?2, 3y;}] = L.
e Case 1: [ > I(y™), it can be easily verify that y; > y*. Therefore, we have:

1
EE [max{Z2 , 3yl}2]

1 1
=g(3yl)2Pr(ij) <3y + EE [z}, - 1(Z% > 3y))]
1

= (B [6r)™1(Zh < 3y")| +B 25125 > 3y")] +EL(B1)? - By*)DIZE < 3y +EI((Bn)* - ZB)Gy* < 25 < 3p))
(@

>q(y™) + %E [y = 3y")*1(Z] < 3y")] + éE[3y*(3n —3y"U(Z} <3y + %E [6y* (3y1 = ZB)IBY* < Z}, < 3y))]

b)

2 M0 + i) = 1)+ () = 1)

1
=y L+ cpw(l= 1), (169)
where inequality (a) is obtained because (3y;)% — (3y*)? = (3y;—3y*)%+2X3y* (3y; - 3y*) and for le) = x that satisfies 3y* < x < 3y,

(3y1)% —x* = 6y*(3y; — x); inequality (b) is because I(y;) — [(y*) = E [(3y; — 3y*)I(Z3 < 3y™)| +E [(3y; — Z3)I(3y* < Z& < 3y))].
e Case 2: 1 < [(y*), similarly, it can be verified that 3y; < 3y*. As a result:

1
EE [max{Z2 , 3yl}2]

1 1
—EE [(3y)°1(Z3 < 3yp)] + EE [ZHU(ZE > 3y)]

= (B [y < 3y")| +E [251(zh > 3] ~E[(3r*)? - Bp)PLZ} < 3y")| ~E[(2] - 3y )G < 2} < 3y%)]
Caom+ SB (1= 3)1(Zh < 3" + 28 [o* 5 - 32 < 37)] - <B (3% (3 - ZB)1(3m < 75 < 3]
=y*I(y*) + Y E[(By; - 3y)I(Z3, < 3y™)] + Y E[By* - Z5)I(3y; < Z3) < 3y™)] + épw(l - 1(y*))?

e

(170)
where inequality (c) is obtained similarly as inequality (a) and (b).
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