
An Artin Braid Group Representation of Knitting Machine State with

Applications to Validation and Optimization of Fabrication Plans

Jenny Lin1, James McCann1

Abstract— Industrial knitting machines create fabric by ma-
nipulating loops held on hundreds of needles. A core problem
in pattern making for these machines is transfer planning –
coming up with a sequence of low-level operations that move
loops to the appropriate needles so that knitting through those
loops produces the correct final structure. Since each loop is
connected to the larger piece in progress, transfer plans must
account for not only loop position, but the way strands of yarn
tangle around each other.

We present the first complete, discrete representation of the
machine’s loop-tangling process. Our representation combines
a braid from the Artin Braid Group with an array of explicit
loop positions to fully capture loop crossings. By storing
braids in the Symmetric Normal Form, states can be quickly
compared and updated incrementally with machine operations.
This representation can be used to verify the equivalence of
transfer operations, providing an important tool in optimizing
knit manufacturing.

We improve on prior work in transfer planning algorithms,
which can only solve certain subclasses of problems and
are frequently suboptimal in terms of fabrication time, by
introducing a novel A* search heuristic and state-collapsing
mechanism, which we show finds optimal transfer plans for a
large benchmark set of small transfer planning problems.

I. INTRODUCTION

Industrial knitting machines are fast, flexible machines

capable of creating a wide variety of shapes and structures.

Not only can a single, continuous strand of yarn be used

to form complex 3D surfaces, careful choice of knit stitches

can produce various surface textures with drastically different

appearances and mechanical properties [1]. Thus, knitting

machines are used not only for technical garments like

compression socks and athletic shoes, but also architectural

formwork [2, 3] and large-scale installations [4, 5].

Programming for knitting machines can be difficult, as

it involves carefully arranging low level operations, a task

akin to programming in assembly language. Programmers

must develop instructions that produce the desired output

object and, ideally, do so as quickly as possible given the

available machine resources. A key operation used by knit-

ting machines to create more complex shapes and structures

is the transfer, which moves loops around the machine.

Transfers are used to re-arrange loops in order to set them up

for subsequent knitting operations. However, many different

sequences of transfer operations may achieve the same result

with dramatically different fabrication time and stress on the

yarn; a good knit programmer must make an informed choice

among these sequences.

*This work was partially supported by Shima Seiki.
1Jenny Lin and James McCann are with Carnegie Mellon University, 5000

Forbes Ave., Pittsburgh, PA {jennylin, jmccann}@cs.cmu.edu

Fig. 1: The arrangement of loops on a knitting machine

(left) can be represented as a braid (right) by ordering the

needles and collapsing each loop into a single strand.

Furthermore, when checking that any two transfer se-

quences produce the same result, it is insufficient to check

that all loops end up on the correct needles. Each loop is

connected to the partially knitted object, so rearranging them

can result in tangles, both desired and undesired.

In this paper, we address the problem of transfer planning

by representing knitting machine states as mathematical

braids to fully capture the loop positions and interlacing.

Figure 1 shows an example of one such intermediate state

and its corresponding braid. This discrete representation

avoids the need for yarn simulation or geometric compu-

tations to track interlacing. State updates can be done in

O(n logn) operations, where n is the number of loops in the

problem, and state comparison in O(m+n) operations, where

m is the length of the underlying braid word (approximately

proportional to the complexity of the yarn tangling). Given

such a representation, it is natural to ask whether a discrete

search can be used to find optimal transfer sequences.

We answer this question in the affirmative, presenting

an A* search built on our braid-based state representation.

We define the machine’s transfer process in the context

of transitions in a planning problem and present several

heuristics that emerge from the braid-based representation’s

structure. In addition, we present a method to reduce the

search space by converting equivalent states to a single

canonical form. Our search returns solutions for transfer

problems existing transfer planning algorithms [6, 7] cannot

address and demonstrates that these algorithms frequently

return suboptimal plans.

II. RELATED WORK

The pipeline for transfer sequence design used by com-

mercial systems [8] typically involves composing pre-

planned sub-sequences of transfers which solve commonly-

encountered situations (e.g., “cross these two loops”, “move

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(IC

RA
) |

 9
78

-1
-7

28
1-

90
77

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

RA
48

50
6.

20
21

.9
56

21
13

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 30,2022 at 15:04:31 UTC from IEEE Xplore. Restrictions apply.

this loop two needles to the right”). For more complicated

cases, or in cases where the provided operations are not time-

optimal or violate physical constraints of the object being

fabricated, the user is left to come up with a custom plan

using basic transfer operations. Confirming the correctness

of the transfer sequence then requires either fabricating the

pattern or running a physical simulation of the operations.

Afterwards, it is up to the user to visually inspect the result

for correctness, a task that becomes more difficult as the

complexity of the problem increases.

In the domain of automatic and semiautomatic machine

knitting patterns, tools either constrain the pattern space to

problems which can be solved by existing general algo-

rithms [9, 10, 11, 12], or they allow for custom plans that

can be inserted to handle custom cases [13, 14]. While these

methods can provide guarantees on the correctness of the

result, there is no general method for merging plans that

provides any bounds on final fabrication time.

The two primary algorithms that provide general solu-

tions to subsets of the transfer planning problem space

are collapse-shift-expand [6] and schoolbus+sliders [7].

Collapse-shift-expand can widen, narrow, and rotate tubes,

and it guarantees that all loops arrive on the correct needle.

However, when multiple loops have the same destination

needle, it provides no guarantee about what order the loops

will stack on the needle. It also cannot handle cables,

which are loops that cross each other. Schoolbus+sliders is

a simple algorithm that produces faster plans than collapse-

shift-expand, but it only works on flat sheets. It can guarantee

which loop is in the front when creating stacks, but cannot

guarantee total stack order or solve cables.

III. BACKGROUND

We start by providing a description of an industrial knitting

machine and the operations relevant to transfer planning.

We then provide a high level introduction to the Artin braid

group and the symmetric normal form. For a more detailed

description of braids, we recommend [15, 16].

A. Knitting Machine Model

An industrial v-bed knitting machine consists of two

facing beds (rows) of hook-shaped needles, each of which

can hold some number of loops. The second bed is what

allows v-bed machines to construct not only sheets, but also

tubes, which are flattened to lie on both beds. Each needle

is labelled by the bed it belongs to (f for front and b for

back) and its integer index within its bed. The machine may

transfer all loops held on a needle to the needle across from

it on the opposing bed. If we associate with each needle, n,

a list of loops, loops(n), it holds ordered from tip to base,

the transfer function can be defined as follows:

Definition 1 (Transfer Operation). A transfer between two

needles xfer(n,n�) represents the operation:

loops(n�) ← loops(n�)+ reverse(loops(n))
loops(n) ← []

The knitting machine may perform a transfer operation

only between two needles that are aligned with each other.

It can change needle alignment by using the rack operation,

which slides the beds laterally. At a racking value r, front

bed needle fn is across from back bed needle bn+r. The

machine’s possible racking values are constrained to some

range [Rmin,Rmax] (usually about [−5,5] needles).

A transfer operation is performed when a mechanical part

called the carriage passes over a needle and actuates it. Mul-

tiple transfers performed at the same racking can be grouped

into a single transfer pass. The amount of time required for

a transfer pass is independent of the number of operations

therein, and significantly longer than the racking time. Thus,

the number of transfer passes serves as a reasonable proxy

for the overall time of a transfer plan.

Given a sequence of transfer operations, the number of

transfer passes required is equivalent to the number of

nonempty blocks of sequential transfers at the same rack-

ing value. Note that should the operations xfer(n,n�) and

xfer(n�,n) occur in the same pass, from Definition 1 we see

that they are equivalent to the single operation xfer(n�,n).
While there are more complicated machines that employ

additional beds or specialized holding locations for each

needle, the v-bed model can emulate these machines using a

technique called half-gauging, where (e.g.) even needles are

used as temporary holding locations.

B. Artin Braid Group

Braid theory is the topological study of groups whose

elements are intertwining strands with fixed endpoints [17].

More specifically, imagine a box with n starting points on

the bottom and n ending points on top. Each start point has

a strand that connects with some end point, with no two

start points sharing the same end point. In addition, when

following a strand from start to finish, one should only move

upwards; if the strand ‘turns around’ and heads down, it is

not a braid. The algebraic definition is as follows:

Definition 2 (The Artin Braid Group). The Artin Braid

Group Bn on n > 1 strands is the group generated by

generators σ
+
1 . . . σ

+
n−1 with the equivalence relations:

σ
+
i σ

+
j = σ

+
j σ

+
i for |i− j|> 1

σ
+
i σ

+
j σ

+
i = σ

+
j σ

+
i σ

+
j for |i− j|= 1

When writing and drawing braids, we use the convention

that positive crossing, σ
+
i , represents the ith strand crossing

over the i+ 1st strand, and the inverse (negative) crossing,

σ
−
i , represents the ith strand crossing under the i+1st strand.

Braid words are products of generators, where the leftmost

generator is the most recently executed generator, and the

rightmost generator is least recent. An inverse of a word can

be quickly found as follows:

Definition 3 (Braid word inverse). Given the braid word

W = σ
±
i σ

±
j . . .σ

±
k , the word W−1 = σ

∓
k . . .σ

∓
j σ

∓
i is its

inverse, where the product W−1W is equivalent to the trivial

identity braid with no crossings, ε .

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 30,2022 at 15:04:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The left-to-right, back-to-front ordering on loops

(colored circles) on a machine at zero racking (left) and -1

racking (right). Note how the relative order of loops on the

same bed does not change. This includes loops on the same

needle.

Due to the equivalence relations, each member y of the

braid group Bn is an equivalence class of braid words, all

of which represent the same underlying topological braid.

The word problem on braids asks whether two braid words

W and W � belong to the same equivalence class, i.e. are the

same topological braid. There exist a variety of solutions to

the word problem, of which several use what are known as

simple positive braids:

Definition 4 (Simple positive braid). The simple positive

braids are the set of braids where all crossings are positive,

and every pair of strands crosses at most once.

The symmetric normal form [15] rearranges each braid

word into a carefully ordered sequence of simple positive

braids and inverse simple positive braids. This sequence is

proven to be unique for each member of the braid group,

thereby reducing the word problem to a question of strict

equality.

IV. STATE REPRESENTATION

In order to fully capture a knitting machine’s state, we

combine explicit loop locations with the Artin braid group,

which can represent tangles between knit loops. Recall that

Definition 2 requires a strict ordering on its strands. We

choose to order the loops left-to-right, back-to-front, as seen

in Figure 2 (note how the assignment of loops 1 and 2

swaps).

Observe that any transfers that occur at racking r do not

change the loop ordering. It is only when the machine’s

racking value changes that any loops in back bed b would be

sent to different needles in front bed f , potentially changing

the loop ordering. Furthermore, loops on the same bed never

change order relative to each other; a loop in f can only

potentially cross a loop in b. Thus the resulting braid from

a racking operation can be found by tracking the differences

in loop ordering using Algorithm 1.

Let V be the braid word produced by a single racking

operation and Y be the symmetric normal braid representing

the previous state’s ordering. The braid word VY represents

the new state. Note that a single rack operation causes

any two strands to cross only at most once, and resulting

crossings are either all positive or all negative. Thus V

is either a simple positive braid or its inverse. Therefore,

the symmetric normal form of VY can be calculated in

O(n log(n)) operations [16].

Given an initial list of loop locations and an initial braid,

the resulting state from any list of transfer operations can be

Algorithm 1 Racking Operation

Input: ordered list of loops L, old racking r, new racking r�

Output: braid word V

1: V ← ε

2: if r� < r then

3: for i = 0 . . .n do

4: if L[i] ∈ b then

5: for j = i−1 . . .0 do

6: if L[j] ∈ f ∧L[i]+ r� ≤ L[j] then

7: V ← σ jV

8: else if r� > r then

9: for i = n . . .0 do

10: if L[i] ∈ b then

11: for j = i+1 . . .n do

12: if L[j] ∈ f ∧L[i]+ r� > L[j] then

13: V ← σ
−
j−1V

14: return V

determined. Because the ordering used for the braid word

also captures the ordering of loops in a stack, it is sufficient

for a state to only store each loop’s needle position instead

of explicitly storing the loop list of each needle.

V. OPTIMAL A* SEARCH

Given this discrete representation of the knitting machine

state, we now use search techniques to find minimum-length

transfer plans. We base our search on A*, where a state’s

immediate neighbors are those reachable via any number of

transfers followed by a single racking operation, and the goal

has a braid equivalent to input braid W and loops at target

needle locations L. We now model the constraints of the

machine knitting process to restrict the search, and propose

several modifications to the state representation to improve

search performance.

A. Constraints

Loops on a knitting machine are constructed using a single

continuous strand of yarn, where the amount of yarn between

adjacent loops can be varied. This physical connection can

break when connected loops are moved too far apart. To

account for this, we define a slack constraint [s−,s+] on the

distance between connected loops la and lb. In other words:

Definition 5 (Slack Constraint). Connected loops la and lb
respect slack when s− ≤ pos(la)− pos(lb)≤ s+, where

pos(l) ::=

{

i if l ∈ fi

i+ r if l ∈ bi

Note that, for loops on opposite beds, the machine’s

racking affects whether the loops respect slack. Thus the set

of all connected loops which lie on opposite beds can be used

to define a valid racking range [Vmin,Vmax]⊆ [Rmin,Rmax].
We also explicitly define which needles are available, as

certain needles on the machine may be occupied by loops

that should not be moved by the transfer plan. This must also

be taken into account when determining whether a transfer

is reversible.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 30,2022 at 15:04:31 UTC from IEEE Xplore. Restrictions apply.

B. Cost Model

Recall that the machine can execute any number of trans-

fers in a single transfer pass as long as they occur at the

same racking. Therefore, it’s useful to think of transitions as

({x f er},rack) pairs, where {x f er} is one of the 2n subsets

of n total distinct transfer operations for a given state, and

rack is one of the valid racking operations for the state post

{x f er}. The cost of a transition is 0 if x f er is empty, and 1

otherwise.

C. State Equivalence

A* search stores visited states in memory in order to avoid

expanding the same state multiple times. This makes fast

state equality checks essential. In fact, we can do better than

just strict equality. For two different states which produce

the exact same set of subsequent states under expansion, we

can prune the state space by searching only one of them. In

this section we define a function, canonicalize, to identify

such equivalence classes in which this property holds true.

Recall that xfer(n,n�) can be reversed by xfer(n�,n) if n�

is an empty needle. Consider two states S and S�, which

are identical except for a single loop that is on needle n in

state S, and needle n� in state S�. If xfer(n,n�) is reversible

and the transfer set from S to some state includes xfer(n,n�),
then that transfer can be reversed with xfer(n�,n) to acquire

the transfer set that would reach the same state from S�. If

the transfer set from S does not include xfer(n,n�), then S�

can use the same set plus xfer(n�,n). This means that in a

search, no matter which of the two states are expanded first,

it will visit all states that can be reached from the other state,

making the second expansion redundant.

Now consider some non-empty transfer set X at racking

r. This set would have cost 1. Any number of additional

transfers can be performed before and after X , and as long

as they also occur at racking r, they can be rolled into

the existing transfer pass for cost 0. Thus if we define

some reversible transfer function that sends all equivalent

loop states to a single, canonical loop state, the function

can be applied before the duplicate check, making it a

simple equality check. These reversible transfers would then

combine with the x f er portion of the expansion, making

it a zero-cost transformation. Let canonicalize denote an

operation on a given state, which performs all reversible

transfers on back bed loops, essentially loading as many

loops as possible to the front bed without performing any

irreversible transfers (Figure 3). Then, during the search, our

code stores visited states and checks against them all under

application of canonicalize.

D. Heuristics

To guide the search, we provide the following heuristics

based on the braid word and the loop locations.

1) Braid Word Length: Let len(Y) give the number of

simple braids contained in the symmetric normal form Y .

This notion of braid length changes by at most one after

multiplication by another simple braid [16]. Rather than start

with the identity braid ε and check equivalence against the

Fig. 3: A transition from Si to state T costs a single transfer

pass even if it is preceded by some number of reversible

transfers. Thus the states are equivalent, and we can use

a single canonical state canonicalize(S) when representing

them in a search.

target braid W , we can let the initial state be W−1 and let

ε be the target braid. The resulting braid produced by the

plan will still be the target braid W , and len(Y), where Y is

the symmetric canonical braid stored in the state, will be a

consistent heuristic.

2) Offsets: If we consider a relaxed version of the transfer

planning problem that has infinite slack, reversible loop

stacking, and is only concerned with needle position and

not relative ordering, then a solution can be found by solely

considering each loop’s offset, or the single racking value

that would move a loop from its current location to its

destination. We can define Op,r – the set of sets of offsets

that can be brought to zero in p steps starting at racking r

– using the following recurrence:

Op+1,r� ≡
{

{x,x+(r�− r) | x ∈ S} | S ∈ Op,r

}

(1)

O0,r ≡

{

{{0}} if r = 0

/0 otherwise
(2)

Notice that the number of offsets at most doubles every

step. Thus we can establish the following lower bound:

Theorem 1. Any problem with n unique non-zero offsets

requires are least �log2(n+1)� passes to solve.

Our offset table heuristic goes further, computing and

storing Op,r (effectively, a pattern database [18]) for r ∈
[−8,8] and p≤ 8. In order to facilitate fast lookups in O , our

code builds a table – for every racking r – of all maximal1

achievable offset-sets and their associated minimum step

count. This table is sorted by step count. To look up a

query set in the table for the current racking value, the code

examines entries in order until a containing set is found and

returns the associated step count. This lookup is accelerated

by maintaining a “skip” value for each offset alongside each

row in the table, indicating the next table entry in which that

offset appears. These skip values are used by our code to

avoid needing to check every row.

VI. RESULTS

All experiments were performed on a mid-range

workstation-class computer running Debian GNU/Linux with

1I.e., if both S,R ∈ Op,r and S ⊂ R, then only R is stored.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 30,2022 at 15:04:31 UTC from IEEE Xplore. Restrictions apply.

an Intel Core i7-8700K 3.7GHz / 12-thread CPU – though

our search is single-threaded – and 64GB of RAM.

a) Optimal plans: We compare the optimal plans pro-

duced by canonical-node A* search against two existing

transfer planning algorithms: schoolbus+sliders (sb+s) and

collapse-shift-expand (cse). Both algorithms have limita-

tions on the types of problems they can and are best suited

to solve, so we used three test sets for comparison.

For each test case, our test harness first ran the existing

algorithm to generate a transfer sequence, then used that

transfer sequence to construct a target state, and, finally, ran

our search algorithm with that target state. (This procedure is

needed because cse chooses stacking and rotation direction

without user control, so it may plan to one of several possible

output states.)

The first set, flat-lace, consists of all 28,696 unique

transfer problems with eight loops, stacks of at most three

loops, distance between loops increasing by at most one, and

no loop crossings (cables/twists). Problems that only differ

by translation are considered equivalent. In other words, this

is the set of eight-loop problems that sb+s can solve. Results

are shown in Figure 4. As expected, sb+s is able to solve

these cases in relatively few (< 15) passes, and, indeed,

is optimal in 2942 of the cases (≈ 10% of trials which

finished). However, there is still room to improve, since in

the remaining cases, sb+s uses up to 2.8× the passes of the

optimal solution.

The second set, simple-tubes, contains all 2113 prob-

lems on eight-loop tubes, where pairs of adjacent loops can

either remain adjacent, be stacked atop each other, or be

separated by an empty needle, and the overall tube can be

rotated. These mimic the basic shaping operations used, e.g.,

by [10]; and, thus, the problems that cse was designed to

solve. Figure 5 shows that cse produces optimal solutions

in a much smaller fraction of problems: only 36 (≈ 1.7%)

were optimal, and solutions were sometimes more than 4×
slower. This is not unexpected, as cse may require up to

O(n2) passes in the worst case [7].

For the final set, cable-tubes, we constructed 1183

transfer sequences by prepending 1x1 and 2x2 cables (loop

crossings) to plans generated by cse for eight-loop tubes

with rotations. The comparison with optimal transfer se-

quences (Figure 6) shows that there are significant fabrication

speed gains to be made by combining cable and rotation

transfers instead of performing them sequentially, as might

be done by a programmer putting together an ad-hoc solu-

tion.

b) Canonical Node: We also examined the effect of

canonicalizing on the time and memory requirements of the

search on all-short, the subset of all datasets for which

our search found a solution in < 100ms. As can be seen in

Figure 7, the number of node expansions improves by a fac-

tor of 3165×, and runtime by 3828×, with larger problems

experiencing more improvement. Of the few problems where

canonical-node is slower (34 out of 5902 total problems),

much of the slow down can be attributed to additional

overhead from the canonicalize operation. We conjecture that

Fig. 4: The Schoolbus + Sliders (sb+s) algorithm [7]

produces transfer plans within a factor of 3× of optimal on

a set of 6-loop lace-like patterns (flat-lace).

Fig. 5: The Collapse-Shift-Expand (cse) algorithm [6]

produces transfer plans that stray relatively far from optimal

on a set of 8-loop shaped tube problems (simple-tubes).

the 10 problems where canonical-node expands more nodes

is due to tie breaking between equally weighted states.

c) Heuristics: In addition, we looked at the perfor-

mance of various heuristics for the A* search (Table I).

Our combined offset table and braid word length heuristic

provide a three-order-of-magnitude reduction in both mem-

ory usage and search time compared to using no heuristic,

and a one-order-of-magnitude reduction compared to the

simpler combined braid word length and log offset heuristic.

Building the offset table took 5.2 seconds, making it a strict

improvement for larger problems even without amortizing

the time required to build the table across multiple problems.

Furthermore, taking the maximum of braid word length

(which only looks at the braid) and offset table (which only

looks at loop positions) provides improvements over using

either heuristic alone.

VII. DISCUSSION AND FUTURE WORK

We presented a representation of a knitting machine’s

state that completely captures the effects of its transfer

operations while being discrete and simple to update. We

believe our work provides a crucial foundation for a host

of interesting problems in the domain of knitting machine

pattern generation.

While our A* search implementation is a breakthrough

Fig. 6: The ad-hoc strategy of concatenating cable and

tube rotation plans (dataset cable-tubes) presents many

opportunities for algorithmic optimization.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 30,2022 at 15:04:31 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Our canonical-node optimization results in an approximately two-order-of-magnitude reduction in both the search

runtime and in the number of nodes expanded in our tests on the all-short dataset.

Scenario Nodes Time (s) Speedup

No Heuristic 471451589 582264.3 1×
+ Braid 281291965 330931.9 1.8×
+ Log Offsets 2500142 2612.2 223×
+ Braid+Log 1663664 1688.6 344×
+ Prebuilt 259985 274.1 2124×
+ Braid+Prebuilt 184265 189.8 3067×

TABLE I: Total sum of nodes expanded and time taken for

various combinations of heuristics over the 5002 problems

that all heuristics finished. Heuristics were combined using

max(h1,h2).

in the optimality of existing planning algorithms, it still

faces challenges in producing practical transfer plans. The

exponential nature of the state expansion quickly makes

A* search untenable for large problems. Memory issues are

present even for problems with eight loops; meanwhile, knit-

ting machines commonly use hundreds of loops at a given

time. There exist several general approaches for dealing

with high-dimensional search problems [19, 20]. It would be

interesting to consider these approaches as well as methods

that exploit the typically regular nature of knitting patterns;

certain macro-level operations are quite common (e.g., rotate

the tube two needles clockwise, cross every fifth loop over

its neighbor to the right) while others are less so (e.g., close

a tube by tangling loops around each other). A principled

method to merge smaller subproblems could result in a

practical transfer planning solution for typical large problems

or provide tighter heuristics for optimal search.

Furthermore, in our work, we optimize solely the fab-

rication time of transfer plans. However, there exist other

metrics a plan could account for, such as reliability. While

knitting machines are generally quite robust, each transfer

operation does have a small possibility of failure, with certain

operations such as transferring large stacks of loops being

more failure-prone, so minimizing the number of risky trans-

fers could be another optimization goal. Other metrics that

would improve the reliability of plans include minimizing

the overall distance between loops, and considering the strain

caused by twisting loops around each other.

In addition, while transfer planning answers the question

of how to transition from an initial layout of loops on the

machine to a new target layout, there is also the question of

how to assign loops to machine needles in the first place. This

loop assignment problem is also known as scheduling. While

prior work [10] introduced an algorithm that guarantees

a correct solution on certain subsets of the pattern space,

the overall problem of correct, optimal scheduling is still

open. It remains to be seen whether transfer planning and

scheduling can be solved in concert to optimize overall

pattern efficiency.

Another natural question that emerges is how to com-

pletely capture the result of all of a machine’s operations,

i.e., whether two general knitting patterns produce the same

result. Aside from the transfer related operations presented

here, there are knit and tuck, which create loops, drop, which

unravels loops, and miss, which can potentially inlay yarn

between loops. A representation that can fully account for

all machine operations would pave the way for smart knit

compilers capable of optimizing any knitting program.

VIII. CONCLUSION

Our braid-based representation is the first discrete repre-

sentation that can fully capture the behavior of yarn during

complex transfer operations. This opens the space of transfer

planning to automated verification and search, providing

important tools to simplify knit programming and optimiza-

tion. Further, we think that our braid-based machine state

representation provides a good starting point for a complete,

canonical, discrete representation for all machine knitting

operations. We hope that this work provides a representation

amenable to the vast literature of planning techniques (of

which we barely scratched the surface), effectively extending

their reach into the realm of automated knitting transfer

sequence design.

REFERENCES

[1] M. Hofmann, L. Albaugh, T. Sethapakadi, J. Hodgins,

S. E. Hudson, J. McCann, and J. Mankoff, “Knitpicking

textures: Programming and modifying complex knitted

textures for machine and hand knitting,” in Proceedings

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 30,2022 at 15:04:31 UTC from IEEE Xplore. Restrictions apply.

of the 32nd Annual ACM Symposium on User Interface

Software and Technology, 2019, pp. 5–16.

[2] M. Popescu, L. Reiter, A. Liew, T. Van Mele, R. J.

Flatt, and P. Block, “Building in concrete with an ultra-

lightweight knitted stay-in-place formwork: prototype

of a concrete shell bridge,” in Structures, vol. 14.

Elsevier, 2018, pp. 322–332.

[3] M. Popescu, M. Rippmann, A. Liew, L. Reiter, R. J.

Flatt, T. Van Mele, and P. Block, “Structural design,

digital fabrication and construction of the cable-net and

knitted formwork of the knitcandela concrete shell,” in

Structures. Elsevier, 2020.

[4] J. Sabin, D. Pranger, C. Binkley, K. Strobel, and J. L.

Liu, “Lumen,” Proceedings of the IASS Symposium,

2018.

[5] Y. P. M. D. Moritz and M. A. Baranovskaya, “Knit-

flatable architecture - pneumatically activated prepro-

grammed knitted textiles,” in eCAADe, 2016.

[6] J. McCann, L. Albaugh, V. Narayanan, A. Grow,

W. Matusik, J. Mankoff, and J. Hodgins, “A compiler

for 3d machine knitting,” ACM Trans. Graph.,

vol. 35, no. 4, July 2016. [Online]. Available:

https://doi.org/10.1145/2897824.2925940

[7] J. Lin, V. Narayanan, and J. McCann, “Efficient

transfer planning for flat knitting,” in Proceedings

of the 2nd ACM Symposium on Computational

Fabrication, ser. SCF ’18. New York, NY, USA:

Association for Computing Machinery, 2018. [Online].

Available: https://doi.org/10.1145/3213512.3213515

[8] Shima Seiki, “Sds-one apex3,” [Online]. Avail-

able from: http://www.shimaseiki.com/product/design/

sdsone\ apex/flat/, 2011.

[9] A. Kaspar, T.-H. Oh, L. Makatura, P. Kellnhofer,

and W. Matusik, “Neural inverse knitting: From

images to manufacturing instructions,” in Proceedings

of the 36th International Conference on Machine

Learning, ser. Proceedings of Machine Learning

Research, K. Chaudhuri and R. Salakhutdinov, Eds.,

vol. 97. Long Beach, California, USA: PMLR,

09–15 Jun 2019, pp. 3272–3281. [Online]. Available:

http://proceedings.mlr.press/v97/kaspar19a.html

[10] V. Narayanan, L. Albaugh, J. Hodgins, S. Coros,

and J. McCann, “Automatic machine knitting of

3d meshes,” ACM Trans. Graph., vol. 37, no. 3,

pp. 35:1–35:15, Aug. 2018. [Online]. Available:

http://doi.acm.org/10.1145/3186265

[11] A. Karmon, Y. Sterman, T. Shaked, E. Sheffer, and

S. Nir, “Knitit: A computational tool for design,

simulation, and fabrication of multiple structured

knits,” in Proceedings of the 2nd ACM Symposium on

Computational Fabrication, ser. SCF ’18. New York,

NY, USA: Association for Computing Machinery, 2018.

[Online]. Available: https://doi.org/10.1145/3213512.

3213516

[12] M. Hofmann, J. Mankoff, and S. E. Hudson, “Knitgist:

A programming synthesis toolkit for generating

functional machine-knitting textures,” in Proceedings

of the 33rd Annual ACM Symposium on User

Interface Software and Technology, ser. UIST ’20.

New York, NY, USA: Association for Computing

Machinery, 2020, p. 1234–1247. [Online]. Available:

https://doi.org/10.1145/3379337.3415590

[13] V. Narayanan, K. Wu, C. Yuksel, and J. McCann,

“Visual knitting machine programming,” ACM Trans.

Graph., vol. 38, no. 4, July 2019. [Online]. Available:

https://doi.org/10.1145/3306346.3322995

[14] A. Kaspar, L. Makatura, and W. Matusik, “Knitting

skeletons: A computer-aided design tool for shaping

and patterning of knitted garments,” in Proceedings

of the 32nd Annual ACM Symposium on User

Interface Software and Technology, ser. UIST ’19.

New York, NY, USA: Association for Computing

Machinery, 2019, p. 53–65. [Online]. Available:

https://doi.org/10.1145/3332165.3347879

[15] P. Dehornoy, “Efficient solutions to the braid isotopy

problem,” Discrete Applied Mathematics, vol. 156,

no. 16, pp. 3091 – 3112, 2008, applications

of Algebra to Cryptography. [Online]. Avail-

able: http://www.sciencedirect.com/science/article/pii/

S0166218X08000437

[16] D. B. A. Epstein, M. S. Paterson, J. W. Cannon, D. F.

Holt, S. V. Levy, and W. P. Thurston, Word Processing

in Groups. Natick, MA, USA: A. K. Peters, Ltd., 1992.

[17] K. Murasugi and B. Kurpita, A Study of Braids,

ser. Mathematics and Its Applications. Springer

Netherlands, 2012. [Online]. Available: https://books.

google.com/books?id=VLTnCAAAQBAJ

[18] A. Felner, R. E. Korf, R. Meshulam, and R. C. Holte,

“Compressed pattern databases,” Journal of Artificial

Intelligence Research, vol. 30, pp. 213–247, 2007.

[19] K. Gochev, B. Cohen, J. Butzke, A. Safonova, and

M. Likhachev, “Path planning with adaptive dimension-

ality,” in Fourth annual symposium on combinatorial

search, 2011.

[20] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An

efficient approach to single-query path planning,” in

Proceedings 2000 ICRA. Millennium Conference. IEEE

International Conference on Robotics and Automation.

Symposia Proceedings (Cat. No. 00CH37065), vol. 2.

IEEE, 2000, pp. 995–1001.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 30,2022 at 15:04:31 UTC from IEEE Xplore. Restrictions apply.

