2021 IEEE International Conference on Robotics and Automation (ICRA) | 978-1-7281-9077-8/21/$31.00 ©2021 IEEE | DOI: 10.1109/ICRA48506.2021.9562113

2021 IEEE International Conference on Robotics and Automation (ICRA 2021)

May 31 - June 4, 2021, Xi'an, China

An Artin Braid Group Representation of Knitting Machine State with
Applications to Validation and Optimization of Fabrication Plans

Jenny Lin', James McCann!

Abstract— Industrial knitting machines create fabric by ma-
nipulating loops held on hundreds of needles. A core problem
in pattern making for these machines is transfer planning —
coming up with a sequence of low-level operations that move
loops to the appropriate needles so that knitting through those
loops produces the correct final structure. Since each loop is
connected to the larger piece in progress, transfer plans must
account for not only loop position, but the way strands of yarn
tangle around each other.

We present the first complete, discrete representation of the
machine’s loop-tangling process. Our representation combines
a braid from the Artin Braid Group with an array of explicit
loop positions to fully capture loop crossings. By storing
braids in the Symmetric Normal Form, states can be quickly
compared and updated incrementally with machine operations.
This representation can be used to verify the equivalence of
transfer operations, providing an important tool in optimizing
knit manufacturing.

We improve on prior work in transfer planning algorithms,
which can only solve certain subclasses of problems and
are frequently suboptimal in terms of fabrication time, by
introducing a novel A* search heuristic and state-collapsing
mechanism, which we show finds optimal transfer plans for a
large benchmark set of small transfer planning problems.

I. INTRODUCTION

Industrial knitting machines are fast, flexible machines
capable of creating a wide variety of shapes and structures.
Not only can a single, continuous strand of yarn be used
to form complex 3D surfaces, careful choice of knit stitches
can produce various surface textures with drastically different
appearances and mechanical properties [1]. Thus, knitting
machines are used not only for technical garments like
compression socks and athletic shoes, but also architectural
formwork [2, 3] and large-scale installations [4, 5].

Programming for knitting machines can be difficult, as
it involves carefully arranging low level operations, a task
akin to programming in assembly language. Programmers
must develop instructions that produce the desired output
object and, ideally, do so as quickly as possible given the
available machine resources. A key operation used by knit-
ting machines to create more complex shapes and structures
is the fransfer, which moves loops around the machine.
Transfers are used to re-arrange loops in order to set them up
for subsequent knitting operations. However, many different
sequences of transfer operations may achieve the same result
with dramatically different fabrication time and stress on the
yarn; a good knit programmer must make an informed choice
among these sequences.

*This work was partially supported by Shima Seiki.
!Jenny Lin and James McCann are with Carnegie Mellon University, 5000
Forbes Ave., Pittsburgh, PA {jennylin, jmccann}@cs.cmu.edu

)Y

Q¢ 0 J
?;}6‘ ¥ :2 ‘,\ :“ , | ;

Fig. 1: The arrangement of loops on a knitting machine
(left) can be represented as a braid (right) by ordering the
needles and collapsing each loop into a single strand.

Furthermore, when checking that any two transfer se-
quences produce the same result, it is insufficient to check
that all loops end up on the correct needles. Each loop is
connected to the partially knitted object, so rearranging them
can result in tangles, both desired and undesired.

In this paper, we address the problem of transfer planning
by representing knitting machine states as mathematical
braids to fully capture the loop positions and interlacing.
Figure 1 shows an example of one such intermediate state
and its corresponding braid. This discrete representation
avoids the need for yarn simulation or geometric compu-
tations to track interlacing. State updates can be done in
O(nlogn) operations, where n is the number of loops in the
problem, and state comparison in O(m+n) operations, where
m is the length of the underlying braid word (approximately
proportional to the complexity of the yarn tangling). Given
such a representation, it is natural to ask whether a discrete
search can be used to find optimal transfer sequences.

We answer this question in the affirmative, presenting
an A* search built on our braid-based state representation.
We define the machine’s transfer process in the context
of transitions in a planning problem and present several
heuristics that emerge from the braid-based representation’s
structure. In addition, we present a method to reduce the
search space by converting equivalent states to a single
canonical form. Our search returns solutions for transfer
problems existing transfer planning algorithms [6, 7] cannot
address and demonstrates that these algorithms frequently
return suboptimal plans.

II. RELATED WORK

The pipeline for transfer sequence design used by com-
mercial systems [8] typically involves composing pre-
planned sub-sequences of transfers which solve commonly-

9

encountered situations (e.g., “cross these two loops”, “move

978-1-7281-9077-8/21/$31.00 ©2021 IEEE 1147

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 30,2022 at 15:04:31 UTC from IEEE Xplore. Restrictions apply.

this loop two needles to the right”). For more complicated
cases, or in cases where the provided operations are not time-
optimal or violate physical constraints of the object being
fabricated, the user is left to come up with a custom plan
using basic transfer operations. Confirming the correctness
of the transfer sequence then requires either fabricating the
pattern or running a physical simulation of the operations.
Afterwards, it is up to the user to visually inspect the result
for correctness, a task that becomes more difficult as the
complexity of the problem increases.

In the domain of automatic and semiautomatic machine
knitting patterns, tools either constrain the pattern space to
problems which can be solved by existing general algo-
rithms [9, 10, 11, 12], or they allow for custom plans that
can be inserted to handle custom cases [13, 14]. While these
methods can provide guarantees on the correctness of the
result, there is no general method for merging plans that
provides any bounds on final fabrication time.

The two primary algorithms that provide general solu-
tions to subsets of the transfer planning problem space
are collapse-shift-expand [6] and schoolbus+sliders [7].
Collapse-shift-expand can widen, narrow, and rotate tubes,
and it guarantees that all loops arrive on the correct needle.
However, when multiple loops have the same destination
needle, it provides no guarantee about what order the loops
will stack on the needle. It also cannot handle cables,
which are loops that cross each other. Schoolbus+sliders is
a simple algorithm that produces faster plans than collapse-
shift-expand, but it only works on flat sheets. It can guarantee
which loop is in the front when creating stacks, but cannot
guarantee total stack order or solve cables.

III. BACKGROUND

We start by providing a description of an industrial knitting
machine and the operations relevant to transfer planning.
We then provide a high level introduction to the Artin braid
group and the symmetric normal form. For a more detailed
description of braids, we recommend [15, 16].

A. Knitting Machine Model

An industrial v-bed knitting machine consists of two
facing beds (rows) of hook-shaped needles, each of which
can hold some number of loops. The second bed is what
allows v-bed machines to construct not only sheets, but also
tubes, which are flattened to lie on both beds. Each needle
is labelled by the bed it belongs to (f for front and b for
back) and its integer index within its bed. The machine may
transfer all loops held on a needle to the needle across from
it on the opposing bed. If we associate with each needle, n,
a list of loops, loops(n), it holds ordered from tip to base,
the transfer function can be defined as follows:

Definition 1 (Transfer Operation). A transfer between two
needles xfer(n,n’) represents the operation:

< loops(n’) + reverse(loops(n))
]

loops(n')
loops(n)

The knitting machine may perform a transfer operation
only between two needles that are aligned with each other.
It can change needle alignment by using the rack operation,
which slides the beds laterally. At a racking value r, front
bed needle f, is across from back bed needle b,.,. The
machine’s possible racking values are constrained to some
range [Ryin, Rmax] (usually about [—5,5] needles).

A transfer operation is performed when a mechanical part
called the carriage passes over a needle and actuates it. Mul-
tiple transfers performed at the same racking can be grouped
into a single transfer pass. The amount of time required for
a transfer pass is independent of the number of operations
therein, and significantly longer than the racking time. Thus,
the number of transfer passes serves as a reasonable proxy
for the overall time of a transfer plan.

Given a sequence of transfer operations, the number of
transfer passes required is equivalent to the number of
nonempty blocks of sequential transfers at the same rack-
ing value. Note that should the operations xfer(n,n’) and
xfer(n',n) occur in the same pass, from Definition 1 we see
that they are equivalent to the single operation xfer(n’,n).

While there are more complicated machines that employ
additional beds or specialized holding locations for each
needle, the v-bed model can emulate these machines using a
technique called half-gauging, where (e.g.) even needles are
used as temporary holding locations.

B. Artin Braid Group

Braid theory is the topological study of groups whose
elements are intertwining strands with fixed endpoints [17].
More specifically, imagine a box with n starting points on
the bottom and n ending points on top. Each start point has
a strand that connects with some end point, with no two
start points sharing the same end point. In addition, when
following a strand from start to finish, one should only move
upwards; if the strand ‘turns around’ and heads down, it is
not a braid. The algebraic definition is as follows:

Definition 2 (The Artin Braid Group). The Artin Braid
Group B, on n > 1 strands is the group generated by

generators Gfr e 6;1 | with the equivalence relations:

+ot = gtot i
Gi+65r —+G- Gi+ L for |i—j|>1
o 0/0; =00 0] forli—jl=1

When writing and drawing braids, we use the convention
that positive crossing, o;", represents the ith strand crossing
over the i+ 1st strand, and the inverse (negative) crossing,
o; , represents the ith strand crossing under the i+ 1st strand.
Braid words are products of generators, where the leftmost
generator is the most recently executed generator, and the
rightmost generator is least recent. An inverse of a word can
be quickly found as follows:

Definition 3 (Braid word inverse). Given the braid word
W = Giicji...cki, the word W=! = G,?F...O'fcf is its
inverse, where the product W~'W is equivalent to the trivial
identity braid with no crossings, €.

1148

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 30,2022 at 15:04:31 UTC from IEEE Xplore. Restrictions apply.

MNAONONAYEIRNAENONATHN

Algorithm 1 Racking Operation

D ENANACANANEE NN
Fig. 2: The left-to-right, back-to-front ordering on loops
(colored circles) on a machine at zero racking (left) and -1
racking (right). Note how the relative order of loops on the
same bed does not change. This includes loops on the same
needle.

Due to the equivalence relations, each member y of the
braid group B, is an equivalence class of braid words, all
of which represent the same underlying topological braid.
The word problem on braids asks whether two braid words
W and W’ belong to the same equivalence class, i.e. are the
same topological braid. There exist a variety of solutions to
the word problem, of which several use what are known as
simple positive braids:

Definition 4 (Simple positive braid). The simple positive
braids are the set of braids where all crossings are positive,
and every pair of strands crosses at most once.

The symmetric normal form [15] rearranges each braid
word into a carefully ordered sequence of simple positive
braids and inverse simple positive braids. This sequence is
proven to be unique for each member of the braid group,
thereby reducing the word problem to a question of strict
equality.

IV. STATE REPRESENTATION

In order to fully capture a knitting machine’s state, we
combine explicit loop locations with the Artin braid group,
which can represent tangles between knit loops. Recall that
Definition 2 requires a strict ordering on its strands. We
choose to order the loops left-to-right, back-to-front, as seen
in Figure 2 (note how the assignment of loops 1 and 2
swaps).

Observe that any transfers that occur at racking » do not
change the loop ordering. It is only when the machine’s
racking value changes that any loops in back bed b would be
sent to different needles in front bed f, potentially changing
the loop ordering. Furthermore, loops on the same bed never
change order relative to each other; a loop in f can only
potentially cross a loop in b. Thus the resulting braid from
a racking operation can be found by tracking the differences
in loop ordering using Algorithm 1.

Let V be the braid word produced by a single racking
operation and Y be the symmetric normal braid representing
the previous state’s ordering. The braid word VY represents
the new state. Note that a single rack operation causes
any two strands to cross only at most once, and resulting
crossings are either all positive or all negative. Thus V
is either a simple positive braid or its inverse. Therefore,
the symmetric normal form of VY can be calculated in
O(nlog(n)) operations [16].

Given an initial list of loop locations and an initial braid,
the resulting state from any list of transfer operations can be

Input: ordered list of loops L, old racking r, new racking r’
Qutput: braid word V

1: Ve

2: if ¥/ < r then

33 fori=0...ndo

4: if L[i] € b then

5: for j=i—1...0do

6: if L[j] € fAL[i]+ 7 <L[j] then
7: V<oV

8: else if 7/ > r then

9: fori=n...0do

10: if L[i] € b then

11: for j=i+1...ndo

12: if L[j] € fAL[i]+7 > L[j] then
13: V<—G/?_1V

14: return V

determined. Because the ordering used for the braid word
also captures the ordering of loops in a stack, it is sufficient
for a state to only store each loop’s needle position instead
of explicitly storing the loop list of each needle.

V. OPTIMAL A* SEARCH

Given this discrete representation of the knitting machine
state, we now use search techniques to find minimum-length
transfer plans. We base our search on A*, where a state’s
immediate neighbors are those reachable via any number of
transfers followed by a single racking operation, and the goal
has a braid equivalent to input braid W and loops at target
needle locations L. We now model the constraints of the
machine knitting process to restrict the search, and propose
several modifications to the state representation to improve
search performance.

A. Constraints

Loops on a knitting machine are constructed using a single
continuous strand of yarn, where the amount of yarn between
adjacent loops can be varied. This physical connection can
break when connected loops are moved too far apart. To
account for this, we define a slack constraint [s_,s] on the
distance between connected loops [, and [,. In other words:

Definition 5 (Slack Constraint). Connected loops 1, and I,
respect slack when s_ < pos(l,) — pos(ly) < s, where

N iflefi
pos(l)“_{ i+r ifl€b

Note that, for loops on opposite beds, the machine’s
racking affects whether the loops respect slack. Thus the set
of all connected loops which lie on opposite beds can be used
to define a valid racking range [Vinin, Vinax] C [Rimin, Rimax)-

We also explicitly define which needles are available, as
certain needles on the machine may be occupied by loops
that should not be moved by the transfer plan. This must also
be taken into account when determining whether a transfer
is reversible.

1149

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 30,2022 at 15:04:31 UTC from IEEE Xplore. Restrictions apply.

B. Cost Model

Recall that the machine can execute any number of trans-
fers in a single transfer pass as long as they occur at the
same racking. Therefore, it’s useful to think of transitions as
({xfer},rack) pairs, where {xfer} is one of the 2" subsets
of n total distinct transfer operations for a given state, and
rack is one of the valid racking operations for the state post
{xfer}. The cost of a transition is 0 if xfer is empty, and 1
otherwise.

C. State Equivalence

A* search stores visited states in memory in order to avoid
expanding the same state multiple times. This makes fast
state equality checks essential. In fact, we can do better than
just strict equality. For two different states which produce
the exact same set of subsequent states under expansion, we
can prune the state space by searching only one of them. In
this section we define a function, canonicalize, to identify
such equivalence classes in which this property holds true.

Recall that xfer(n,n") can be reversed by xfer(n’,n) if n’
is an empty needle. Consider two states S and §’, which
are identical except for a single loop that is on needle n in
state S, and needle n’ in state S'. If xfer(n,n) is reversible
and the transfer set from S to some state includes xfer(n,n’),
then that transfer can be reversed with xfer(n’,n) to acquire
the transfer set that would reach the same state from §'. If
the transfer set from S does not include xfer(n,n’), then S’
can use the same set plus xfer(n',n). This means that in a
search, no matter which of the two states are expanded first,
it will visit all states that can be reached from the other state,
making the second expansion redundant.

Now consider some non-empty transfer set X at racking
r. This set would have cost 1. Any number of additional
transfers can be performed before and after X, and as long
as they also occur at racking r, they can be rolled into
the existing transfer pass for cost 0. Thus if we define
some reversible transfer function that sends all equivalent
loop states to a single, canonical loop state, the function
can be applied before the duplicate check, making it a
simple equality check. These reversible transfers would then
combine with the xfer portion of the expansion, making
it a zero-cost transformation. Let canonicalize denote an
operation on a given state, which performs all reversible
transfers on back bed loops, essentially loading as many
loops as possible to the front bed without performing any
irreversible transfers (Figure 3). Then, during the search, our
code stores visited states and checks against them all under
application of canonicalize.

D. Heuristics

To guide the search, we provide the following heuristics
based on the braid word and the loop locations.

1) Braid Word Length: Let len(Y) give the number of
simple braids contained in the symmetric normal form Y.
This notion of braid length changes by at most one after
multiplication by another simple braid [16]. Rather than start
with the identity braid € and check equivalence against the

3 (® xfer £3 b2 N \2\@®\ @\

\\D\2\@\G\ =~ xfer b2 3 - \ \®\ 5\4\©\

canonicalize(S)
A
xfer f3 b2 ‘

xfer b4 f5 xfer b3 f4 xfer b3 f4

I N

xfer f5 b4

xfer b4 f5)
S T

Fig. 3: A transition from S; to state 7" costs a single transfer
pass even if it is preceded by some number of reversible
transfers. Thus the states are equivalent, and we can use
a single canonical state canonicalize(S) when representing
them in a search.

target braid W, we can let the initial state be W' and let
€ be the target braid. The resulting braid produced by the
plan will still be the target braid W, and len(Y), where Y is
the symmetric canonical braid stored in the state, will be a
consistent heuristic.

2) Offsets: If we consider a relaxed version of the transfer
planning problem that has infinite slack, reversible loop
stacking, and is only concerned with needle position and
not relative ordering, then a solution can be found by solely
considering each loop’s offset, or the single racking value
that would move a loop from its current location to its
destination. We can define 0, , — the set of sets of offsets
that can be brought to zero in p steps starting at racking r
— using the following recurrence:

ﬁ’erl_’r/E{{x,er(r/fr)|x€S}|S€ﬁp7r} (1)

o, = { {{0}} ifr=0 @)

0 otherwise

Notice that the number of offsets at most doubles every
step. Thus we can establish the following lower bound:

Theorem 1. Any problem with n unique non-zero offsets
requires are least |loga(n+1)] passes to solve.

Our offset table heuristic goes further, computing and
storing O, , (effectively, a pattern database [18]) for r €
[—8,8] and p < 8. In order to facilitate fast lookups in &, our
code builds a table — for every racking r — of all maximal'
achievable offset-sets and their associated minimum step
count. This table is sorted by step count. To look up a
query set in the table for the current racking value, the code
examines entries in order until a containing set is found and
returns the associated step count. This lookup is accelerated
by maintaining a “skip” value for each offset alongside each
row in the table, indicating the next table entry in which that
offset appears. These skip values are used by our code to
avoid needing to check every row.

VI. RESULTS

All experiments were performed on a mid-range
workstation-class computer running Debian GNU/Linux with

Te., if both S,R € Opr and S C R, then only R is stored.

1150

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 30,2022 at 15:04:31 UTC from IEEE Xplore. Restrictions apply.

an Intel Core i7-8700K 3.7GHz / 12-thread CPU - though
our search is single-threaded — and 64GB of RAM.

a) Optimal plans: We compare the optimal plans pro-
duced by canonical-node A* search against two existing
transfer planning algorithms: schoolbus+sliders (sb+s) and
collapse-shift-expand (cse). Both algorithms have limita-
tions on the types of problems they can and are best suited
to solve, so we used three test sets for comparison.

For each test case, our test harness first ran the existing
algorithm to generate a transfer sequence, then used that
transfer sequence to construct a target state, and, finally, ran
our search algorithm with that target state. (This procedure is
needed because cse chooses stacking and rotation direction
without user control, so it may plan to one of several possible
output states.)

The first set, flat—-1lace, consists of all 28,696 unique
transfer problems with eight loops, stacks of at most three
loops, distance between loops increasing by at most one, and
no loop crossings (cables/twists). Problems that only differ
by translation are considered equivalent. In other words, this
is the set of eight-loop problems that sb+s can solve. Results
are shown in Figure 4. As expected, sb+s is able to solve
these cases in relatively few (< 15) passes, and, indeed,
is optimal in 2942 of the cases (= 10% of trials which
finished). However, there is still room to improve, since in
the remaining cases, sb+s uses up to 2.8 x the passes of the
optimal solution.

The second set, simple—tubes, contains all 2113 prob-
lems on eight-loop tubes, where pairs of adjacent loops can
either remain adjacent, be stacked atop each other, or be
separated by an empty needle, and the overall tube can be
rotated. These mimic the basic shaping operations used, e.g.,
by [10]; and, thus, the problems that cse was designed to
solve. Figure 5 shows that cse produces optimal solutions
in a much smaller fraction of problems: only 36 (=~ 1.7%)
were optimal, and solutions were sometimes more than 4x
slower. This is not unexpected, as cse may require up to
O(n?) passes in the worst case [7].

For the final set, cable—-tubes, we constructed 1183
transfer sequences by prepending 1x1 and 2x2 cables (loop
crossings) to plans generated by cse for eight-loop tubes
with rotations. The comparison with optimal transfer se-
quences (Figure 6) shows that there are significant fabrication
speed gains to be made by combining cable and rotation
transfers instead of performing them sequentially, as might
be done by a programmer putting together an ad-hoc solu-
tion.

b) Canonical Node: We also examined the effect of
canonicalizing on the time and memory requirements of the
search on all-short, the subset of all datasets for which
our search found a solution in < 100ms. As can be seen in
Figure 7, the number of node expansions improves by a fac-
tor of 3165x, and runtime by 3828 x, with larger problems
experiencing more improvement. Of the few problems where
canonical-node is slower (34 out of 5902 total problems),
much of the slow down can be attributed to additional
overhead from the canonicalize operation. We conjecture that

" NaN9 Problem
S 61 s e 0o o o ° counts
8 °
% 54 s o @ ® ® ¢ o 0o o o P 1000
a 2000
s 4 0000 o o)
E 3000
2 3{ 5 o @ 0 @ o o .
N °
2{ &

2 4 6 8 10 12 14
sbs pass count

Fig. 4: The Schoolbus + Sliders (sb+s) algorithm [7]
produces transfer plans within a factor of 3x of optimal on
a set of 6-loop lace-like patterns (flat-lace).

NaN

€ e oeeo oo ° ° Problem
3 y

3 S 0000000000000 0 00000 o U
2 y 0000000000000 00000 LI
= o000 @0000000)
E g

=

8

Now b oo N

H 4 6 8 o 12 14 16 18 20 22 24 2 28
cse pass count

Fig. 5: The Collapse-Shift-Expand (cse) algorithm [6]
produces transfer plans that stray relatively far from optimal
on a set of 8-loop shaped tube problems (simple-tubes).

the 10 problems where canonical-node expands more nodes
is due to tie breaking between equally weighted states.

c) Heuristics: In addition, we looked at the perfor-
mance of various heuristics for the A* search (Table I).
Our combined offset table and braid word length heuristic
provide a three-order-of-magnitude reduction in both mem-
ory usage and search time compared to using no heuristic,
and a one-order-of-magnitude reduction compared to the
simpler combined braid word length and log offset heuristic.
Building the offset table took 5.2 seconds, making it a strict
improvement for larger problems even without amortizing
the time required to build the table across multiple problems.
Furthermore, taking the maximum of braid word length
(which only looks at the braid) and offset table (which only
looks at loop positions) provides improvements over using
either heuristic alone.

VII. DISCUSSION AND FUTURE WORK

We presented a representation of a knitting machine’s
state that completely captures the effects of its transfer
operations while being discrete and simple to update. We
believe our work provides a crucial foundation for a host
of interesting problems in the domain of knitting machine
pattern generation.

While our A* search implementation is a breakthrough

2 NaN Problem
2 7 counts
8 s e e o) e o Py Py e o o %

2

8 6 . ® e ® e * 0 o) e o P o o2
] 4 40
E 5 [@ o e o o o o o [. [] I
g /

8 s . . e o o

8 10 2 14 16 2 2 28 30 52

18 2 2
cse+cable pass count

Fig. 6: The ad-hoc strategy of concatenating cable and
tube rotation plans (dataset cable—tubes) presents many
opportunities for algorithmic optimization.

1151

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 30,2022 at 15:04:31 UTC from IEEE Xplore. Restrictions apply.

. .
Pass Count 2 3 4 5 Improvement ,* 1x . 10x/100x ‘

Runtime With Node Collapse
\

10 100 1000 10000

Runtime Without Node Collapse

00+

Node Expansions With Node Collapse

16402 16403 1e+04 16405
Node Expansions Without Node Collapse

Fig. 7: Our canonical-node optimization results in an approximately two-order-of-magnitude reduction in both the search
runtime and in the number of nodes expanded in our tests on the all-short dataset.

Scenario Nodes Time (s) Speedup
No Heuristic 471451589 5822643 1x

+ Braid 281291965 3309319 1.8x

+ Log Offsets 2500142 2612.2 223 %

+ Braid+Log 1663664 1688.6 344 x

+ Prebuilt 259985 274.1 2124 x

+ Braid+Prebuilt 184265 189.8 3067 x

TABLE I: Total sum of nodes expanded and time taken for
various combinations of heuristics over the 5002 problems
that all heuristics finished. Heuristics were combined using
max(hy,hy).

in the optimality of existing planning algorithms, it still
faces challenges in producing practical transfer plans. The
exponential nature of the state expansion quickly makes
A* search untenable for large problems. Memory issues are
present even for problems with eight loops; meanwhile, knit-
ting machines commonly use hundreds of loops at a given
time. There exist several general approaches for dealing
with high-dimensional search problems [19, 20]. It would be
interesting to consider these approaches as well as methods
that exploit the typically regular nature of knitting patterns;
certain macro-level operations are quite common (e.g., rotate
the tube two needles clockwise, cross every fifth loop over
its neighbor to the right) while others are less so (e.g., close
a tube by tangling loops around each other). A principled
method to merge smaller subproblems could result in a
practical transfer planning solution for typical large problems
or provide tighter heuristics for optimal search.

Furthermore, in our work, we optimize solely the fab-
rication time of transfer plans. However, there exist other
metrics a plan could account for, such as reliability. While
knitting machines are generally quite robust, each transfer
operation does have a small possibility of failure, with certain
operations such as transferring large stacks of loops being
more failure-prone, so minimizing the number of risky trans-
fers could be another optimization goal. Other metrics that
would improve the reliability of plans include minimizing
the overall distance between loops, and considering the strain
caused by twisting loops around each other.

In addition, while transfer planning answers the question

of how to transition from an initial layout of loops on the
machine to a new target layout, there is also the question of
how to assign loops to machine needles in the first place. This
loop assignment problem is also known as scheduling. While
prior work [10] introduced an algorithm that guarantees
a correct solution on certain subsets of the pattern space,
the overall problem of correct, optimal scheduling is still
open. It remains to be seen whether transfer planning and
scheduling can be solved in concert to optimize overall
pattern efficiency.

Another natural question that emerges is how to com-
pletely capture the result of all of a machine’s operations,
i.e., whether two general knitting patterns produce the same
result. Aside from the transfer related operations presented
here, there are knit and tuck, which create loops, drop, which
unravels loops, and miss, which can potentially inlay yarn
between loops. A representation that can fully account for
all machine operations would pave the way for smart knit
compilers capable of optimizing any knitting program.

VIII. CONCLUSION

Our braid-based representation is the first discrete repre-
sentation that can fully capture the behavior of yarn during
complex transfer operations. This opens the space of transfer
planning to automated verification and search, providing
important tools to simplify knit programming and optimiza-
tion. Further, we think that our braid-based machine state
representation provides a good starting point for a complete,
canonical, discrete representation for all machine knitting
operations. We hope that this work provides a representation
amenable to the vast literature of planning techniques (of
which we barely scratched the surface), effectively extending
their reach into the realm of automated knitting transfer
sequence design.

REFERENCES

[1] M. Hofmann, L. Albaugh, T. Sethapakadi, J. Hodgins,
S. E. Hudson, J. McCann, and J. Mankoff, “Knitpicking
textures: Programming and modifying complex knitted
textures for machine and hand knitting,” in Proceedings

1152

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 30,2022 at 15:04:31 UTC from IEEE Xplore. Restrictions apply.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

of the 32nd Annual ACM Symposium on User Interface
Software and Technology, 2019, pp. 5-16.

M. Popescu, L. Reiter, A. Liew, T. Van Mele, R. J.
Flatt, and P. Block, “Building in concrete with an ultra-
lightweight knitted stay-in-place formwork: prototype
of a concrete shell bridge,” in Structures, vol. 14.
Elsevier, 2018, pp. 322-332.

M. Popescu, M. Rippmann, A. Liew, L. Reiter, R. J.
Flatt, T. Van Mele, and P. Block, “Structural design,
digital fabrication and construction of the cable-net and
knitted formwork of the knitcandela concrete shell,” in
Structures. Elsevier, 2020.

J. Sabin, D. Pranger, C. Binkley, K. Strobel, and J. L.
Liu, “Lumen,” Proceedings of the IASS Symposium,
2018.

Y. P. M. D. Moritz and M. A. Baranovskaya, “Knit-
flatable architecture - pneumatically activated prepro-
grammed knitted textiles,” in eCAADe, 2016.

J. McCann, L. Albaugh, V. Narayanan, A. Grow,
W. Matusik, J. Mankoff, and J. Hodgins, “A compiler
for 3d machine knitting,” ACM Trans. Graph.,
vol. 35, no. 4, July 2016. [Online]. Available:
https://doi.org/10.1145/2897824.2925940

J. Lin, V. Narayanan, and J. McCann, “Efficient
transfer planning for flat knitting,” in Proceedings
of the 2nd ACM Symposium on Computational
Fabrication, ser. SCF °18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online].
Available: https://doi.org/10.1145/3213512.3213515
Shima Seiki, “Sds-one apex3,” [Online]. Avail-
able from: http://www.shimaseiki.com/product/design/
sdsone)\ _apex/flat/, 2011.

A. Kaspar, T.-H. Oh, L. Makatura, P. Kellnhofer,
and W. Matusik, “Neural inverse knitting: From
images to manufacturing instructions,” in Proceedings
of the 36th International Conference on Machine
Learning, ser. Proceedings of Machine Learning
Research, K. Chaudhuri and R. Salakhutdinov, Eds.,
vol. 97. Long Beach, California, USA: PMLR,
09-15 Jun 2019, pp. 3272-3281. [Online]. Available:
http://proceedings.mlr.press/v97/kaspar19a.html

V. Narayanan, L. Albaugh, J. Hodgins, S. Coros,
and J. McCann, “Automatic machine knitting of
3d meshes,” ACM Trans. Graph., vol. 37, no. 3,
pp. 35:1-35:15, Aug. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3186265

A. Karmon, Y. Sterman, T. Shaked, E. Sheffer, and
S. Nir, “Knitit: A computational tool for design,
simulation, and fabrication of multiple structured
knits,” in Proceedings of the 2nd ACM Symposium on
Computational Fabrication, ser. SCF *18. New York,
NY, USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3213512.
3213516

M. Hofmann, J. Mankoff, and S. E. Hudson, “Knitgist:
A programming synthesis toolkit for generating
functional machine-knitting textures,” in Proceedings

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

1153

of the 33rd Annual ACM Symposium on User
Interface Software and Technology, ser. UIST ’20.
New York, NY, USA: Association for Computing
Machinery, 2020, p. 1234-1247. [Online]. Available:
https://doi.org/10.1145/3379337.3415590

V. Narayanan, K. Wu, C. Yuksel, and J. McCann,
“Visual knitting machine programming,” ACM Trans.
Graph., vol. 38, no. 4, July 2019. [Online]. Available:
https://doi.org/10.1145/3306346.3322995

A. Kaspar, L. Makatura, and W. Matusik, “Knitting
skeletons: A computer-aided design tool for shaping
and patterning of knitted garments,” in Proceedings
of the 32nd Annual ACM Symposium on User
Interface Software and Technology, ser. UIST ’19.
New York, NY, USA: Association for Computing
Machinery, 2019, p. 53-65. [Online]. Available:
https://doi.org/10.1145/3332165.3347879

P. Dehornoy, “Efficient solutions to the braid isotopy

problem,” Discrete Applied Mathematics, vol. 156,
no. 16, pp. 3091 - 3112, 2008, applications
of Algebra to Cryptography. [Online]. Avail-

able: http://www.sciencedirect.com/science/article/pii/
S0166218X08000437

D. B. A. Epstein, M. S. Paterson, J. W. Cannon, D. F.
Holt, S. V. Levy, and W. P. Thurston, Word Processing
in Groups. Natick, MA, USA: A. K. Peters, Ltd., 1992.
K. Murasugi and B. Kurpita, A Study of Braids,
ser. Mathematics and Its Applications. Springer
Netherlands, 2012. [Online]. Available: https://books.
google.com/books?id=VLTnCAAAQBAJ

A. Felner, R. E. Korf, R. Meshulam, and R. C. Holte,
“Compressed pattern databases,” Journal of Artificial
Intelligence Research, vol. 30, pp. 213-247, 2007.

K. Gochev, B. Cohen, J. Butzke, A. Safonova, and
M. Likhachev, “Path planning with adaptive dimension-
ality,” in Fourth annual symposium on combinatorial
search, 2011.

J. J. Kuffner and S. M. LaValle, “Rrt-connect: An
efficient approach to single-query path planning,” in
Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No. 00CH37065), vol. 2.
IEEE, 2000, pp. 995-1001.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 30,2022 at 15:04:31 UTC from IEEE Xplore. Restrictions apply.

