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Abstract 
Despite more than 40 years of counterdrug interdiction efforts in the Western Hemisphere, 
cocaine trafficking, or ‘narco-trafficking’, networks continue to evolve and increase their 
global reach. Counterdrug interdiction continues to fall short of performance targets due to 
the adaptability of narco-trafficking networks and spatially complex constraints on 
interdiction operations (e.g., resources, jurisdictional). Due to these dynamics, current 
modeling approaches offer limited strategic insights into time-varying, spatially optimal 
allocation of counterdrug interdiction assets. This study presents coupled agent-based and 
spatial optimization models to investigate the co-evolution of counterdrug interdiction 
deployment and narco-trafficking networks’ adaptive responses. Increased spatially 
optimized interdiction assets were found to increase seizure volumes. However, the value per 
seized shipment concurrently decreased and the number of active nodes increased or was 
unchanged. Narco-trafficking networks adaptively responded to increased interdiction 
pressure by spatially diversifying routes and dispersing shipment volumes. Thus, increased 
interdiction pressure had the unintended effect of expanding the spatial footprint of narco-
trafficking networks. This coupled modeling approach enabled the study of narco-trafficking 
network evolution while being subjected to varying interdiction pressure as a spatially 
complex adaptive system. Capturing such co-evolution dynamics is essential for simulating 
traffickers’ realistic adaptive responses to a wide range of interdiction scenarios. 

Keywords: Central America; complex adaptive systems; operational environment; spatial 

dynamics. 

1. Introduction  

A ‘wicked’ problem is one that is challenging (or impossible) to solve because possible solutions present 

unavoidable social value tradeoffs that are difficult to judge objectively, and the problem is created by 

complex system dynamics that make unintended consequences nearly impossible to foresee (Liebman 
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1976, Rittel and Webber 1973). Many problems become ‘wicked’ because of the intractable challenges 

posed by spatial heterogeneity and feedbacks that render solutions effective in one locality ineffective 

and/or catalytic for problems in other spatially-linked locations. Consequently, a truly optimal strategy for 

responding to complex spatial systems may not exist, nor can the effectiveness of such a strategy be fully 

assessed until it is implemented (Berglund 2015, Liebman 1976). Transnational cocaine trafficking, or 

‘narco-trafficking’, and associated counterdrug interdiction responses constitute a quintessential wicked 

problem. Narco-trafficking has severe, negative influences on public health and social stability (Devine et 

al. 2020, McSweeney et al. 2018), corruption and violence (Basu 2014, Dell 2015, Robles et al. 2013), 

environmental sustainability (McSweeney et al. 2014, Sesnie et al. 2017, Tellman et al. 2020, Wrathall et 

al. 2020), and global economic activity/trade (Boivin 2014, Hudson 2014, Robles et al. 2013). The scale 

and spatial extent of those impacts have continued to grow with more than 19,500 overdose deaths 

attributed to cocaine in 2020 (Centers for Disease Control and Prevention 2020), and a ‘transit zone’ that 

now spans from west of the Galapagos Islands in the Pacific Ocean, throughout the entirety of the 

Caribbean Sea, and to transatlantic smuggling to Europe (McSweeney 2020a). This persistent and 

widespread trafficking exists despite more than 40 years of a U.S. drug policy that invests heavily in 

counterdrug interdiction (Caulkins et al. 1993, McSweeney 2020b). 

Several factors make counterdrug interdiction in the transit zone increasingly difficult, expensive, and 

ineffective . First, narco-trafficking networks are decentralized, highly flexible, and innovative (Dudley 

2011, Magliocca et al. 2021), and as such are able to exploit a diversity of smuggling routes and modes 

greater than what counterdrug interdiction operations can currently match (Mcdermott et al. 2021, 

UNODC 2020, Williams and Godson 2002). Second, the large and increasing scale of cocaine trafficking 

operations provokes a concomitant increase in the scale of interdiction operations. The spatial and 

logistical growth of these operations increases the costs and decreases the effectiveness of interdiction due 

to the vast extent that must be policed (McSweeney 2020b). Finally, both drug traffickers and interdiction 

forces are unwilling or unable to expose their operational knowledge, motivations, and/or constraints on 
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behavior. Limited information about the true locations and extent of drug trafficking operations 

challenges medium- to long-term counterdrug interdiction strategies and instead reinforces short-term, 

tactical interdiction decision-making that unintentionally triggers more widespread trafficking in response 

(Bright and Delaney, 2013; Caulkins, Crawford and Reuter, 1993; Magliocca et al., 2019; McSweeney, 

2020a; McSweeney et al., 2014) 

The persistence of transnational cocaine trafficking, its array of negative societal impacts, and the 

expansive spatial nature of the problem demand analysis and understanding of the phenomenon as a 

complex spatial and adaptive system (Magliocca et al. 2019). A complex adaptive system emerges and 

maintains a coherent form over time, and adapts and self-organizes in response to interactions among its 

internal components and environment (Choi et al. 2001, Holland 1995). Complex adaptive systems 

become even more challenging to understand when causal dynamics and emergent behavior vary with 

spatial context and include long-distance spatial interactions (Manson 2001, O’Sullivan 2004). Since 

narco-traffickers’ primary adaptive response to counterdrug interdiction is to change trafficking route 

locations (Magliocca et al. 2019), a spatial dynamics perspective must be integrated with a complex 

adaptive systems approach. However, understanding adaptive behaviors requires the study of system 

dynamics over time and space at the level of system components (i.e., trafficking nodes), which is a 

daunting task for a phenomenon as expansive and dynamic as the co-evolution of transnational cocaine 

trafficking and counterdrug interdiction. 

Computational approaches are thus vital tools for understanding the spatial dynamics of interactions 

between drug traffickers and counterdrug interdiction forces as a complex adaptive system (Anzoom et al. 

2021). Given their foundation in complex system science, agent-based models (ABMs) are a popular tool 

to simulate complex system-level behaviors that emerge from the distributed, adaptive interactions among 

system components (An et al. 2021, Elsawah et al. 2020, Schwarz et al. 2020). Many authors have noted 

the advantages of an agent-based approach for modeling supply networks, particularly the ability to 

simulate emergent supply chain configurations as a self-organizing phenomenon resulting from producer-
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supplier interactions (e.g., Thomas Y Choi, Dooley and Rungtusanatham, 2001; Akanle and Zhang, 

2008). Similarly, optimization methods have been the preferred choice for modeling counterdrug 

interdiction efforts and similar optimization. The counterdrug interdiction challenge, characterized by 

high need but low resources for intervention, warrants optimized deployment of the limited resources 

available. Combining these two modeling paradigms is an emerging frontier to dynamically simulate 

multi-scale, adaptive systems (Niamir et al. 2018, Widener et al. 2015). 

However, the spatial expansion and complex nature of interdiction and trafficker interactions present 

empirical, conceptual, and methodological challenges for research. The large theater of operations with a 

concomitantly large number of potential interdiction locations drive spatial optimization problem 

instances toward the bounds of solution tractability, given the highly combinatorially complex nature of 

the optimization models (Resig et al. 2020). The clandestine and classified nature of drug trafficking and 

counterdrug interdiction operations, respectively, introduces substantial uncertainty into attempts by 

outsiders (i.e., researchers) to conceptualize and study trafficker and interdiction interactions as a system. 

Moreover, there is substantial information asymmetry between traffickers and interdiction forces 

(typically in favor of traffickers), which critically drives their spatial interactions in reality but is often 

reduced or ignored in most interdiction optimization modeling approaches (see Literature Review below). 

The work presented here advances the integration of spatial simulation and optimization paradigms 

through a novel coupling of a spatial optimization model for locating interdiction assets, based on realistic 

objectives and constraints on interdiction operations, with an agent-based model of adaptive narco-

trafficker behavior. Integrating a spatial perspective on complex adaptive systems with the 

methodological tools of complexity science, geography, and operations research presents an opportunity 

to gain insight into the co-evolution of narco-trafficking and counterdrug interdiction interactions.  

 

 

Acc
ep

ted
 M

an
us

cri
pt



5 
 

2. Literature Review  

2.1 Optimization approaches for counterdrug interdiction  

A large and growing body of operations research methods, and spatial optimization in particular, 

addresses aspects of interdiction. These models are intended to assist decision makers in spatially 

allocating their interdiction resources to improve or optimize the disruption of illicit activity. There is, 

however, a relatively broad view of what constitutes interdiction modelling and how the objectives and 

constraints of those models reflect actual counterdrug interdiction operations. Allocating counterdrug 

interdiction assets optimally relies not only on the location of known drug shipments, but on 

differentiating among potential targets, the types of interdiction resources available, and agency 

jurisdiction. Given the expansive spatial scope of drug trafficking and comparatively small amount of 

resources available to counterdrug forces, the objectives and constraints on counterdrug operations are 

readily modeled as a location allocation problem. In the context of interdiction, the objective is to 

optimally allocate counterdrug assets (i.e., force packages) among known trafficking locations to best 

disrupt the illicit activity. The demands associated with potential interdiction locations are typically 

known or estimated shipment volumes, and there can be multiple organizations and varying types of 

assets available to intercept shipments at the demand locations.  

Determining the optimal location for interdiction operations is generally approached from either a 

network or spatial optimization perspective. Network interdiction models aim to modify the structure of 

and/or flow within the illicit network to cause maximum disruption to flow of illicit goods from the 

source to the sink. Methods that target network structure include removing arcs (i.e., connected 

components), reducing arc capacity, increasing the cost of transit, or by eliminating nodes connecting arcs 

within the network. Flow-oriented approaches attempt to minimize flow across a network (Altner et al. 

2010, Malaviya et al. 2012), maximize the amount of flow captured or covered (e.g., Zeng, Hodgson and 

Castillo, 2009), or minimize the maximum flow; essentially making the worst-case trafficking scenario as 
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good as possible (Cormican et al. 1998, Morton et al. 2007, Wood 1993). Still others seek to make the 

interdiction presence as efficient as possible (Keskin et al. 2012, McLay et al. 2009) or conversely to 

make the trafficking activity as difficult as possible (Israeli and Wood 2002, Nguyen and Smith 2022).  

In contrast, spatial optimization models focus on locating interdiction assets optimally rather than 

modifying the network structure or flows. Many spatial optimization models for interdiction are often 

derivations of classic formulations cast in the context of interdiction. Formulations are most often tested 

on generic networks that cannot realistically represent the operational environment unique to transnational 

counterdrug interdiction. However, interdiction operations take place across multiple spatial and temporal 

scales, with disparate types of interdiction forces or tactics, and with a wide variety of political, temporal, 

and resource constraints. Moreover, most existing interdiction models consider the structure of the illicit 

supply network to be static, rather than a dynamic part of the model, meaning the volume and location of 

drug shipments are treated as a known input. While some work has been done to model uncertainty in 

demand, or to stochastically model the amount of flow that is removed during a successful interdiction 

(Cormican et al. 1998, Losada et al. 2012), the network structure, and thus potential trafficking locations, 

are assumed to be static through time. However, the assumption that the network structure and volumes of 

all drug shipments are known to both the traffickers and interdictors (Smith & Song, 2020) is especially 

impractical. Extant interdiction models with objectives aimed at maximizing disruption or minimizing 

flow over an entire, static network therefore have limited practical utility. 

Location covering models can be applied to spatial allocation problems for interdiction, which often 

require locating multiple types of facilities and cover multiple types of demands. A relatively small set of 

location allocation models are concerned specifically with drug interdiction, but a broader range of 

models have considered multiple types of facilities and demands. Of those that have considered multiple 

facility types (Baycik et al., 2018; Wilt and Sharkey, 2019), the models have not addressed co-locating 

multiple types of facilities at the same location. Multiple-type location models exist in numerous 

derivations and extensions applied to healthcare facilities, but typical constraints avoid multiple coverage 
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of the same demand location (Farahani et al. 2019) or do not permit multiple facilities of the same type at 

the same location. Similarly, of those models that can accommodate multiple types of demands, many are 

concerned with locating a single facility type (Mirzaei et al. 2021), with a system of hierarchal facilities, 

or with maintaining existing service locations (Paul et al. 2017, Stanimirović et al. 2017). There are multi-

objective formulations to model interdicting multiple types of flows (Jabarzare et al. 2020), but the typical 

objectives aim to maximize disruption over the entire network and do not account for isolating multiple 

types of demands at a single location. Others have examined locating multiple types of facilities across 

multiple time periods, albeit with the objective of maximizing coverage over the entire planning horizon 

(Porras et al. 2019, Zarandi et al. 2013).  

Furthermore, interdiction is assumed to disrupt illicit activity at or near certain locations, yet little 

attention has paid to how the spatial allocation of counterdrug resources influences new spatial and 

temporal patterns of illicit trafficking. In reality, interdiction often results in changes to the illicit 

network’s structure or capacity, and future interdiction scenarios should reflect that response (Price et al. 

2022). Although there is significant work that integrates stochastic elements into optimization models, 

many actual operations are still described as static, and the approaches to them are deterministic. Thus, 

the primary limitation to existing methods is the inability to anticipate how the spatial allocation of 

counterdrug forces influences the volume, timing, and location of future illicit activity. Given the 

resilience and adaptability of narco-trafficking networks that have been observed, there is a need to 

realistically represent and account for traffickers’ adaptive responses to interdiction operations. A truly 

optimal interdiction asset spatial allocation must co-evolve with traffickers’ changing behaviors. 

2.2 Approaches to modeling network structure and behavior 

Research examining organized criminal groups, particularly drug trafficking organizations, have focused 

on deepening understanding of the structure of illicit networks to improve targeting of operational 

vulnerabilities (Bichler, 2017). This perspective applies the tools from network science to describe and 
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analyze the properties of these networks. Anzoom et al. ( 2021) discusses pertinent studies that use 

network structure to classify illicit supply-chain networks, such as scale free, core and periphery sets, 

social network analysis, and multiplex networks, all of which fall within the realm of multi-layered 

networks as described by Kivela et al. (2014). Recently, an abundance of literature has been dedicated to 

the development of frameworks to classify multi-layer networks, inadvertently causing a lack of 

consensus in terminology (Kivela et al., 2014). Relatedly, Bichler et al. (2017) applies social network 

analysis of drug supply networks to develop comparable metrics for concepts like network density or 

centrality with organizational behavior. While we recognize the importance and utility of a common 

network taxonomy, this approach and terminology is still limited to static networks and not well suited to 

analysis of the behavioral evolution of networks.  

In the context of dynamic networks research, and particularly illicit networks, resilience is a key 

characteristic (Morselli 2009). Network resilience refers to the ability of drug trade organizations (DTOs) 

to resist and survive disruption from interdiction, as well as the capacity of the network to adapt following 

interruption (Bouchard 2007, Cavallaro et al. 2020). These network dynamics can be observed in 

structural changes to nodes, links, or groups within the network (Bright and Delaney, 2013). To study 

these adaptive network dynamics, researchers have used simulation to model network effects (Magliocca 

et al, 2019). Integrating agent-based simulation methods with network analysis enables the investigation 

of adaptive behaviors influenced by network structures that ABMs or network analysis alone do not 

provide. As illustrated in the recent review by Will et al. (2020), efforts to integrate ABMs and social 

network analysis have been motivated by questions relating to the processes producing diffusion of 

information (e.g., marketing), disease (e.g., epidemiology), or materials (e.g., supply chains) through a 

network of actors with particular interest in how network behavior or structures change in response to 

external perturbations. Importantly, there are few examples in which co-evolutionary dynamics of agent 

behaviors and network structure are both modeled (see Will et al., 2020 for more details). One example of 

a co-evolutionary approach is the proposed framework of Geographic Network Automata (Anderson and 
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Dragićević 2020a, b). The Geographic Network Automata (GNA) modeling framework captures 

endogenous network dynamics that influence and are influenced by agent behaviors within the network, 

and takes the additional step of embedding simulated networks in geographic space to represent spatial 

relationships. Application of the GNA framework has thus far focused on ecological networks (Anderson 

and Dragićević 2020b). Another example is AgentC (Vaněk et al. 2013) – a data-driven ABM of maritime 

traffic that explicitly models pirate activity and piracy countermeasures. AgentC was developed in 

collaboration with stakeholders to assess the effectiveness of alternative counterpiracy measures and 

support the design process of new maritime transit corridors.  

2.3 Integrated modeling approaches 

Integration of ABM simulation and network optimization methods has emerged among disparate fields. 

Logistics system modeling efforts adopting the theoretical perspective of complex adaptive systems use 

ABMs due to their ability to represent learning and adaptation of agents acting as nodes within a supply 

chain (Akanle and Zhang 2008, Thomas Y. Choi et al. 2001). This approach has allowed logistics 

researchers to investigate the effects of node- or link-level characteristics and behaviors on the network-

level efficiency, resiliency, and/or optimal structure of logistics systems (Nair et al. 2009). In the context 

of network interdiction, the classic defender-attacker game was modeled by Kroshl, Sarkani and 

Mazzuchi (2015) using a combination of location optimization and agent-based models to allocate 

defensive resources to protect a spatially distributed physical network, and they found that the inclusion 

of an ABM provided greater insights into how to increase defender victories beyond those produced with 

a probabilistic risk analysis approach. The advantages of integrating agent-based simulation and location 

optimization approaches are clear, but such integration has yet to be implemented in the context of drug 

trafficking networks and counterdrug interdiction forces. 

A number of researchers have approached supply chain operations more generally (Yue and You 2014, 

2017), and interdiction operations more specifically (Sadeghi and Seifi 2019, Shen et al. 2021) as 
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Stackelberg games. This approach models both the interdicting agency and the traffickers as optimizing 

their operations. The work presented here takes a different modeling perspective based on our 

understanding of how the two competing organizations operate. Counterdrug interdiction operations are 

modeled as an optimizing agency, given that federal drug enforcement operations have stated goals which 

often can be described quantitatively, the number and kind of interdiction assets can be known, and the 

constraints under which they operate can be described and formulated mathematically. Although much of 

interdiction operations is classified and therefore unavailable to researchers, we know that the 

organizations formulate goals, attempt to use their resources most efficiently, and operate under well-

known constraints. Therefore, an optimizing approach most closely mirrors their operations. Conversely, 

DTO’s are much more flexible in their operations given that they do not need to follow policy proscribed 

goals, they actively work to undermine or avoid constraints imposed on them, and their operational assets 

are intentionally hidden. Therefore, the DTOs are modeled as agents whose behavior is not proscribed by 

a formal mathematical model, but rather emerges from their interactions within their complex operating 

environment.  

Specifically, an ABM of cocaine trafficking networks (Magliocca et al. 2019) is dynamically coupled 

with a spatial network interdiction optimization model (Price et al., 2022) to address the conceptual and 

methodological gaps identified above. Leveraging the strengths of both approaches, the ABM simulates 

emergent and adaptive trafficking network dynamics in response to a more rigorous and realistic 

modeling of counterdrug interdiction operations. The spatially explicit nature of the location optimization 

model can accommodate spatial limitations on resource deployment and jurisdictional constraints (e.g., 

Coast Guard only has jurisdiction on high seas), and calculate new optimal spatial locations of 

interdiction assets as the trafficking network structure and routes evolve. Moreover, the model coupling 

maintains the information asymmetry that exists in reality between traffickers and interdiction forces, 

which only partially know one another’s actions at limited times and locations. The coupled model 

framework also provides new analytical angles. Previous models, even those that couple ABMs and 
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location optimization, have not used the tools of complex system science, which can link node-level 

behaviors to network-level outcomes to understand the causes of emergent network dynamics. Here we 

investigate the spatial and operational changes in trafficker behavior vis-à-vis varying amounts of 

interdiction assets. Ultimately, the goal is to support interdiction strategies that more efficiently allocate 

resources while also being attentive to the unintended consequences of traffickers’ spatial adaptation to 

interdiction. 

3. Methods 

3.1 Agent-Based Model of Narco-Trafficking Networks 

Drug traffickers and trafficking networks are highly dynamic, flexible, and constantly shifting due to law 

enforcement pressure and internal and external conflicts/realignments (Bright and Delaney, 2013; 

Caulkins et al., 2013; Dudley, 2010; Magliocca et al., 2021). Such traits are hallmarks of complex 

adaptive systems (Choi et al., 2001; Manson, 2001), which are best represented through a simulation 

approach based on bounded rationality decision heuristics to navigate local and network-wide transaction 

costs (Basu, 2014). Thus, the dynamic, spatial (re)organization of narco-trafficking networks in the 

‘transit zone’ of Central America and surrounding maritime spaces were simulated using the agent-based 

model NarcoLogic (Magliocca et al., 2019). NarcoLogic is a theoretical simulation model developed 

based on extensive ethnographic knowledge of narco-trafficking operations that 1) reproduced spatial 

adaptive dynamics that had only previously been described qualitatively, and 2) produced spatio-

temporal, quantitative patterns of cocaine flows that compared favorably to the best available estimates 

from law enforcement and intelligence communities. The original version of the NarcoLogic model was 

validated by comparing simulated volumes of cocaine flows, overall trajectories, and timing of peak 

cocaine flows reported at the department-level (i.e., administrative unit equivalent to U.S. counties) in the 

Consolidated Counterdrug Database (McSweeney 2020b). At the Central America scale, NarcoLogic also 

successfully recreated the historical southward shift of narco-trafficking extent and intensity (Magliocca 
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et al., 2019). A full Overview, Design Concepts, and Details (ODD) protocol for NarcoLogic is provided 

in Appendix A.  

Changes in the trafficking network’s spatial footprint and location-specific cocaine flows were produced 

by interactions between two types of agents in response to interdiction events generated by the 

optimization model. Network Agents represented the top-down coordination of DTOs. Network Agents 

observed interdiction events within their network and updated their assessment of transaction costs based 

on perceived profit and risk among active nodes. Network Agents decided to expand or consolidate 

existing trafficking routes and ‘activate’ (i.e., receive shipments) or ‘deactivate’ specific trafficking nodes 

over time. Nodes Agents had a fixed spatial position operating each trafficking node. Node Agents that 

were ‘activated’ by their Network Agent purchased a shipment of cocaine from a supplying Node Agent, 

and decided how to allocate the volume of the shipment among potential buyer nodes along possible 

trafficking routes. Node agents observed (a) prices offered at each buying node and (b) whether an 

interdiction event occurred and effected it or its neighbors in previous time steps. Over time, Node Agents 

learned transaction costs among neighboring nodes and allocated shipments to maximize profit and 

minimize risk of interdiction.  

The cocaine trafficking network structure was based on integrated ethnographic, remote sensing, and 

statistical analyses of narco-trafficking activities in Central America (Magliocca et al., 2019; 

McSweeney, 2020a). The bi-level structure of the simulated trafficking network (i.e., Network and Nodes 

Agents) reflected the evolving nature of narco-trafficking. A semi-decentralized or horizontally integrated 

cocaine trafficking organizational structure is a relatively new development in cocaine trafficking 

compared to the better-known Colombian groups of the Medellín and Calí cartels that dominated in the 

late twentieth century. After substantial disruption of those vertically integrated cartels in the early 2000s, 

cocaine trafficking routes shifted to Central America, and combined with the rise of Mexican cartels, a 

more decentralized and regional drug trafficking organizational model dominated (Bagley, 2013; Dell, 
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2015; Dudley 2010, 2012; McSweeney et al., 2014, 2018; Tidd, 2018). Although hierarchy still exists in 

drug supply chains, organizational structure is much flatter overall than it used to be. 

Trafficking node locations were selected based on statistical estimates of landscape suitability (Magliocca 

et al., 2022), and links between trafficking nodes were unidirectional (roughly southeast to northwest), 

exogenously specified, and remained constant throughout the simulation. The values of cocaine shipments 

at each trafficking node increased with every transaction advancing closer to consumption markets, and 

were estimated from law enforcement reports and case studies (Pearson et al., 2022; UNODC, 2010, 

2018). Movement of cocaine from one node to another incurred a transaction cost, which were partly 

exogenously and endogenously specified. The exogenous portion of transaction costs was based on 

distance between any two nodes, volume being transported, and mode of transportation. The endogenous 

component of transaction costs was related to perceived risk of interdiction between two nodes in the 

form of a dynamically updated ‘risk premium’ (Caulkins et al., 1993). Dynamic differences between 

perceived profitability and transaction costs for each node influenced where, when, and how much 

cocaine was moved through the trafficking network. 

A key uncertain parameter that was explored in this version of NarcoLogic was the probability of 

successful interception of cocaine shipment. Trafficking routes vary in their vulnerability to counterdrug 

interdiction given their geographic context and the logistics involved in locating interdiction assets that 

can intercept shipments (JIATF-S, personal communication, 2019). The probability of successful 

interdiction when interdiction resources were located at nodes with active cocaine flows was based on the 

number of network links directed to the node (i.e., node degree) and characteristics of the sending links. 

The baseline probability of successful interception represented the minimum across the entire network 

and was experimentally modified to investigate the effects on overall interdiction outcomes and trafficker 

behaviors. A detailed description and local sensitivity analysis of this parameter are provided in section 

1.3.1 of Appendix C in the Supplemental Online Materials. 
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3.2 Optimal interdiction location modeling 

A review of the extant objectives and constraints in the spatial optimization literature with the agency 

charged with detection and monitoring of air and maritime drug trafficking in the Central American 

transit zone confirmed that the objectives and constraints in the literature are a mismatch with the 

operational constraints that they face when making interdiction location decisions. For example, 

constraints on interdiction operations go beyond (mostly) observable resource constraints to include 

jurisdictional constraints, legal restrictions, and political considerations (Price et al., 2022). In contrast to 

much of the interdiction optimization literature, the goal here is not to model or demonstrate how 

interdiction forces could or should operate but rather how they do operate. In order to address that 

mismatch, this effort began with interviews of interdiction forces – to the extent possible in an 

unclassified environment – to identify the objectives and constraints most pertinent to their short- and 

medium-term operations. A family of spatial optimization models designed to reflect the realistic 

constraints, objectives, and procedures on interdiction operations can be seen in (Price et al. 2022), and 

among those is the Multiple-Type Maximal Covering Location Problem (MT-MCLP) applied in this 

work. The full model formulation is available in Appendix B. 

The MT-MCLP considers interagency cooperation, jurisdictional limits, resource availability, and 

interdiction target type as interdiction facilities (known as force packages) may have different skillsets, 

equipment, or jurisdictional permissions to act (e.g., U.S. Coast Guard cannot operate in another country’ 

Exclusive Economic Zone without permission). Force package is a term used by federal counterdrug 

agencies to describe the mix of personnel and equipment that can be employed for an interdiction 

operation. In the air and maritime domain this is typically a mix of ships (e.g., Coast Guard cutters, high 

speed pursuit boats) and aircraft (e.g., armed helicopters, maritime patrol aircraft) sourced from across 

federal agencies with law enforcement powers, along with vehicles from the appropriate foreign 

governments (Munsing and Lamb 2011). The personnel that operate these vehicles can include Coast 

Guard Law Enforcement Detachments, Maritime Safety and Security Teams, and other deployable 
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specialized forces personnel (GAO 2019, USCG 2020). For land-based operations we expand the use of 

the term force package to include any U.S. or foreign law enforcement or military detachment that has the 

equipment and personnel capable of conducting an interdiction operation. Such detachments can range 

from drug interdiction road blocks  (Guerra 1992) to specialized and targeted SWAT or military-style 

operations (Goodman and Coyne 2021).   

In the MT-MCLP, the objective is to maximize the coverage of estimated drug trafficking activity by 

locating force packages of varying types at trafficking nodes. Each trafficking node j is assigned the set 

Uj, defined as the set of types t of force packages that are excluded from locating at j. For those types that 

can locate at a given node, one or more may locate at that node if this leads to maximal coverage. Only 

the estimated volume that can be captured by a given type (ait) will be captured by the force package of 

that type. Constraints ensure that no force packages of a prohibited type are assigned to any potential 

interdiction locations. The decision variables xjt and yit indicate which types t of force packages are 

located at node j and which demand i is interdicted by a force package of type t. The set of potential force 

package locations j remain the same throughout the simulation, while the demand for each interdiction 

type ait can change at the interdiction locations j from the previous time step. 

The MT-MCLP can accommodate multiple variants of constraints on the interdiction operations by 

assigning the set Uj to each node. For example, jurisdictional limits are represented by assigning each 

Central American nation to a unique interdiction type. In the results reported here, each node in a dataset 

may be targeted by one or more of the nine force package types (Pt) associated with the Caribbean Coast, 

Pacific Coast, and one type for each of the seven Central American partner nations. For instance, nodes 

within 20 km of the coast can be interdicted by either a coastal force package or by counterdrug efforts 

within a partner nation and thus have Uj values with the seven partner country types. Coastal interdiction 

operations are free to locate in any of the partner nations, and similarly interior force packages are free to 

locate at coastal nodes, in which case expected seizure volume at a coastal node would be divided among 

the country and coastal force package types.  
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3.3 Coupled model structure description 

As discussed in the previous sections, we model the influence of varying levels of interdiction assets on 

the degree, timing, and locations of cocaine trafficking. The operational environment used here represents 

the Central American transit zone and consists of 1) Nodes where trafficking can occur and where 

interdiction can take place and 2) links through which simulated volumes of cocaine are trafficked 

between those nodes (Magliocca et al. 2019, 2022). The nodes vary in their connectivity, although links 

were preferentially established between spatially proximate nodes, and all nodes have a connection to the 

consumer and producer nodes. This reflects the realistic situation in which any transshipment node can be 

the only stop before reaching Mexico, or one stop among many en route to Mexico. Although the 

volumes of cocaine are assigned to links, interdiction takes place at the nodes and the demand available to 

interdict at a node is the sum of the flows on the links entering that node. At initialization, the baseline 

potential volume of cocaine (demand) at each trafficking node was estimated using country-level CCDB 

estimates of primary shipments. Solving the MT-MCLP using the baseline values returns the optimal 

spatial allocation of interdiction assets, which represents the presence of counterdrug forces within the 

simulated environment provided by NarcoLogic. At each time step, the Network Agents update their 

perceived risk of interdiction at each node, and the volume of cocaine present at force package locations 

is returned to the optimization model, which in turn are used to update estimated cocaine flow values for 

the next time step. Error! Reference source not found.1 illustrates the conceptual model guiding model 

coupling, and Figure 2 provides a snapshot example of the coupled NarcoLogic and optimization model 

execution. Figure A1 provides a data and process diagram of the coupled modeling system accompanied 

by a technical description of the coupled model workflow in section 1.4 of Appendix A. 

Several metrics were used to evaluate changes in trafficking network dynamics resulting from interdiction 

events. Cocaine shipment seizure volumes were recorded for all successful interdiction events at each 

model time step. Values of seized shipments were estimated based on empirically estimated wholesale 

cocaine prices that varied geographically and increased in value with northward distance traveled 
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(Magliocca et al., 2019). The numbers of active nodes and edges throughout the trafficking network were 

recorded based on the presence of a cocaine shipment at a given node and its linked edges during each 

time step. The number of successful interdiction events measured the number of instances per time step 

when force packages were located at active nodes and a randomly generated number exceeded one minus 

the probability of successful interception. Finally, two metrics of network structure were used to assess 

topological effects of successful interdiction events on the trafficking network. Node degree measured the 

number of active edges per node at each time step. Flow diversity, based on Shannon’s Diversity Index 

(Shannon, 1948), measured the evenness of cocaine flows among active nodes at each time step. The 

formula and description of flow diversity is provided in Appendix C. 

 

Figure 1: Conceptual model for coupling the agent-based cocaine trafficking network model, 

NarcoLogic, with the interdiction spatial optimization model to simulate co-evolutionary interactions 

between traffickers and counterdrug interdiction forces. 
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Figure 2: A snapshot of the coupled trafficking network and spatial interdiction optimization model 

execution: a) consolidated trafficking network; b) expanded trafficking network in response to early 

interdiction; c) fully expanded network (e.g., cocaine shipments as far south as Panama) in response to 

increased interdiction success; and d) some consolidation (e.g., away from Eastern Honduras) and 

reduction of active nodes. Points and lines represent drug trafficking nodes and network links, 

respectively. Highlighted nodes represent the location of active cocaine shipments with the size of the 

nodes scaled to volume. Triangles represent the location of counterdrug interdiction forces. Black ‘X’s 

over nodes and highlighted network links represent the location of successful interdictions. 

Local sensitivity analyses were also conducted using a one-factor-at-a-time approach (ten Broeke et al. 

2016, Ligmann-Zielinska et al. 2020). Thirty replications of the coupled model simulation were 
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conducted for each force package scenario to assess the sensitivity of interdiction outcomes and 

trafficking network behavior to varying baseline probabilities of successful interception. A detailed 

description of sensitivity analysis methods and results are provided in Appendix C. 

4. Results 

4.1 Effects on increased interdiction on the trafficking network 

We first examined network-level outcomes in response to varying levels of interdiction assets (i.e., force 

package scenarios). Sixteen total force packages were allocated and evenly distributed per country within 

the transition zone (Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, and Panama) and held 

constant across all modeling scenarios. Additional force packages varied with each modeling scenario and 

were allocated in different combinations between the Eastern Pacific (maximum of 6) and Caribbean 

(maximum of 4) maritime theaters. The coupled model was executed 30 times at the baseline probability 

of successful interception (0.1) for each scenario to assess variability in outcomes based on stochastic 

processes (e.g., probability of successful interception; probabilistic choices by trafficking Node Agents 

between equally valued trafficking routes). 

Both the number of successful interdiction events (Fig. 3a) and total volume of seizures (Fig. 3b) 

increased consistently as the number of force packages increased. There were significant statistical 

differences between the lowest and highest third of force package scenarios for both outcomes (Fig. 3). 

This was an expected outcome and suggested that increased force packages translated into more 

successful interdictions and higher total volumes of cocaine removed from the supply network. In 

contrast, increased force packages had little effect on the number of active edges in the trafficking 

network (Fig. 4a) and total value of cocaine seizures (Fig. 4b). No statistically significant differences 

were observed in these two outcomes across the force package scenarios. Despite increasing seizure 

volumes, the simulated trafficking network adapted to increased interdiction pressure so that the value per 

seizure decreased. Agents within the trafficking network learned to minimize profit losses by distributing 
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to more trafficking nodes, sending smaller shipments, and choosing closer receiving nodes that required 

shorter and less risky transport. This behavioral adaptation by the Network and Nodes Agents underlies 

the larger scale, network-wide shifts in trafficking routes that drive the expansion of active nodes in 

response to interdiction pressure. Importantly, the findings presented in Figure 5 would not have been 

possible without the simulation of the dynamic, spatial adaptation of the trafficking network.  

 

Figure 3. Distributions of A) the total number of successful interdiction events and B) total volume of 

cocaine seized for all 30 model replications for each force package scenario. Median scenario values are 

indicated by the red, horizontal lines, first-third interquartile ranges are represented by the blue boxes, 

dashed whiskers extend to the most extreme data points not considered outliers, and the outliers are 

plotted individually using the '+' symbol. 
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Figure 4. Distributions of A) the median number of active edges per model replication and B) total value 

of cocaine seized for all 30 model replications for each force package scenario. Figure details the same as 

Figure 3. 

As has been demonstrated theoretically (Caulkins et al. 1993, Magliocca et al. 2019) and empirically 

(Bright and Delaney 2013, McSweeney 2020b), trafficking networks adapt to interdiction pressure mainly 

by reorganizing their spatial structure and shifting routes to avoid detection. This general trend was 

replicated in our model outcomes measuring changes in the number of active nodes (Fig. C1) and flow 

diversity (Fig. 5) in response to the number of successful interdiction events over time. Relatively low 

levels of interdiction success were associated with fewer active nodes and low levels of flow diversity 

(i.e., few active routes with large, concentrated shipments) in the trafficking network as trafficking routes 

were consolidated to increase profits and minimize exposure to detection. As interdiction pressure 

increased, either through increased force packages or improved location of existing force packages, the 

number of active nodes and flow diversity increased. Time series for a single coupled model execution 

illustrated the expansion and contraction dynamics of the trafficking network in response to successful 

interdiction events (Fig. C2). Regardless of the level of force packages allocated, the trafficking network 

was generally attracted to a state of moderately high flow diversity (between index values of 6 and 10) 

and moderately low numbers of successful interdiction events (between 5 and 10 per time step). This state 

attractor also appeared stronger (as indicated in Figure 5b with tighter clustering of points in the latter half 

of the simulation) with increased interdiction force packages and more successful events. 
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These results mirrored observed spatial adaptations made by narco-traffickers in response to counterdrug 

interdiction (i.e., the “balloon” and “cockroach” effects; Bagley, 2013; Magliocca et al., 2019). This is the 

main unintended consequence of current counterdrug interdiction strategies – increased interdiction 

pressure pushes narco-traffickers into new areas of operation and expands the active ‘transit zone’. For all 

force package scenarios, increased interdiction volume led to positive flow diversity changes (i.e., more 

evenly distributed flows), whereas negative changes to flow diversity (i.e., network contraction and/or 

shipment consolidation) were observed when interdiction volumes were low (Fig. C3). Figure C3 

demonstrates that while larger interdiction volumes prompted spatial displacement and expansion of 

trafficking routes, more even dispersal of cocaine shipments was the primary adaptive response to 

interdiction to maintain profits. A more detailed explanation of these trafficking network dynamics is 

provided in Appendix C of the Supplemental Online Materials. 

 

Figure 5. State space plots of the evolution of flow diversity following successful interdiction events in 

the previous time step. The clear, open circle marks the start of the simulation, and the ‘X’ indicates the 

state at the final time step. Filled circles are plotted for every time step with the color indicating which 

time step. The a) minimum and b) maximum interdiction force package scenarios are shown for a single 

model execution. 
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Local sensitivity analyses explored variations in model outcomes based on the OFAT approach, and 

particular attention was given to time-varying model sensitivities to detect the presence of path-dependent 

dynamics. The overall interdiction rate was insensitive to changes in the probability of successful 

interception at values 75% of the baseline value and above (Fig. C5). Trafficking network behavior, 

measured as the number of active edges and primary shipments, was found to be path-dependent with 

outcomes diverging into distinct high and low states (Fig. C6), but interdiction dynamics did not display 

path-dependency (Fig. C7). A detailed description of sensitivity analysis methods and results is provided 

in Appendix C. 

5. Discussion 

This research makes methodological and conceptual cross-disciplinary contributions. This work 

contributes to the literature regarding interdiction operations by providing a more realistic representation 

of the counterdrug interdiction operational environment than previously done. The objective of maximal 

covering most closely matches the interdiction reality of far fewer interdiction resources than traffickers 

to interdict. The ability to model constraints regarding jurisdiction or force package type, in addition to 

the number of interdiction resources, captures real-world interdiction necessities. The spatially explicit 

nature of the location optimization model can accommodate spatial limitations on resource deployment 

and jurisdictional constraints (e.g., Coast Guard only has jurisdiction on high seas). Most importantly, 

however, interdiction operations and traffickers’ behavior are treated here as coupled systems, which 

allows us to integrate qualitative, operational knowledge gleaned from our collaborators into a spatially 

explicit modeling environment to investigate the likely consequences of such constraints for trafficker 

behavior and interdiction effectiveness. Conceptually, the lens and analytical tools of complex system 

provide insights into the actions and reactions driving emergent, adaptive behaviors and their effects on 

goal-oriented effectiveness. The exact problems with current approaches to disrupting transnational 

cocaine trafficking are difficult to identify, potential solutions are socially contested, and unintended 

consequences are more the norm than exception. Conceptualizing this activity space as a complex 
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adaptive system with co-evolving prescribed planning elements and emergent agent behavior increases 

our depth of understanding of the system as it matures. Interdiction location allocations necessarily co-

evolve with spatial patterns of narco-trafficking activity as more information is learned. Reflecting this 

information asymmetry replicates the reactive, tactical nature of current counterdrug interdiction 

operations. 

The research presented here has some non-trivial limitations; unsurprising given that neither traffickers 

nor interdiction forces typically share information about their operations, or what they know about the 

operations of the opposing side. With regard to modeling narco-trafficking, we know that what are treated 

here as narco-trafficking network aggregates, are in reality many separate and distributed DTOs’ 

networks with their own complex cooperative and competitive dynamics (Dudley 2010). The current 

version of NarcoLogic assumes that connections between all trafficking node agents are possible, which 

enables a more fluid response to interdiction than is likely possible in reality. Additionally, NarcoLogic 

assumes that all cocaine that enters the trafficking network is destined for Mexico, which fails to 

recognize international ports within the transit zone, such as Límon in Costa Rica (Robins 2019), as 

possible destinations to connect to the transatlantic drug trade (European Monitoring Centre for Drugs 

and Addiction 2019). Both assumptions influence the fluidity and geography of simulated trafficking 

network responses to interdiction. 

Perhaps more importantly, given the secretive nature of the trafficking and interdiction operations, and the 

impossibility of testing alternative interdiction strategies on a nearly hemispheric scale, differences 

among the model scenarios should only be interpreted qualitatively. While the NarcoLogic model was 

previously validated against empirically estimated northbound cocaine flows in the transit zone, rigorous 

empirical validation of the coupled modeling framework is not currently possible, because it would 

require spatially and temporally explicit information about both narco-trafficking and counterdrug 

interdiction operations; information which is simply not available. 
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With regard to interdiction operations more specifically, current force package allocations vary regularly 

and are considered sensitive (or even classified) information due to security concerns. We can currently 

approximate a calendar year’s average force package level and allocation between Caribbean and Pacific 

theaters, but specific spatial locations, timing, and deployment levels of operations are not publicly 

available. To address this limitation, we bounded observed historical average force package levels by 

theoretical minimum and maximum scenarios. Similarly, precise operational objectives of the interdiction 

operations are not well defined and are even a matter of debate among actors across the interdiction 

planning process. While overall U.S. government drug policy is known, operational objectives and 

constraints on relatively short timelines are much less transparent. Based on discussions with interdiction 

forces, our implementation of covering models that support multiple types of interdiction forces is the 

best representation, but there are certainly additional measures of success and operating constraints that 

could more fully approximate their operations. More broadly, this highlights a salient tradeoff between 

model realism and empirical validity. Increasing the realistic constraints and adaptive behaviors included 

in the models demands comparable yet independent empirical data against which the model outcomes can 

be validated. Although a more stylized model may lack geographic and operational realism, empirical 

validation is more feasible in principle. Given the limited knowledge and data describing either narco-

trafficking or counterdrug interdiction operations, validation is difficult for each model individually and is 

compounded through their coupling. 

6. Conclusions 

While recognizing these limitations, this work has modeled the influence of counterdrug efforts on the 

spatially and temporally adaptive behaviors of narco-traffickers using a coupled agent-based and spatial 

optimization framework, which provides a more realistic and insightful strategy than current approaches 

that treat interdiction and trafficking operations as static. For instance, a particularly robust finding from 

experiments with 24 different scenarios of interdiction asset levels and geographic deployment was that 
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increasing interdiction levels increased the volume seized (which was expected and has been established 

by other optimization modeling approaches) but had little effect on the value of seized shipments nor the 

number of active nodes throughout the network (which was unexpected). The latter findings provided 

insights into the mechanisms driving the expansion of trafficking areas and the increased challenge of 

meeting counterdrug interdiction goals with limited resources. Moreover, these findings would not have 

been possible without the simulation of a dynamic and adaptive trafficking network. 

The coupled optimization and simulation approach has also opened a number of new research avenues. 

The coupled model environment developed for this research can accommodate multiple interdiction 

strategies and trafficker responses, which in turn will facilitate the development of new optimization 

models to support counterdrug operations. For example, intercepting shipments along preferred 

trafficking routes (flow covering), minimizing the opportunity for adjacent spatial displacement of known 

trafficking activity (gradual covering), and preventing the emergence of new trafficking locations in more 

distal parts of the network (dispersion). These interdiction models could also be extended to 

accommodate dynamic asset availability, due to budget constraints or equipment downtime for instance, 

by allowing the number of force packages to vary across time steps. Potential formulations could also 

incorporate maintaining interdiction presence across subsequent time steps, or anticipating demand values 

via trafficker behavior such as displacement or stockpiling. Having made the novel modeling choice to 

treat interdiction forces as optimizers and DTOs as agents, the advance here is coupling those models in a 

way that permits the examination of how DTOs change their operations as the amount and type of 

interdiction force being applied changes. This coupled model framework will also promote future 

research focusing on deriving new metrics for interdiction outcomes that move beyond conventional 

variables of illicit supply network operations, e.g., cocaine value seized, money seized, and number of 

shipments disrupted, to mine relationships that more directly measure the effects of interdiction of narco-

trafficking network function. For example, return time for each interdiction location node; changes in 

trafficking pressure on partner countries due to geographic displacement of smuggling routes; trafficker 
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displacement intensity measured as the combination of space and time displacement from the original 

smuggling route; and changes in interception likelihood. Further, the applicability of multi-layer complex 

network measures to characterize different aspects of network structural evolution over time should be 

investigated. More broadly speaking, the tight integration of agent-based and spatial optimization models 

has potential research application in a large number of social science research areas where complex 

(wicked) problems are best modeled as planning exercises, where goals are set amid well-known 

constraints, but the behavior of actors emerges as the system matures. 
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