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Abstract

Despite more than 40 years of counterdrug interdiction efforts,in‘the Western Hemisphere,
cocaine trafficking, or ‘narco-trafficking’, networks continue to’ evolve and increase their
global reach. Counterdrug interdiction continues to fall short'of performance targets due to
the adaptability of narco-trafficking networks hand( spatially complex constraints on
interdiction operations (e.g., resources, jurisdictional). Due to these dynamics, current
modeling approaches offer limited strategichinsights into time-varying, spatially optimal
allocation of counterdrug interdiction assets. This study presents coupled agent-based and
spatial optimization models to investigate the co-evolution of counterdrug interdiction
deployment and narco-trafficking networks’ adaptive responses. Increased spatially
optimized interdiction assets were/found to increase seizure volumes. However, the value per
seized shipment concurrently decteéased and the number of active nodes increased or was
unchanged. Narco-trafficking networks adaptively responded to increased interdiction
pressure by spatially diversifying routes and dispersing shipment volumes. Thus, increased
interdiction pressure hadytheyunintended effect of expanding the spatial footprint of narco-
trafficking networks. This coupled modeling approach enabled the study of narco-trafficking
network evolution while” being subjected to varying interdiction pressure as a spatially
complex adaptivesystem. Capturing such co-evolution dynamics is essential for simulating
traffickers’ tealistic adaptive responses to a wide range of interdiction scenarios.

Keywords: Central America; complex adaptive systems; operational environment; spatial

dynamics.

1. Introduction

A ‘wicked’ problem is one that is challenging (or impossible) to solve because possible solutions present
unavoidable social value tradeoffs that are difficult to judge objectively, and the problem is created by

complex system dynamics that make unintended consequences nearly impossible to foresee (Liebman
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1976, Rittel and Webber 1973). Many problems become ‘wicked’ because of the intractable challenges
posed by spatial heterogeneity and feedbacks that render solutions effective in one locality ineffective
and/or catalytic for problems in other spatially-linked locations. Consequently, a truly optimal strategy for
responding to complex spatial systems may not exist, nor can the effectiveness of such a strategy be fully
assessed until it is implemented (Berglund 2015, Liebman 1976). Transnational cocaine trafficking, or
‘narco-trafficking’, and associated counterdrug interdiction responses constitute a quintessential wicked
problem. Narco-trafficking has severe, negative influences on public health and social stability,(Devine et
al. 2020, McSweeney et al. 2018), corruption and violence (Basu 2014, Dell 2015, Robles.et'al. 2013),
environmental sustainability (McSweeney et al. 2014, Sesnie et al. 2017, Tellman et al. 2020, Wrathall et
al. 2020), and global economic activity/trade (Boivin 2014, Hudson 2014, Robles et al. 2013). The scale
and spatial extent of those impacts have continued to grow with more than 19,500 overdose deaths
attributed to cocaine in 2020 (Centers for Disease Control and"Prevention 2020), and a ‘transit zone’ that
now spans from west of the Galapagos Islands in the Pacifie. Ocean, throughout the entirety of the
Caribbean Sea, and to transatlantic smuggling.to Europe (McSweeney 2020a). This persistent and
widespread trafficking exists despite more than 40)years of a U.S. drug policy that invests heavily in

counterdrug interdiction (Caulkins et al.. 19937 McSweeney 2020b).

Several factors make counterdrug interdiction in the transit zone increasingly difficult, expensive, and
ineffective . First, narco-trafficking networks are decentralized, highly flexible, and innovative (Dudley
2011, Magliocca etalr 2021), and as such are able to exploit a diversity of smuggling routes and modes
greater than what,counterdrug interdiction operations can currently match (Mcdermott et al. 2021,
UNODC 2020, Williams and Godson 2002). Second, the large and increasing scale of cocaine trafficking
operations provokes a concomitant increase in the scale of interdiction operations. The spatial and
logistical growth of these operations increases the costs and decreases the effectiveness of interdiction due
to the vast extent that must be policed (McSweeney 2020b). Finally, both drug traffickers and interdiction

forces are unwilling or unable to expose their operational knowledge, motivations, and/or constraints on



behavior. Limited information about the true locations and extent of drug trafficking operations
challenges medium- to long-term counterdrug interdiction strategies and instead reinforces short-term,
tactical interdiction decision-making that unintentionally triggers more widespread trafficking in response
(Bright and Delaney, 2013; Caulkins, Crawford and Reuter, 1993; Magliocca ef al., 2019; McSweeney,

2020a; McSweeney et al., 2014)

The persistence of transnational cocaine trafficking, its array of negative societal impacts, andithe
expansive spatial nature of the problem demand analysis and understanding of the phenomenon as a
complex spatial and adaptive system (Magliocca et al. 2019). A complex adaptive system emerges and
maintains a coherent form over time, and adapts and self-organizes in response tojinteractions among its
internal components and environment (Choi et al. 2001, Holland 1995). Complex adaptive systems
become even more challenging to understand when causal dynamics and emergent behavior vary with
spatial context and include long-distance spatial interactions/(Manson 2001, O’Sullivan 2004). Since
narco-traffickers’ primary adaptive response to counterdrug interdiction is to change trafficking route
locations (Magliocca et al. 2019), a spatial dyhamics petspective must be integrated with a complex
adaptive systems approach. However, understanding adaptive behaviors requires the study of system
dynamics over time and space at the level of system components (i.e., trafficking nodes), which is a
daunting task for a phenomenon‘as expansive and dynamic as the co-evolution of transnational cocaine

trafficking and counterdrug interdiction.

Computational approaches are thus vital tools for understanding the spatial dynamics of interactions
between drug traffickers and counterdrug interdiction forces as a complex adaptive system (Anzoom et al.
2021). Given their foundation in complex system science, agent-based models (ABMs) are a popular tool
to simulate complex system-level behaviors that emerge from the distributed, adaptive interactions among
system components (An et al. 2021, Elsawah et al. 2020, Schwarz et al. 2020). Many authors have noted
the advantages of an agent-based approach for modeling supply networks, particularly the ability to

simulate emergent supply chain configurations as a self-organizing phenomenon resulting from producer-



supplier interactions (e.g., Thomas Y Choi, Dooley and Rungtusanatham, 2001; Akanle and Zhang,
2008). Similarly, optimization methods have been the preferred choice for modeling counterdrug
interdiction efforts and similar optimization. The counterdrug interdiction challenge, characterized by
high need but low resources for intervention, warrants optimized deployment of the limited resources
available. Combining these two modeling paradigms is an emerging frontier to dynamically simulate

multi-scale, adaptive systems (Niamir et al. 2018, Widener et al. 2015).

However, the spatial expansion and complex nature of interdiction and trafficker interactions present
empirical, conceptual, and methodological challenges for research. The large theater of operations with a
concomitantly large number of potential interdiction locations drive spatial optimization problem
instances toward the bounds of solution tractability, given the highly combinaterially complex nature of
the optimization models (Resig et al. 2020). The clandestine and classified nature of drug trafficking and
counterdrug interdiction operations, respectively, introduces/substantial uncertainty into attempts by
outsiders (i.e., researchers) to conceptualize and study trafficker and interdiction interactions as a system.
Moreover, there is substantial information asymmetry between traffickers and interdiction forces
(typically in favor of traffickers), which critically drives their spatial interactions in reality but is often
reduced or ignored in most interdiction optimization modeling approaches (see Literature Review below).
The work presented here advances the integration of spatial simulation and optimization paradigms
through a novel coupling of a‘spatial optimization model for locating interdiction assets, based on realistic
objectives and constraints.on interdiction operations, with an agent-based model of adaptive narco-
trafficker behavier. Integrating a spatial perspective on complex adaptive systems with the
methodological tools of complexity science, geography, and operations research presents an opportunity

to gain insight into the co-evolution of narco-trafficking and counterdrug interdiction interactions.



2. Literature Review

2.1 Optimization approaches for counterdrug interdiction

A large and growing body of operations research methods, and spatial optimization in particular,
addresses aspects of interdiction. These models are intended to assist decision makers in spatially
allocating their interdiction resources to improve or optimize the disruption of illicit activity. There is,
however, a relatively broad view of what constitutes interdiction modelling and how the objectivesand
constraints of those models reflect actual counterdrug interdiction operations. Allocating'counterdrug
interdiction assets optimally relies not only on the location of known drug shipments,sbut on
differentiating among potential targets, the types of interdiction resources available, and agency
jurisdiction. Given the expansive spatial scope of drug trafficking and comparatively small amount of
resources available to counterdrug forces, the objectives and constraints on counterdrug operations are
readily modeled as a location allocation problem. In the ‘context,of interdiction, the objective is to
optimally allocate counterdrug assets (i.e., force packages) among known trafficking locations to best
disrupt the illicit activity. The demands associatediwith potential interdiction locations are typically
known or estimated shipment volumes, and'there can be multiple organizations and varying types of

assets available to intercept shipmients, at'the demand locations.

Determining the optimal location for interdiction operations is generally approached from either a
network or spatial optimization perspective. Network interdiction models aim to modify the structure of
and/or flow' within thesillicit network to cause maximum disruption to flow of illicit goods from the
source to the sink. Methods that target network structure include removing arcs (i.e., connected
components), reducing arc capacity, increasing the cost of transit, or by eliminating nodes connecting arcs
within the network. Flow-oriented approaches attempt to minimize flow across a network (Altner et al.
2010, Malaviya et al. 2012), maximize the amount of flow captured or covered (e.g., Zeng, Hodgson and

Castillo, 2009), or minimize the maximum flow; essentially making the worst-case trafficking scenario as



good as possible (Cormican et al. 1998, Morton et al. 2007, Wood 1993). Still others seek to make the
interdiction presence as efficient as possible (Keskin et al. 2012, McLay et al. 2009) or conversely to

make the trafficking activity as difficult as possible (Israeli and Wood 2002, Nguyen and Smith 2022).

In contrast, spatial optimization models focus on locating interdiction assets optimally rather than
modifying the network structure or flows. Many spatial optimization models for interdiction are often
derivations of classic formulations cast in the context of interdiction. Formulations are most often tested
on generic networks that cannot realistically represent the operational environment unique to transnational
counterdrug interdiction. However, interdiction operations take place across multiple spatial and temporal
scales, with disparate types of interdiction forces or tactics, and with a wide variety of political, temporal,
and resource constraints. Moreover, most existing interdiction models considerthe structure of the illicit
supply network to be static, rather than a dynamic part of the mod¢l, meaning the volume and location of
drug shipments are treated as a known input. While some work has been done to model uncertainty in
demand, or to stochastically model the amount of flow that isiremoved during a successful interdiction
(Cormican et al. 1998, Losada et al. 2012), th&network structure, and thus potential trafficking locations,
are assumed to be static through time. However, the assumption that the network structure and volumes of
all drug shipments are known to both'the traffickers and interdictors (Smith & Song, 2020) is especially
impractical. Extant interdiction models with objectives aimed at maximizing disruption or minimizing

flow over an entire, static network therefore have limited practical utility.

Location covering/models can be applied to spatial allocation problems for interdiction, which often
require locatingsmultiple types of facilities and cover multiple types of demands. A relatively small set of
location allocation models are concerned specifically with drug interdiction, but a broader range of
models have considered multiple types of facilities and demands. Of those that have considered multiple
facility types (Baycik et al., 2018; Wilt and Sharkey, 2019), the models have not addressed co-locating
multiple types of facilities at the same location. Multiple-type location models exist in numerous

derivations and extensions applied to healthcare facilities, but typical constraints avoid multiple coverage



of the same demand location (Farahani et al. 2019) or do not permit multiple facilities of the same type at
the same location. Similarly, of those models that can accommodate multiple types of demands, many are
concerned with locating a single facility type (Mirzaei et al. 2021), with a system of hierarchal facilities,
or with maintaining existing service locations (Paul et al. 2017, Stanimirovi¢ et al. 2017). There are multi-
objective formulations to model interdicting multiple types of flows (Jabarzare et al. 2020), but the typical
objectives aim to maximize disruption over the entire network and do not account for isolating multiple
types of demands at a single location. Others have examined locating multiple types of facilities across
multiple time periods, albeit with the objective of maximizing coverage over the entife planning horizon

(Porras et al. 2019, Zarandi et al. 2013).

Furthermore, interdiction is assumed to disrupt illicit activity at or near certaindocations, yet little
attention has paid to how the spatial allocation of counterdrug resources influences new spatial and
temporal patterns of illicit trafficking. In reality, interdiction/ofteniresults in changes to the illicit
network’s structure or capacity, and future interdiction scenatios should reflect that response (Price et al.
2022). Although there is significant work thatintegratesistochastic elements into optimization models,
many actual operations are still described as static, and the approaches to them are deterministic. Thus,
the primary limitation to existing methods.is.the inability to anticipate how the spatial allocation of
counterdrug forces influences the volume, timing, and location of future illicit activity. Given the
resilience and adaptability ofnarco-trafficking networks that have been observed, there is a need to
realistically representrand.account for traffickers’ adaptive responses to interdiction operations. A truly

optimal interdiction asset spatial allocation must co-evolve with traffickers’ changing behaviors.

2.2 Approaches to modeling network structure and behavior

Research examining organized criminal groups, particularly drug trafficking organizations, have focused
on deepening understanding of the structure of illicit networks to improve targeting of operational

vulnerabilities (Bichler, 2017). This perspective applies the tools from network science to describe and



analyze the properties of these networks. Anzoom et al. ( 2021) discusses pertinent studies that use
network structure to classify illicit supply-chain networks, such as scale free, core and periphery sets,
social network analysis, and multiplex networks, all of which fall within the realm of multi-layered
networks as described by Kivela et al. (2014). Recently, an abundance of literature has been dedicated to
the development of frameworks to classify multi-layer networks, inadvertently causing a lack of
consensus in terminology (Kivela ef al., 2014). Relatedly, Bichler et al. (2017) applies social,network
analysis of drug supply networks to develop comparable metrics for concepts like networksdensity-or
centrality with organizational behavior. While we recognize the importance and utility ofia common
network taxonomy, this approach and terminology is still limited to static networks and not well suited to

analysis of the behavioral evolution of networks.

In the context of dynamic networks research, and particularly illicit networks, resilience is a key
characteristic (Morselli 2009). Network resilience refers,to the ability of drug trade organizations (DTOs)
to resist and survive disruption from interdiction, agiwell as the capacity of the network to adapt following
interruption (Bouchard 2007, Cavallaro et al. 2020). These network dynamics can be observed in
structural changes to nodes, links, or groups within the network (Bright and Delaney, 2013). To study
these adaptive network dynamics, researchers have used simulation to model network effects (Magliocca
et al, 2019). Integrating agent-based simulation methods with network analysis enables the investigation
of adaptive behaviors influenced by network structures that ABMs or network analysis alone do not
provide. As illustrated inithe recent review by Will et al. (2020), efforts to integrate ABMs and social
network analysis,have’been motivated by questions relating to the processes producing diffusion of
information (e.g., marketing), disease (e.g., epidemiology), or materials (e.g., supply chains) through a
network of actors with particular interest in how network behavior or structures change in response to
external perturbations. Importantly, there are few examples in which co-evolutionary dynamics of agent
behaviors and network structure are both modeled (see Will et al., 2020 for more details). One example of

a co-evolutionary approach is the proposed framework of Geographic Network Automata (Anderson and



Dragic¢evi¢ 2020a, b). The Geographic Network Automata (GNA) modeling framework captures
endogenous network dynamics that influence and are influenced by agent behaviors within the network,
and takes the additional step of embedding simulated networks in geographic space to represent spatial
relationships. Application of the GNA framework has thus far focused on ecological networks (Anderson
and Dragicevi¢ 2020b). Another example is AgentC (Vangk et al. 2013) — a data-driven ABM of maritime
traffic that explicitly models pirate activity and piracy countermeasures. AgentC was developed in
collaboration with stakeholders to assess the effectiveness of alternative counterpiracy measures and

support the design process of new maritime transit corridors.

2.3 Integrated modeling approaches

Integration of ABM simulation and network optimization methods_ has emerged among disparate fields.
Logistics system modeling efforts adopting the theoretical perspective of complex adaptive systems use
ABMs due to their ability to represent learning and adaptation of‘agents acting as nodes within a supply
chain (Akanle and Zhang 2008, Thomas Y. Choi et al.,2001). This approach has allowed logistics
researchers to investigate the effects of node+ or link-level characteristics and behaviors on the network-
level efficiency, resiliency, and/or optimalstructure of logistics systems (Nair et al. 2009). In the context
of network interdiction, the classic defender-attacker game was modeled by Kroshl, Sarkani and
Mazzuchi (2015) using a combination of location optimization and agent-based models to allocate
defensive resources to protect a spatially distributed physical network, and they found that the inclusion
of an ABM provided greater insights into how to increase defender victories beyond those produced with
a probabilistic risk analysis approach. The advantages of integrating agent-based simulation and location
optimization approaches are clear, but such integration has yet to be implemented in the context of drug

trafficking networks and counterdrug interdiction forces.

A number of researchers have approached supply chain operations more generally (Yue and You 2014,

2017), and interdiction operations more specifically (Sadeghi and Seifi 2019, Shen et al. 2021) as



Stackelberg games. This approach models both the interdicting agency and the traffickers as optimizing
their operations. The work presented here takes a different modeling perspective based on our
understanding of how the two competing organizations operate. Counterdrug interdiction operations are
modeled as an optimizing agency, given that federal drug enforcement operations have stated goals which
often can be described quantitatively, the number and kind of interdiction assets can be known, and the
constraints under which they operate can be described and formulated mathematically. Although much of
interdiction operations is classified and therefore unavailable to researchers, we know thatthe
organizations formulate goals, attempt to use their resources most efficiently, and opérate,under well-
known constraints. Therefore, an optimizing approach most closely mirrors their operations. Conversely,
DTO’s are much more flexible in their operations given that they do not needto follow policy proscribed
goals, they actively work to undermine or avoid constraints imposed,on them, and their operational assets
are intentionally hidden. Therefore, the DTOs are modeled assagents,whose behavior is not proscribed by
a formal mathematical model, but rather emerges from theininteractions within their complex operating

environment.

Specifically, an ABM of cocaine trafficking networks (Magliocca et al. 2019) is dynamically coupled
with a spatial network interdiction optimization model (Price et al., 2022) to address the conceptual and
methodological gaps identified above. Leveraging the strengths of both approaches, the ABM simulates
emergent and adaptive traffieking network dynamics in response to a more rigorous and realistic
modeling of counterdrugiinterdiction operations. The spatially explicit nature of the location optimization
model can accommodate spatial limitations on resource deployment and jurisdictional constraints (e.g.,
Coast Guard only has jurisdiction on high seas), and calculate new optimal spatial locations of
interdiction assets as the trafficking network structure and routes evolve. Moreover, the model coupling
maintains the information asymmetry that exists in reality between traffickers and interdiction forces,
which only partially know one another’s actions at limited times and locations. The coupled model

framework also provides new analytical angles. Previous models, even those that couple ABMs and
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location optimization, have not used the tools of complex system science, which can link node-level
behaviors to network-level outcomes to understand the causes of emergent network dynamics. Here we
investigate the spatial and operational changes in trafficker behavior vis-a-vis varying amounts of
interdiction assets. Ultimately, the goal is to support interdiction strategies that more efficiently allocate
resources while also being attentive to the unintended consequences of traffickers’ spatial adaptation to

interdiction.

3. Methods

3.1 Agent-Based Model of Narco-Trafficking Networks

Drug traffickers and trafficking networks are highly dynamic, flexible, andiconstantly shifting due to law
enforcement pressure and internal and external conflicts/realignments (Bright and Delaney, 2013;
Caulkins ef al., 2013; Dudley, 2010; Magliocca et al., 2021). Suchtraits are hallmarks of complex
adaptive systems (Choi et al., 2001; Manson, 2001),"which are best represented through a simulation
approach based on bounded rationality decisionsheuristics to navigate local and network-wide transaction
costs (Basu, 2014). Thus, the dynamic, spatial'(re)organization of narco-trafficking networks in the
‘transit zone’ of Central America and surrounding maritime spaces were simulated using the agent-based
model NarcoLogic (Magliocca et al., 2019). NarcoLogic is a theoretical simulation model developed
based on extensive ethnographic knowledge of narco-trafficking operations that 1) reproduced spatial
adaptive dynamics.that had<only previously been described qualitatively, and 2) produced spatio-
temporal, quantitative patterns of cocaine flows that compared favorably to the best available estimates
from law enforcement and intelligence communities. The original version of the NarcoLogic model was
validated by comparing simulated volumes of cocaine flows, overall trajectories, and timing of peak
cocaine flows reported at the department-level (i.e., administrative unit equivalent to U.S. counties) in the
Consolidated Counterdrug Database (McSweeney 2020b). At the Central America scale, NarcoLogic also

successfully recreated the historical southward shift of narco-trafficking extent and intensity (Magliocca
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et al.,2019). A full Overview, Design Concepts, and Details (ODD) protocol for NarcoLogic is provided

in Appendix A.

Changes in the trafficking network’s spatial footprint and location-specific cocaine flows were produced
by interactions between two types of agents in response to interdiction events generated by the
optimization model. Network Agents represented the top-down coordination of DTOs. Network Agents
observed interdiction events within their network and updated their assessment of transaction costs based
on perceived profit and risk among active nodes. Network Agents decided to expand or consolidate
existing trafficking routes and ‘activate’ (i.e., receive shipments) or ‘deactivate’ specific trafficking nodes
over time. Nodes Agents had a fixed spatial position operating each trafficking node. . Node Agents that
were ‘activated’ by their Network Agent purchased a shipment of cocaine fromsa supplying Node Agent,
and decided how to allocate the volume of the shipment among potential buyer nodes along possible
trafficking routes. Node agents observed (a) prices offered at each buying node and (b) whether an
interdiction event occurred and effected it or its neighbors.in‘previous time steps. Over time, Node Agents
learned transaction costs among neighboring hedes and allocated shipments to maximize profit and

minimize risk of interdiction.

The cocaine trafficking network structure was based on integrated ethnographic, remote sensing, and
statistical analyses of narco-trafficking activities in Central America (Magliocca ef al., 2019;
McSweeney, 2020a). The bi-level structure of the simulated trafficking network (i.e., Network and Nodes
Agents) reflected the evelving nature of narco-trafficking. A semi-decentralized or horizontally integrated
cocaine trafficking organizational structure is a relatively new development in cocaine trafficking
compared to the better-known Colombian groups of the Medellin and Cali cartels that dominated in the
late twentieth century. After substantial disruption of those vertically integrated cartels in the early 2000s,
cocaine trafficking routes shifted to Central America, and combined with the rise of Mexican cartels, a

more decentralized and regional drug trafficking organizational model dominated (Bagley, 2013; Dell,
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2015; Dudley 2010, 2012; McSweeney et al., 2014, 2018; Tidd, 2018). Although hierarchy still exists in

drug supply chains, organizational structure is much flatter overall than it used to be.

Trafficking node locations were selected based on statistical estimates of landscape suitability (Magliocca
et al., 2022), and links between trafficking nodes were unidirectional (roughly southeast to northwest),
exogenously specified, and remained constant throughout the simulation. The values of cocaine shipments
at each trafficking node increased with every transaction advancing closer to consumption markets, and
were estimated from law enforcement reports and case studies (Pearson et al., 2022; UN@DC, 2010,
2018). Movement of cocaine from one node to another incurred a transaction cost, which were partly
exogenously and endogenously specified. The exogenous portion of transactien costs'was based on
distance between any two nodes, volume being transported, and mode of transportation. The endogenous
component of transaction costs was related to perceived risk of interdiction between two nodes in the
form of a dynamically updated ‘risk premium’ (Caulkins et al., 4993). Dynamic differences between
perceived profitability and transaction costs for eachunode influenced where, when, and how much

cocaine was moved through the trafficking network.

A key uncertain parameter that was exploredvin‘this version of NarcoLogic was the probability of
successful interception of cocaine shipment. Trafficking routes vary in their vulnerability to counterdrug
interdiction given their geographicicontext and the logistics involved in locating interdiction assets that
can intercept shipments(JIATE=S, personal communication, 2019). The probability of successful
interdiction when interdiction resources were located at nodes with active cocaine flows was based on the
number of network'links directed to the node (i.e., node degree) and characteristics of the sending links.
The baseline probability of successful interception represented the minimum across the entire network
and was experimentally modified to investigate the effects on overall interdiction outcomes and trafficker
behaviors. A detailed description and local sensitivity analysis of this parameter are provided in section

1.3.1 of Appendix C in the Supplemental Online Materials.
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3.2 Optimal interdiction location modeling

A review of the extant objectives and constraints in the spatial optimization literature with the agency
charged with detection and monitoring of air and maritime drug trafficking in the Central American
transit zone confirmed that the objectives and constraints in the literature are a mismatch with the
operational constraints that they face when making interdiction location decisions. For example,
constraints on interdiction operations go beyond (mostly) observable resource constraints to include
jurisdictional constraints, legal restrictions, and political considerations (Price et al., 2022).\In _eontrast to
much of the interdiction optimization literature, the goal here is not to model or demonstrate how
interdiction forces could or should operate but rather how they do operate. In order to address that
mismatch, this effort began with interviews of interdiction forces — to‘the extent possible in an
unclassified environment — to identify the objectives and constraints most pertinent to their short- and
medium-term operations. A family of spatial optimization,models designed to reflect the realistic
constraints, objectives, and procedures on interdiction operations can be seen in (Price et al. 2022), and
among those is the Multiple-Type Maximal Covering Location Problem (MT-MCLP) applied in this

work. The full model formulation is available in"Appendix B.

The MT-MCLP considers interagency, cooperation, jurisdictional limits, resource availability, and
interdiction target type as interdiction facilities (known as force packages) may have different skillsets,
equipment, or jurisdictional permissions to act (e.g., U.S. Coast Guard cannot operate in another country’
Exclusive Economie Zone without permission). Force package is a term used by federal counterdrug
agencies to describe the mix of personnel and equipment that can be employed for an interdiction
operation. In the air and maritime domain this is typically a mix of ships (e.g., Coast Guard cutters, high
speed pursuit boats) and aircraft (e.g., armed helicopters, maritime patrol aircraft) sourced from across
federal agencies with law enforcement powers, along with vehicles from the appropriate foreign
governments (Munsing and Lamb 2011). The personnel that operate these vehicles can include Coast
Guard Law Enforcement Detachments, Maritime Safety and Security Teams, and other deployable

14



specialized forces personnel (GAO 2019, USCG 2020). For land-based operations we expand the use of
the term force package to include any U.S. or foreign law enforcement or military detachment that has the
equipment and personnel capable of conducting an interdiction operation. Such detachments can range
from drug interdiction road blocks (Guerra 1992) to specialized and targeted SWAT or military-style

operations (Goodman and Coyne 2021).

In the MT-MCLP, the objective is to maximize the coverage of estimated drug trafficking activity by
locating force packages of varying types at trafficking nodes. Each trafficking node j4s assigned the set
U,, defined as the set of types ¢ of force packages that are excluded from locating at j. For those'types that
can locate at a given node, one or more may locate at that node if this leads tesmaximal coverage. Only
the estimated volume that can be captured by a given type (a;) will be captured:by the force package of
that type. Constraints ensure that no force packages of a prohibited type are assigned to any potential
interdiction locations. The decision variables x;, and y;, indicate which types ¢ of force packages are
located at node j and which demand i is interdictedtby a force,package of type ¢. The set of potential force
package locations j remain the same throughout the simulation, while the demand for each interdiction

type a; can change at the interdiction locations,j from the previous time step.

The MT-MCLP can accommodate multiple variants of constraints on the interdiction operations by
assigning the set U, to each nede. Forexample, jurisdictional limits are represented by assigning each
Central American nation to a unique interdiction type. In the results reported here, each node in a dataset
may be targeted by oneor more of the nine force package types (P,) associated with the Caribbean Coast,
Pacific Coast, and one type for each of the seven Central American partner nations. For instance, nodes
within 20 km of the coast can be interdicted by either a coastal force package or by counterdrug efforts
within a partner nation and thus have U; values with the seven partner country types. Coastal interdiction
operations are free to locate in any of the partner nations, and similarly interior force packages are free to
locate at coastal nodes, in which case expected seizure volume at a coastal node would be divided among

the country and coastal force package types.
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3.3 Coupled model structure description

As discussed in the previous sections, we model the influence of varying levels of interdiction assets on
the degree, timing, and locations of cocaine trafficking. The operational environment used here represents
the Central American transit zone and consists of 1) Nodes where trafficking can occur and where
interdiction can take place and 2) links through which simulated volumes of cocaine are trafficked
between those nodes (Magliocca et al. 2019, 2022). The nodes vary in their connectivity, although links
were preferentially established between spatially proximate nodes, and all nodes have aiconnection to the
consumer and producer nodes. This reflects the realistic situation in which any transshipment node can be
the only stop before reaching Mexico, or one stop among many en route to Mexico. Although the
volumes of cocaine are assigned to links, interdiction takes place at the.nodes and the demand available to
interdict at a node is the sum of the flows on the links entering that node: At initialization, the baseline
potential volume of cocaine (demand) at each trafficking node‘was estimated using country-level CCDB
estimates of primary shipments. Solving the MT-MCLPuwsing the baseline values returns the optimal
spatial allocation of interdiction assets, which.arepresents the presence of counterdrug forces within the
simulated environment provided by NargoLogic"At each time step, the Network Agents update their
perceived risk of interdiction at each node, and the volume of cocaine present at force package locations
is returned to the optimizationnmodelywhich in turn are used to update estimated cocaine flow values for
the next time step. Error! Reference source not found. 1 illustrates the conceptual model guiding model
coupling, and Figure 2 provides a snapshot example of the coupled NarcoLogic and optimization model
execution. Figure Al provides a data and process diagram of the coupled modeling system accompanied

by a technical description of the coupled model workflow in section 1.4 of Appendix A.

Several metrics were used to evaluate changes in trafficking network dynamics resulting from interdiction
events. Cocaine shipment seizure volumes were recorded for all successful interdiction events at each
model time step. Values of seized shipments were estimated based on empirically estimated wholesale
cocaine prices that varied geographically and increased in value with northward distance traveled
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(Magliocca et al., 2019). The numbers of active nodes and edges throughout the trafficking network were
recorded based on the presence of a cocaine shipment at a given node and its linked edges during each
time step. The number of successful interdiction events measured the number of instances per time step
when force packages were located at active nodes and a randomly generated number exceeded one minus
the probability of successful interception. Finally, two metrics of network structure were used to assess
topological effects of successful interdiction events on the trafficking network. Node degree measured the
number of active edges per node at each time step. Flow diversity, based on Shannon’s Diyersity Index
(Shannon, 1948), measured the evenness of cocaine flows among active nodes at each time step. The

formula and description of flow diversity is provided in Appendix C.

Co-evolutionary Interactions
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Figure 1: Conceptual model for coupling the agent-based cocaine trafficking network model,
NarcoLogic, with the interdiction spatial optimization model to simulate co-evolutionary interactions

between traffickers and counterdrug interdiction forces.
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Figure 2: A snapshot of the coupled trafficking network and spatial interdiction optimization model

execution: a) consolidated traffickingmnetwork; b) expanded trafficking network in response to early

interdiction; ¢) fully expanded network (e.g., cocaine shipments as far south as Panama) in response to

increased interdiction success; and d) some consolidation (e.g., away from Eastern Honduras) and

reduction of:active modes. Points and lines represent drug trafficking nodes and network links,

respectively. Highlighted nodes represent the location of active cocaine shipments with the size of the

nodes scaled to volume. Triangles represent the location of counterdrug interdiction forces. Black ‘X’s

over nodes and highlighted network links represent the location of successful interdictions.

Local sensitivity analyses were also conducted using a one-factor-at-a-time approach (ten Broeke et al.

2016, Ligmann-Zielinska et al. 2020). Thirty replications of the coupled model simulation were
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conducted for each force package scenario to assess the sensitivity of interdiction outcomes and
trafficking network behavior to varying baseline probabilities of successful interception. A detailed

description of sensitivity analysis methods and results are provided in Appendix C.

4. Results

4.1 Effects on increased interdiction on the trafficking network

We first examined network-level outcomes in response to varying levels of interdiction assets (1.e., force
package scenarios). Sixteen total force packages were allocated and evenly distributed per country within
the transition zone (Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica; and Panama) and held
constant across all modeling scenarios. Additional force packages varied with‘€ach modeling scenario and
were allocated in different combinations between the Eastern Pagific (maximum of 6) and Caribbean
(maximum of 4) maritime theaters. The coupled model was executed 30 times at the baseline probability
of successful interception (0.1) for each scenario to assess variability in outcomes based on stochastic
processes (e.g., probability of successful interception; probabilistic choices by trafficking Node Agents

between equally valued trafficking routes)s

Both the number of successful interdiction events (Fig. 3a) and total volume of seizures (Fig. 3b)
increased consistently as themumber-of force packages increased. There were significant statistical
differences between the lowest'and highest third of force package scenarios for both outcomes (Fig. 3).
This was an expected oudtcome and suggested that increased force packages translated into more
successful interdictions and higher total volumes of cocaine removed from the supply network. In
contrast, increased force packages had little effect on the number of active edges in the trafficking
network (Fig. 4a) and total value of cocaine seizures (Fig. 4b). No statistically significant differences
were observed in these two outcomes across the force package scenarios. Despite increasing seizure
volumes, the simulated trafficking network adapted to increased interdiction pressure so that the value per

seizure decreased. Agents within the trafficking network learned to minimize profit losses by distributing
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to more trafficking nodes, sending smaller shipments, and choosing closer receiving nodes that required

shorter and less risky transport. This behavioral adaptation by the Network and Nodes Agents underlies

the larger scale, network-wide shifts in trafficking routes that drive the expansion of active nodes in

response to interdiction pressure. Importantly, the findings presented in Figure 5 would not have been

possible without the simulation of the dynamic, spatial adaptation of the trafficking network.
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Figure 3.

As has been demonstrated theoretically (Caulkins et al. 1993, Maglioccaietal. 2019) and empirically
(Bright and Delaney 2013, McSweeney 2020b), trafficking networks,adapt to interdiction pressure mainly
by reorganizing their spatial structure and shifting routes to'avoid detection. This general trend was
replicated in our model outcomes measuring changes in the number of active nodes (Fig. C1) and flow
diversity (Fig. 5) in response to the number of successful interdiction events over time. Relatively low
levels of interdiction success were dssociated with fewer active nodes and low levels of flow diversity
(i.e., few active routes with large; concentrated shipments) in the trafficking network as trafficking routes
were consolidated to increase profitsiand minimize exposure to detection. As interdiction pressure
increased, either through increased force packages or improved location of existing force packages, the
number of active nodes/and flow diversity increased. Time series for a single coupled model execution
illustrated the'expansion and contraction dynamics of the trafficking network in response to successful
interdiction events (Fig. C2). Regardless of the level of force packages allocated, the trafficking network
was generally attracted to a state of moderately high flow diversity (between index values of 6 and 10)
and moderately low numbers of successful interdiction events (between 5 and 10 per time step). This state
attractor also appeared stronger (as indicated in Figure 5b with tighter clustering of points in the latter half

of the simulation) with increased interdiction force packages and more successful events.
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These results mirrored observed spatial adaptations made by narco-traffickers in response to counterdrug
interdiction (i.e., the “balloon” and “cockroach” effects; Bagley, 2013; Magliocca et al., 2019). This is the
main unintended consequence of current counterdrug interdiction strategies — increased interdiction
pressure pushes narco-traffickers into new areas of operation and expands the active ‘transit zone’. For all
force package scenarios, increased interdiction volume led to positive flow diversity changes (i.e., more
evenly distributed flows), whereas negative changes to flow diversity (i.e., network contraction and/or
shipment consolidation) were observed when interdiction volumes were low (Fig. C3). FigureiC3
demonstrates that while larger interdiction volumes prompted spatial displacement and expansion of
trafficking routes, more even dispersal of cocaine shipments was the primary adaptive response to
interdiction to maintain profits. A more detailed explanation of these trafficking network dynamics is

provided in Appendix C of the Supplemental Online Materials.
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Figure 5. State'space plots of the evolution of flow diversity following successful interdiction events in

the previous time step. The clear, open circle marks the start of the simulation, and the ‘X’ indicates the

state at the final time step. Filled circles are plotted for every time step with the color indicating which

time step. The a) minimum and b) maximum interdiction force package scenarios are shown for a single

model execution.
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Local sensitivity analyses explored variations in model outcomes based on the OFAT approach, and
particular attention was given to time-varying model sensitivities to detect the presence of path-dependent
dynamics. The overall interdiction rate was insensitive to changes in the probability of successful
interception at values 75% of the baseline value and above (Fig. C5). Trafficking network behavior,
measured as the number of active edges and primary shipments, was found to be path-dependent with
outcomes diverging into distinct high and low states (Fig. C6), but interdiction dynamics didnot display
path-dependency (Fig. C7). A detailed description of sensitivity analysis methods and results'is provided

in Appendix C.

5. Discussion

This research makes methodological and conceptual cross-disciplinaryicontributions. This work
contributes to the literature regarding interdiction operations by providing a more realistic representation
of the counterdrug interdiction operational environment than previously done. The objective of maximal
covering most closely matches the interdiction reality. ofifar fewer interdiction resources than traffickers
to interdict. The ability to model constraints regatding jurisdiction or force package type, in addition to
the number of interdiction resources, captures real-world interdiction necessities. The spatially explicit
nature of the location optimizationsmodel can accommodate spatial limitations on resource deployment
and jurisdictional constraints{(€:g., €oast Guard only has jurisdiction on high seas). Most importantly,
however, interdiction operations and traffickers’ behavior are treated here as coupled systems, which
allows us to integrate qualitative, operational knowledge gleaned from our collaborators into a spatially
explicit modeling environment to investigate the likely consequences of such constraints for trafficker
behavior and interdiction effectiveness. Conceptually, the lens and analytical tools of complex system
provide insights into the actions and reactions driving emergent, adaptive behaviors and their effects on
goal-oriented effectiveness. The exact problems with current approaches to disrupting transnational
cocaine trafficking are difficult to identify, potential solutions are socially contested, and unintended

consequences are more the norm than exception. Conceptualizing this activity space as a complex
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adaptive system with co-evolving prescribed planning elements and emergent agent behavior increases
our depth of understanding of the system as it matures. Interdiction location allocations necessarily co-
evolve with spatial patterns of narco-trafficking activity as more information is learned. Reflecting this
information asymmetry replicates the reactive, tactical nature of current counterdrug interdiction

operations.

The research presented here has some non-trivial limitations; unsurprising given that neither traffickers
nor interdiction forces typically share information about their operations, or what they know about the
operations of the opposing side. With regard to modeling narco-trafficking, we know that whatare treated
here as narco-trafficking network aggregates, are in reality many separate and.distributed DTOs’
networks with their own complex cooperative and competitive dynamics (Dudley 2010). The current
version of NarcoLogic assumes that connections between all trafficking node agents are possible, which
enables a more fluid response to interdiction than is likely possible in reality. Additionally, NarcoLogic
assumes that all cocaine that enters the trafficking network isidestined for Mexico, which fails to
recognize international ports within the transit'zone, such as Limon in Costa Rica (Robins 2019), as
possible destinations to connect to the transatlantic drug trade (European Monitoring Centre for Drugs
and Addiction 2019). Both assumptions influence the fluidity and geography of simulated trafficking

network responses to interdiction.

Perhaps more importantly, given'the secretive nature of the trafficking and interdiction operations, and the
impossibility of testing alternative interdiction strategies on a nearly hemispheric scale, differences
among the model sc¢enarios should only be interpreted qualitatively. While the NarcoLogic model was
previously validated against empirically estimated northbound cocaine flows in the transit zone, rigorous
empirical validation of the coupled modeling framework is not currently possible, because it would
require spatially and temporally explicit information about both narco-trafficking and counterdrug

interdiction operations; information which is simply not available.
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With regard to interdiction operations more specifically, current force package allocations vary regularly
and are considered sensitive (or even classified) information due to security concerns. We can currently
approximate a calendar year’s average force package level and allocation between Caribbean and Pacific
theaters, but specific spatial locations, timing, and deployment levels of operations are not publicly
available. To address this limitation, we bounded observed historical average force package levels by
theoretical minimum and maximum scenarios. Similarly, precise operational objectives of the interdiction
operations are not well defined and are even a matter of debate among actors across the intérdiction
planning process. While overall U.S. government drug policy is known, operational objectives and
constraints on relatively short timelines are much less transparent. Based on discussions with interdiction
forces, our implementation of covering models that support multiple types ofinterdiction forces is the
best representation, but there are certainly additional measures of suecess,and operating constraints that
could more fully approximate their operations. More broadly,sthis highlights a salient tradeoff between
model realism and empirical validity. Increasing the realistic constraints and adaptive behaviors included
in the models demands comparable yet independent empirical data against which the model outcomes can
be validated. Although a more stylized model mayilack geographic and operational realism, empirical
validation is more feasible in principle. Given'the limited knowledge and data describing either narco-
trafficking or counterdrug interdi€tion opeérations, validation is difficult for each model individually and is

compounded through their coupling:

6. Conclusions

While recognizing these limitations, this work has modeled the influence of counterdrug efforts on the

spatially and temporally adaptive behaviors of narco-traffickers using a coupled agent-based and spatial
optimization framework, which provides a more realistic and insightful strategy than current approaches
that treat interdiction and trafficking operations as static. For instance, a particularly robust finding from

experiments with 24 different scenarios of interdiction asset levels and geographic deployment was that
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increasing interdiction levels increased the volume seized (which was expected and has been established
by other optimization modeling approaches) but had little effect on the value of seized shipments nor the
number of active nodes throughout the network (which was unexpected). The latter findings provided
insights into the mechanisms driving the expansion of trafficking areas and the increased challenge of
meeting counterdrug interdiction goals with limited resources. Moreover, these findings would not have

been possible without the simulation of a dynamic and adaptive trafficking network.

The coupled optimization and simulation approach has also opened a number of newaesearch avenues.
The coupled model environment developed for this research can accommodate multiple interdietion
strategies and trafficker responses, which in turn will facilitate the development of new optimization
models to support counterdrug operations. For example, intercepting shipments-along preferred
trafficking routes (flow covering), minimizing the opportunity forfadjacent spatial displacement of known
trafficking activity (gradual covering), and preventing the emergence of new trafficking locations in more
distal parts of the network (dispersion). These interdiction.models could also be extended to
accommodate dynamic asset availability, due ‘e budget constraints or equipment downtime for instance,
by allowing the number of force packages to vary across time steps. Potential formulations could also
incorporate maintaining interdiction presence’across subsequent time steps, or anticipating demand values
via trafficker behavior such as displacement or stockpiling. Having made the novel modeling choice to
treat interdiction forces as optimizers and DTOs as agents, the advance here is coupling those models in a
way that permits the'examination of how DTOs change their operations as the amount and type of
interdiction foree,being applied changes. This coupled model framework will also promote future
research focusing on deriving new metrics for interdiction outcomes that move beyond conventional
variables of illicit supply network operations, e.g., cocaine value seized, money seized, and number of
shipments disrupted, to mine relationships that more directly measure the effects of interdiction of narco-
trafficking network function. For example, return time for each interdiction location node; changes in

trafficking pressure on partner countries due to geographic displacement of smuggling routes; trafficker
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displacement intensity measured as the combination of space and time displacement from the original
smuggling route; and changes in interception likelihood. Further, the applicability of multi-layer complex
network measures to characterize different aspects of network structural evolution over time should be
investigated. More broadly speaking, the tight integration of agent-based and spatial optimization models
has potential research application in a large number of social science research areas where complex
(wicked) problems are best modeled as planning exercises, where goals are set amid well-known

constraints, but the behavior of actors emerges as the system matures.
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