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mate the recording of key frames and timestamp). Conven-
tional approaches heavily rely on frame-level annotations
and other prior knowledge that can only be applied to lim-
ited categories. In this paper, we introduce Generic Action
Start Detection (GASD): a new task that aims to detect the
taxonomy-free action start in an online manner. Further-
more, one novel yet simple design, 3D MLP-mixer based
architecture with a multiscaled sampling training strategy,
is proposed, which makes the GASD algorithm favorable
for edge-device deployment. The GASD task is validated on
two large-scale datasets, THUMOS’ 14 and ActivityNetl.2.
Results demonstrate that the proposed architecture achieves
the SOTA performance on the GASD task compared with
other online action start detection algorithms.

1. Introduction

Online action start detection in untrimmed videos is to
determine when the specific action starts with minimal la-
tency. This task is important for real applications such
as emergency alerts in surveillance systems. Recent years
have seen significant progress in temporal action localiza-
tion (TAL), online action detection (OAD), and online de-
tection of action start (ODAS) in videos. Despite this, the
modeling of intrinsic taxonomy-free action characteristics
that we humans can naturally perceive and decide the ac-
tion starts is still lacking. Existing methods are either re-
quiring information from the entire video or heavily rely on
taxonomy-based prior knowledge and dense action classifi-
cation labels.

Therefore, we propose a new task named the Generic
Action Start Detection (GASD), which aims to detect the
action start point within streaming videos by learning the
intrinsic action characteristics rather than the specific pre-
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Figure 1: Illustration of GASD and its relationship with
ODAS, GEBD. ODAS focuses on localizing the start point
of specific action categories in untrimmed, streaming video;
GEBD aims to detect generic, taxonomy-free event bound-
aries that segment a whole video into chunks and requires
all the information from the full video and can only be per-
formed offline. The newly proposed GASD aims for online
action start detection on generic scenarios without the limi-
tation of action categories.

defined taxonomy-based information. There are three main
contributions in our paper: (1) We propose a new task
GASD for overcoming existing issues in both related online
and offline action start detection algorithms; (2)We design
a edge device friendly 3D MLP-mixer based method for the
GASD task; (3)The proposed method outperforms other on-
line action start algorithms in two benchmark datasets and
the GASD has more potentials in real-world applications.

2 Related Work

TAL task aims to localize all the temporal boundaries
of interested actions in untrimmed videos. Full information
from the videos is required that can only be conducted un-
der offline settings. Dense temporal annotations for every
action instance is also needed for better performance [2, 3].

ODAS is to distinguish the specific start of action of
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Figure 2: Overview of the whole joint-training architec-
ture video clips are first sampled by multiscale sampling
strategy, I3D features are extracted for each clip and input
into the 3D MLP-mixer based start point detection model,
two loss branches, the BG/FG branch, and the SPL branch
jointly determine the if there exists an action start and pre-
dicts the index within the clip.

interests from its proceeding complex background. Solu-
tions for the ODAS task [4, 5, 10] usually combine a frame-
level action classification with a start point localization. Ex-
tensive frame-level labeling (including action category and
start point annotation) is required.

Generic Event Boundary Detection (GEBD) [9] is
newly proposed that aims to detect generic, taxonomy-free
event boundaries that segment a whole video into chunks.
It is designed to localize the moments where humans natu-
rally perceive event boundaries and scales to generic videos.
Similar to the TAL problem, as a boundary detection task,
GEBD also requires all the information from the full video
and can only be performed offline.

3 Methodology

Given an untrimmed, streaming video, the GASD task
is to detect the action start as soon as it occurs in an on-
line manner without prior knowledge of action categories.
We proposed a novel yet simple design(see Figure. 2), a 3D
MLP-mixer based architecture with a multi-scaled sampling
strategy, which is favorable for the edge deployment.

3.1 Multi-scale Sampling and Feature Extraction

Given facts that (1) datasets include action instances with
starting points annotations are scarce, (2) action instances
have different speeds and duration, and (3) the difference
in appearance and feature space between adjacent video
clips is trivial, we adopt multiscale sampling scheme for
data augmentation as well as multiscale temporal informa-
tion modeling. Video clips are sampled at various durations
and fixed ¢ frames are uniformly sub-sampled from each
video clip. Sub-sampled video clips are either labeled as
*foreground(FG)’ which contains the action start point or
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"background(BG)’ otherwise. Those "BG/FG” labels will
be utilized in the training stage. The 13D network [1] pre-
trained on Kinetics is used as a feature extractor. Each sub-
sampled video clip is fed into the I3D feature extractor to
obtain a 3D appearance feature representation which is then
taken as the input for the 3D MLP-mixer architecture.

3.2 3D MLP-mixer based Architecture

An MLP-mixer based architecture, MLP3D, is proposed
for the GASD task. The MLP3D can be regarded as an ex-
tension of the original MLP-mixer architecture [11] into the
3D dimension which models the temporal relationship. Dif-
ferent from the original MLP-mixer, which does a channel
fusion process immediately after the image token mixing
layer, the proposed MLP3D indeed takes another temporal
token mixing process between the image token mixing and
the channel fusion process. The 3D mixer layer can be de-
scribed as:

Hiy i = Xiwi + MLPy (X, . 5), 4 € 1,0,

U*J',* = H*J,* +MLP2(H*71,*)7j € [17T]7

Yk,*,* == Uk,*,* + MLPS(Uk,*,*), k S [1, S],

(1)

where X is the input of the MLP3D mixer layer, which is
a 4-dimension features (batch size, temporal axis, frame to-
ken axis, embedding channel axis), C' is the number of im-
age patch tokens for each frame, 7' is the temporal length
of the input feature, and S is the dimension of the embed-
ding channels. The M LP;, M LP,, and M L Ps is the MLP
structure for frame token axis, temporal axis and the chan-
nel axis respectively. The MLP structure is consists of two
fully-connected layers connecting by a GELU nonlinearity
activation layer.

There are two outputs from the proposed MLP3D archi-
tecture: BG/FG classification and the start point localiza-
tion(SPL). The SPL output returns the action start point in
frame-level once the current input clip triggers the FG de-
termination.

To coordinate two outputs of the proposed architecture,
two kinds of focal losses [8] are utilized due to imbalanced
data and hard negative samples in the GASD task. For the
BG/FG output branch, a binary focal loss is implemented as
Lipgtg = —a(1—P)"Ylog(P)—(1—a)PY(1-Y)log(1—
P) ,where « is the weight for the imbalanced data distribu-
tion of background and foreground sample clips, v is the
hyper-parameter for hard negative samples, Y is the ground
truth label for the foreground, and P is the probability of
predicting the positives. For the SPL branch on the start
frame localization, it can be treated as a classification prob-
lem with (t+1) classes, where ¢ is the frame number together
with a background class. The multi-class focal loss is uti-
lized: Ly = —a Zt:;ll 7p (1 — P.)7log(PL) , where Tp/
is the one-hot ground truth label for denoting the action start
frame and P/ is the probability of predicting the action start.

Authorized licensed use limited to: Northeastern University. Downloaded on September 30,2022 at 15:40:01 UTC from IEEE Xplore. Restrictions apply.



Therefore, the total loss for the entire framework is com-
puted as: £ = Ly + A * Lygpg. Where X is the trade-off
hyper-parameter between the BG/FG outputs and the SPL
outputs during the joint training.

4 Experiments

In this section, we presented the evaluation protocols
and experimental results of our proposed model on two
benchmark datasets: THUMOS’14 [7] and ActivityNet
v1.2 [6]. THUMOS’14 contains 20 sports classes and
each action instance is temporally annotated with start/end
timestamp. Following the previous work [4, 5, 10], we
trained our model on the validation set with 200 untrimmed
videos including 3K action instances, and evaluated on the
test set with 214 untrimmed videos including 3.3Ks action
instances. ActivityNet v1.2 involves 100 actions with an
average of 1.5 action instances per video. We trained our
model on the validation set with 4819 untrimmed videos
and evaluated on the test set with 2383 untrimmed videos.

4.1 Implementation Details

As mentioned in section 3, each sub-sampled video clip
is fixed to t = 16 frames. For untrimmed videos, we con-
duct temporal sliding windows at varied durations (e.g., [16,
32, 64, 128, 256, 512] frames) with 75% overlap. The
BG/FG sample ratio is set to 3 : 1. The multiscale sampling
strategy is disabled during the inference stage that each test-
ing video clip is sampled at consecutive frames. Given that
the frame index prediction might need the temporal order
information within the clip, the parameters within the 13D
network are frozen from the first layer to the intermediate
i3d.mixed4f layer, which leads to an output with a shape of
4 x 832 x 14 x 14. ais set to be 0.5 and 0.25 for Ly, ¢4 and
Ly respectively, v is set to 2 in both focal loss equations.
A in the loss function £ is fixed at 1 for the best reported
model. Batch size is set to be 48. We use SGD as opti-
mizer and set the initial learning rate to be 1 x 10~2. For
the MLP3D model, we set the depth of the mixer layer as 6.
The method is implemented with pytorch.

4.2 Evaluation Protocol

The outputs from the BG/FG branch and the SPL branch
jointly determine the start point during the inference stage,
the final start point is only generated if the input clip is pre-
dicted to be a foreground, and the predicted start point index
is within range.

We use precision/recall as offline evaluation metric to
test the performance on the FG/BG branch as its perfor-
mance determines the coarse-grained precision on the start
point detection. For THUMOS’ 14 the precision is 67.5%,
the recall is 48% and for ActivityNet 1.2 the precision is
59.9%, the recall is 17.0%. The low recall on ActivityNet
is due to more complicated background in videos.

381

The point-based average precision (P-AP) [10], is used
as the online evaluation metric. The P-AP evaluates the pre-
cision of correct action start predictions at different tempo-
ral tolerance in an online fashion. Similar to segment-level
average precision, no duplicate detections are allowed for
the same ground-truth point. During the testing stage, we
evaluated the video clips by their temporal order, measured
the average precision (AP) in each video under specific tem-
poral tolerance, and the final P-AP is obtained by the aver-
age of all the testing videos’ results.

The online test results are summarized in Table 1. The
SOTA method on ODAS task, WOAD ! | is used as a com-
parison. The results from WOAD on THUMOS’ 14 are ob-
tained by using their official codes and models but removing
the action classification part.As demonstrated in Table 1,
our methods outperformed the WOAD method on all the
temporal offsets. In addition, for ActivityNetl.2, there are
no available official codes for ODAS task so we only report
our GASD model results.

4.3 Ablation Study

Our performance improvements benefit from (1) the
multiscale sampling strategy (2) the joint training of BG/FG
and SPL branch (3) the novel MLP-based start point detec-
tion model.The contribution of each module/strategy in the
proposed solution is summarized in Table 2. To make the
results more consistent, the offline tests on THUMOS’ 14
are used to evaluate all the model variants.The joint training
of SPL and BG/FG branch will improve the performance of
GASD by 3% —4% due to the additional regularization. The
new proposed MLP3D algorithm together with the multi-
scale sampling scheme will further gain 4% improvement
in precision as well.

We also compared our proposed method with WOAD on
efficiency. Though our proposed methods has more param-
eters (136M) compared to WOAD (110 M), our FLOPS is
1.6G, which is only half of the WOAD model’s. Moreover,
our MLP-based method is more easily to be optimized (e.g.,
weight pruning or integer aware training), making it a more
edge device friendly algorithm. Take another closer look
at Table 1, it also shows the limitation of directly applying
the current ODAS methods to the newly proposed GASD
tasks. The ODAS related solutions strongly depend on the
category-dependent prior knowledge and frame-level anno-
tations, which is unavailable for GASD task. Therefore, the
start point localization module from the ODAS task is not
as capable as our proposed method for the GASD task.

Moreover, our proposed GASD algorithm is versatile
and can be easily extended for the ODAS task. Either a
Multi-class action classification branch or a third loss to
learn the action categories can be added on the top of the
current GASD architecture. Adopting the same evaluation

Ihttps://github.com/salesforce/woad-pytorch
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Evaluation on THUMOS’14 Dataset

Offsets (second) | 0.1 | 0.3 | 0.5 | 0.8 1 2 3 4 5 6 7 8 9 10
WOAD 09 | 13.1 | 14.0 | 14.1 | 141 | 14.1 | 14.1 | 141 | 14.1 | 14.1 | 14.1 | 141 | 14.1 | 141
Ours 41 | 133 | 141 | 16.1 | 17.9 | 21.2 | 224 | 25.7 | 26.2 | 26.7 | 28.8 | 29.1 | 29.3 | 29.5

Evaluation on ActivityNet 1.2
Ours \ - \ - \ - \ - \ 7.4 \ 16.9 \ 17.5 \ 17.7 \ 18.1 \ 18.1 \ 18.1 \ 18.1 \ 18.1 \ 18.1

Table 1: Evaluation on THUMOS’14, ActivityNet 1.2 For THUMOS’ 14, the results from WOAD on GASD task is obtained
by using their pretrained models with official codes and removing the action classification part. For both two datasets, using

p-mAP at depth Rec=1.0.

criteria, our modified GASD model can achieve competi-
tive performance with 19.6%-45.5% mean P-AP over 1-
10s offset. The reported SOTA performance on ODAS
tasks are [4] 19.5%-39.8% mean P-AP with appearance
feature only and [5] 21.9%-53.1% mean P-AP with two-
stream features over 1-10s offset on THUMOS’ 14 dataset.
The performance gap between our modified GASD and
WOAD [5] on the ODAS task owes to the fact that only
the appearance feature is used in our GASD model while
additional motion features will also contribute to the ODAS
task.

5 Conclusion

In this paper, we propose a new task GASD that fo-
cuses on learning the intrinsic action characteristics for
taxonomy-free action start detection. Our proposed archi-
tecture, MLP3D, is designed to independently determine
the action start point for each input video clip and thus has
low demand for prior knowledge from previous frames. The
experiment results demonstrate that the proposed method
achieves the State-of-the-Art performance on the GASD
task with high efficiency that enables the potential for edge
device deployment.
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