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Purely viscous acoustic propulsion of bimetallic rods
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Synthetic microswimmers offer models for cell motility and their tunability makes
them promising candidates for biomedical applications. Here, we measure the acoustic
propulsion of bimetallic microrods that, when trapped at the nodal plane of a MHz acoustic
resonator, swim with speeds of up to 300 μm s−1. While past acoustic streaming models
predict speeds that are more than one order of magnitude smaller than our measurements,
we demonstrate that the acoustic locomotion of the rods is driven by a viscous, nonrecip-
rocal mechanism relying on shape anisotropy akin to that used by swimming cells and that
reproduces our data with no adjustable parameters.

DOI: 10.1103/PhysRevFluids.6.L092201

Biological and synthetic nano- and microswimmers operate at a low Reynolds number, and their
study has been a place to discover and leverage new physics [1,2]. Since their introduction in 2004
[3], synthetic swimmers have been extensively studied, both to understand the fundamental physics
of active fluids [4] and also for potential applications in biomedicine [5], materials science [6,7],
environmental remediation [8], and analytical science [9]. These swimmers range in size from tens
of nanometers to micrometers, and can be powered by catalysis [10], magnetic [11–13] and electric
fields [14–16], light [17], ultrasound [18,19], or combinations thereof [20,21]. Interactions between
swimmers lead to a rich variety of emergent behaviors, including self-assembly, chemotaxis, and
spontaneous large-scale symmetry breaking [22–27]. Many of these powerful swimmers do not
require toxic fuels and their compatibility with biological media enables applications in intracellular
sensing and drug delivery [28–30].

The rapid propulsion of metallic microrods at the nodal plane of an acoustic standing wave was
first discovered in 2012 [31]. Their electrochemical fabrication results in one end being concave and
the other convex. With single-element rods, this shape asymmetry alone generates propulsion, but at
relatively slow speeds compared to density-asymmetric bimetallic rods where the less dense end of
the rod always leads [32]. The requirement for an asymmetry in shape or density is supported by ex-
periments showing the locomotion of density-asymmetric spheres [33] and no directional propulsion
for symmetric microrods [34]. Previous modeling proposed that the acoustic propulsion of metallic
rods arises from the nonlinear inertial coupling between rotational and translational perturbation
flows (acoustic streaming) [35–38]. However, this model has yet to reproduce experimental data
quantitatively.
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FIG. 1. (a) Diagram of the acoustic resonators. The amplitude of the acoustic field displacement at the pres-
sure nodal plane is denoted by ξ so the corresponding transverse velocity is U e = ξω exp(iωt )ẑ. (b) Geometry
of the rods of types R1 and R2. The values of L, L1, L2, and LG and corresponding standard deviations for type
R2 are provided in the Supplemental Material [43]. (c) Scanning electron microscopy pictures of bimetallic
rods: (i) type R2-A; (ii) type R2-B; (iii) type R2-C; (iv) type R1, L = 587 nm; (v) type R1, L = 2458 nm;
(vi) type R1, L = 990 nm. The contrast between the gold stripe (yellow) and the ruthenium sections (gray) has
been enhanced. In (c)(i)–(vi) the white scale bars are 300 μm long.

Here, we report experiments in which the density of multisegment bimetallic rods is varied
along their length. Their forced propulsion in the nodal plane of an acoustic water-filled resonator
is modeled by an unsteady viscous propulsion mechanism in which acoustic streaming plays no
role. The amplitude of the forcing acoustic field is directly inferred from the drift dynamics of
silica microspheres towards the pressure node [39]. The accurate measurement of the acoustic field
displacement amplitude enables our model to reproduce the data with no adjustable parameters,
making this, to the best of our knowledge, the first quantitative agreement with experiments on this
phenomenon. Our model demonstrates that imbalanced microrods powered by ultrasound are, in
fact, nonreciprocal Purcell motors, analogous in their undulatory swimming cycle to spermatozoa
[40] and self-propelled viscous flapping swimmers [2,41,42].

Bimetallic microrods were fabricated by the electrodeposition of metals into the cylindrical,
300-nm-diameter pores of anodic aluminum oxide (AAO) membranes [31,32]. Two sets of rods
(diameter 2r = 300 nm, length L) were made [see Figs. 1(b) and 1(c)]: a first set of half-gold/half-
ruthenium rods (type R1), with aspect ratio γ = 2r/L made to vary by changing the total length
L (average lengths L = 384, 587, 990, 1915, 2458, and 3921 nm); in the second set of rods (type
R2), referred to as R2-A, R2-B, and R2-C (Au stripe at the end, in the second quarter of the rod,
and in the middle, respectively), the distance δ between the centroid and center of mass was varied
by changing the location of the gold stripe. Experimentally, the lengths of the second set of rods
spanned from 539 to 1284 nm, with an average length L = 892 nm and a standard deviation �L =
164 nm. The dimensions of the type R1 and type R2 rods are reported in the Supplemental Material
[43].

The resonator cavity [see Fig. 1(a) and Supplemental Material [43]] was filled with de-ionized
water (density ρ, dynamic viscosity η) seeded with microrods and a dilute suspension of 3-μm-
diameter polystyrene or silica spheres. The first resonant mode frequencies, f = ω/(2π ) = 2.17,
3.17, 3.7, and 5.0 ± 0.15 MHz, were obtained by sweeping the frequency of the harmonic voltage
source connected to the transducer, in the region corresponding to four gap thicknesses e = 340,
230, 195, and 150 ± 8 μm. In the following, the displacement amplitude of the transverse acoustic
field at the pressure nodal plane is denoted by ξ so that the corresponding transverse velocity of the
acoustic field is U e = ξω exp(iωt )ẑ, with ẑ the unit vector in the z direction. Once the resonance
frequency was found precisely, moving spheres were recorded rising to the pressure node when
the ultrasound was turned on. The height and velocity of the tracer spheres could be inferred from
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FIG. 2. (a)–(d) Propulsion speed of type R1 rods,Vprop, as a function of the acoustic displacement amplitude
at the pressure nodal plane, ξ (nm), for four different rod lengths. The experimental data are plotted in solid
symbols. The viscous model depicted in the text [Eq. (4)], for which Vprop ∼ ξ 2, is shown in solid lines. Blue,
red, and green symbols/lines correspond to the frequencies f = 2.17, 3.17, and 5.0 MHz, respectively.

the change in holographic halo diameter over time, (movie S1 [43]). Rods moving in the nodal plane
(movie S2 [43]) were recorded for 5 s at 20 frames per second (FPS) (100 frames) and tracked using
MOSAICSUITE with CLIJ GPU acceleration [44,45] in IMAGEJ [46] to capture ensemble velocities.

As in past work [31,32], the lighter end of the rods (Ru side) was always leading during
locomotion (Fig. S1 in Supplemental Material [43]). The propulsion speed of the R1 rods, Vprop,
is plotted in Fig. 2 as a function of the displacement amplitude ξ for four rod lengths and three
forcing frequencies. The whole set of data can be fitted to a power lawVprop ∼ ξ 1.75. The propulsion
speed of R2 rods observed for a forcing frequency f = 3.7 MHz is shown in Fig. 3 as a function
of the distance δ between the geometric center and the center of mass [see Fig. 1(b)]. As expected,
Vprop is an increasing function of δ, which is the controlling symmetry-breaking parameter for type
R2 rods. In the following, we show that the propulsion speed observed for both R1 and R2 rods can
be reproduced quantitatively by a viscous mechanism in which only the inertia of the solid (and not
the fluid) is accounted for.

Using a general dimensionless analysis, we see that the normalized acoustic propulsion speed of
a rigid rod,Vprop/(ξω), depends on six dimensionless parameters [38]: the dimensionless asymmetry
α = 2δ/L; the fluid-to-solid density ratio β = ρ/ρ̄ (ρ̄ being the mean density of the rod); the
aspect ratio γ = 2r/L; the frequency Stokes parameter (which can be interpreted as the inverse
of the dimensionless viscous diffusion length) λ = (ρ r2ω/η)1/2; the dimensionless amplitude of
the acoustic field at the pressure nodal plane ε = ξ/r; and the dimensionless inertia Ĩ = I/Ih (I
and Ih being the inertias of the original rod and that of the isovolume homogeneous rod about their
respective centers of mass).

Past studies argued that the acoustic propulsion of metallic rods resulted from the nonlinear
inertial coupling in the fluid between rotation and translation (phenomenon of so-called acoustic
streaming). However, this physical mechanism has not been tested quantitatively, due to lack
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FIG. 3. Propulsion speed of type R2 rods, Vprop (μm s−1), as a function of the asymmetry distance δ (nm),
for f = 3.7 MHz. Due to fluctuations in the manufacturing process the length of type R2 rods lies in the range
539–1284 nm. The theory (viscous model) is plotted with a solid line for the mean value of the length L = 892
nm. Inset: Dimensionless form of the plot.

of knowledge of the local acoustic displacement amplitude. We used direct measurements of ξ

and introduced reasonable values of the previously proposed dimensionless parameters in the
available streaming-based predictive theories [35–38]. This led to quantitative predictions of the
propulsion speed that underestimated the experimental values by more than one order of magnitude
(see Supplemental Material [43]). The question therefore remains to determine the main physical
mechanism governing acoustic propulsion. We argue here that the propulsion mainly results from
the nonreciprocal (rectified) flapping motion of the rods, a viscous mechanism originally proposed
in Ref. [47] for ellipsoids and illustrated in Fig. 4(b) (see the theoretical section below). In this

FIG. 4. (a) Equivalent ellipsoid model of the cylindrical rods used to derive an expression of the propulsion
speed Vprop. (b) Physical principle of the rectified viscous mechanism based on the combined effects of shape
anisotropy and the flapping motion [47]. Regardless of the direction of the vertical velocity within a period of
oscillation, the shape anisotropy yields a rectified force oriented towards the less dense end of the solid (green
arrow).
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mechanism, a propulsive force is created if a time-varying displacement of an elongated body
(flapping) is combined with a time-varying change of conformation (angle) in a non-time-reversible
fashion. To adapt these earlier results [47], we consider prolate spheroids of the same mass and
aspect ratio [semiminor and major axis b̄ = [3γm/(4πρ̄ )]1/3 and ā = b̄/γ —see Fig. 4(a)] whose
flapping motion is forced by the transverse acoustic field. Note that this leads to a redefinition of
the frequency parameter λ = b̄2ω/ν and dimensionless amplitude ε = ξ/b̄, which are now based on
the semiminor axis b̄, while the remaining dimensionless parameters are those of the initial rod. The
averaged propulsion speed Vprop derived in Ref. [47] (where 〈·〉 denotes the average over a period of
oscillation) is

Vprop = �⊥ − �‖
�‖

〈Vz θ〉, (1)

from which one can infer that, in order to obtain a nonzero mean speed, (i) the local transverse
(along the minor axis) and lengthwise (along the major-axis) Stokes drag coefficients −6π ā�⊥
and −6π ā�‖ must be different, and (ii) the vertical velocity Vz of the centroid (relative to the
fluid) and the tilt angle θ of the major axis must not be π/2 out of phase from one another
(otherwise the average would be zero). In order to compute the propulsion speed Vprop, we
calculate the time-periodic quantitiesVz and θ from Newton’s laws by taking into account the inertia
of the solid (only) [38]. We consider the incompressible limit in which the transverse dimensions of
the rod are small compared to the acoustic wavelength. In this case, the forcing oscillatory flow can
be approximated as locally uniform at the particle scale. In addition, ξ is assumed to be smaller
than the minor axis of the rod, so ε � 1. We write the imbalance vector of the ellipsoid that
results from its density asymmetry as δ = OG = δ d, where d is the unit vector aligned with the
major axis of the ellipse (Fig. 4). The conservation of momentum can be linearized in the small
tilt angle limit (θ � 1) as ρ̄VV̇ = m δ × θ̈ + F + (ρ − ρ̄ )V U̇ e, where θ̈ = θ̈ ŷ, V = Vz ẑ is the
oscillating velocity of the solid relative to the surrounding fluid,V is the volume of the particle, F
is the corresponding viscous hydrodynamic force, and the last term is the effective buoyancy force.
Similarly, the conservation of angular momentum can be written as I θ̈ = L − δ × (F + ρVU̇ e),
where L = −8π ā3�r θ̇ is the hydrodynamic torque about the (O, y) axis due to rotation. Using
ξω and ω−1 as the reference velocity and timescale, and denoting by vz the dimensionless velocity
Vz/(ξω), yields the nondimensional forms of momenta conservation equations

v̇z = −A

ε
θ̈ − B vz + E eit , (2)

θ̈ = −C θ̇ + εD vz − εF eit , (3)

where A = (α/γ ), B = [(9β�⊥/(2λ2)], C = [15�r/(λ2 Ĩχ )], D = [9β�⊥/(2λ2)], E = i(β − 1),
and F = i[5αβγ /(2Ĩχ )] do not depend on ε, since χ = (1 + γ 2)/2, �‖, �⊥, and �r only depend
on the aspect ratio of the rod. From Eqs. (2) and (3), it can be inferred that vz and θ are O(1)
and O(ε), respectively. So, writing these two quantities as vz = v̂0eiωt and θ = ε θ̂0eiωt , solving the
system in Eqs. (2) and (3) for v̂0 and θ̂0, and evaluating Eq. (1) leads to our theoretical prediction
for the propulsion speed,

Vprop = 1
2ξω ε Re[θ̂†

0 v̂0]. (4)

The speed is thus of the form Vprop = ξω εF (α, β, γ , λ, Ĩ ), where the dimensionless factor F =
(1/2)Re[θ̂†

0 v̂0] does not depend on ε, and is therefore proportional to the square of the forcing
amplitude ξ . This quadratic dependence is close to the experimental scaling Vprop ∼ ξ 1.75 obtained
from a global least-squares fitting of the data (in Fig. 2, theory is plotted in solid lines).

The theoretical predictions are also shown in Fig. 3 in both dimensional and dimensionless
forms. For small values of the asymmetry parameter α, one expects a linear dependence of the
propulsion velocity with Vprop = ξω ε α[∂αF ]α=0, as obtained. In both cases, the propulsion speed
is quantitatively captured by the model, with no fitting parameters. The agreement includes both the
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FIG. 5. Dimensionless propulsion velocity Vprop/(ξω) for type R1 rods rescaled by the dimensionless field
amplitude ε. The experimental data are plotted in solid symbols; the theory is plotted in solid lines. The color
code is the same as in Fig. 2.

direction of swimming (light end of the rod leading) and its magnitude. In Fig. 5, we next plot the
dimensionless function F as a function of the inverse of the aspect ratio (dimensionless length) from
the data in Fig. 2, by averaging the quantity Vprop/(ξω ε) over ε for each pair of parameters (λ, γ ),
i.e., for each pair of dimensioned parameters ( f ,L). Note that, for type R1 rods, F is a function
of γ and λ only, since the values of the constants α � 0.1, β � 0.06, and Ĩ � 1 do not depend on
the aspect ratio. Small discrepancies exist, e.g., the optimal length, which can be estimated from
the measurements for λ = 0.55 and λ = 0.67 ( f = 2.17 and 3.17 MHz), is underestimated by the
model (at least by a factor of 2) and so is the corresponding value of function F , but despite these,
the model captures the major trends and orders of magnitude observed in the experimental data. In
particular, the drop in propulsion velocity observed for γ → 1 (due to the loss of anisotropy) agrees
with the model, as is the decrease observed for γ −1 
 1, where axial drag becomes prominent.

In summary, we have presented here evidence that the acoustic propulsion of bimetallic cylindri-
cal rods is driven by a viscous mechanism in which the fluid inertia plays no role. Mathematically,
ignoring the inertia of the fluid is a valid assumption provided λ2 � 1; in our experiments the
values of λ2 range from 0.3 to 0.7, and therefore our model remains quantitatively accurate even
beyond the strict asymptotic limit in which it should be valid. Note that our model does not rule
out contributions from other streaming-based mechanisms, which remain relevant in the case of
pure spheres with strong imbalance [33]. The agreement between the model and our data with no
fitting parameters strongly suggests that viscous flapping is the main mechanism governing the
physics of acoustic propulsion of density-asymmetric metallic rods. Our work represents therefore
a paradigm shift in our understanding of acoustic propulsion. With more detailed modeling and
complex nanorod designs, a full description of this phenomenon should be within reach. These
insights could inform the rational design of many different types of future nanoscopic swimmers
and active matter powered by ultrasound and represent an important step towards a more holistic
understanding of ultrasound-matter interactions and their nanoscale fluid dynamics, with a potential
impact in biology, medicine, sensing, and fluid physics.
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