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Abstract: In this paper, we consider the multi-armed bandit problem
with high-dimensional features. First, we prove a minimax lower bound,
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)
, for the cumulative regret, in terms of hori-

zon T , dimension d and a margin parameter α ∈ [0, 1], which controls
the separation between the optimal and the sub-optimal arms. This new
lower bound unifies existing regret bound results that have different de-
pendencies on T due to the use of different values of margin parameter α
explicitly implied by their assumptions. Second, we propose a simple and
computationally efficient algorithm inspired by the general Upper Confi-
dence Bound (UCB) strategy that achieves a regret upper bound matching
the lower bound. The proposed algorithm uses a properly centered �1-ball
as the confidence set in contrast to the commonly used ellipsoid confidence
set. In addition, the algorithm does not require any forced sampling step
and is thereby adaptive to the practically unknown margin parameter. Sim-
ulations and a real data analysis are conducted to compare the proposed
method with existing ones in the literature.
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1. Introduction

In the big data era, the abundance of personalized information enables decision-
makers to make individualized decisions for improving the long term reward by
incorporating this contextual information. For example, internet marketing com-
panies may utilize users’ searching history and demographics to display person-
alized online advertisements to improve the conversion rate (Abe et al., 2003).
In personalized medicine, doctors assign treatments tailored to the individual
patient based on the context of the patient’s own medical records and genetic
information such as biomarkers (Bastani and Bayati, 2019). In these examples,
data are often collected sequentially and decision-makers need to pick the best
action to maximize the long term reward based on the current predict response
in a sequential fashion. Mathematically, this problem can be formulated as a
contextual bandit problem (Abe et al., 2003; Chu et al., 2011), where an agent
sees a d-dimensional feature vector and has to choose among K actions (arms)
at each of the T rounds to maximize the cumulative reward. When the expected
reward is a linear function of the features, this problem is known as the linear
bandit problem, or the multi-armed bandit problem with linear payoff func-
tions (Abe et al., 2003; Auer, 2003). Under this setting, Dani et al. (2008), Chu
et al. (2011) and Abbasi-Yadkori et al. (2011) showed a polynomial dependence
of the cumulative regret on dimension d and time horizon T . Precisely, Chu
et al. (2011) proved a regret upper bound scaling as O(

√
dT ), while Dani et al.

(2008) and Abbasi-Yadkori et al. (2011) proved regret upper bounds scaling as
O(d

√
T ).
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We focus on the high-dimensional regime where the dimension d of the fea-
ture vector can be comparable, or even much larger than the total number of
rounds T that plays the role of “sample size” in the statistical perspective. The
high-dimensionality of the features and the dependence between the samples
induced by the bandit policy make the high dimensional linear bandit problem
very challenging both for methodological development and theoretical analysis.
In particular, the ordinary least squares (OLS), a traditional statistical method
for linear regression and its variants serve as the cornerstones for most linear
bandit algorithms, they require a substantial number of samples to accurately
estimate the parameters, incurring the polynomial-d dependence of the regret. In
the statistical literature, it is well-known that imposing extra lower-dimensional
structures such as sparsity on the model improves the minimax risk, or the sam-
ple complexity of the best learning algorithm. For example, under the sparsity
assumption that the response, or reward, only depends on a small subset of all
features with size s0 � d, the minimax risk reduces from

√
d/T to

√
s0 log d/T ,

where s0 now plays the role of the “effective dimension” and the extra log d term
is due to the uncertainty in feature selection. Unfortunately, sparsity generally
does not help improve the regret in linear bandit. Roughly speaking, this failure
of sparsity adaptation is due to the exploitation nature of a good bandit prob-
lem that tends to choose an optimal arm as often as possible, which prevents
the exploration of different directions in the feature space and results in an ill-
conditioned design matrix. Interestingly, we find that sparsity adaptation is still
possible in the high-dimensional linear bandit when features associated with
different arms have a sufficient separation. In particular, we show that under
the stochastic assumption that feature vectors are random whose population-
level covariance matrices are well-conditioned (see Assumption 2 for a precise
definition), the randomness in the features prevents the selected arm to col-
lapse and leads to a regret bound that scales logarithmically in the feature
dimension d. Moreover, this randomness in the feature implicitly encourages ex-
plorations in the feature space, due to which no forced exploration is needed. A
simple and computationally efficient algorithm combining the Upper Confidence
Bound (UCB) technique (Auer et al., 2002a; Auer, 2003) with the LASSO (Tib-
shirani, 1996) estimator induces sparsity in the estimated regression parameter
and enjoys the improved regret bound.

In this paper, we make a number of contributions to the multi-armed ban-
dit literature. Theoretically, we introduce a relaxation of the margin condition
(Assumption 1(b)) from Wang et al. (2018) and Bastani and Bayati (2019),
which precisely captures the hardness of the linear bandit problem via a mar-
gin parameter α ∈ [0,+∞] that controls the “separation” between optimal and
sub-optimal arms. With this additional assumption, we prove a regret lower

bound of O(log d+ log T ) for α = 1 and O((log d)
α+1
2 T

1−α
2 ) for α ∈ [0, 1). The

dependence of our lower bound on the margin parameter α unifies both the
polynomial and the logarithmic regret bound dependencies on T in the litera-
ture. More details are provided in the discussion of related works in Section 3.4.
Methodologically, we propose the use of a properly centered �1-ball as the confi-
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dence set in contrast to the commonly used ellipsoid confidence sets in the UCB
algorithm. We show that the �1-ball confidence set captures the uncertainty and
implicitly manages the trade-off between exploration versus exploitation. We
also prove that the algorithm is optimal up to a logarithmic factor in T .

Technically, our proof of the upper bound is based on non-asymptotic analy-
sis for the LASSO estimator for dependent data based on a novel proof strategy
for verifying the restricted eigenvalue condition for the sample covariance ma-
trix under dependent data. In particular, our analysis uses an anti-concentration
technique to show that the randomness in the feature vectors facilitates an auto-
matic feature space exploration and prevents feature collapse. Computationally,
optimizing the expected reward jointly over the �1-ball confidence set and the
covariate set is equivalent to finding the arm that maximizes the estimated
reward plus a term proportional to the �∞-norm (dual norm to the �1-norm)
of the corresponding feature, which is easy to implement and computationally
efficient.

The rest of the paper is organized as follows. In Section 2, we review the
background and discuss our assumptions. After that, we present the regret lower
bound for policies. In section 3, we propose �1-confidence ball based algorithm for
the high-dimensional linear bandit problem. We present a novel non-asymptotic
analysis of the LASSO estimator under the bandit setting, and provide an regret
upper bound for the proposed algorithm. Section 4 reports experimental results
comparing with some existing bandit algorithms. Detailed proofs of theorems
are deferred to the appendix section.

2. Problem formulation

Let T be the total time number of steps, which is allowed to be unknown, and
K be the number of possible actions (arms). At each round t = 1, . . . , T , for
each arm a ∈ [K], the learner observes one of K feature vectors Xa,t ∈ R

d. We
consider the high-dimensional regime where the dimension d of the feature space
can be comparable or even much larger than the time horizon T . We adopt a
standard random-design framework by assuming that for each arm a ∈ [K], the
observed sequence of feature vectors {Xa,t}t≥0 are i.i.d. sub-Gaussian random
vectors drawn from an unknown distribution Pa in R

d. The distributions Pa’s
for a ∈ [K] are allowed to have dependence across different arms. More precisely,
recall the following notion of sub-Gaussian random variables.

Definition 1 (Sub-Gaussian random variable). A real-valued random variable

z is σ-sub-Gaussian if E[etz] ≤ eσ
2t2/2 for every t ∈ R. This definition implies

E[z] = 0 and V ar[z] ≤ σ2.

Let Dt = {Xa,t}Ka=1 denote the covariate set consisting of feature vectors
corresponding to all the arms at time t ∈ [T ]. The feature vectors are allowed to
be dependent across arms but are assumed to be independent across different
time points t. The decision-maker has access to K arms and each arm yields
a random reward, the expected value of which follows a linear function of the
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associated feature. All arms share the same unknown parameter β∗ ∈ R
d in the

linear reward function 〈 · , β∗〉. In our setup, if the learner pulls arm a ∈ [K]
at time t, then the following random reward is observed Ya,t := 〈Xa,t, β∗〉 +
εa,t, where εa,t are independent σ-sub-Gaussian random variables that are also
independent of the sequence {Xa,t}t≥0 for all a ∈ [K]. Define σ-algebra Ft =
σ(Xa,1, εa,1, . . . , Xa,t−1, εa,t−1, Xa,t : ∀a ∈ [K]). Then the sequence of {Ft}∞t=0

is a filtration, and the errors {εa,t}∞t=1 for each arm a ∈ [K] forms a martingale
difference sequence relative to this filtration.

Our goal is to design a sequential decision-making policy π that learns the
parameter β∗ over time in order to maximize the expected cumulative reward
over the time horizon. Let ât ∈ [K] denote the arm chosen by the policy π at time
t ∈ [T ]. Then, an admissible policy π is a sequence of random variables â1, â2, · · ·
taking values in the set {1, · · · ,K} such that ât is measurable with respect to
the σ-algebra F+

t generated by the previous feature vectors from each arm and
observed rewards of the chosen arms {Xa,s, Yâs,s : s = 1, · · · , t−1; a = 1, · · · ,K}
and by the current feature vectors {X1,t, · · · , XK,t},

F+
t = σ

(
Xa,1, Yâ1,1, · · · , Xa,t−1, Yât−1,t−1, Xa,t : ∀a ∈ [K]

)
.

To characterize the quality of the policy π, we compare it with the oracle policy
π∗ that uses the knowledge of β∗ to choose the best arm a∗t = argmaxa〈Xa,t, β∗〉
maximizing the expected reward at each round t ∈ [T ]. Note that under our
random-design assumption, a∗t is also random. To summarize, any policy incurs
at each time t ∈ [T ] an expected regret

rt = E

[
max
a∈[K]

〈Xa,t, β∗〉 − 〈Xât,t, β∗〉
]
, (1)

where the expectation is taken with respect to the randomness in the feature
vector {Xa,t} and the stochastic reward through {εa,t}. Our goal is to seek a

policy that minimizes the expected cumulative regret RT =
∑T

t=1 rt.
In the high-dimensional regime, the regression coefficient β∗, which is a high-

dimensional parameter vector, is assumed to admit a sparse structure, namely,
the number of nonzero entries in β∗ is much smaller than the ambient dimension
d. We denote S = {j : β∗,j 
= 0} as the unknown index set of the nonzero
entries of true parameter β∗ that collects all influential feature components. Let
s0 = |S| be the number of the nonzero entries in β∗, which satisfies s0 � d.
For each t ∈ [T ], let Xt ∈ R

t×d be the time t-observed design matrix whose
rows correspond to all the selected feature vectors Xâs,s for s = 1, . . . , t after âs
being pulled, and vector Yt = (Y1, . . . , Yt)

T ∈ R
t collects the observed rewards.

2.1. Assumptions

Let Σ̂t = XT
t Xt/t denote the sample covariance matrix at the end of round

t ∈ [T ]. For each matrix A ∈ R
n×d and index set I ⊂ [d], we use AI to denote

the submatrix of A that collects all columns whose indices are in I. Let S
d×d
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denote the cone of all d × d positive semidefinite matrices. We now define the
sparse eigenvalue condition for a matrix in S

d×d.

Definition 2 (Sparse eigenvalues). For a d×d matrix A ∈ S
d×d and 1 ≤ m ≤ d,

define ρmin(m,A) and ρmax(m,A) as the minimum and maximum m-sparse
eigenvalues of A if

ρmin(m,A) ≤ ΔTAΔ

‖Δ‖22
≤ ρmax(m,A) for any Δ 
= 0 with ‖Δ‖0 ≤ m.

Sparse eigenvalue condition is an important requirement in high-dimensional
estimation problems (Oliveira, 2016; Rudelson and Zhou, 2013). In particular, it
often serves as a bridge for proving the restricted eigenvalue condition (c.f. Def-
inition 3 In Section 3.5.2), which is nearly necessary for accurately learning
the unknown parameter β∗ according to high-dimensional statistics literature
Bühlmann and Geer (2011).

We now state two key assumptions for our theoretical analysis.

Assumption 1 (On the true reward). (a) Sparsity condition: There exist
positive constants b and s0 such that
‖β∗‖1 ≤ b and ‖β∗‖0 ≤ s0.

(b) Margin condition: There exist positive constants Δ∗, C1 and α ∈ [0,+∞],

such that for h ∈
[
C1

√
log d
T ,Δ∗

]
, P (〈Xa∗

t ,t
, β∗〉 ≤ maxb �=a∗

t
〈Xb,t, β∗〉 +

h) ≤ 1
2 (

h
Δ∗

)α.

The first part of the assumption requires boundedness and sparsity of the
true parameter β∗ for its estimability, which are standard requirements in the
literature (Abbasi-Yadkori et al., 2011; Bastani and Bayati, 2019).

The second part of the assumption controls the probability of the features
falling into an h-neighborhood of the decision boundary. As α increases, the
margin condition becomes stronger since the feature vectors are less likely to
fall close to the decision boundary. As a result, it will be easier for a bandit policy
to distinguish the optimal arm from sub-optimal arms. In particular, in the most
extreme case with α = +∞, there is a deterministic positive gap between the
rewards of the optimal arm and sub-optimal arms, making the bandit problem
easiest. On the contrary, the margin condition becomes weaker as α decreases
as it is satisfied by a large class of distributions. For example, with α = 0, the
feature vectors can have arbitrary distributions around the decision boundary
and do not need to exhibit any separation, making the bandit problem hardest.
In particular, our condition under α = 0 corresponds to the setup considered
in Abbasi-Yadkori et al. (2011), where at each round t, the decision-maker is
given an arbitrary set Dt of feature vectors with no separation assumptions on
the feature vectors. As a consequence, the cumulative regret of their algorithm
scales O(

√
T ) in horizon T .

The margin condition with α = 1 has been assumed by Goldenshluger and
Zeevi (2013), Wang et al. (2018) and Bastani and Bayati (2019) and will be sat-
isfied when the density of 〈Xa,t, β∗〉 is upper bounded uniformly for ∀a ∈ [K].
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Assumption 1(b) is a probabilistic relaxation of the usual gap assumption made
for problem dependent bounds in the multi-armed bandit literature. For ex-
ample, Abbasi-Yadkori et al. (2011) assume that there exists some gap Δ > 0
between the rewards of the best arm and the “second best” arm in the covariate
set Dt such that minb �=a∗

t
〈Xa∗

t ,t
−Xb,t, β∗〉 > Δ, which corresponds to our margin

condition with α = +∞ and Δ∗ = Δ. Assumption 1(b) relaxes this by allow-
ing the gap 〈Xa∗

t ,t
, β∗〉 −maxb �=a∗

t
〈Xb,t, β∗〉 to be arbitrarily close to zero. This

assumption resembles the usual margin condition in the classification literature
Audibert et al. (2007). The probability of features falling into an h-neighborhood
of the decision boundary, P ({〈Xa∗

t ,t
, β∗〉 ≤ 〈Xb,t, β∗〉+h, ∀b 
= a∗t }), diminishes

to zero as h → 0+, where a
∗
t is the optimal arm at time t. In our regret analysis,

we will choose a diminishing sequence of h values {ht : t ∈ [T ]} to control the
probability of pulling sub-optimal arms for deriving the regret bound in The-
orem 2. The constant Δ∗ in this assumption is related to the effective number
of candidates for optimal arms. For example, if only m many arms have strictly
positive probability to be optimal, then under the assumption that the proba-
bility density function of 〈Xa,t, β∗〉 is bounded for each a ∈ [K], a simple union
argument verifies Assumption (b) with 1/Δ∗ = O(m).

We provide a concrete example of distributions for which the margin con-
dition holds with different values of α. We consider a 2-armed bandit problem
with the covariate set Dt = {Xt, Xt + Zt} ⊆ R

d in each round t, where Xt can
follow any distribution and Zt = (ζt, 0, · · · , 0)T ∈ R

d has a random variable ζt
at the first entry and zero otherwise. In addition, we assume that the first entry
of the parameter vector β∗ is 1. The margin condition for the 2-armed bandit
problem can be expressed as

P (|〈Zt, β∗〉| ≤ h) = P (|ζt| ≤ h) ≤ 1

2
(
h

Δ∗
)α.

Then, for any random variable ζt with distribution satisfying the above inequal-
ity around 0, the margin condition will hold with α. For example, ζt can be
drawn from a random signed Beta distribution, i.e., ζt ∼ εBeta(α, 1), where ε
equals to ±1 with equal probabilities. In this example, parameter α > 0 corre-
sponds to the margin parameter. This 2-armed bandit problem is also applicable
in real world applications, in which the competing two candidates are very simi-
lar and only a few features has marginal difference between them. In such cases,
the margin condition can be viewed as an assumption on the difference, e.g.,
Zt, between the feature vectors and the parameter α characterizes the level of
similarity among different feature vectors.

Assumption 2 (On the features). (a) Boundedness: For some positive con-
stant xmax, ‖Xa,t‖∞ ≤ xmax for all a ∈ [K] and t ∈ [T ].

(b) Anti-concentration: There exists a positive constant ζ such that for each
a ∈ [K], t ∈ [T ], v ∈ R

d and h ∈ R+, P (〈Xa,t, v〉2 ≤ h‖v‖22) ≤ ζh.
(c) Sparse eigenvalues: There exist constants Λ0 ≥ λ0 > 0 and C∗ > 0 such

that for each a ∈ [K], the minimum and maximum C∗s0-sparse eigen-
values of the matrix Σa := E[Xa,tX

T
a,t] are bounded below and above by
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λ2
0 and Λ2

0, respectively. In addition, there exist positive constants Λ2
1 ≥

φ2
0 > 0 such that the minimum and maximum C∗s0-sparse eigenvalues of

E[Xa∗
t
XT

a∗
t
|Γt] are bounded below and above by φ2

0 and Λ2
1, respectively. The

event Γt is defined as Γt :=
{
〈Xa∗

t ,t
, β∗〉 ≥ maxb �=a∗

t
〈Xb,t, β∗〉+Δ∗

}
.

Assumption 2(a) together with Assumption 1(a) ensures that the maximum
regret at each time is bounded, since |〈Xa,t, β∗〉| ≤ xmaxb by Cauchy-Schwarz
inequality. Assumption 2(b) is an anti-concentration condition that plays a criti-
cal role in controlling the estimation accuracy for the regression coefficient β∗. In
particular, it ensures directions of random feature vectors Xa,t from each arm to

be uniformly scattered so that the sample covariance matrix Σ̂t will not concen-
trated in a single direction such as the direction of β∗. This anti-concentration
assumption is mild. For example, it is implied by the boundedness of the prob-
ability density function of 〈Xa,t, v〉 for each v ∈ R

d. Moreover, the parameter ζ
only appears in the regret upper bound via a burn-in term and does not affect
the leading term. More details can be found in the discussion after Theorem 2.

Assumption 2(c) is made to ensure that the design matrix corresponding to
each arm is well-behaved so that the sample covariance matrix Σ̂t satisfies the
restricted eigenvalue condition (Definition 3) with a high probability (c.f. Propo-
sition 2 in Section 3.5). The restricted eigenvalue condition is required for the
�1-error bound analysis of LASSO estimator (Proposition 1) and can be implied
by the sparse eigenvalue condition (Definition 2) through the transfer principle
(Lemma 5). Details of the proof can be found in Section 3.5.2. Here, C∗ is a
sufficiently large constant that could depend on K and can scale as O(K logK)
in the worst case. Similar assumptions are commonly adopted in existing work
in the high dimensional bandit setting, e.g. Bastani and Bayati (2019) and
more generally in the high-dimensional statistics literature, e.g. Candes and
Tao (2005) and Wainwright (2019). This assumption is critical for controlling
the estimation accuracy for the regression coefficient β∗ and in turn the regret
analysis.

When samples are independent, several existing results in the literature (e.g.
Candes and Tao (2005) and Wainwright (2019)) show a similar condition, Re-
stricted Isometry Property (RIP), on the sample covariance matrix Σ̂t. How-
ever, these results on RIP and the corresponding proofs are not applicable in
our case as the independence between samples is violated in the bandit set-
ting. In a nutshell, our proof shows that each vector in the restricted cone
C(I) = {v ∈ R

d : ‖vIc‖1 ≤ 3‖vI‖1} with I = S can be well approximated
by a C∗s0-sparse vector in R

d (c.f. Lemma 6 in the appendix), from which we
can construct a covering set of this restricted cone with C∗s0-sparse vectors
of controlled cardinality. Then, we apply concentration inequalities after prop-
erly decoupling the dependence structure induced by the bandit policy (c.f. the
proof of Proposition 2 in the appendix) to obtain a lower bound on the quadratic
form vT Σ̂tv for each sparse vector v ∈ Rd in the covering set. Finally, we apply
a union bound to prove a lower bound on vT Σ̂tv uniformly over all v ∈ R

d

belonging to the restricted cone C(S), which implies the restricted eigenvalue
condition for Σ̂t. Our actual proof is even more delicate than the proof outline
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described here and guarantees that the restricted eigenvalue does not depend
on K. The description after Proposition 2 illustrates the high level idea of the
actual proof.

To conclude this subsection, we provide a simple example where all our as-
sumptions are satisfied with (ζ,Δ∗) not depending on the dimension d. For each
arm, suppose the feature vector follows a truncated multivariate normal distri-
bution truncated on the set ‖Xa,t‖∞ ≤ 1 with different mean vectors μa and
the same identity matrix as the covariance matrix. Under this setup, the inner
product 〈Xa,t, v〉 follows a truncated normal distribution with bounded density
function, so the first part of Assumption 2 is satisfied. Assumption 1(b) with
α ∈ [0, 1] can be verified similarly as the order statistics of {〈Xa,t, β∗〉 : a ∈ [K]}
have bounded density functions. For truncated normal distributions, the opti-
mal region Γt is well-spread, so the eigenvalue condition (Assumption 2(b) and
2(c)) is also satisfied. In the same example, non-identity covariance matrix can
also be allowed if the eigenvalues of the covariance matrix are lower and upper
bounded by some absolute positive constants.

2.2. Regret lower bound

In this section we provide a regret lower bound for any policy π in the linear
bandit environment under the assumptions made in Section 2.1. We also provide
a sketched proof for Theorem 1 later in Section 3.5.1.

Theorem 1. Suppose the margin parameter α ∈ [0, 1]. Let Pα be the class of
distributions of (Xa,t, Ya,t : a ∈ [d]), where the feature vector Xa,t is drawn from
Pa and the reward Ya,t = 〈Xa,t, β∗〉+ εa,t for a ∈ [K] satisfies Assumptions 1–2
with parameter α in Assumption 2(b). Then for large enough horizon T ,

inf
π

sup
PX,Y ∈Pα

RT (π, π∗) ≥ CL

(
(log d)

α+1
2 T

1−α
2 + log T

)
, (2)

where CL is a constant independent of T and d.

Our Theorem 1 provides a more general result compared to existing results
in the literature considering both the dimension d and horizon T by leveraging
the margin condition (Assumption 1(b)). The theorem shows a poly-logarithmic
dependence on dimension d. In addition, it unifies the polynomial and logarith-
mic dependence on horizon T through the margin parameter α, which describes
the hardness of distinguishing the optimal arm from the sub-optimal arms. In
particular, when α = 1, the lower bound scales as Ω(log d+log T ), which is log-
arithmic in both d and T ; when α = 0, the lower bound scales as Ω

(√
T log d

)
,

which is poly-logarithmic in d and polynomial in T .
For comparison, Goldenshluger and Zeevi (2009) prove a lower bound of

Ω(T
1−α
2 ) for one-dimensional one-armed linear bandit problem, where they as-

sume a margin condition corresponding to Assumption 1(b) with α ∈ (0, 1]. In
addition, they propose a policy with forced sampling, which achieves optimal

regret in horizon T , i.e., O(T
1−α
2 ), when α ∈ (0, 1). Later, Goldenshluger and
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Zeevi (2013) prove a lower bound of Ω(log T ) for low-dimensional linear bandit
problem, where they also assume a margin condition which corresponds to the
α = 1 case in Assumption 1(b). Meanwhile, they propose the OLS-bandit algo-
rithm with O(d3 log T ) regret upper bound, which is sub-optimal in d according
to Theorem 1. Rusmevichientong and Tsitsiklis (2010) also prove a regret lower
bound of Ω(d

√
T ) for low-dimensional linear bandit problem, where the covari-

ate set Dt is a compact set of infinitely many feature vectors, e.g., the unit
sphere Sd−1 ⊆ R

d. Later, Chu et al. (2011) prove a lower bound of Ω(
√
Td)

for low-dimensional contextual bandit problem, where no margin condition is
assumed and the regret lower bound therein corresponds to the worst case when
α = 0, and propose the LinUCB algorithm with Õ(

√
dT ) regret upper bound,

which is near-optimal according to Theorem 1. Our lower bound result unifies
the existing results through the parameter α and applies to the high-dimensional
linear bandit problems. More details of the comparison are deferred to Section
3.4.

Remark 1. The problem formulation considered in Goldenshluger and Zeevi
(2013) and Bastani and Bayati (2019) is slightly different from ours, where
they assume that at each round, there is one common feature vector shared by
all arms and each arm has its own parameter vector. Their formulation can be
mathematically reparametrized into our formulation. In particular, they assume
that each of the K arms has its own parameter vector β∗,a ∈ R

d for a ∈ [K].
The common feature vector Xt in each round is drawn i.i.d. from a distribu-
tion. Then, this formulation can be embedded into our formulation. Specifically,
the feature vector Xa,t for the a-th arm is a Kd-dimensional vector defined as
Xa,t := (0, · · · , 0, XT

t , 0, · · · , 0)T , where the a-th block of Xa,t is Xt and zero
elsewhere. The common parameter β∗ := (βT

∗,1, · · · , βT
∗,K)T in our setting is a

concatenation of all vectors β∗,a for a ∈ [K]. Due to the reparametrization,
the regret lower bound result, i.e., Ω(log T ), proved in Goldenshluger and Zeevi
(2013) can also applied in our formulation.

3. �1-Confidence ball algorithm for high-dimensional linear bandit

In this section we propose a conceptually simple and computationally efficient
bandit algorithm. The proposed algorithm is nearly optimal—it matches the
regret lower bound when margin parameter α belongs to [0, 1) and is optimal
up to a factor of log T when α = 1.

3.1. Optimism in the face of uncertainty

In this section, we motivate our �1-confidence ball based method under the
general framework of optimism in the face of uncertainty (OFU) introduced
in Auer (2003) and Abbasi-Yadkori et al. (2011). More precisely, suppose that
at the beginning of each round, say t + 1, we can construct a confidence set
Ct+1 ⊆ R

d for the parameter β∗ using the past selected features Xâ1,1, . . . , Xât,t
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and observed rewards Y1, . . . , Yt up to round t, so that β∗ belongs to Ct+1 with
high probability. Then a OFU-based algorithm chooses the action-estimate pair

(Xât+1,t+1, β̃t+1) = argmax
(x,β)∈Dt+1×Ct+1

〈x, β〉, (3)

which jointly maximizes the expected reward within the covariate set Dt+1 =
{Xa,t+1}Ka=1 and the confidence set Ct+1 of β∗. The shape and size of the confi-
dence set Ct+1 reflects our uncertainty on the unknown parameter β∗. In high-
dimensional linear bandits, we consider to use the LASSO (Tibshirani, 1996)
estimator as the center of Ct+1, since it adapts the sparsity structure of the
parameter. As a remark, other penalized estimators such as MCP (Zhang et al.,
2010) and SCAD (Fan and Li, 2001) can also be considered as the center for
the confidence set, though need more sophisticated regret analysis.

At the beginning of round t+ 1, we form the LASSO estimator β̂t for β∗ by
viewing the observations as coming from the linear model Y = Xβ∗ + ε, with
design matrix X = Xt ∈ R

t×d, response vector Y = Yt ∈ R
t, both defined in

Section 2, and noise vector ε ∈ R
t whose entries are independent σ-sub-Gaussian

random variables. Given a regularization parameter λ ≥ 0, the LASSO estimator
is the solution of

β̂t ∈ argmin
β

{Lt(β) + λ‖β‖1}, (4)

where Lt denotes the empirical loss function at round t. In our regression frame-
work, the loss function is the least squares objective Lt(β) = 1

2t‖Y − Xβ‖22.
Proposition 1 in Section 3.5.2 suggests a choice of the regularization parameter
as λ = λt = 2σxmax

√
(2 log t+ 2 log d)/t, where constant xmax (as well as the

φ0 in the following display) is defined in Section 2.1.

Having determined the center of the confidence set Ct, it remains to deter-
mine its shape. Our proposal of the �1 ball as the shape of the confidence set is
motivated by both theoretical and computational considerations: (i) Theoreti-
cally, the shape of the confidence set is important because the cumulative regret
can be roughly characterized by the sum of the “volumes” of the confidence sets
Ct over the time horizon. In the low-dimensional regime where d � T , since all
norms in the Euclidean space are equivalent (up to some constant depending
on the dimension), the shape of the ball induced by a norm has limited impact
on the regret. In contrast, as the dimension d grows, unit balls under different
norms have drastically different volumes making the choice of the shape crucial.
For example, the volume ratio between unit �1-ball and unit �2-ball is O(d−d/2),
indicating the importance of using the right “norm” for constructing Ct. As we
will show in Corollary 1 in the appendix, the use of �1-ball improves the depen-
dence of the regret on the feature dimension from d to s0 modulo log d terms
where recall that s0 is the sparsity level of the model. (ii) Computationally, we
want to maintain the convexity of the optimization problem (3) by requiring the
confidence set Ct to be convex. These two factors together motivate us to use a
properly centered �1-ball for Ct, since q = 1 is the smallest number maintains
the convexity of the �q-ball over q ≥ 0.
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Corollary 1 in the appendix provides a high probability upper bound to the
�1-distance ‖β̂t − β∗‖1 between β̂t and β∗, motivating us to use the following
confidence set

Ct+1 =
{
β ∈ R

d : ‖β̂t − β‖1 ≤ τt

}
, (5)

where τt =
384s0σxmax

φ2
0

√
2 log t+2 log d

t .

Note that the size of the confidence set scales poly-logarithmically in fea-
ture dimension d (i.e. O(

√
log d)), which improves upon the O(

√
d) size of the

confidence ellipsoid in Abbasi-Yadkori et al. (2011) that has a polynomial de-
pendence on dimension d. This is because we have leveraged on the sparsity
structure of β∗ captured by the LASSO estimator.

3.2. �1-Confidence ball based algorithm

In this subsection, we formally describe our algorithm for the high-dimensional
linear bandit problem, which is summarized in Algorithm 1 below. The algo-
rithm takes as inputs an initial regularization parameter λ0 and an initial di-
ameter of the confidence set τ0. Recall from the previous subsection that the
�1-confidence ball at time t is Ct = {β : ‖β − β̂t−1‖1 ≤ τt−1}, where β̂t−1 is the
LASSO estimator given by (4), and τt−1 is given in (5). The action selection
rule (3) of the algorithm can be reformulated as

Xât,t = arg max
x∈Dt

{
max
β∈Ct

〈x, β〉
}
= arg max

x∈Dt

{
max

‖u‖1≤τt−1

〈x, β̂t−1 + u〉
}

= arg max
x∈Dt

{
〈x, β̂t−1〉+ τt−1‖x‖∞

}
. (6)

The criterion function in the second line in equation (6) is composed of a point
estimate of the expected reward plus the confidence width of x through its �∞
norm, making the optimization simple and the algorithm computationally effi-
cient. The confidence width, also known as the exploration bonus, encourages the
learner to visit new areas in the feature space to attain an optimal exploration
versus exploitation trade-off. Computation-wise, the OLS-bandit algorithm of
Goldenshluger and Zeevi (2013) and the LASSO-bandit algorithm of Bastani
and Bayati (2019) require a pre-processing step to select a subset of arms based
on forced-sample estimation; the OFUL-LS algorithm of Abbasi-Yadkori et al.
(2011) needs optimization over an ellipsoid that involves matrix inversion, which
makes it computationally expensive.

Remark 2. Our proposed algorithm reduces to a greedy algorithm when all
Xa,t’s have the same �∞-norm. However, in cases when Xa,t’s have very differ-
ent magnitudes across arms, their sup-norms are able to reflect the prediction
uncertainty in the point estimates 〈Xa,t, β̂t−1〉’s. As a consequence, our algo-
rithm encourages explorations on those arms with high uncertainty while the
greedy algorithm completely ignores this information and tends to exhibit poor
performance.
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Algorithm 1 �1-Confidence Ball Based Algorithm
Require: Initial regularization parameter λ0, and initial diameter τ0 for the confidence set.
1: Initialize β̂0 by 0 in Rd.
2: for t = 1 to T do
3: Observe Dt = {Xa,t}Ka=1.

4: Obtain β̂t−1 by solving equation (4), i.e. β̂t−1 ∈ argminβ{Lt−1(β) + λt−1‖β‖1}.
5: Construct confidence set Ct = {β ∈ Rd : ‖β̂t−1 − β‖1 ≤ τt−1}.
6: Select feature Xât,t from equation (6), and observe Yt = 〈Xât,t, β∗〉+ εt.

7: Set λt = λ0

√
log d+log t

t
and τt = τ0

√
log d+log t

t
.

8: end for

3.3. Regret analysis of proposed algorithm

In this subsection, we provide our theoretical regret analysis. The following
theorem provides an upper bound on the cumulative regret for the proposed
�1-confidence ball based algorithm.

Theorem 2. Suppose that Assumptions 1–2 hold and K ≥ 2, d ≥ 1, λ0 =

2
√
2σxmax and τ0 = 384

√
2s0σxmax

φ2
0

. The expected cumulative regret of our algo-

rithm at time horizon T can be bounded as

RT ≤Iα1 +

I2︷ ︸︸ ︷
C3xmaxbΛ

2
0(K logK)s0 log d

+

I3︷ ︸︸ ︷
C4σ

2x5
maxbs

2
0ζ

2K2 log d/Δ2
∗ +

I4︷ ︸︸ ︷
C5xmaxb log T , (7)

where

Iα1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C2
sα+1
0 σα+1x2(α+1)

max

Δα
∗φ

2(α+1)
0

(log d)
α+1
2 T

1−α
2 , when α ∈ [0, 1),

C2
s20σ

2x4
max

Δ∗φ4
0

[log d+ log T ] log T, when α = 1,

C2
s20σ

2x4
max

(α−1)Δ∗φ4
0
log d, when α ∈ (1,+∞),

C2
s20σ

2x4
max

Δ∗φ4
0

log d, when α = +∞,

which is the leading term of the regret bound that depends on the margin param-
eter α defined in Assumption 1(b), and C2, C3, C4, C5 are positive constants not
depending on T , d or α.

The regret bound provided by Theorem 2 for our algorithm shows that the re-

gret of the algorithm grows poly-logarithmically in d, i.e., RT = O((log d)
α+1
2 ),

when α ∈ [0, 1); logarithmically in d, i.e., O(log d), when α ∈ [1,+∞]. Mean-

while, the cumulative regret grows polynomially in T , i.e., RT = O(T
1−α
2 ),

when α ∈ [0, 1); poly-logarithmically in T , i.e., RT = O((log T )2), when α = 1;
and logarithmically in T , i.e., RT = O(log T ), when α ∈ (1,+∞]. In addi-
tion, for α ∈ (1,+∞), the term Iα1 will increase as α → 1+ and scale as
O(log d log T ) when α = 1 in the extreme case, which fills the gap between
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α = 1 and α ∈ (1,+∞) cases. Comparing the regret upper bound for our pro-
posed method with the minimax regret lower bound established in Section 2.2,
we can see that our method is optimal up to a factor of log T when α ∈ [0, 1].

Intuitively, I2 + I3 on the right-hand side of display (7) describes the regret
caused by the “burn-in” period of exploring the space of the feature space which
does not contribute to the asymptotic regret growth, while the last term I4 is the
cumulative regret when Ct+1 does not contain β∗ in Corollary 1. In the regret
bound, constant Δ∗ (defined in Assumption 1(b)) plays the role of the gap
parameter as appeared in a typical problem-dependent regret bound (Abbasi-
Yadkori et al., 2011). The first term is due to the risk of selecting sub-optimal
arms when the features fall near the decision boundary, which is controlled by
the margin condition (Assumption 1(b)). From the result of Theorem 2, we can
see that when α is larger, the feature vectors are less likely to fall into the close
neighborhood of the decision boundary and the bandit environment will become
easier to learn. In particular, for the α = +∞ case when there is a deterministic
positive gap Δ∗ between the rewards of the optimal arm and sub-optimal arms,
the regret bound for the algorithm scales polynomially in both dimension d and
horizon T , i.e., O(log d + log T ). We discuss how our regret bound compares
with and provides a unified view of the existing results in Section 3.4.

3.4. Comparisons with existing literature

3.4.1. Problem formulation

The stochastic linear bandit problem was first introduced by Auer (2003), and
was subsequently studied by Dani et al. (2008), Rusmevichientong and Tsitsiklis
(2010) and Chu et al. (2011). Later, Abbasi-Yadkori et al. (2011) and Abbasi-
Yadkori et al. (2012) proposed the OFUL algorithm for both low-dimensional
and high-dimensional settings. The model parametrization considered in Abbasi-
Yadkori et al. (2011), Dani et al. (2008) and Rusmevichientong and Tsitsiklis
(2010) is the same as ours. However, there is one major difference between the
two formulations that the covariate set in their problem consists of infinitely
many feature vectors, e.g., the unit sphere Sd−1 ⊆ R

d, while the covariate
set Dt in our paper consists of finitely many feature vectors drawn from some
underlying distribution. Moreover, the covariate set in Dani et al. (2008) and
Rusmevichientong and Tsitsiklis (2010) does not change over time, therefore the
optimal arm will be the same in different rounds. In contrast, the optimal arm in
our setting varies along the time due to the randomness in the feature vectors.
In addition, the feature space can be explored implicitly in our setting and
no explicit exploration phase is needed as in Rusmevichientong and Tsitsiklis
(2010).

In another parallel strand of linear bandit research, Goldenshluger and Zeevi
(2013) proposed an OLS-bandit algorithm for low-dimensional multi-armed ban-
dit problems, where the formulation is different from ours. In particular, they
consider the K-armed bandit problem with bounded linear response, where fea-
ture vector at each time is common to all arms and parameters are arm-specific.
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After that, Bastani and Bayati (2019) proposed a Lasso-bandit algorithm for
the high-dimensional linear bandit problem which requires forced sampling and
prior knowledge on their gap parameter. Later, in the same setting as Bastani
and Bayati (2019), Wang et al. (2018) introduced an MCP-bandit algorithm
which also requires forced sampling and knowledge of gap parameter. As dis-
cussed in the remarks after Theorem 1, our problem formulation is also different
from that in Bastani and Bayati (2019). The formulation in our paper is mean-
ingful on its own in real world applications. In some real applications, many
baseline features are available which have the same effect in the sense of sharing
the same regression coefficient β∗ across different arms. In such cases, our for-
mulation can help estimate the parameters associated with the common features
more accurately by using all the data. However, the formulation in Bastani and
Bayati (2019) does not incorporate such structure, which will cause loss of infor-
mation. For example, in clinical trials or advertisement problems, we can map
the interactions between the features of patients (or customers) and treatments
(or advertisements) as a feature vectors Xa,t for each arm, with one common
parameter vector β∗ across arms. In these applications, the parameters corre-
sponding to the main effect of patients (or customers) such as age and gender
are the same for all arms. Our formulation facilitates sample-efficient estimation
of these parameters by combining data from multiple arms. In comparison, the
parameters under the formulation in Bastani and Bayati (2019) are estimated
separately for different arms. In addition, the difference between the two formu-
lations has been considered in Kim and Paik (2019), where they observe that
our formulation is advantageous in such practical applications. In particular,
when the number of arms is large, it is not practical to apply the formulation in
Bastani and Bayati (2019) due to the large number of parameters. When the set
of arms changes over time such as in online advertisement, it is also not feasible
to assign a different parameter for every new incoming item as in Bastani and
Bayati (2019).

Apart from the above benefits, the motivation for our setting comes from ap-
plications such as online advertisements, where there are finitely many available
products (arms) for each incoming customer. In addition, available products
are usually different for different customers and drawn from some underlying
distribution, where each arm is a category of products that is associated with a
distribution over the set of products.

3.4.2. Regret bound analysis

In terms of the regret bound analysis, Rusmevichientong and Tsitsiklis (2010)
proved a lower bound of Ω(d

√
T ) for both cumulative regret and Bayes risk in

low-dimensional linear bandit problem, where the covariate set Dt is a compact
set of infinitely many feature vectors, e.g., the unit sphere Sd−1 ⊆ Rd. They
also proposed an algorithm with matching regret upper bound that alternates
between exploration and exploitation phases. Chu et al. (2011) proposed the
LinUCB algorithm, which has the regret upper bound O(

√
Td log(T log(T )/δ)
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with probability 1− δ, and proved a regret lower bound of Ω(
√
dT ) for the low-

dimensional contextual bandit problem with linear payoff, which corresponds to
our α = 0 case. Abbasi-Yadkori et al. (2011) proved that the expected cumula-
tive regret of the OFUL algorithm scales as O(d

√
T ) in both low-dimensional

and high-dimensional settings. In the above literature, the feature vectors are
allowed to be chosen arbitrarily by an adversary and the analysis is based on
the worst case, leading to the polynomial dependence on dimension d. In con-
trast, Goldenshluger and Zeevi (2013) proved a cumulative regret of O(d3 log T )
for their proposed OLS-bandit algorithm and a regret lower bound of Ω(log T )
corresponding to the margin condition (Assumption 1(b)) with α = 1. However,
the cumulative regret of the above algorithms scales polynomially in dimension
d, which can be sub-optimal in the high-dimensional setting. The Lasso-bandit
algorithm in Bastani and Bayati (2019) and the MCP-bandit algorithm in Wang
et al. (2018) are shown to have an improved regret upper bound O(log d) in di-
mension d under the margin condition with α = 1, but require forced sampling,
which could be costly in some practical cases such as medical and marketing
applications. In comparison, our proposed algorithm (Algorithm 1) does not re-
quire any forced sampling or knowledge of the gap parameter. Meanwhile, our
theoretical results on regret upper bound can be applied to any margin param-
eter α ∈ [0,+∞]. On the other hand, the setting of Wang et al. (2018) and
Bastani and Bayati (2019) corresponds only to the case of α = 1, for which our
algorithm achieves the same regret bound dependence on d, i.e., O(log d).

3.5. Proof sketch for the main results

In this section, we outline the proofs for Theorem 1 and Theorem 2.

3.5.1. Proof sketch for Theorem 1

In this section, we provide a sketch of the proof for Theorem 1. In Goldenshluger
and Zeevi (2013), the author already proved a lower bound of Ω(log T ) under
α = 1 case. In this paper, we prove a lower bound on dimension d and also the
polynomial dependence on horizon T when margin condition parameter α < 1.
In order to prove the lower bound result, we follow the standard proof technique
by designing a class PM of distributions, where M denotes the parameter space
for the regression coefficient vector β in the linear model Ya,t = 〈Xa,t, β〉+ εa,t,
and then reducing the worst case of cumulative regret in PM to the average case
by introducing a prior distribution over the class PM. The novelty of our proof
comes from the design of the class PM, which is a hard-to-learn subset of Pα

that yields the lower bound. Specifically, PM is composed of bandit problems
with two arms, the first of which is X(1) = (X0, X1, . . . , Xd) and the second
is X(2) = (0,−X1, . . . ,−Xd). Here X0 is a random variable taking values in
{−1, 0, 1}, while Xi for i ∈ {1, · · · , d} follows truncated normal distribution
of N(0, 1). We take M = {β = (β0, β1, · · · , βd) ∈ R

d+1 : β0 = 1, βu = θ, βj =
0 for j 
= u, u ∈ [d]} as a set of true parameter β∗, where θ is a tuning parameter
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controlling the signal strength of the second largest component of β. Here we
assume that β0 = 1 is known and does not need to be estimated, and the other

nonzero entry βu = c
√

log d
T with a small constant c. The choice of M is to

make sure that assumptions in Section 2.1 are satisfied and the magnitude of
βu is small so that it is hard for policy to distinguish it from 0. Moreover, we
specify a uniform prior distribution on the parameter vector β∗ over the set
M. According to Bayesian decision rule, we prove that the average cumulative
regret can be lower bounded by the regret incurred by the Bayesian optimal
policy. By following the common proof technique of reducing the problem of
obtaining the estimation lower bound to a multiple hypothesis testing problem,
we show that learning β from space M reduces to a variable selection problem
that causes the poly-logarithmic term in d and the polynomial term in T in
our new lower bound. Specifically, the multiple hypothesis testing problem is to
determine the index u of the nonzero entry βu from {1, · · · , d} and the optimal

Bayes rule is ût−1 = argmaxj∈[d] |β̂j,t−1|, where β̂t−1 is defined according to
the Bayesian policy. Finally, by applying Fano’s Lemma (Lemma 1), we derive
the lower bound for the probability of error P (ût−1 
= u) in multiple hypothesis
testing problem that leads to the regret lower bound.

3.5.2. Proof sketch for Theorem 2

In this section, we provide the proof strategy for Theorem 2. In order to prove
Theorem 2, we need to prove in Corollary 1 that the �1-confidence set Ct in (5)
contains β∗ with high probability for properly selected regularization parame-
ters. Since we choose LASSO estimator as the center of the confidence set Ct,
we need to analyze the error bound of the LASSO estimator. This is challenging
since the observed data are highly dependent from each other due to bandit
policy, thus we cannot directly apply the standard error analysis of the LASSO
estimator. In particular, the restricted eigenvalue condition for Σ̂t, which is re-
quired for the analysis of LASSO estimator, is hard to prove for dependent data.
In this paper, we introduce a convergence result (Proposition 1) on LASSO esti-
mator for dependent data and a novel method to prove the eigenvalue condition
(Proposition 2). Finally, we derive the cumulative regret taking into account of
the regret incurred under different circumstances.

Firstly, we provide an �1-error bound for the LASSO estimator. Specifically,
Proposition 1 shows that the LASSO estimator falls into an O(

√
log d/t) neigh-

borhood around the true parameter β∗ with high probability. Before the state-
ment of Proposition 1, we introduce the definition of restricted eigenvalue con-
dition for positive semidefinite matrices.

Definition 3 (Restricted eigenvalue condition). For any set of indices I ⊆ [d]
and a positive constant φ, define the set

C(I, φ) = {M ∈ S
d×d | ∀v ∈ R

d s.t. ‖vIc‖1 ≤ 3‖vI‖1,
we have ‖v‖21 ≤ |I|(vTMv)/φ2}.
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A matrix that belongs to this set is said to satisfy the restricted eigenvalue con-
dition over index set I with parameter φ.

On the event that the sample covariance matrix Σ̂t at time t belongs to C(S, φ)
for some suitable constant φ, Proposition 1 extends the usual LASSO analysis
for i.i.d. observations to our bandit setting where observations are dependent
due to the sequential decision policy.

Proposition 1. Let Xi denote the ith row of X and Y (i) denote the ith entry
of Y . The sequence {Xi, i = 1, · · · , t} forms an adapted sequence of observa-
tions, i.e., Xi depends on past features and their rewards {Xi′ .Y (i′)}i−1

i′=1. Also,
assume that all Xi satisfy ‖Xi‖∞ ≤ xmax and the regularization parameter
λ = 2σxmax

√
(2 log t+ 2 log d)/t. Then for any φ > 0, we have

P

[
‖β̂ − β∗‖1 ≤ 6s0σxmax

φ2

√
2 log t+ 2 log d

t

]

≥1− 2

t
− P [Σ̂(X) /∈ C(supp(β∗), φ)],

where β̂ is the LASSO estimator by solving equation (4) with X,Y and regular-
ization parameter λ.

Proposition 1 is a more general version of the LASSO oracle inequality. It
is an adaption of Proposition 1 in Bastani and Bayati (2019), where we plug-

in specific values for λ and the �1-error bound for β̂. For self-containedness,
we also include a proof for Proposition 1 in the appendix. It allows for the
adapted sequence of observations and errors that are σ-sub-Guassian conditional
on all past observations. Moreover, note that the performance of the LASSO
estimator dependents on the choice of parameter φ and the structure of the
sample covariance matrix. This is one of the reasons why multi-armed bandit
algorithms such as Bastani and Bayati (2019) has forced sampling step to ensure
that the sample covariance matrix Σ̂t is positive definite in some directions with
high probability.

Secondly, we prove the restricted eigenvalue condition for Σ̂t based on de-
pendent data. Proposition 2 shows that with the selection rule induced by our
method and the construction of the confidence set, the sample covariance matrix
will satisfy the restricted eigenvalue condition with high probability.

Proposition 2. Suppose we construct the confidence set Ct+1 = {β ∈ R
d :

‖β̂t − β‖1 ≤ 6s0σxmax

φ2

√
2 log t+2 log d

t } with some constant φ > 0 that is large

enough. Then if the time horizon t exceeds a certain threshold (i.e. t ≥ O(log T+

s0K logK log d+
σ2x4

maxs
2
0ζ

2K2 log d
Δ2

∗
)), the sample covariance matrix Σ̂t are guar-

anteed to satisfy the compatibility condition with high probability, i.e.

P [Σ̂t ∈ C(supp(β∗), φ∗)] ≥ 1−O(1/t)−O(e−t+s0 logK log d),

where φ∗ = φ0

8 .
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The detailed proof of Proposition 2 is given in Section B.2. Here we only
provide some intuition about how we prove Proposition 2. Firstly, we provide
a crude result of the restricted eigenvalue condition for the sample covariance
matrix in Proposition 3, i.e., the restricted eigenvalue condition constant is of
order 1/K where K is the number of arms. The proof of Proposition 3 consists
of three main steps:

(i) First, we discretize H = {v ∈ Sd−1 : ‖v‖0 ≤ Cs0}, where constant
C = Θ(ζΛ2

0K logK), with a ε-net Nε (Definition 5). Then, we prove the
restricted eigenvalue condition for Σ̂t over vectors in Nε. In detail, We
apply concentration inequalities after properly decoupling the dependence
structure induced by the bandit policy to obtain a lower bound of order
1/K on the quadratic form 〈v, Σ̂tv〉 for all v ∈ Nε with high probabil-
ity. This step is guaranteed by Assumption 2(b), which ensures that the
probability of feature vectors locating at the original point is small.

(ii) We prove the restricted eigenvalue condition over H through approxima-
tion from Nε.

(iii) We prove the eigenvalue condition over the cone C3(S) = {v ∈ R
d :

‖vSc‖1 ≤ 3‖vS‖1} (Definition 4), which implies the restricted eigenvalue
condition. Here we apply the Transfer Principle (Lemma 5) and carefully
choose the constant C as discussed earlier in step (i).

Then in Proposition 2, we prove a refined restricted eigenvalue condition
based on Proposition 3. The crucial part is to eliminate the dependence on K
which is required in Proposition 3. This is challenging since the observed sam-
ples are high dependent and in Proposition 3, we need to consider the worst case
across K arms. Instead of applying forced sampling to guarantee the eigenvalue
condition of Σ̂t as in Bastani and Bayati (2019), we apply a novel technique
to prove the result in Proposition 2. In particular, with the crude restricted
eigenvalue condition in Proposition 3, we can show that the optimal arm will be
pulled sufficient times, i.e., a positive fraction of time horizon. As a result, the re-
stricted eigenvalue condition in Proposition 2 is satisfied since Assumption 2(c),
which ensures that the feature vectors are randomly diverse, i.e., the minimum
eigenvalue of the population covariance matrix is positive. Intuitively, this can
guarantee that the space of feature vectors can be automatically explored with-
out forced sampling. The main proof of Proposition 2 can be summarized in two
steps:

(i) In Lemma 10, we show that based on Proposition 3, the algorithm will pull
the optimal arm at a positive fraction of times after some time point. In
particular, Assumption 1(b) and 2(c) guarantee that P (Γt) ≥ 1/2. Under
event Γt, there is a positive gap Δ∗ between the reward of optimal arm
and sub-optimal arms. According to Proposition 1 and Proposition 3, for
each arm Xa,t, the optimal reward of β̃ within Ct in (3) is close to the
true reward of Xa,t. Thus, the algorithm will only select the optimal arm
under Γt after some time point according to equation (3).

(ii) Assumption 2(c) guarantees the sparse eigenvalue condition with constant
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φ0 for optimal arm under event Γt. We have shown in Lemma 10 that the
optimal arm will be pulled frequently. Then, combining the above results,
we prove the restricted eigenvalue condition for Σ̂t with constant φ∗ =
φ0/8, which does not depend on K, even though the observed samples are
dependent.

Thirdly, we provide the following corollary which shows that the true pa-
rameter β∗ lies in the �1-confidence set Ct+1 with high probability. Corollary 1
follows from a direct application of Proposition 1 and Proposition 2, and will
play a crucial role in analyzing the cumulative regret of our algorithm.

Corollary 1. Suppose that Assumptions 1–2 hold and the regularization pa-
rameter is chosen as λt = 2σxmax

√
(2 log t+ 2 log d)/t. Then, there exist abso-

lute constants C, c1, c2 > 0, such that for all t ≥ C (log T + s0K logK log d +
σ2x4

maxs
2
0ζ

2K2 log d
Δ2

∗
), with probability at least 1− c1t

−1− c2e
−t+s0 logK log d, β∗ lies

in the confidence set Ct+1 defined by Equation (5).

The constants c1, c2 in Corollary 1 are absolute constants and can be cho-
sen as c1 = 1/(2e) and c2 = 2e2. The size of the confidence set Ct+1 scales

as O(
√

log d+log t
t ) in dimension d and time t. In comparison, the size of the

ellipsoid confidence set of Abbasi-Yadkori et al. (2011) centered at the ridge re-

gression estimator scales as O(
√

d log t
t ), which has a polynomial dependence on

the dimension d, and is exponentially larger than the size of our �1 confidence
set.

Finally, we apply the result in Corollary 1 to compute the cumulative regret
of the proposed algorithm. As discussed after Theorem 2, for the instant regret
incurred in “burn-in” period or when Ct does not contain β∗, we simply bound
it with worst-case regret 2bxmax. When Ct contains β∗, we consider two comple-
mentary cases based on event Γξt = {ω ∈ Ω : 〈Xa∗

t ,t
, θ∗〉 ≥ 〈Xb,t, θ∗〉+ ξt, ∀b 
=

a∗t } with ξt = 2xmaxτt. We show that when Γξt holds, the algorithm will only
select optimal arm and incurs no regret. Then according to Assumption 1(b),
we bound the regret incurred when Γt does not hold. In the end, we sum up the
regret from different parts to obtain the cumulative regret.

4. Experimental results

We compare our �1-confidence ball based method with (i) the OFUL-LS method
proposed in Abbasi-Yadkori et al. (2011), (ii) the OLS-bandit introduced in
Goldenshluger and Zeevi (2013), and (iii) the LASSO-bandit algorithm in Bas-
tani and Bayati (2019) in both synthetic data and real data experiments. The
first two methods are not specifically designed for high-dimensional settings.
We note that the parametrization of OLS-bandit and LASSO-bandit methods
is slightly different from ours, because they treat different arms to have differ-
ent parameter vectors and one common feature vector. We apply these methods
after converting their parametrization into ours.
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4.1. Synthetic data

In the synthetic data experiment, we consider three scenarios forK, d and s0: (1)
K = 5, d = 100, s0 = 5; (2)K = 5, d = 1000, s0 = 5; (3)K = 50, d = 20, s0 = 2.
In each case, a randomly chosen subset of s0 features is predictive of the reward.
At each time t, feature vectors for K arms are i.i.d. generated by truncating a
Gaussian distribution N(0,Σ) with Σij = 0.5|i−j| so that ‖Xa,t‖∞ ≤ 1. The
error term εa,t follows a zero mean normal distribution with variance σ2 = 1.
For this setting, our margin condition holds with α = 1 so that we expect
a regret growing logarithmically in T . For our method, we choose the initial
regularization parameter λ0 = 0.5 and diameter τ0 = 1 and the method is robust
to the choice of these tuning parameters. For LASSO and OLS, we choose the
forced sampling parameter q = 1, the localization parameter h = 5 for LASSO-
bandit and h = 1 for OLS-bandit. For LASSO-bandit, we further set the initial
parameters λ1 = λ2,0 = 0.5 and for OFUL-LS, we set λ = 1 and δ = 10−4.

Figure 1 compares our method with competitors on the aforementioned syn-
thetic data with a time horizon of T = 2000. The curves are the average cu-
mulative regrets over 5 trials. We observe that the proposed �1-confidence ball
based algorithm outperforms all the three competing algorithms in all the cases.
In cases (1) and (2) where dimension d is from moderately large to high, OLS-
bandit and OFUL-LS algorithms do not perform well since they are not de-
signed for high-dimensional settings and fail to capture the sparsity structure.
In case (3) where K is large and the feature vector is low-dimensional, our
�1-confidence ball algorithm still outperforms the competitors, while the perfor-
mance of LASSO-bandit is no longer competitive. One possible reason is that
since the number of arms is larger, it may need much more exploration in the
feature space than it is allowed. LASSO-bandit does forced sampling only at a
limited number of pre-specified times due to which it may not have sufficient ex-
ploration to accommodate the large number of arms. In contrast, our algorithm
performs an implicit exploration and does not require forced sampling.

4.2. Warfarin dosing data

We now consider data from a real experiment from the healthcare context where
a physician needs to determine the optimal warfarin dosage for each patient. The
warfarin dataset Consortium (2009) has experimental data on 5528 patients, and
contains information on patients’ demographics, diagnosis and genetic informa-
tion. The same dataset is also used by Bastani and Bayati (2019), where they
demonstrated the benefits of applying LASSO-bandit algorithms over OFUL-LS,
OLS-bandit algorithms, and other low-dimensional methods. Bastani and Bay-
ati (2019) partitioned the dataset into three arms based on the optimal dosage
for each patient. However, their partitions are highly unbalanced with one arm
having only 13% and another arm having 54% of the patients. Therefore, in our
analysis, we evenly partition the dataset into four arms based on the quantiles
of the optimal warfarin dosages in the dataset: (1) Level 1: (0.0, 19.5] mg/week,
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Fig 1. Comparison of the cumulative regret of the �1-confidence ball algorithm against com-
petitors. Nonzero components in β∗ are generated from Unif(0, 1) in (a)-(c), and Unif(0, 0.2)
in (d)-(f). Lower value indicates better performance.

(2) Level 2: (19.5, 28.0] mg/week, (3): (28.0, 38.5] mg/week, and (4) Level 4:
(38.5,∞) mg/week. The proportion of each arm is nearly 25% after this par-
tition. Following Bastani and Bayati (2019), we construct 94 patient-specific
covariates, including intercept and indicators for categorical variables.

We apply our �1-confidence ball based method to the dataset along with other
methods. We include a Doctor’s policy for comparison, which always assigns a
level 2 dose that has the highest percentage (27.9%) of patients in the warfarin
data. We also include oracle policies that assign the optimal dose given the
true parameter β∗. Similar to Bastani and Bayati (2019), the “true” parameter
vector is estimated using all patient outcomes. We consider two versions of
optimal policy: Linear Oracle that estimates β∗ using linear regression, and
Logit Oracle that estimates β∗ using multinomial logistic regression (with four
categories).

For the real dataset, the expected regret (1) is not computable, since we
do not know the true parameter vector β∗. Instead, we use a surrogate mea-
sure which calculates the misclassification rate of assigning optimal dosage to
patients. The misclassification rate is calculated as the number of incorrect de-
cisions divided by the number of patients. The lower the expected regret, the
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Fig 2. Comparison of the fraction of incorrect dosing decisions under the oracle, LASSO
Bandit, OLS Bandit, OFUL, the �1-confidence ball algorithm, and doctor policies in the
warfarin data. Lower value indicates better performance.

lower the misclassification rate. We consider 10 random permutations of patients
and take the average of the misclassification rate of 10 permutations. Figure 2
illustrates the average fraction of incorrect dosing decisions under different poli-
cies. We observe that our method outperforms other competitors except for the
oracle polices. Especially, when the number of observations is smaller than 1000,
the performance of our method is clearly better than other algorithms, which
indicates the benefits of our method when the sample size is relatively small
compared to the dimension.

Appendix A: Proof of Theorem 1

We will apply the Bayesian decision theory to show the lower bound of the
cumulative regret up to horizon time T . To prove the log T term in Theorem 1,
we can follow the procedure in Goldenshluger and Zeevi (2013). For simplicity,
we will focus on the terms in lower bound involving the dimension d.

Suppose we have two arms, the first of which is X(1) = (X0, X1, . . . , Xd) and
the second is X(2) = (0,−X1, . . . ,−Xd). Here the two arms are not independent
from each other. Entry X0 in the arm vector follows a discrete distribution
which will be specified later. The other entries {X1, . . . , Xd} are i.i.d. truncated
normal distribution of N(0, 1). For simplicity, we first consider the standard
normal case, later the proof can be easily applied to the truncated normal case.
The common parameter vector is β is from a set M = {β ∈ R

d+1 : β0 = 1, βu =
θ, βj = 0 for j 
= u, u ∈ [d]}. The sparsity of parameters in set M is then
s0 = 2. Within the set M, the first entry β0 of the parameter vector is assumed
to be known, so we do not need to estimate it. The remaining d entries of the
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parameter vector has exactly one nonzero entry with value θ. We assume that
the parameter vector β is uniformly distributed within the set M. In order to
guarantee that the assumptions in section 2.1 hold for the configuration of the

parameters in M and data, we define βmin :=
√

log d
T and θ := cβmin, where the

constant c is sufficiently small and will be defined momentarily, and{
P (X0 = 0) = Cβα

min

P (X0 = a) = 1
2 (1− Cβα

min), when a = ±1
(8)

Define Pα as the bandit environment where Assumptions 1–2 hold with constant
α in Assumption 1(b), and PM be the set of environments defined as above with
β from M. We have PM ⊆ Pα according to the configuration of PM. Moreover,

we define F+
t−1 = σ(X

(1)
1 , X

(2)
1 , Y

(π1)
1 , . . . , X

(1)
t−1, X

(2)
t−1, Y

(πt)
t−1 , X

(1)
t , X

(2)
t ) as a σ-

algebra. Then for any policy π, the supreme of the cumulative regret of π at
horizon T within Pα can be lower bounded by:

sup {RT (π, π∗) : PX,Y ∈ Pα}

≥ sup
PX,Y ∈PM

E

T∑
t=1

|βTΔx,t|
[
I
{
βTΔx,t ≥ 0, πt = 2

}
+ I

{
βTΔx,t < 0, πt = 1

}]
≥E

{ T∑
t=1

(
Eβ

[
βTΔx,tI

{
βTΔx,t ≥ 0

}
|F+

t−1

]
I {πt = 2}

− Eβ

[
βTΔx,tI

{
βTΔx,t < 0

}
|F+

t−1

]
I {πt = 1}

)}
, (9)

where PX,Y :=
(
PX(1),Y (1) , PX(2),Y (2)

)
is the joint distribution of the feature

vectors and the response variables, and Δx,t := X
(1)
t −X

(2)
t = (Δ0,t, . . . ,Δd,t).

Here Eβ

[
·|F+

t−1

]
denotes the expectation of β in M conditioned on F+

t−1, which
is the σ-algebra generated by feature vectors up to time t and observed response
variables of the chosed arms up to time t− 1. Then, according to the Bayesian
decision rule in Goldenshluger and Zeevi (2013), the optimal policy is π̂t = 1 if

Eβ

[
βTΔx,tI

{
βTΔx,t ≥ 0

}
|F+

t−1

]
≥ −Eβ

[
βTΔx,tI

{
βTΔx,t < 0

}
|F+

t−1

]
⇐⇒ Eβ

[
βTΔx,t|F+

t−1

]
≥ 0 (10)

and π̂t = 2 otherwise. Define Ft−1 = σ(X
(1)
1 , X

(2)
1 , Y

(π1)
1 , . . . , X

(1)
t−1, X

(2)
t−1, Y

(πt)
t−1 )

as the σ-algebra generated by feature vectors and observed responses up to time
t−1. We set β̂t−1 = E

[
β|F+

t−1

]
. Since Δx,t is independent from Ft−1 and β, we

have E
[
β|F+

t−1

]
= E [β|Ft−1]. The Bayesian policy is then π̂ = {π̂t : t ∈ [T ]},

where π̂t = I
{
β̂T
t−1Δx,t ≥ 0

}
+ 2I

{
β̂T
t−1Δx,t < 0

}
. If we define u ∈ [d] as the

location of the nonzero entry θ in parameter vector β, then according to the
distribution of β within M, u is uniform distributed in [d]. Then, we have

sup {RT (π, π∗) : PX,Y ∈ Pα}
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≥sup {RT (π̂, π∗) : PX,Y ∈ PM}

≥
T∑

t=1

EβEX,Y |β

[
|βTΔx,t|I

{
sign(βTΔx,t) 
= sign(β̂T

t−1Δx,t)
}]

=

T∑
t=1

Eβ,uE

[
|X0,t + 2θXu,t|I

{
sign(βTΔx,t) 
=sign(β̂T

t−1Δx,t)
}]

≥
T∑

t=1

Eβ,uP (X0=0)EX,Y |β

[
|2θXu,t|I

{
sign(βTΔx,t) 
=sign(β̂T

t−1Δx,t)
} ∣∣X0=0

]
≥

T∑
t=1

Eβ,uP (X0=0)
1

4
EX,Y |β

[
|2θXu,t|I

{
β̂T
t−1Δx,t<0

} ∣∣X0=0, βTΔx,t≥0
]

≥
T∑

t=1

Eβ,u
1

2
Ccβα+1

min EX,Y |β

[
I
{
1<Xu,t<2, β̂T

t−1Δx,t<0
} ∣∣X0=0, βTΔx,t≥0

]
=

T∑
t=1

1

2
Ccβα+1

min Eβ,u

[
PX,Y |β

(
1<Xu,t<2, β̂T

t−1Δx,t<0
)]

. (11)

The third inequality above is by the conditional expectation with respect to the
event {X0 = 0}, and the fourth inequality is by the symmetric distribution of
βTΔx,t when X0 = 0. The last inequality is by the fact that when Xu,t ∈ (1, 2),
then |θXu,t| ≥ cβmin.

Then, it suffices to prove the lower bound for the expectation term in the
last equation, where

Eβ,u

[
PX,Y |β

(
1<Xu,t<2, β̂T

t−1Δx,t<0
)]

=Eβ,u

[
P (1<Xu,t<2)PX,Y |β

(
β̂u,t−1Xu,t + β̂T

−u,t−1X−u,t<0 | 1<Xu,t<2
)]

≥C̃P
(
β̂u,t−1Xu,t + β̂T

−u,t−1X−u,t < 0 | 1 < Xu,t < 2
)
. (12)

Here β̂−u,t−1 ∈ R
d−1 is the subvector of β̂t−1 without the 0-th and u-th en-

tries, and X−u,t := (X1,t, · · · , Xu−1,t, Xu+1,t, · · · , Xd)
T ∈ R

d−1. The probabil-

ity C̃ := P (1 < Xu,t < 2) is positive, since Xu,t is standard normal by definition.

In order to lower bound the probability in (12), we use the Fano’s inequality to
reduce the probability to the false discovery rate in a multiple hypothesis testing
problem. Specifically, we define a test function ût−1 := argmaxj∈[d] |β̂j,t−1|. We
then show that the probability in (12) is lower bounded by P (ût−1 
= u). In fact,

if event {ût−1 
= u} holds, then we have |β̂u,t−1|2 ≤ ‖β̂−u,t−1‖22 by the definition
of ût−1. In addition, we have

P
(
β̂u,t−1Xu,t + β̂T

−u,t−1X−u,t < 0 | 1 < Xu,t < 2, |β̂u,t−1|2 ≤ ‖β̂−u,t−1‖22
)

≥P
(
|2β̂u,t−1|+ β̂T

−u,t−1X−u,t < 0 | 1 < Xu,t < 2, |β̂u,t−1|2 ≤ ‖β̂−u,t−1‖22
)
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=P

(
2 +N

(
0,

‖β̂−u,t−1‖22
|β̂u,t−1|2

)
< 0 | 1 < Xu,t < 2, |β̂u,t−1|2 ≤ ‖β̂−u,t−1‖22

)
≥P (N(2, 1) < 0) = C ′ (13)

The last equation is because that X−u,t is independent from β̂t−1 and Xu,t. In

addition, the random variable β̂T
−u,t−1X−u,t conditioned on β̂t−1 follows normal

distribution with mean 0 and variance ‖β̂−u,t−1‖22. Then, by applying the above
inequalities to eq. (12), we have

Eβ,u

[
PX,Y |β

(
1 < Xu,t < 2, β̂T

t−1Δx,t < 0
)]

≥ C̃C ′P (ût−1 
= u). (14)

It suffices to lower bound P (ût−1 
= u) for each time t. We first state a variant
of Fano’s lower bound in multiple hypothesis testing, the details of which can
be found in Chapter 15 of Wainwright (2019).

Lemma 1. Assume that U is uniform on U . For any Markov chain U →
(X,Y ) → Û ,

P (Û 
= U) ≥ 1− I(X,Y ;U) + log 2

log(|U|) . (15)

Here I(X,Y ;U) is the mutual information between (X,Y ) and U , and |U| is
the cardinality of set U .

According to the definition of PM, u is uniform in [d], therefore log(|U|) =
log d. Then, we prove an upper bound for I(X{1:t−1}, Y{1:t−1};u) to guarantee
that the probability P (ût−1 
= u) in (14) is bounded away from 0. Here X{1:t−1}
and Y{1:t−1} represent the set of feature vectors and response variables up to
time t− 1. Based on the chain rule of the mutual information, we have

I(X,Y ;u) = I(X;u) + I(Y ;u|X) = I(Y ;u|X), (16)

where the last equality is due to the independence between X and the uniformly
distributed u. Moreover, according to Chapter 15 of Wainwright (2019), the
conditional mutual information of Y and u conditoned on X can be upper
bounded by the Kullback-Leibler divergence, i.e.,

I(Y ;u|X) ≤ 1

|U|2
|U|∑

j,k=1

D(Pβj |X‖Pβk|X), (17)

where Pβj |X is the distribution of Y conditioned on X and the parameter vector
βj ∈ M corresponding to uj ∈ U . The KL-divergence of between two normal
distributions, i.e., Pβj |X = N(Xβj , σ2) and Pβk|X = N(Xβk, σ2), can be upper
bounded as

D(Pβj |X‖Pβj |X)

=
1

2σ2
‖X(βj − βk)‖22 =

1

2σ2
‖(Xj −Xk)θ‖22
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≤ 1

2σ2
θ24x2

max =
2x2

min

σ2
· c

2 log d

T
. (18)

Summing up the mutual information up to time t−1, and according to eq. (16),
we have that

I(X{1:t−1}, Y{1:t−1};u) = I(Y{1:t−1};u) ≤
t−1∑
s=1

2x2
min

σ2
· c

2 log d

T
≤ 2x2

maxc
2 log d

σ2
.

(19)

Define constant c := σ
2xmax

. Then, if log d ≥ 4 log 2, we have that

P (ût−1 
= u) ≥ 1−
I(X{1:t−1}, Y{1:t−1};u) + log 2

log |U|

≥ 1−
1
2 log d+ log 2

log d
≥ 1

4
. (20)

By applying eq. (20) and eq. (14) to eq. (11), it can be derived that

sup {RT (π, π∗) : PX,Y ∈ Pα}

≥
T∑

t=1

1

2
Ccβα+1

min Eβ,u

[
PX,Y |β

(
1 < Xu,t < 2, β̂T

t−1Δx,t < 0
)]

≥
T∑

t=1

1

2
Ccβα+1

min C̃C ′P (ût−1 
= u)

≥ C̃C ′Cc

8
(
log d

T
)

α+1
2 T.

Therefore, the supreme cumulative regret incurred by any policy π can be lower
bounded as

sup {RT (π, π∗) : PX,Y ∈ Pα} ≥
{
C̃L (log d) , α = 1

C̃L

(
(log d)

α+1
2 T

1−α
2

)
, α ∈ [0, 1),

(21)

where C̃L is some postive constant.
Combining the regret lower bound Ω(log T ) from Goldenshluger and Zeevi

(2013) on the horizon T , we prove the regret lower bound in Theorem 1.

Appendix B: Proof of Theorem 2

In this section, we provide the proof for Theorem 2. As we discussed in Section
3.5.2, we first prove Proposition 1 and Proposition 2. Then Corollary 1 is an
application of the above propositions. Lastly, we prove Theorem 2 by applying
the result in Corollary 1.
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B.1. Proof of Proposition 1

For consistency with Proposition 1, let Xi be the ith row of X and Y (i) be the
ith entry of Y . The sequence {Xi : i = 1, . . . , t} forms an adapted sequence of
observations, i.e. Xt may depend on the history {Xs, Y (s)}t−1

s=1. And let ε ∈ Rt

be the σ-sub-Guassian errors.

Before proving Proposition 1, we first stat the following lemmas for adapted
sequences.

Lemma 2 (Bernstein Concentration). Let {Dk,Gk}∞k=1 be a martingale dif-
ference sequence, and suppose that Dk is σ-sub-Guassian in an adapted sense,
i.e,. for all α ∈ R, E[eαDk |Gk−1] ≤ eα

2σ2/2 almost surely. Then, for all t ≥ 0,
P [|

∑n
k=1 Dk| ≥ t] ≤ 2 exp[−t2/2nσ2].

Proof of Lemma 2 follows from Theorem 2.3 of Wainwright (2019) when
α∗ = αk = 0 and νk = σ for all k.

Lemma 3. Define the event

F(λ0(γ)) = {max
r∈[d]

(2|εTX(r)|/t) ≤ λ0(γ)},

where X(r) is the rth column of X and λ0(γ) = 2σxmax

√
(γ2 + 2 log d)/t. Then

we have P [F(λ0(γ))] ≥ 1− 2 exp[−γ2/2].

Proof of Lemma 3 can be found in Lemma EC.2. of Bastani and Bayati
(2019).

Lemma 4. For any λ0 ∈ R
+, when λ ≥ λ0, on event F(λ0), we have

‖X(β̂ − β∗)‖22/t ≤ 3λ‖β̂S − β∗,S‖1 − λ‖β̂Sc − β∗,Sc‖1.

Proof. According to the definition of the LASSO estimator (4), we have

1

2t
‖Y −Xβ̂‖22 + λ‖β̂‖1 ≤ 1

2t
‖Y −Xβ∗‖22 + λ‖β∗‖1. (22)

Since λ ≥ λ0, then if event F(λ0) holds, we have λ ≥ 2‖εTX‖∞/t. Thus,

1

2t
‖X(β̂ − β∗)‖22 ≤ 1

t
‖εTX‖∞‖β̂ − β∗‖1 + λ(‖β∗‖1 − ‖β̂‖1)

≤ λ

2
(‖β̂S − β∗,S‖1 + ‖β̂Sc − β∗,Sc‖1) + λ(‖β∗,S‖1 − ‖β̂‖1)

≤ λ

2
(‖β̂S − β∗,S‖1 + ‖β̂Sc − β∗,Sc‖1) (23)

+ λ(‖β̂S − β∗,S‖1 − ‖β̂Sc − β∗,Sc‖1)

=
3

2
λ‖β̂S − β∗,S‖1 −

λ

2
‖β̂Sc − β∗,Sc‖1.
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Now we can prove Proposition 1. From Lemma 4, we have

‖β̂Sc − β∗,Sc‖1 ≤ 3‖β̂S − β∗,S‖1. (24)

Then we choose γ = 2 log t for event F(λ0(γ)). By the definition of λ, we have
λ ≥ λ0. Thus, if both events F(λ0(γ)) and {Σ̂(X) ∈ C(supp(β∗), φ)} hold, we
have

‖β̂ − β∗‖21 ≤ s0
φ2

‖X(β̂ − β∗)‖22/t ≤
s0
φ2

(
2

t
‖εTX‖∞ + 2λ)‖β̂ − β∗‖1

≤ 3s0λ

φ2
‖β̂ − β∗‖1 =

6s0σxmax

φ2

√
2 log t+ 2 log d

t
‖β̂ − β∗‖1. (25)

Thus,

P

[
‖β̂ − β∗‖1 ≤ 6s0σxmax

φ2

√
2 log t+ 2 log d

t

]
≥P [F(λ0(γ))]− P

[
{Σ̂(X) /∈ C(supp(β∗), φ)}

]
≥1− 2

t
− P

[
{Σ̂(X) /∈ C(supp(β∗), φ)}

]
. (26)

B.2. Proof of Proposition 2

Definition 4. For a constant α ≥ 1 and index set I, define the set

Cα(I) =
{
Δ ∈ R

d : ‖ΔIc‖1 ≤ α‖ΔI‖1
}
.

Our goal is to prove that with high probability, for ∀v ∈ C3(S)

vT Σ̂tv =
1

t
‖Xtv‖22 =

1

t

t∑
s=1

〈Xâs,s, v〉2 ≥ κ‖v‖22,

for some constant κ > 0. To prove Proposition 2, we first state a weaker version
about the compatibility condition of the sample covariance matrix.

Proposition 3. For the adapted sequence {Xâs,s : s = 1, . . . , t} induced by

the bandit policy, the sample covariance matrix Σ̂t are guaranteed to satisfy the
compatibility condition uniformly with high probability, i.e.

P

(
Σ̂t ∈ C(supp(β∗),

1√
32ζK

)

)
≥ 1−O(es0K logK log d[e−c0t + e−C̃ log(K)t]),

where c0, C̃ are constants. In addition, we can derive a uniform bound for the
compatibility condition over t that exceeds a certain threshold (i.e. t ≥ O(log T+
s0K logK log d)) with high probability, i.e.

P

(
∀t ≥ T ′, Σ̂t ∈ C(supp(β∗),

1√
32ζK

)

)
≥ 1− 2

T
,

where T ′ = O(log T + s0K logK log d).
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We first provide the outline of the proof for Proposition 3.

(i) Discretize the unit sphere Sd−1 ∈ R
d, and show eigenvalue condition of

Σ̂t on a finite set N0.
(ii) Show eigenvalue condition for all m-sparse vectors within sphere Sd−1.
(iii) Transfer eigenvalue condition of Σ̂t to vectors in C3(S), which implies

compatibility condition.

In the following, we state a result from Oliveira (2016), which is used for step
(iii) in the proof.

Lemma 5 (Transfer Principle). Suppose Σ̂t and Σ are matrix with non-negative
diagonal entries, and assume η ∈ (0, 1), m ∈ {1, . . . , d} are such that

∀v ∈ R
d with ‖v‖0 ≤ m, vT Σ̂tv ≥ (1− η)vTΣv. (27)

Assume D is a diagonal matrix whose elements Dj,j are non-negative and satisfy

Dj,j ≥ [Σ̂t]j,j − (1− η)Σj,j. Then

∀x ∈ R
d, xT Σ̂tx ≥ (1− η)xTΣx− ‖D1/2x‖21

m− 1
. (28)

The proof of Lemma 5 can be found in Lemma 5.1 of Oliveira (2016).
According to Lemma 5, it suffices to prove the eigenvalue condition (27) form-

sparse vectors with sufficient large m = Cs0, where constant C will be specified
later. To prove this, we first introduce ε-net on unit sphere for approximation.

Definition 5 (Nets, covering numbers). Let (X, d) be a metric space and let
ε > 0. A subset Nε of X is called an ε-net of X if every point x ∈ X can be
approximated to within ε by some point y ∈ Nε, i.e. so that d(x, y) ≤ ε. The
minimal cardinality of an ε-net of X, if finite, is denoted N (X, ε) and is called
the covering number of X (at scale of ε).

The following provides a bound for the cardinality of the ε-net that can
approximate the points on the unit Euclidean sphere within range of ε.

Lemma 6 (Covering numbers of the sphere). The unit Euclidean sphere Sd−1

equipped with the Euclidean metric satisfies for every ε > 0 that

N (Sd−1, ε) ≤
(
1 +

2

ε

)d

.

Denote EJ = span{ej : j ∈ J}, then we define N0 as the ε-net for Sd−1 ∩
(∪|J|=Cs0EJ). For each subset J ⊆ [d] with |J | = Cs0, the set S

d−1∩EJ can be
viewed as a unit sphere in R

Cs0 . Then according to Lemma 6, we have a bound
for the covering number N of N0 when ε ≤ 1.

logN = log

((
d

Cs0

)(
1 +

2

ε

)Cs0
)
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≤ log

((
ed

Cs0

)Cs0 (3

ε

)Cs0
)

� Cs0[log d+ log(
1

ε
)]. (29)

According to Assumption (b), when h > 0 is small, i.e. h = O( 1
K ), we have

for ∀v ∈ R
d that:

P (min
a

〈Xa,t, v〉2 ≤ h‖v‖22) ≤ ζKh.

From now on we fix a sparse vector v with ‖v‖2 = 1 and ‖v‖0 ≤ Cs0. Define

Nt =

t∑
s=1

1{mina〈Xa,s,v〉2≤h‖v‖2
2}

Then Nt is the sum of i.i.d. indicator random variables which have expectation
greater than (1− ζKh). Now we define St =

∑t
s=1 Zs where

Zs = 1{mina〈Xa,s,v〉2≤h‖v‖2
2} − E[1{mina〈Xa,s,v〉2≤h‖v‖2

2}],

are centered random variables. Then by Hoeffding’s Lemma, we have for ∀t ∈ N+

and δ ∈ R,

P (
1

t
St ≤ δ) ≤ exp(−2δ2t).

Let δ = −1
2 (1− ζKh), we have

P

(
1

t
Nt ≤

1

2
(1− ζKh)

)
≤ exp(−1

2
(1− ζKh)2t) = exp(−c0t)

where c0 = 1
2 (1− ζKh)2. Then taking the union of the event over all vectors in

N0, we can obtain

P

(
∀v ∈ N0 :

1

t

t∑
s=1

〈Xas,s, v〉2 ≤ 1

2
h(1− ζKh)

)

≤N exp(−c0t) ≤ exp(−c0t+ Cs0 log d+ Cs0 log(
1

ε
)). (30)

In the above inequalities, we have proved the minimum eigenvalue condition
for all vectors in ε-net N0. In the following, we will show that the restricted
eigenvalue condition for Cs0-sparse vectors can also be implied by the eigenvalue
condition onN0. Before that, we state a result on the spectral norm of symmetric
matrices.

Lemma 7 (Computing the spectral norm on a net). Let A be a symmetric d×d
matrix, and let Nε be an ε-net of Sd−1 for some ε ∈ [0, 1). The spectral norm of
A can be computed via the associated quadratic form ‖A‖ = supx∈Sd−1 |〈Ax, x〉|.
Then

‖A‖ = sup
x∈Sd−1

|〈Ax, x〉| ≤ (1− 2ε)−1 sup
x∈Nε

|〈Ax, x〉|.
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The proof of Lemma 7 can be found in Lemma 5.4 of Vershynin (2012).
According to the definition of N0, for any Cs0-sparse vector v and symmetric

d× d matrix A, there is a vector u ∈ N0, such that ‖u− v‖2 ≤ ε and supp(v) ⊆
supp(u). Then

vTAv = uTAu+ (u− v)TA(u− v) + 2uTA(v − u)

≥ uTAu− 2‖u− v‖2‖A‖op‖u‖2, (31)

where ‖A‖op is the spectral norm of A constrained on sparse vectors with �0-
norm not greater than Cs0, i.e. ‖A‖op = max

v∈Sd−1,‖v‖0≤Cs0
‖Av‖2.

We have proved a uniform lower bound of uT Σ̂tu for u ∈ N0 and t ≥ T1.
Then to prove a lower bound of vT Σ̂tv for v ∈ Sd−1 and ‖v‖0 ≤ Cs0, based on
(31) and the fact that there exit u ∈ N0 such that ‖u − v‖2 ≤ ε, it suffices to
show that ‖Σ̂t‖op is upper bounded. And by Lemma 7, we only need to bound

the spectral norm of Σ̂t on N0.
Here we have for a fixed vector v ∈ N0 and ∀t ∈ N+,

1

t

t∑
s=1

〈Xas,s, v〉2 ≤ 1

t

t∑
s=1

max
a∈[K]

〈Xa,s, v〉2.

Define Za
s = 〈Xa,s, v〉2 − vTΣav, Sa

t =
∑t

s=1 Z
a
s and St =

∑K
a=1 S

a
t for

a ∈ [K]. Then Za
s is centered sub-exponential random variables. Before proving

the upper bound of ‖Σ̂t‖op, we will state some properties of sub-exponential
random variables. Firstly, we introduce some parameters of sub-guassian and
sub-exponential random variables.

Definition 6. The sub-guassian norm of a sub-guassian random variable X,
denoted ‖X‖ψ2 , is defined as

‖X‖ψ2 = sup
p≥1

p−1/2 (E|X|p)1/p .

Similarly, the sub-exponential norm of a sub-exponential random variable X,
denoted ‖X‖ψ1 , is defined as

‖X‖ψ1 = sup
p≥1

p−1 (E|X|p)1/p .

The details of the definition and related properties can be found in Section
5.2.3 and Section 5.2.4 in Vershynin (2012). The following is a relationship
between sub-guassian random variables and sub-exponential random variables.

Lemma 8 (Sub-exponential is sub-guassian squared). A random variable X is
sub-gaussian if and only if X2 is sub-exponential. Moreover,

‖X‖2ψ2
≤ ‖X2‖ψ1 ≤ 2‖X‖2ψ2

.

Proof of Lemma 8 can be found in Lemma 5.14 of Vershynin (2012).
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Lemma 9 (MGF of sub-exponential random variables). Let X be a centered
sub-exponential random variable. Then for t such that |t| ≤ c1/‖X‖ψ1 , one has

E exp(tX) ≤ exp(c2t
2‖X‖2ψ1

),

where c1, c2 > 0 are absolute constants.

Proof of Lemma 9 can be found in Lemma 5.15 of Vershynin (2012).
By the result in Lemma 8, we have for sub-exponential random variable Za

s ,

κa = ‖Za
s ‖ψ1 ≤ 2‖〈Xa,s, v〉2‖ψ1 ≤ 4‖〈Xa,s, v〉‖2ψ2

≤ 4λ2
max(Σa).

Then for any μ > 0 and δ > 0, we have

P

(
1

t

t∑
s=1

max
a∈[K]

〈Xa,s, v〉2 − Λ2
0 ≥ δ

)
= P

(
t∑

s=1

[max
a

〈Xa,s, v〉2 − Λ2
0] ≥ δt

)

≤ e−μδt
E[exp(μ

t∑
s=1

[max
a

〈Xa,s, v〉2 − Λ2
0])]

= e−μδt
t∏

s=1

E[exp(μ[max
a

〈Xa,s, v〉2 − Λ2
0])]

(32)

According to Lemma 9, for μ such that |μ| ≤ c1
maxa κa

, we have

E[exp(μ[max
a

〈Xa,s, v〉2 − Λ2])] ≤
K∑

a=1

E[exp{μ(〈Xa,s, v〉2 − E[〈Xa,s, v〉2])}]

≤
K∑

a=1

ec2μ
2κ2

a ≤ ec2μ
2 maxa κ2

a+log(K).

Applying the above inequality to inequality (32), we have for μ such that
|μ| ≤ c1

maxa κa
,

P

(
1

t

t∑
s=1

max
a∈[K]

〈Xa,s, v〉2 − Λ2
0 ≥ δ

)
≤ exp(−μδt+tc2μ

2 max
a

κ2
a+t logK). (33)

The right hand side of the above inequality achieves the minimum value at

μ = δ
2c2 maxa κ2

a
, where the minimum value is exp(− δ2t

4c2 maxa κ2
a
+ t logK).

Now if δ
2c2 maxa κ2

a
> c1

maxa κa
, the right hand side of the equation (33) obtain

the minimum value at μ = c1
maxa κa

and

P

(
1

t

t∑
s=1

max
a∈[K]

〈Xa,s, v〉2 − Λ2
0 ≥ δ

)
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≤ exp

(
− c1δt

maxa κa
+ tc2

c21
maxa κ2

a

max
a

κ2
a + t logK

)
.

Moreover, if δ
2c2 maxa κ2

a
> c1

maxa κa
, we apply this to the above inequality and

obtain

P

(
1

t

t∑
s=1

max
a

〈Xa,s, v〉2 − Λ2
0 ≥ δ

)
≤ exp

(
− c1δt

2maxa κa
+ t logK

)
.

Now we have for ∀δ > 0 and t ∈ N+

P

(
1

t

t∑
s=1

max
a

〈Xa,s, v〉2 − Λ2
0 ≥ δ

)

≤ exp

(
−min{ δ2

4c2 maxa κ2
a

,
c1δ

2maxa κa
}t+ t logK

)
.

If we set δ = c3 log(K)Λ2
0 where c3 is a sufficient large positive constant, then

we have for a fixed vector v ∈ N0

P

(
1

t

t∑
s=1

max
a∈[K]

〈Xa,s, v〉2 − Λ2
0 ≥ δ

)
≤ exp

(
−C̃ log(K)t

)
,

where C̃ = min{ c43 logK
64c2

, c1c3
8 } − 1 ≤ min{ c23Λ

4
0 logK

4c2 maxa κ2
a
,

c1c3Λ
2
0

2maxa κa
} − 1 is a positive

constant independent on K and t. Taking the union of the probability over all
vectors in N0, we have

P
(
∀v ∈ N0 : 〈v, Σ̂tv〉 ≥ c̃ log(K)Λ2

0

)
≤N exp

(
−C̃ log(K)t

)
� exp

(
−C̃ log(K)t+ Cs0 log d+ Cs0 log(

1

ε
)

)
. (34)

Now we provide the proof of Proposition 3.

Proof. We define events G1 and G2 as

G1 = {∀u ∈ N0 :
1

t

t∑
s=1

〈Xâs,s, u〉 ≥
1

2
h(1− ζKh)};

G2 = {∀u ∈ N0 : 〈u, Σ̂tu〉 ≤ c̃ log(K)Λ2
0}.

If event G2 holds, then according to Lemma 7 and definition of ‖ · ‖op in (31),
we have

‖Σ̂t‖op ≤ (1− 2ε)−1 max
v∈N0

〈v, Σ̂tv〉 ≤ (1− 2ε)−1c̃ log(K)Λ2
0. (35)
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If both event G1 and G2 hold, based on (31), we can prove the restricted eigen-
value condition for all Cs0-sparse vectors in unit sphere Sd−1, i.e. for ∀v ∈ Sd−1

and ‖v‖0 ≤ Cs0 that

〈v, Σ̂tv〉 ≥
1

2
h(1− ζKh)− 2ε‖Σ̂t‖op

≥ 1

2
h(1− ζKh)− 2ε

1− 2ε
c̃ log(K)Λ2

0. (36)

Now if we set h = 1
2ζK = O( 1

K ) and ε = min{1
4 ,

1
64c̃ log(K)Λ2

0
}, then for ∀v ∈ Sd−1

and ‖v‖0 ≤ Cs0, we have

〈v, Σ̂tv〉 ≥
1

4
h(1− ζKh) =

1

16ζK
.

Now we proved part (i) and (ii) in Proposition 3, i.e. the minimum eigenvalue
condition for all Cs0-sparse vectors in Sd−1. To finished the proof, we need to
apply Lemma 5 to prove part (iii).

To apply Lemma 5, we set Σ = 1
8ζK Id×d as a d×d diagonal matrix, m = Cs0

and η = 1
2 . Moreover, we set Dj,j = [Σ̂t]j,j to satisfy the condition on diagonal

matrixD. By greedy method for constructingN0, we can let ej ∈ N0 for ∀j ∈ [d],
where ej is unit vector in R

d having exactly one entry equal to 1 and 0 otherwise.
Then under event G2, we have

Dj,j = [Σ̂t]j,j = 〈ej , Σ̂tej〉 ≤ c̃ log(K)Λ2
0.

Now according to (28), if both events G1 and G2 hold, we have for ∀x ∈ Sd−1

and x ∈ C3(S) that

xT Σ̂tx ≥ 1

2
xTΣx− ‖D1/2x‖21

Cs0 − 1

≥ 1

16ζK
− c̃ log(K)Λ2

0‖x‖21
Cs0 − 1

≥ 1

16ζK
− c̃ log(K)Λ2

0 · 16s0
Cs0 − 1

, (37)

where the last inequality above is because for x ∈ Sd−1 and x ∈ C3(S), we have

‖x‖1 ≤ (1 + 3)‖xS‖1 ≤ 4
√
s0‖xS‖2 ≤ 4

√
s0.

Then, if we set C = 2 ·162c̃ log(K)Λ2
0ζK+ 1

s0
= Θ(ζΛ2

0K logK), we can have

xT Σ̂tx ≥ 1
32ζK for unit vector x ∈ C3(S), which implies compatibility condition.

Now, we prove the uniform bound on the compatibility condition in Propo-
sition 3 by showing that events G1 and G2 hold with high probability.

At first, for any T1 ∈ N+ we have

P

(
∀t ≥ T1, ∀v ∈ N0 :

1

t

t∑
s=1

〈Xas,s, v〉2 ≤ 1

2
h(1− ζKh)

)
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≤N

∞∑
t=T1

e−c0t =
1

1− e−c0
exp(−c0T1 + logN)

� exp(−c0T1 + Cs0 log d+ Cs0 log(
1

ε
)) = δ2,

where c0 = 1
2 (1 − ζKh)2 = 1

8 . If we set δ2 = 1
T , then with the choice of

ε = min{ 1
4 ,

1
64c̃ log(K)Λ2

0
} and C from above, we have

T1 = O(log T + Cs0[log d+ log(
1

ε
)])

= O(log T + s0ζΛ
2
0K(logK) log d+ log(logK) + log Λ2

0)

= O(log T + s0K(logK) log d). (38)

The above inequality provides a uniform lower bound for the eigenvalue of sam-
ple covariance matrix Σ̂t over N0 for t ≥ T1.

Moreover, we can obtain an union probability bound for all vectors in N0

and some T2 ∈ N+ in (34).

P
(
∀t ≥ T2, ∀v ∈ N0 : 〈v, Σ̂tv〉 ≥ c̃ log(K)Λ2

0

)
≤N

∞∑
t=T2

exp(−C̃ log(K)t)

� exp

(
−T2C̃ log(K) + Cs0 log d+ Cs0 log(

1

ε
)

)
= δ3.

If we set δ3 = 1
T , then we have

T2 =
log(T ) + Cs0 log d+ Cs0 log(

1
ε )

C̃ log(K)
= O

(
log T + Cs0 log d+ Cs0 log(

1

ε
)

)
.

Now, we can show that compatibility condition holds on C3(S) uniformly for
all t ≥ max(T1, T2) = O(log T + s0K logK log d) with high probability, i.e.

P

(
∀t ≥ max(T1, T2), v ∈ C3(S) : v

T Σ̂tv ≥ 1

32ζK

)
≥ 1− δ2 − δ3 = 1− 2

T
.

With the crude compatibility condition from Proposition 3, we can prove
Proposition 2. Firstly, we prove that the optimal arm will be pulled a positive
fraction of time by the �1-confidence ball based algorithm after some time point.

Lemma 10. Suppose we construct the confidence set Ct in Proposition 2 with
φ = 1√

32ζK
, then when time horizon t exceeds a certain threshold (i.e. t ≥

O(log T + s0K logK log d+
s20ζ

2K2 log d
Δ2

∗
)), decision-makers will pull the optimal

arms a positive fraction of time.
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Proof. Before the proof, we first define the event in Proposition 1 with φ2 =
1

32ζK ,

G3,t+1 =

{
‖β̂t − β∗‖1 ≤ 6s0σxmax

1/(32ζK)

√
2 log t+ 2 log d

t

}
.

According to Proposition 3, G3,t will hold uniformly over t ≥ T ′ with high
probability.

From Assumption 2(c), we have event Γt such that P (Γt) ≥ 1
2 . Then with

sufficient large φ ≥ 1√
32ζK

in Proposition 2, if both Γt and G3,t hold, we can

only select the arm b ∈ [K] instead of the optimal arm a∗t when

max
β∈Ct

〈Xb,t, β〉 ≥ max
β∈Ct

〈Xa∗
t ,t

, β〉

=⇒ 〈Xb,t, β∗〉+ 2‖Xb,t‖∞
6s0σxmax

1/(32ζK)

√
2 log(t− 1) + 2 log d

t− 1
≥ 〈Xa∗

t ,t
, β∗〉.

The second inequality is because for all β ∈ Ct, by triangle inequality we have

‖β − β∗‖1 ≤ ‖β − β̂t‖1 + ‖β̂t − β∗‖1

≤ (
1

φ2
+ 32ζK)(6s0σxmax)

√
2 log(t− 1) + 2 log d

t− 1

≤ 384ζKs0σxmax

√
2 log(t− 1) + 2 log d

t− 1

Then we will always select the optimal arm a∗t if

Δ∗ ≥ 384s0σx
2
maxζK

√
2 log(t− 1) + 2 log d

t− 1

≥ 2‖Xb,t‖∞
6s0σxmax

1/(32ζK)

√
2 log(t− 1) + 2 log d

t− 1
.

By solving the above inequality, we have that for t ≥ O(
σ2x4

maxs
2
0ζ

2K2 log d
Δ2

∗
), we

will always select the optimal arm a∗t when both Γt and G3,t hold.

Proof. (Proposition 2) Now we consider time such that t ≥ T ′′ = O(log T +

s0K logK log d +
σ2x4

maxs
2
0ζ

2K2 log d
Δ2

∗
). From the above proof, we know that we

will select the optimal arm with high probability.
Suppose t ≥ 2T ′′ and v ∈ R

d, then we have

1

t

t∑
s=1

〈Xâs,s, v〉2 ≥ 1

t

t∑
s=T ′′+1

〈Xâs,s, v〉2

≥ 1

t

t∑
s=T ′′+1

〈Xâs,s, v〉21{Γs∩G3,t}
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=
1

t

t∑
s=T ′′+1

〈Xa∗
s ,s

, v〉21{Γs}1{G3,t} (39)

Since event G3,t only depends on the history up to time t− 1, the random vari-
ables {Xa∗

t ,t
|G3,t} are i.i.d. Moreover, since {1{Γs} : s ≥ T ′′} are i.i.d Bernoulli

random variables, then according the Hoeffding’s Lemma, we have

t∑
s=T ′′+1

1{Γs} ≤ 1

2
· 1
2
(t− T ′′) w.p. ≤ O(e−c4t), (40)

where c4 is some constant.
Now we consider the sum of 〈Xa∗

s ,s, v〉2 over times when event Γt holds∑
s:Γs holds

〈Xa∗
s ,s

, v〉2 − E[〈Xa∗
s ,s

, v〉2
∣∣Γt].

Define Zs = 〈Xa∗
s ,s

, v〉2 −E[〈Xa∗
s ,s

, v〉2
∣∣Γt], then Zs are i.i.d. sub-exponential

random variables. Moreover, E[〈Xa∗
s ,s

, v〉2
∣∣Γt] ≥ φ2

0‖v‖22 according to Assump-
tion (c), and from Lemma 8, we have condition on event Γt

‖Zs‖ψ1 ≤ 2‖〈Xa∗
s ,s

, v〉2‖ψ1 ≤ 4‖〈Xa∗
s ,s

, v〉‖2ψ2
= 4vTE[Xa∗

t
XT

a∗
t
|Γt]v ≤ 4Λ2

1.

Then applying Bernstein inequality for sub-exponential random variables, we

can have a lower bound for a fixed vector v and ε =
φ2
0

2 .

P

(
|

∑
s:Γs holds

Zs| ≥ εm

∣∣∣∣ t∑
s=T ′′+1

1{Γs} = m

)

≤2 exp

(
−c̃5 min(

ε2

‖Zs‖2ψ1

,
ε

‖Zs‖ψ1

)m

)

=2 exp

(
−c̃5 min(

φ4
0

4‖Zs‖2ψ1

,
φ2
0

2‖Zs‖ψ1

)m

)
= O(e−c5m), (41)

where c̃5, c5 are constants.
Now combining inequalities (39)–(41), we have for any v in ε′-net N1 for

Sd−1 ∩ (∪|J|=C′sEJ), where ε and C ′ need to be specified, and t ≥ 2T ′′ that

1

t

t∑
s=1

〈Xâs,s, v〉2 ≥ 1

t

t∑
s=T ′′+1

〈Xa∗
s ,s

, v〉21{Γs} ≥ 1

t

φ2
0

2

1
2 · (t− T ′′)

2
‖v‖22 ≥ φ2

0

16
,

with probability greater than 1−O(e−c4(t−T ′′) + e−c5· 14 (t−T ′′)).
Similar as before, we can extend the above inequality to all vectors in C3(S)

by using the approximation of N1, where C = O(logK) and ε = O( 1
logK ). Then

for any v ∈ C3(S) and t ≥ 2T ′′, we have

Σ̂t ∈ C(supp(β∗),
φ0

8
)
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with probability greater than 1 − O(es0 logK log d[e−c4(t−T ′′) + e−c5· 14 (t−T ′′)]) =
1−O(e−t+s0 logK log d).

Then combine Proposition 1 on G3,t and the above inequality, we can prove
the Proposition 2.

B.3. Proof of Theorem 2

Define T ′′ as the threshold in Proposition 2, then we divide the cumulative
regret into three groups:

(a) Initialization when t ≤ T ′′ = O(log T+s0K logK log d+
σ2x4

maxs
2
0ζ

2K2 log d
Δ2

∗
).

(b) Times t > T ′′ when Σ̂t /∈ C(supp(β∗), φ∗), where φ∗ = φ0

8 .

(c) Times t > T ′′ when Σ̂t ∈ C(supp(β∗), φ∗), where φ∗ = φ0

8 .

The cumulative regret J1 from time periods in group (a) at time T is bounded

by at most 2bxmaxT
′′ = O(2bxmax[log T + s0K logK log d+

σ2x4
maxs

2
0ζ

2K2 log d
Δ2

∗
]).

According to Proposition 2, we can bound the cumulative regret in group (b)
at time T .

J2 =

T∑
t=T ′′

E[rt1{Σ̂t /∈C(supp(β∗),φ∗)}] ≤
T∑

t=T ′′

2bxmaxP
(
Σ̂t /∈ C(supp(β∗), φ∗)

)

�
T∑

t=T ′′

2bxmax

[
1

t
+ e−t+s0 log k log d

]
= O(xmaxb log T ).

To prove the bound of the cumulative regret in group (c), we first define events:

Γξt = {ω ∈ Ω : 〈Xa∗
t ,t

, θ∗〉 ≥ 〈Xb,t, θ∗〉+ ξt, ∀b 
= a∗t }.

In addition, we define At := {Σ̂t ∈ C(supp(β∗), φ∗)} for simplicity. Then the
cumulative regret at time T in group (c) can be writen as:

J3 =

T∑
t=T ′′

E[rt1{At∩Γξt}] +
T∑

t=T ′′

E[rt1{At∩Γc
ξt

}].

Now we set ξt = 2xmaxτt−1 = 2xmaxτ0

√
log d+log(t−1)

t−1 with τ0 = 384
√
2s0σxmax

φ2
0

,

then when both Γξt and At hold, we have for any k 
= a∗t that

max
β∈Ct

〈Xa∗
t ,t

, β〉 −max
β∈Ct

〈Xk,t, β〉

≥〈Xa∗
t ,t

, β∗〉 − 2xmaxτt−1 − 〈Xk,t, β∗〉 ≥ 0.

So we will always select the optimal arm a∗t under the event At ∩ Γξt , and the
first part of the cumulative regret in J3 will be zero.
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Now we consider the time when both At and Γc
ξt

hold. Then if a sub-optimal
arm k 
= a∗t is selected, the regret incurred will be

〈Xa∗
t ,t

−Xk,t, β∗〉 ≤ max
β∈Ct

〈Xa∗
t ,t

, β〉−max
β∈Ct

〈Xk,t, β〉+2xmaxτt−1 ≤ 2xmaxτt−1 = ξt.

Moreover, from Assumption 1(b), we have

P

(
〈Xa∗

t ,t
, β∗〉 −max

b �=a∗
t

〈Xb,t, β∗〉 ≤ ξt

)
≤ 1

2
(
ξt
Δ∗

)α.

(i) For the α ∈ [0, 1] case, we can bound the second term in J3 as

T∑
t=T ′′

E[rt1{At∩Γc
ξt

}] ≤
T∑

t=T ′′

E[rt1{select arm i �=s∗t }]

≤
T∑

t=T ′′

ξtP

(
〈Xa∗

t ,t
, β∗〉 −max

b �=a∗
t

〈Xb,t, β∗〉 ≤ ξt

)

≤
T∑

t=T ′′

1

2Δα
∗
ξα+1
t

≤
T∑

t=1

2α(xmaxτ0)
α+1

Δα
∗

(
log d+ log t

t

)α+1
2

=

⎧⎨⎩ C2
sα+1
0 σα+1x2(α+1)

max

Δα
∗φ

2(α+1)
0

(log d)
α+1
2 T

1−α
2 , when α ∈ [0, 1),

C2
s20σ

2x4
max

Δ∗φ4
0

[log d+ log T ] log T, when α = 1,

(ii) For the α ∈ (1,+∞) case, the second term in J3 can be bounded as

T∑
t=T ′′

E[rt1{At∩Γc
ξt

}]

≤
T∑

t=T ′′

ξtP

(
〈Xa∗

t ,t
, β∗〉 −max

b �=a∗
t

〈Xb,t, β∗〉 ≤ ξt

)

≤
T∑

t=T ′′

ξt ·min

(
1,

ξαt
2Δα

∗

)
.

Moreover, according to the definition of ξt, we have that

ξαt
2Δα

∗
≥ 1 ⇐⇒ t � T ′′′ :=

41−1/αx2
maxτ

2
0 log d

Δ2
∗

.

Then, the above summation can be decomposed into two parts:

T∑
t=T ′′

ξt ·min

(
1,

ξαt
2Δα

∗

)
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≤
T ′′′∑
t=T ′′

ξt +

T∑
t=T ′′′

1

2Δα
∗
ξα+1
t

≤xmaxbT
′′′ +

2α(xmaxτ0)
α+1

Δα
∗

T∑
t=T ′′′

(
log d+ log t

t

)α+1
2

. (42)

Here for t ≥ T ′′′, we have that

log d+ log t

t
≤ log d+ log T ′′′

T ′′′ = O
(

Δ2
∗

41−1/αx2
maxτ

2
0

)
.

We define the constant M :=
Δ2

∗
41−1/αx2

maxτ
2
0
. Then, the second term in the right-

hand side of inequality (42) can be bounded by

T∑
t=T ′′′

(
log d+ log t

t

)α+1
2

≤
T∑

t=1

(
log d+ log t

t

)α+1
2

1{ log d+log t
t ≤M}

�
T∑

t=1

(
log d

t

)α+1
2

1{ log d
t ≤M}

�
∫ T

1

(
log d

t

)α+1
2

1{ log d
t ≤M} dt

=

∫ min(log d,M)

log d/T

log d · uα+1
2 −2 du

≤ 2

α− 1
log d ·M α−1

2

=
2Δα−1

∗ log d

(α− 1)4(α−1)2/2αxα−1
maxτ

α−1
0

.

The equality in the above is due to the change of variable by taking u = log d
t .

Therefore, the second term in J3 can be bounded for α ∈ (1,+∞) as

T∑
t=T ′′

E[rt1{At∩Γc
ξt

}]

≤xmaxbT
′′′ +

2α(xmaxτ0)
α+1

Δα
∗

· 2Δα−1
∗ log d

(α− 1)4(α−1)2/2αxα−1
maxτ

α−1
0

≤xmaxbT
′′′ +

23−1/αx2
maxτ

2
0 log d

(α− 1)Δ∗

≤C2

[
bs20σ

2x5
max log d

Δ2
∗φ

4
0

+
s20σ

2x4
max log d

(α− 1)Δ∗φ4
0

]
.
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(iii) For the α = +∞ case, Assumption 1(b) implies that for ξt < Δ∗, the
following inequality holds.

P

(
〈Xa∗

t ,t
, β∗〉 −max

b �=a∗
t

〈Xb,t, β∗〉 ≤ ξt

)
= 0.

Therefore, the second term in J3 can be bounded as

T∑
t=T ′′

E[rt1{At∩Γc
ξt

}] ≤
T∑

t=T ′′

E[rt1{select arm i �=s∗t }]

≤
T∑

t=T ′′

ξtP

(
〈Xa∗

t ,t
, β∗〉 −max

b �=a∗
t

〈Xb,t, β∗〉 ≤ ξt

)

≤
T∑

t=T ′′

ξt1{ξt≥Δ∗}

(a)

≤
T∑

t=T ′′

ξγ+1
t

Δγ
∗

=

T∑
t=T ′′

2γ+1(xmaxτ0)
γ+1

Δγ
∗

(
log d+ log t

t

) γ+1
2

where constant γ ≥ 0. The inequality (a) above is due to ξt/Δ∗ ≥ 1. By letting
γ → 1+, we can obtain an upper bound for the α = ∞ case, i.e.,

T∑
t=T ′′

E[rt1{At∩Γc
ξt

}] ≤ C2
s20σ

2x4
max log d

Δ∗φ4
0

.

By summing the cumulative regret in three groups, we can obtain the upper
bound for the total expected cumulative regret of our �1-confidence ball based
method up to time T .
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