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Increased interest in body—-machine interfaces necessitates understanding how to train users to use nontraditional
inputs. In this study, a control task driven by subject-activated surface electromyography was developed as a testbed
to observe the effects of automated training methodologies on the development of performance, workload, and trust.
Forty-eight subjects learned to use a surface-electromyography-based command system to perform a Fitts’s-law-style
cursor-to-target task with 120 training trials and 40 evaluation trials. Subjects were divided into four groups: control,
concurrent feedback, terminal feedback, and adaptive threshold. The control group trained and learned through
repetition using the visual feedback of the cursor position. The concurrent feedback group received additional
concurrent visual feedback during command input, and the terminal feedback group had supplementary visual
feedback after command input. The adaptive threshold group did not have any additional feedback, but experienced
changes in the cursor control designed to induce motor learning adaptation. The results indicate that 1) additional
visual feedback improvestask performance, workload, and trust during training,and 2 ) the groups converged in their

command proficiency by the end of training.

I. Introduction

UMAN-MACHINE interfaces (HMIs) traditionally use input

devices such as a computer mouse, joystick, and steering
wheel. A more recent subset of HMIs leverages signals derived from
the human body to communicate intent and has been termed as
“body-machine interfaces” (BoMIs) [1]. These BoMIs may be pas-
sive, where the body signals are used as a state indicator to monitor or
trigger a response to the human, or active, where the human directly
controls the input to determine the device output. Furthermore,
BoMIs can be characterized by the body signal they use, such as
brain signals, gestures, or muscular signals, and whether the meas-
urement is invasive (i.e., penetrates the body) or noninvasive. BoMIs
that use brain signals may be termed as “brain-machine interfaces”
(BMIs) or “brain-computer interfaces” (BCls), where the latter is a
BMI specifically designed for computer-based applications. The
current discussion is focused on noninvasive techniques for aviation
and space applications.

An increasing interest in BoMIs for use in aviation has led to the
development of several passive and active systems. Passive systems
have measured brain signals to predict the occurrence of inattentional
deafness to auditory alarms [2], assess cognitive fatigue [3 ], monitor
cognitive load [4], and track vigilance [5]. For example, Di Flumeri
et al. [S5] demonstrated improved vigilance when a BCI system
detected changes in subjects’ vigilance and automatically adjusted
the automation level to increase/decrease manual engagement for an
air traffic control task. Electromyography (EMG), the recording of
electical muscular signals, has also been used for passive BoMIs to
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warn of gravity-induced loss of consciousness [6,7], monitor muscle
fatigue [8,9], and differentiate pilot skill level [10). Less prevalent has
been the inclusion of EMGin active BoMIs for aviation. The work by
Jorgensen et al. [11] demonstrated the successful implementation of
an EMG BoMI to control the pitch and bank rates for an aircraft
landing in simulation. In contrast, there has been an increased
ubiquity in theuse of body gestures for active BoMIs related to drone
control (see Refs. [12-15] for some recent examples). One study
observed significantly better performance with torso gestures than a
traditional HMI, a joystick [13], lending to the feasibility and poten-
tial benefits of these nontraditional interfaces.

In 2004, the European Space Agency’s Advanced Concept Team
identified noninvasive BMIs as a research area with potential space
applications [16]. Broschart et al. [17] proposed incorporation of
BMIs for tele-operations, assistive robots, and to increase astronaut
productivity, but recognized that the unique physical environment
coupled with physiological changes experienced by astronauts would
pose implementation challenges. Some initial steps have occurred,
such as a BCI mouse for online control of a simplified, simulated
spacecraft in yaw and pitch [18). However, the findings from this
study are limited due to low subject number and the simplified
simulation but indicate an interesting application. Another prelimi-
nary study with limited subjects used a BMI during parabolic flights
which simulate microgravity and found that the brain signals mea-
sured by electroencephalography (EEG) remained stable enough to
achieve an average classification accuracy of 73.1% [19]. In a review
of BMIs for space applications, Coffey et al. [20] argued that the
implementation of noninvasive active BMIs was unlikely due to gaps
in information transfer rates, accuracy, and intuitiveness, whereas
passive BMIs were more advantageous because 1) they did not
require active engagement or control; 2) they had established reli-
ability for monitoring aspects like attention, workload, and task
engagement; and 3) the derived human state information could be
fed into adaptable autonomous systems [20]. However, development
of BMIs for space applications may prove challenging due to rela-
tively high system complexity and low signal-to-noise ratio (SNR)
compared to other BoMIs.

The use of muscular signals in active BoMIs has been understudied
for aviation and space applications, but BoMIs that use EMG have
multiple advantages. When EMG is measured from the skin’s sur-
face, it is noninvasive and referred to as surface EMG (SEMG). An
SEMG system can be placed above any muscle location, can be
designed to use a single sensor, and has a relatively high SNR. The
sEMG signal quality and reproducibility are affected by body pose
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[21], muscle fatigue [22], and sensor displacement [23], and mitigat-
ing these issues is an active area of research (see review by Kyranou
et al. [24]). Furthermore, EMG control has already been applied to
prosthetics (see reviews by Refs. [25,26]) and robotics (e.g., see
Refs. [27-30]), which have potential aerospace applications (i.e.,
tele-operations [31]). In general, BoMIs provide a control modality
that can be used in addition to or in replacement of traditional HMIs.
Users are not constrained to use an input device with their hands
(e.g., a computer mouse), and performance may improve with a
BoMI (e.g., see Ref. [13]).

The aforementioned BoMI systems previously studied focused on
the development and demonstration of the interface but did not
address user training beyond task repetition or test setup familiariza-
tion. For a novel input, it is important to efficiently train new users.
We decided to apply automation to the skill-based training of learning
SEMG control and compare different automated training method-
ologies. Selection of a training methodology should take into con-
sideration the effects on task and human-automation interaction
factors, such as sust and workload, and should also account for
context-specific interface elements (e.g., flight displays, communi-
cation interfaces).

A. Selected Training Methodologies

Training novice users to effectively use SEMG control methods
can be a long and difficult task [32]. Although expert instructors can
be effective at increasing learning rates, their time can be costly, and
their availability is often limited. For these reasons, we were inter-
ested in automated training methodologies that seek to fill the role of
an expert instructor. Self-directed practice has been shown to work as
well as instructor guided practice for leaming complex medical skills
[33], though it is unclear how well this paradigm would transfer for
nonmedical tasks. The use of augmented feedback strategies, how-
ever, has been shown to help reduce training times and they have the
potential to reduce cognitive workload, or the amount of mental effort
allocated, in especially demanding tasks. Augmented feedback pro-
vides information that “cannot be elaborated without an external
source; thus, it is provided by a trainer or a display” and has been
shown to effectively improve performance in a wide variety of motor
tasks [34]. Augmented feedback has been used for training, motor
skill acquisition, rehabilitation, and operational assistance for tasks
that range from simple, closed-environment laboratory demonstra-
tions to complex, operational cases [34]. Recent approaches to using
augmented feedback have focused on multimodal cueing and virtual
and augmented reality displays in a variety of medical [35-37],
aerospace, and robotics tasks [38-40]. Across these studies, results
indicate that providing task-appropriate augmented feedback can
improve motor skill acquisition, final performance, and retention,
though these results vary depending on the means of the augmented
feedback presented. Many of these studies have compared how to
provide feedback across different modalities to identify optimal
pairings between modality and tasks but investigating when to pro-
vide feedback is equally important. Concurrent feedback is presented
in real-time, as subjects execute a task, whereas terminal feedback is
presented after the task is completed. Some researchers have found
that intermittent, concurrent high-frequency feedback is superior to
low-frequency feedback [35,41], whereas others have found that
terminal feedback outperforms a concurrent approach [42,43], and
it is difficult to generalize between different feedback and task types
[44,45]. In general, however, concument feedback has been shown to
be more useful with higher functional task complexity, whereas ter-
minal feedback is often less useful when complexity is high [34].
Concurrent feedback has recently shown great promise in EMG con-
trol, though less progress has been made comparing concurrent and
terminal feedback strategies or investigating long-term learning effects
[46-49). Therefore, it is important to compare concurrent and terminal
feedback approaches within the same task to better understand the
appropriate application of training methodology.

Biofeedback, which applies augmented feedback strategies to
measured physiological signals such as EMG, has proven to be a
useful tool for improving performance and assisting in rehabilitation

[50]. Researchers have investigated various augmented biofeedback
techniques and found that they help subjects to “become more
cognizant of their own EMG signal” [51], allowing for better control
of their muscle activity. A recent review of the biofeedback literature
suggests that “[bliofeedback is more effective than usual therapy,”
though they also note that “[fJurther research is required to determine
the long-term effect [biofeedback has] on leaming” [52]. In ourstudy,
we refer to any additional, visual information given about an SEMG
signal input or its processed output as “augmented feedback.” The
augmented training strategies are analogous to alerting automation
and the strategy of complementation in aviation [53], where the
augmented training strategies cooperate with and provide additional
information to the user.

Another possible training methodology which leverages adapta-
tion comes from motor learning. Users learn and adapt to improve
performance throughout practice and training, and induced variabil-
ity can improve performance. For example, Seow et al. [54] varied a
task parameter, where subjects either trained on a set thrust level or a
variable one for a spaceship video game. Subjects with variable thrust
training performed better than those with a consistent thrust when
tasked with a novel thrust level [54]. Braun et al. [55] showed during a
planar reaching task that randomly varying the feedback uncertainty
(i.e., the difference between the actual and shown position of the
hand) led to improved skill generalization. Surface EMG control
adaptation may follow Bayesian theory [56], where mapping uncer-
tainty (or the uncertainty of the brain’s model of the applicable
system) increases adaptation rate. Conversely, increased sensorimo-
tor feedback uncertainty decreases adaptation rate. Lyons and Joshi
[57] demonstrated that subjects exposed to a mapping uncertainty
during cursor control had higher adaptation rates to sensorimotor
feedback when the mapping uncertainty was removed, indicating that
artificially added mapping uncertainty during training may increase
adaptation rate. Additionally, a noisier SEMG control method (i.e.,
increased mapping uncertainty) provides more information about the
control signal, which can lead to a larger adaptation rate compared
with a more filtered classificasion method [58]. Similarly, introducing
noise in a joystick-controlled final approach phase flight task has
been shown to increase the rate of motor skill acquisition [38]. Taken
together, these studies indicate that varying a task parameter [54,55]
and increasing mapping uncertainty [57,58] can potentially improve
skill acquisition. However, research in this areais not well-studied for
SEMG control or for tasks that do not use the planar reaching
paradigm [59]. Therefore, we have included an adaptation-based
strategy in our study to compare with more established training
methodologies to investigate the feasibility of this method.

B. Workload and Trust in Automation

When evaluating the different automated training methodologies,
it was important to select appropriate training feedback that did not
cause additional cognitive demands. Karasinski et al. [60] investi-
gated the effects of concurrent feedback in a simulated, four-degree-
of-freedom, manually controlled spacecraft inspection task. Subjects
in the feedback group performed the task much faster and more
accurately than those in a control group and reported a significantly
lower workload. Workload can be defined as “the cost incurred by a
human operator to achieve a particular level of performance” [61,62],
and is commonly assessed using quantitative, subjective techniques
such as the NASA-TLX [61,62] and Modified Bedford Workload
[63] scales. Although there are limits to these subjective techniques,
such as the possibility of large intersubject variability, they provide a
rapid and easily administered tool for workload assessment. The
Modified Bedford Workload scale was administered frequently
throughout this study as a rapid means of estimating spare cognitive
load. In addition to subjective workload measures, there are a variety
of techniques that aim to objectively estimate workload. Physiologi-
cal measurements such as heart rate variability have been used to
assess workload for many types of actual and simulated aerospace
flight tasks [64), and heart rate and heart rate variability can also
provide objective measurements that have been previously correlated
with subjective scales such as the Bedford and NASA-TLX ones [65].
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Researchers have had mixed success in being able to generally relate
physiological measures to subjective workload scales, however, and
physiological workload estimates were not used here. Among the
most common objective measurement techniques is the secondary
task, which requires subjects to complete the primary task then use
any spare cognitive margin to respond to an additional task [66].
This secondary task approach does not work well for simpler tasks
as completing it begins to compete for attention with the primary
task [67]. No objective workload measurements were included in
this study.

Trust is another important factor when considering human-auto-
mation interaction, and inappropriate trust can lead to the disuse or
misuse of automated systems. Trust is “the attitude that an agent will
help achieve an individual’s goals in a situation characterized by
uncertainty and vulnerability” [68]. The reliability of a system, in
particular, has been shown to be an important aspect of an operator’s
wrust in a system [69]. Although there have been many proposed
models for trust, Hoff and Bashir’s three-layer model deserves par-
ticular attention [70]. After performing a systematic review of the
literature, they developed a three-layer model of trust that is split
between dispositional trust, situational trust, and leamed trust.
Though researchers have little control over dispositional trust, they
can affect situational trust by varying an experimental interface or
environmentand leamned trust can be evaluated using repeated mea-
sures. Our study aimed to alter situational trust through different
automated training methodologies, where the agent or the automated
feedback in place of an instructor helpad the subjects learn a skill. We
expected subjects in each group to perceive whether the agent will
help them achieve their goals differently based on the assigned
wraining methodology. We also assessed leamed trust with measure-
ments taken periodically during the task. The subjects did not have an
option to turn off or alter the agent but may have felt that the agent was
not aiding in their goals. If subjects became reliant on the agent, we
expected to see decreased performance when the agent was removed.

C. Study Objective

Although it is not the objective of this work to develop or optimize
an SEMG system for one particular application, the SEMG system can
act as a testbed in which the effects of different automated training
methodologies are evaluated, and the novelty in using these systems
enables the observation of early leaming effects. The SEMG con-
wolled Fitts’s law task naturally lends itself as an excellent testbed for
evaluating augmented feedback strategies. Most participants cannot
easily predict or quickly understand the signal they generateand pass
into the SEMG conwoller, and augmented feedback can provide
insight into what would otherwise be an inherently noisy and elusive
process. Modemn systems increasingly incorporate humans with
automation, necessitating an enhanced understanding of human-
automation interaction. The purpose of this study was to investigate
human-automation interaction with an emphasis on performance,
workload, and trust during early learning across different automated
training methodologies.

Task Interface

To the authors’ knowledge, there is no study investigating
differences in performance, workload, and tust across different auto-
mated training methodologies using augmented feedback and motor
leaming adaptation. In this study, we address the effects of automated
maining methodology on performance, workload, and trust during a
computer-basedFitts’s law [71] stylecursor-to-targettask. The training
methodologies include repetition, concurrent feedback, terminal feed-
back, and an adaptive method. The treatments are removed for the
evaluation phase to assess if subjects in the augmented feedback
conditions (concurrent feedback and terminal feedback) succumbed
to the guidance hypothesis {72], which would indicate that they have
become reliant on the feedback in order to perform the task. The
experiment is designed to provide subjects with a sufficiently chal-
lenging task so that we may observe early leamning effects and the
evolution of performance, workload, and trust.

II. Materials and Methods

A. Subjects and Experimental Setup

The UC Davis Institutional Review Board approved the study
protocol, and subjects were recruited from the university student
population. Exclusion criteria for subjects included a history of
neuromuscular disorders, physical limitations of dominant arm,
and prior SEMG control experience. Subjects provided written con-
sent before participation. A total of 55 subjects volunteered, and
subjects were released from the study due to equipment issues
(N = 3), withdrawal request (N = 2), and significant motivation
issues (e.g., not attempting the task; N = 2). The remaining 48
subjects completed the protocol and had an average age of 20.1 +
1.4 years (u % 5), included 2 left-hand-dominant subjects, and had an
equal participation of biological sexes.

Subjects were trained to control a cursor with sSEMG to perform a
Fitts’s-law-style cursor-to-target task with a center-out paradigm
[73,74]. During the experiment, subjects sat in front of a desk and
computer screen (see Fig. 1a) with electrodes on their forearms. Two
electrodes (ConMed 1620 Ag/AgCl center snap) approximately
2.5 cm apart were placed on the dominant hand side near the extensor
digitorum proximal attachment. A reference elecwrode was located
near the lateral epicondyle of the humerus (see Fig. 1b). The electro-
des’ signal was acquired asdescribed in Ref. [75], the signal process-
ing followed Ref. [74], and the experimental software used the
Python AxoPy library [76]. The root mean square (rms) value for
each time-domain sample window was calculated, normalized by a
manually set calibration constant (in mV), and incorporated into a
0.5 s moving average window to yield an updated and processed
sEMG signal, ¥ (mV/mV), at 16 Hz [used in Eq. (1)]. The subjects
leamed to manipulate their sSEMG signals to produce serial patterns
that translated to cursor motion.

After the elecwrode placement, the subjects viewed their SEMG
signal on an oscilloscope shown on the computer screen and were
instructed to flex their hand to induce signal changes. This oscillo-
scope activity confirmed proper electrode adhesion and illustrated the
subjects’ abilities to intentionally change their sSEMG signal. For the

Electrode Pair v

Fig. 1 Setup with interface displayed during training and testing of cursor-to-target task (a) and electrode placement (b).
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Table1 Summary of muscle activation strategies by group
Group
Concurrent  Terminal  Adaptive

Strategy, N Control  feedback  feedback threshold Al
Flex wrist 7 10 9 8 34
Make fist 5 3 2 3 13
Raise finger 1 0 2 1 4
Raise multiple 3 6 5 6 20
fingers

One swrategy 9 8 8 8 33
Multiple strategies 3 4 4 4 15

remainder of the study, the subjects individually determined how to
produce sufficient muscle activation and were prompted to try differ-
ent, self-selected movements and contractions during the manual
calibration. Subjects self-reported the muscle activation strategies
they used at the end of the study. Flexing the wrist was the most
common strategy (N = 34), possibly due to its introduction during
the oscilloscope activity. Other strategies included making a fist,
raising a single finger, or raising multiple fingers. The majority of
subjects (N = 33) only used one strategy. Fifteensubjectselected to
use multiple strategies, and five of those subjects used specific
strategies for different actions (e.g., raising fingers for shorter inputs).
A summary of the strategies used by experimental group is shown in
Table 1. A more detailed discussion of the experimental groups is
provided in a later section.

B. Cursor-to-Target Task

In our study, the Fitts’s-law-style task served to provide an inter-
active, engaging environment in which the subjects developed their
proficiency of SEMG commands by moving a cursor to hit a target.
TheFitts’s law task used a center-out paradigm and a similar interface
as in Ref. [74]. The square cursor interface had normalized horizontal
and vertical bounds of [-1, 1] and a length of 2 units. Each trial began
with the cursor at the center of the interface and a target in a
pseudorandom position. There were 40 unique target positions that
covered a range of index of difficulties (IDs) from 1.00 to 4.09 bits
(calculated by the Shannon formulation [77]). The subject used
SEMG to convey commands and moved the cursor to the target,
and the cursor had to dwell on the target for 1 s to successfully
complete the trial. The maximum trial time was 60 s, which was
determined by reviewing previous data [74] and preliminary testing.

For SEMG control, it is necessary to designate a threshold below
which the signal input is considered at rest because SEMG signals

effectively always have nonzero values. The threshold /, (in mV/mV)
defined the crossover value for a signal at “rest” versus active (see
Fig. 3a). From our previous observations, cursor control improved
when the initial motion had a slow, constant velocity before switching
to a velocity proportional to the signal input, as it allowed subjects to
maintain a slow velocity when desired (e.g., in close vicinity to a
target). Therefore, we designated a second threshold, /, (in mV/mV),
that delineated the constant from the proportional velocity control.
The cursor was either stationary (X < /; ); moving at asmall, constant
velocity (/; <X < 1,); or moving at a velocity proportional to the
input (¥ > /). When the input exceeded /,, the cursor velocity
was calculated by Eq. (1), where v. is the minimum velocity
(0.10 units/s), v, is the maximum velocity (0.50 units/s), L, is
0.30 mV/mV, and X is the filtered, averaged SEMG signal. The /,
value was nominally 0.20 mV/mV, except for the adaptive threshold
group in which the value was randomly selected for each trial
(!, =0.10, 0.15, 0.20, 0.25, 0.30 mV/mV).

V= + (U =) [(F- /(- 1) M

Because the subjects could only select onecommand at a time, the
cursor could eithermove up, down, left, orright. It was not possible to
combine commands, which restricted the cursor motion to a recti-
linear trajectory. To illustrate the resulting cursor trajectories, Fig. 2
displays selected trials that are either within one standard deviation of
the median (see Fig. 2a) or outside of one standard deviation (see
Fig. 2b) for a path efficiency metric. Example trajectories are super-
imposed on a cursor position heat map of successful trials for the
applicable target (ID = 4.09). The wrajectories and heat maps are
from across groups for the selected target position.

C. Command Design and Group Treatments

The premise of the SEMG control methodology was to use serial
patterns of muscle activation (“inputs”) to convey commands, similar
to Morse code {74]. In our scheme, the first two inputs selected the
command and a third input allowed for continuous control of forward
movement in the selected direction (see Fig. 3a). A timeout between
the first two inputs allowed a reset in the case of errors during
command selection. The command inputs were defined by the dura-
tion that the SEMG signal excesded the threshold /, and each input
was identified as “short” (<0.50 s) or “long” (>0.50 s). For example,
the combination of two short inputs selected the “up” command.
Subjects learned the two-input code for four commands: up, down,
left, and right. A porsion of the user interface contained a command

1.0 4 -
0.6 1 .
>~
0.4 4 .
0.2 .
0.0 4 .
T T T T T T
—0.2 0.0 0.2 0.4 0.0 -0.2 0.0 0.2 0.4 0.6
a) X b) X Time, s

Fig.2 Sample cursor trajectories for a target (ID = 4.09) either a) within or b) outside one standard deviation of the median for path efticiency.
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with permission from ()’Meara et al. [78).

key so that the subjects did not need to memorize the serial, SEMG
patterns to produce commands (see Fig. 3c).

The four groups were each exposed to one training methodology:

1) The conwrol group trained solely through task repetition and was
able to view the motion of the cursor.

2) The concurrent feedback group received additional visual feed-
back duringthe task that indicated when the processed sSEMG signal X
exceeded the threshold /; = 0.20 mV /mV, which was important for
selecting commands (see Fig. 3b). The subjects received feedback to
confirm reception of the signal.

3) The terminal feedback group received visual feedback after
entering a command (see Fig. 3b). The subjects received feedback
regarding the interpretation of the signal to a command, and signal
reception during motion.

4) The adaptive threshold group was the same visually as the
contwol group, but the threshold !, was randomly selected at each
trial among values between 0.10 and 0.30. In this group, the proc-
essed SEMG signal X had to exceed the threshold that changed each
trial in order to input commands. These subjects wained with variable
parameters/increased mapping uncertainty (i.e., whether their signal
will cross the threshold) with the aim of improving motor skill
acquisition.

As shown in Fig. 4, all of the groups viewed a very similar inter-
face. Our early results in providing augmented feedback for manual
conwrol tasks found that visual augmented feedback worked best
when placed on an element of the display that operators were already
visually engaged with, and that visual feedback placed elsewhere
would both lower performance and increase workload [79]. This
takes advantage of operators’ normal patterns of visual attention,
which is “drawn to display items that are .. ., colorful, and changing
(e.g., blinking)” [80]. For this study, we sought to identify differences
between providing feedback concurrently, every time subjects
crossed [}, and terminally, only after they had successfully input a

command. Additionally, we selected the feedback colors to be color-
blind agnoseic. The addisional visual fesdback in the concurrent
fesdback group was provided by changing the color of the cursor
(Fig. 4b). The terminal feedback group had additional visual ele-
ments at the edges of the cursor interface thatchanged color to reflect
the command (Fig. 4¢). The visual element locations were selected
based on pilot testing. Both of the two augmented feedback tech-
niques provided users with feedback when the system had received a
valid input (see the colored regions for the timing shown in Fig. 3b),
and the terminal feedback group received the additional feedback
of the system’s interpretation of the direction to move the cursor. A
recent review of augmented feedback techniques (see Ref. [34])
found that terminal feedback is more effective for tasks with low
functional complexity, whereas concurrent feedback is more effec-
tive for tasks with high functional complexity. A summary of the
training type, displays, and visual feedback is provided in Table 2
(refer to Supplemental Storyboard S1 and Supplemental Video S1 for
walkthrough of each interface). It should be noted that the subject did
not have a choice to disuse or tum off the automated training
methodology. For example, this is similar to the predetermined
automation design of a space exploration autonomous behavioral
health tool reported in [81).

Table2 Summary of group treatments and displays

Visual feedback

Group Type Display timing
Control Repetition Fig. 4a N/A
Concurrent feedback Augmented feedback  Fig. 4b Fig. 3b
Terminal feedback Augmented feedback  Fig. 4c Fig. 3b
Adapiive threshold Motor adaptation Fig. 4a N/A
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Subjects were assigned to one of four groups (12 subjects per
group) and proceeded through the same protocol. The protocol
consisted of the following general steps: consent, enwance survey,
experiment overview and setup, pretraining assessments, training
phase, post training assessments, evaluation phase, post evaluation
assessments, and an exit survey. A maximum voluntary muscle
contraction measurement was collected pretraining and post evalu-
ation to confirm that subjects were not significantly fatigued during
the experiment, and which has been shown to affect SEMG sig-
nals [22].

We developed a “command accuracy test” to assess each subject’s
ability to produce commands. The command accuracy test was
conducted pretraining, post training, and post evaluation to provide
anassessmentsimilar to offline classification accuracy (see Ref. [82]
for an EMG example). A Fitts’s-law-style task was implemented for
the training and evaluation phases. There were a total of 160 trials,
with the first 120 trials used for training and the last 40 trials for
evaluation. Trials were grouped into sets of 10 to form a block; there
was a 30 s minimum rest time after each block and during which
subjects completed surveys for workload and trust.

III. Analysis and Hypotheses

The analysis focused primarily on command and interaction
(i.e., workload and trust) merics to observe the effects of the auto-
mated training methodology. Task-based metrics were also analyzed.
A brief description of the analysis is provided in the following
subsections.

A. Command Metrics

The command accuracy test provided an opportunity to evaluate
subjects’ proficiency in producing desired commands outside of the
Fitts’s law task: pretraining, post training, and post evaluation. Dur-
ing the command accuracy test, subjects responded to a prompt to
produce aspecified command (up, down, left, or right) and performed
each command 5 times for a total of 20 commands in a pseudor-
andomized order. The command was scored as successful when the
input matched the prompt; inputs classified as any other command
were not considered successful. The percent of successful commands
was calculated for each subject and averaged within the group for a
command accuracy metric. For all the successful commands, com-
mand time and average command amplitude were also calculated.
The command time is the duration between the start and end of a
command input (see Fig. 3a). The average command amplitude is the
average value of the input above the threshold during the command
input (i.e., the shaded regions in first two inputs of Fig. 3a); an
average command amplitude close to zero represents an efficient
input. Chhabra and Jacobs [83] used a similar signal magnitude
metric to evaluate input proficiency. These metrics assessed the
accuracy and efficiency of command input but were not calculated
during the Fitts’s law task because subject intention (i.e., desired
command) would need to be inferred for most time points.

B. Interaction Metrics: Workload and Trust

Workload was measured using the Modified Bedford Workload
scale [63]; the subject rated their perceived cognitive workload using
a flow diagram. Trust was evaluated using Jian et al.’s 12-statement
questionnaire, which measures trust between people and automated
systems [84]. Each of the 12 statements was evaluated on a 7-point
Likert-type scale. Subjects completed these surveys after each block
in the training and evaluation phases. A block consisted of 10 trials,
where a trial is a single Fitts’s-law-style cursor-to-target task.

C. Cursor-to-Target Task Metrics

The task metrics from the training and evaluation phases included
percent of successful trials, completion time, throughput (TP), and
normalized path length (nPL). The percent of successful trials con-
sisted of the number of successful trials out of the 10 trials within a
block, and only successful trials contributed to the completion time,
TP, and nPL metrics. Completion time was defined as the time from

the start of the trial to the trial completion but did not include the 1 s
dwell time. TP is a common metric for evaluating Fitts’s law tasks and
is defined as TP = ID/MT, where ID is the index of difficulty and
MT is the movement time. Given the control scheme and the target
positions, there was an optimal, rectilinear path that minimized the
distanced traveled by the cursor to select the target. The nPL metric
assessed the efficiency of the path traveled by using the optimal path
distance to normalize each value. There were 10 unique optimal paths
due to the radial symmetry of the target positions.

The percent of successful trials was evaluated every block. The 40
unique target positions repeated every four blocks (a.k.a. a session),
so the completion ime and nPL metrics were averaged over every
four blocks. We found completion time and nPL to be sensitive to
target location or ID, and therefore averaging over four blocks
(i.e., the 40 unique target positions) was more representative of
overall performance. TP is intended to evaluate an input device’s
efficacy under the assumption that the user is proficient. Therefore,
TP was only calculated during the evaluation phase when subjects
had reached a performance plateau.

D. Hypotheses

Based on our prior experience with augmented feedback and
SEMG cursor control, we formed the following hypotheses:

1) The adaptive threshold group will have the highest command
proficiency by the end, followed by the concurrent feedback and
terminal feedback groups, and then the control. Varying parameters
(i.e., thresholds) would improve sensitivity to the SEMG dynamics.
Augmented feedback would provide better sensitivity to the SEMG
dynamics than the control.

2) The concurrent feedback and terminal feedback groups will
have a high level of trust during training with some slight decrease
during evaluation. The control group’s trust will continually increase.
The adapaive threshold group will have lower trust during training,
which will increase in the evaluation phase.

3) The workload will continually decrease during the training
phase for all groups with the largest decreases for the concurrent
feedback and terminal feedback groups. There will be no significant
difference in workload in the evaluation phase for all groups because
the training phase will be sufficiently long enough for all groups to
proficiently leam to execute the Fitts’s-law-style task.

4) During the training phase, the concurrent feedback group will
have the highest performance followed by terminal feedback, then
control, and finally the adaptive threshold groups. All groups will
perform similarly in the evaluation phase because the training phase
will be sufficiently long enough for all groups to proficiently execute
the Fitts’s-law-style task.

IV. Results

Subjects were evenly divided into four groups: control, concurrent
feedback (visual feedback when x > /), terminal feedback (visual
feedback after command selected), and adaptive threshold (/, varied
on a trial-by-trial basis). Subjects completed a total of 16 blocks, each
comprised 10 cursor-to-target irials, for a total of 160 wials over the
course of the study. When applicable, sets of four blocks were
grouped into a session. Each session was identical, such that they
contained the same sequence of pseudorandomized target positions.
Muscle fatigue did not appear to alter the results, as the maximum
voluntary contraction was not significantly different between the
beginning and end of the study (F(1,46) =2.554,p = 0.117).
One subject was removed from this analysis as they changed their
arm position/contraction method during testing, which affects the
signal.

We ran two-factor linear mixed effect models to investigate
changes in command and task performance, workload, and trust with
one between-subjects factor, group, and one within-subjects repeated
measure, block/session/test. When significant effects were observed,
post hoc comparisons using the Tukey honest significance difference
(HSD) test were performed and considered significant at the p < 0.05
level, and theSatterthwaite method was used to calculate the adjusted
degrees of freedom using the ImerTest package in R [85].
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A.  Command Metrics

The results in this section (command accuracy, command time,
average command amplitude) were assessed from the command
accuracy test. The command accuracy test occurred three times
(before training, after training, and after evaluation), and the average
was calculated within a group for each test. We did not find evidence
that analyzing results by command type (i.e., up, down, left, or right)
altered the overall findings.

Subjects responded to command prompts in each command accu-
racy test. The command accuracy indicates the percentage of the 20
prompts in each test that subjects correctly performed (see Fig. S).
There was a significant main factor of test (F(2, 88) = 108485,
p <0.001), but group was not significant (F(3,44) = 2.631,
p = 0.062). The interaction effect between group and test was not
significant (F(6,88) = 0.826, p = 0.553). Investigation into the
test variable showed that subjects performed significantly better
between tests 1 and 2, and between tests 1 and 3, but not between
tests 2 and 3. These results demonstrated that there was a significant
improvement in the percent of accurate commands by the end of the
training phase.

The command time and average command amplitude metrics were
calculated only for successful commands. For command time, there
was asignificant factor of test (F(2,2055.358) =9.417, p < 0.001),
but group (F(3,44.080) =0.662, p = 0.580) and the interaction
between group and test (F(6,2054.727) = 1.005, p = 0.420) were
not significant. Examining the test variable, the command times
significantly improved from test 1 to test 2 and test 1 to test 3, but
not from test 2 to test 3 (see Fig. 6). The average command times
across groups were 1.81, 1.69, and 1.63 s in order of test.

Average commandamplitude had a significant interaction factor of
group and test (F(6,2044.772) = 17.143, p < 0.001), and main
factor of test (F(2,2044.882) = 13.886, p < 0.001), but not group
(F(3,44.211) = 1.062, p = 0.375). The only significant group and
test interactions occurred in test 1 between the conwrol and adaptive
threshold groups and the concurrent feedback and adaptive threshold
groups. Notably, the adaptive threshold group’s average command
amplitude increased from test 1, whereas all other groups generally
declined (see Fig. 7). An average command amplitude close to zero
represents an efficient input.
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B. Interaction Metrics: Workload and Trust

The study assessed the changes in workload: an important consid-
eration for human-automation interaction. The Modified Bedford
Workload metric is a subjective measurement of workload that ranges
from 1 to 10, where 1 indicates low workload and 10 indicates
high workload. There was a significant main factor of block
(F(15,660) = 18.284, p < 0.001), but group was not found to be
significant (F(3,44) = 2.164, p = 0.106). There was also asignifi-
cant interaction effect between group and block (F(45,660) =
1.818, p = 0.001) (see Fig. 8). The interaction effect resulted from
subjects reporting lower workload as they learned the task at different
rates, indicated by the block factor. In further investigation of the
interaction, we observed that the adaptive threshold group reported a
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significantly higher workload than the concurrent feedback group for
blocks 9, 10, and 11. This perception of high workload may have
resulted from the challenges and uncertainties of the changing thresh-
old. None of the groups showed a significant difference in workload
compared with the control group, and all four groups reported
statistically similar workloads in the evaluation phase.

Intragroup changes in workload were also of interest. The con-
current feedback group showed no statistically significant changes in
performance between blocks, though they did demonstrate a nonsig-
nificant, increasing workload trend in the evaluation phase of the
experiment. The terminal feedback group had statistically higher
initial workload forblocks 1, 2, and 3, but theremainder of the blocks
had a statistically similar level of workload. The control group’s
workload was significantly higher for blocks 1-6 but leveled off
for the remainder of the trials. Finally, the adaptive threshold group
reported the highest workload in blocks 1-5, but also saw the largest
improvement transitioning into the evaluation phase where their
threshold /; stabilized to the samefixed value asthe other groups.The
second human—automation interaction factor evaluated in the study
was trust. Trust was measured using Jian et al.’s 12-question trust
survey [84]. Each question was rated on a seven-point Likert scale,
the five reverse-coded questions were reversed, and the results were
averaged to create a single trust score (see Fig. 9). There was a
significant main factor of block (F(15, 660) = 13.051, p < 0.001),
but group was not found to be significant (F(3,44) = 2.588,

p = 0.065). There was also significant interaction effect between
group and block (F(45,660) = 1.996, p < 0.001). The significant
main effect of block shows a gradual increase in trust throughout
the duration of the study. After investigating the interaction effect,
we saw that no group reported a significantly different trust level
than the control group on any block, but that the adaptive threshold
group recorded a significantly lower trust than the concurrent feed-
back group on blocks 3—6 and 9. Similar to workload, the primary
interaction effects appeared driven by intragroup differences. The
concurrent feedback group showed no statistically significant
changes through the study, the terminal feedback and control
groups displayed significant increases in trust in blocks 1-6, and
the adaptive threshold group reported significantly higher trust in
the evaluation session than during early blocks. We investigated the
ratings for each individual question in the trust survey but did not
observe any trends that contradicted the overall trust score patterns
shown in Fig. 9.

C. Task Metrics

Although the command metrics were the primary proficiency
indicator, we did evaluate aspects of task performance, including
percent of successful trials, throughput (TP), completion time, and
normalized path efficiency (nPL). The percent of successful trials
metric measured the percentage of successfully completed trials
within a block. For percent of successful trials, there were significant

0.5

g - . .
. ?
] = ]

N E ¥§}{

i

s " >/ -

I
|
I
. I
Eso4 M., I
(728 L]
=
7 =~ *
2 I
1= 451 V4 I
-~ I
Vg I
3.0 4 - !
~ o .y e \ —@— Control
I = ¥=—"- Concurrent
B : <<l -+ Terminal
| = = — Adaptation
T T T T T T T T L] T T L T T T T
1 2 3 4 ] 6 7 9 10 1 12 13 14 15 16
Block
—

Fig.9 Trustscore. The vertical dashed line represents the transition from training to evaluation. Error bars shown are the standard error of the mean

[78). Revised with permission from O’Meara et al. [78].


https://arc.aiaa.org/action/showImage?doi=10.2514/1.I010915&iName=master.img-007.jpg&w=419&h=190
https://arc.aiaa.org/action/showImage?doi=10.2514/1.I010915&iName=master.img-008.jpg&w=420&h=190

@ | http://arc.aiaa.org | DOL: 10.2514/1.1010915

Article in Advance / O'MEARA ET AL. 9

main factors of group (F(3,44) =8.183, p <0.001) and block
(F(15,660) = 31.805,p < 0.001). There was also a significant
interaction effect between group and block (F(45,660) = 3.903,
p <0.001). Despite the presence of an interaction effect that resulted
from subjects leamning the task (as indicated by the block factor), the
main effect of group could still be interpreted. A Tukey test showed
that the subjects in the groups differed significantly, with subjects in
the concurrent feedback group performing significantly better than
those in the control group (p = 0.020). The Tukey test also showed
that subjects in the adaptive threshold group performed significantly
worse than those in the terminal feedback and concurrent feedback
groups (p = 0.009, < 0.001, respectively), but not worse than the
control (p = 0.394).

The interaction effect resulted from different leaming rates
between the groups (see Fig. 10), where subjects leamed in the
following order (fastest to slowest): concurrent feedback, terminal
feedback, control, and adaptive threshold. Compared with the control
group, the concurrent feedback group significantly outperformed
them for the first six blocks. Unlike the concurrent feedback group,
the terminal feedback and adaptive threshold groups started with the
same initial performance as the control group. The terminal feedback
group learned more quickly than the control group, however, and
significantly outperformed the control group for blocks 4 and 5.
Compared with the control group, all groups performed at sta-
tistically similar level after block 6. Investigating the immediate
evaluation effects when the group-specific treatments were removed
in block 13, the mixed model showed no change in performance for
any of the groups (p > 0.989 for all groups). Assuch, the percentage
of successfully completed trials did not show any effect from the
guidance hypothesis (i.e., the subjects did not rely on the feedback to
complete the task and removing the feedback did not result in
decreased performance).

The TP was calculated for the evaluation phase and averaged across
blocks 13-16 (i.e., fourth session). Throughput is generally used to
assess an input device, which should be measured when the subjects
can complete the task. Because there were no significant differences in
the evaluation phase for percent complete, weonly calculated TP at this
time, since initial blocks may have been biased toward low IDs. There
was no significant difference in throughput between the groups
(F(3,44) = 1.625, p = 0.197). The mean throughput for all subjects
was found to be 0.564 % 0.023 bits/s (u £ o).

The pseudorandomization of the 40 unique target positions
occurred over four blocks; thus it seemed appropriate to average
completion time over a session (i.e., set of four blocks). Completion
time was only defined for successfully completed trials; the results
are displayed in Fig. 11. There were significant main factors of group
(F(3,43.968) = 4.390, p = 0.009) and session (F(3,131.074) =
24906, p < 0.001). The interaction effect between group and session
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Fig. 11 Completion time by session (set of 4 blocks) across groups. The
vertical dashed line represents the transition between the training and
evaluation phases [78). Revised with permission from ()’Mearaetal. [78).

was not significant (F(9, 131.069) = 0.782, p = 0.633). A Tukey
test showed that the concurrent feedback group performed signifi-
cantly better than those in the adaptive threshold group (p = 0.004),
which was the only significant difference between groups, and no
groups significantly outperformed the control group. Analysis of the
session factor showed increased performance (p < 0.05) until the last
two sessions, which were not statistically different (p = 0.646).
These results further support that the guidance hypothesis did
not occur.

The significant difference in completion time between the con-
current feedback and adaptive threshold groups may have been
explained by increased normalized path length, but there were no
significant group differences (F(3,44.099) = 0.908, p = 0.445).
Increased normalized path length correlated with lower ID targets
(see Table 3).

V. Discussion

The study investigated the effects of automated training method-
ologies to efficiently and accurately use an SEMG command system,
and elucidate the relationship between performance, workload, and
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Table3 Normalized path efficiency for different targets

Index of difficulty 1.00 1.58 2.32 3.17 4.09

Average 32.11 3.80 1.80 1.38 1.20
Standard error of the mean 290 0.29 008 0.04 0.02

trust during training. The command metrics from the command
accuracy test largely did not indicate group differences. We expected
the groupsto perform similarly during test 2, which was administered
at the conclusion of the wraining phase and when the subjects should
have reached a performance plateau at the end of wraining. However,
in test 3 we expected that the adaptive threshold group would
optimize their inputs to the stabilized threshold, but we did not
observesignificant differences in test3. We did notexpect to observe
differences between groups in test 1, but there was a significant
difference in average command amplitude between the control and
adaptive threshold and concurrent feedback and adaptive threshold.
Before test 1, the subjects across groups had received a generic
experiment introduction, group-specific training tailored to their
different interfaces, and a manual calibration of their signals. After
investigating the data from test 1, we concluded that the differences
may be a result of the group-specific training and the manual cali-
bration. The manual calibration for the adaptive threshold group had
to accommodate the range of thresholds (0.1 <{; <0.3), which
increased the normalization value by approximately 24% higher than
the other groups. As a result, the normalized signal input X decreased
by the same proportion for the same rms input value. Combined with
the standard threshold value (/; = 0.2) during all code accuracy tests,
the adaptive group would have needed to input larger signals to
compensate. There are no significant differences after test 1, during
the evaluasion phase, or in the MVC (which would indicate fatigue);
therefore the effect seems to be limited to pretraining. Their average
command amplitudevalues did increase for test 2 and test 3compared
with test 1. Tests 2 and 3 occurred after the Fitts’s law task when the
adaptive threshold group would have seen the effect of their input on
the cursor motion. The adaptive threshold group did not pursue a
strategy of maximally contracting their muscles evident by their
convergent average command amplitude values with the other
groups, particularly the concurrentfeedback group, which had feed-
back on threshold crossings. Our subjects’ adaptation follows other
studies that observed adaptation to input noise characteristics [83]
and the refinement of muscle synergies [30]. The subjects in this
study improved across the command metrics after the training phase,
demonstrating adaptation to the SEMG command system. In terms of
these command metrics, the specific automated training methodol-
ogy was less important.

The adaptive threshold group had increased mapping uncertainty
during training, whereas the concurrent feedback and terminal feed-
back groups received augmented feedback about the SEMG control
system. Augmented feedback was moreeffective in assisting subjects
in achieving a performance plateau, requiring only a third of the
prescribed training phase and following the findings of Basmajian
[51]. The control and adaptive threshold groups needed the entire
training phase to achieve a similar performance level, indicating that
the augmented feedback enhanced the early acquisition of motor
leamning skills. The early motor leaming we observed, where the
concurrent group led the terminal group in initial performance
gains, was expected as this SEMG testbed was designed to inves-
tigate a challenging task. Functionally complex motor control tasks
are generally expected to respond better to concurrent feedback
[34], though it remains difficult to estimate a task’s functional task
complexity, or instances where concurrent versus terminal feedback
will be more effective. Both feedback levels eventually resulted in
the same performance, but the high levels of performance initially
observed in the concurrent group, both likely resulted from the
subject’s increased internal understanding of the task dynamics.
The augmented feedback groups appear to have the strongest per-
formance advantage.

However, the adaptive threshold group’s results are interesting for
tworeasons. First, varying thresholds/increased mapping uncertainty

did not appear to cause adverse effects compared with the control
group. Unreliable automation behavior can lead to poor human—
automation interaction [86], but was not the case in this study.
Secondly, the adaptive threshold group only trained at the standard
threshold (/, = 0.2) for 20% of the trials compared with the other
groups. The changing threshold did affect task metrics during the
training phase; the varying threshold levels were not inconsequential
asevident by the significant differences between the adaptive thresh-
old and concurrent feedback groups for workload, trust, percent of
successful trials, and completion time. However, the adaptive thresh-
old group’s performance was indistinguishable during the evaluation.
The training challenge of varying thresholds/increased mapping
uncertainty did not cause poorer performance during evaluation,
butalsodid not see significantly improved performance. It is possible
that the adaptive training methodology could be redesigned to better
elicitthe benefits. Alternatively, we could have evaluated all groups at
a novel threshold. To observe potential task generalization benefits,
this methodology may be better tested with a different task that still
uses the SEMG commands (a.k.a. a transfer task) or a similar under-
lying task structure, instead of returning to a stable condition. For
example, Braun et al. [55] showed that subjects trained with varying
visuomotor tasks were able to quickly generalize to novel tasks that
still retained similar features as the original training task. In one
sense, the adaptive threshold group does have better command
proficiency due to similar performance with less training at the
standard threshold, which is encouraging although not strong support
for the first hypothesis. We maintain that the subsequent experiments
should continue investigating the use of adaptive strategies for
training.

The task results suggest that subjects reached a similar level of task
proficiency by the end of the waining phase, as we observed no
differences between groups during the evaluasion phase. However,
a more complex interaction between task performance, workload,
and trust occurred during the training phase and varied by training
methodology. The concurrent feedback group started with the highest
task performance, lowest workload, and highest level of trust. By the
fifth block, the terminal feedback group overlapped with the con-
current feedback group in terms of percent of successful trials, work-
load, and trust. These two groups then tracked each other for the
remainder of the study. In both augmented feedback groups, our
feedback displays act as an expert “instructor” model, providing
information to subjects in real-time about either ¥ or their command
state. Correspondingly, the results we observed closely align with
prior literature when subjects are provided with expert feedback;
subjects in both augmented feedback groups displayed reduced
“cognitive load during initial practice, helping [them] integrate
declarative knowledge with physical skills” [37]. The concurrent
feedback and terminal feedback groups did not have significantly
different average complesion times throughout the study. In their
initial learning, the concurrent feedback group demonstrated high
initial performance with smaller, incremental gains, whereas the
terminal feedback group had large block-to-block improvements.
The adaptive threshold group did not appear to reach a performance
plateau for the percent of successful trials and steadily, but not
significantly, improved in subsequent evaluation blocks. Interest-
ingly, the trust score also continually increased for both the control
and adaptive threshold groups. Although the changing cursor dynam-
ics in the adaptive threshold group does not seem to have adversely
affected trust compared with the control group, the adaptive threshold
group did report a significantly higher workload for blocks 911 than
the concurrent feedback group. Once the threshold stabilized, the
workload and trust in the adaptive threshold group was not sta-
tistically different from the other groups. These effects that may be
explained by Hoff and Bashir’s three-layer model [70], where the
training methodology altered situational trust and the continued
interaction affected learned trust. Jian et al.’s trust survey specifically
asks subjects about their familiarity with and confidence in the
system, and asks subjects to rate the reliability of the system and its
outputs [84]. Changes in trust scores may reflect differences in
components like confidence and reliability, but also include a ques-
tion for trust. Analysis of the individual questions did not contradict
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the averaged results of the trust scale, however, and it likely that this
reflects that learned trust, not simply understanding of the system, is
increasing with time. Overall, these results suggested that augmented
feedback led to earlier task performance gains with improvements in
trust and workload. Surprisingly, the varying thresholds/increased
mapping uncertainty did not adversely affect trust, but the mental cost
was reflected in the task performance and workload. In general, the
second, third, and fourth hypotheses were largely supported with
increased trust and decreased workload by the evaluation phase, with
no differences between groups.

The workload scores indicated that the task of learning a novel
SEMG cursor control system to hit targets on a screen was sufficiently
challenging. The average workload scores by block across groups
ranged from 6.71 to 3.65 with the highest average score occurring in
the first block. The average workload score decreased with sub-
sequent blocks. According to the Modified Bedford Workload Scale
[63], a score of 7 indicated that the task was possible, but that there
was “. .. minimalspare time for additional tasks.” A score of 6 meant
thatthe task was possible and workload tolerable and “there was some
butnot enough spare time available foradditional tasks” [63]. By the
end of training, the average workload score was rated approximately
atad4, as the task was considered possible withtolerable workload and
“... ample time to attend to additional tasks” [63]. In a simulated,
four-degree-of-freedom manually controlled spacecraft inspection
task with a secondary task and verbal callouts, the average Modified
Bedford Workload scores ranged from 7.17 to 3.94 [60]. The sim-
ilarity in the workload scores indicates that the subjects found the task
to leam SEMG control to be sufficiently difficult until the end of
training. We intended for the subjects to become proficient in SEMG
cursor control by the end of training. Therefore, for an initial evalu-
ation of automated training methodologies, we believe the task
complexity to be sufficient. In future development of SEMG control
for aerospace applications, it would be beneficial to include addi-
tional tasks to simulate a more realistic environment.

There were not many active BoMIs for aerospace applications
available for comparison and with similar metrics. The code accuracy
reported in this study, 67.2% in test 3, appeared similar to the
classification accuracy of a BCI mouse at 73.1% [19]. The percent
of successful trials during the evaluation phase (86.18%) exceeded
that of a BCI mouse for a simplified, simulated spacecraft (66.7%)
[18], and was similar to the success rate for crossing gates in gesture-
based drone control (87.67%) [13]. However, the differences in the
tasks and requirements for success limit the extent and interpretabil-
ity of the comparisons. As another point of comparison, the through-
put values during the evaluation phase for all groups fell within
previously published results for SEMG cursor control systems. Our
previous single-site SEMG cursor control system with 2 degrees of
freedom (counterclockwise rotation and forward) reported 2.24
and 0.23 bits/s for control methodologies that used different levels
of automasion [74]). Multisite systems have achieved 0.4 [87],
0.84 [88], and 1.3 bits/s [89]. The SEMG cursor control system
used in this study had a throughput of 0.56 bits/s and may be of
additional interest to the BCI community. However, the purpose of
the SEMG cursor control system in this study was primarily to
provide a testbed for automated training that lent itself to motor
leaming adaptation and was sufficiently challenging to probe the
relationship between command and task performance, workload,
and trust.

VI. Conclusions

The study results largely supported our hypotheses. The percent of
successful trials performance during the training phase followed the
order of concurrent feedback, terminal feedback, control, and adap-
tive threshold, but not for all times during that phase. All groups
performed similarly in percent of successful trials during the evalu-
ation phase. The subjects’ trust followed our expectations, with
concurrent feedback and terminal feedback having the highest levels,
whereas the control group’s trust continually increased at a slow rate.
The adaptive threshold group had lower trust during training, and the
trust increased to the level of the other groups during evaluation.

The workload results also supported our hypotheses that concurrent
feedback and terminal feedback groups would have the largest
decrease in workload, and that all groups would have similar work-
load during the evaluation phase. Interestingly, the concurrent feed-
back and terminal feedback groups converged across performance,
workload, and trust by block 5. Our hypothesis that the adaptive
threshold group would achieve the highestcommand proficiency was
not entirely supported, although we observed encouraging indica-
tions. In future studies it may be of interest to include a transfer task or
conduct the command accuracy test throughout the training phase to
improve understanding of the adaptive methodology. This study
provided insights on the relationship between performance, work-
load, and trust for various automated training methodologies, and
highlighted the advantage of certain methodologies during the train-
ing phase. By directly comparing methodologies and identifying
these human-automation interaction effects, this research provides
a quantitative basis for exploring combined training approaches in
future research. It would be interesting to investigate a mixed training
methodology approach that combines concurrent feedback with the
motor adaptation approach, where subjects potentially benefit from
both increased feedback, adaptation rate, and skill generalization.
This research also contributes to training users of BoMIs, but it is not
known if the study results generalize to BoMIs with other signal
types. The muscle activation patterns were mapped to cursor com-
mands, which were relevant to the task, but could be translated to
other commands as needed for an application, and SEMG control is
not limited to an on-screen application. The availability of multiple
communication modalities provides flexibility and the opportunity to
create new interaction paradigms.
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