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Abstract

The online detection of action start in video data has wit-
nessed an increase in attention from both academia and in-
dustry, for abundant use-cases (e.g., an alert mechanism
in videos used for surveillance with an ability to auto-
mate the recording of key frames and timestamp). Conven-
tional approaches heavily rely on frame-level annotations
and other prior knowledge that can only be applied to lim-
ited categories. In this paper, we introduce Generic Action
Start Detection (GASD): a new task that aims to detect the
taxonomy-free action start in an online manner. Further-
more, one novel yet simple design, 3D MLP-mixer based
architecture with a multiscaled sampling training strategy,
is proposed, which makes the GASD algorithm favorable
for edge-device deployment. The GASD task is validated on
two large-scale datasets, THUMOS’14 and ActivityNet1.2.
Results demonstrate that the proposed architecture achieves
the SOTA performance on the GASD task compared with
other online action start detection algorithms.

1. Introduction

Online action start detection in untrimmed videos is to

determine when the specific action starts with minimal la-

tency. This task is important for real applications such

as emergency alerts in surveillance systems. Recent years

have seen significant progress in temporal action localiza-

tion (TAL), online action detection (OAD), and online de-

tection of action start (ODAS) in videos. Despite this, the

modeling of intrinsic taxonomy-free action characteristics

that we humans can naturally perceive and decide the ac-

tion starts is still lacking. Existing methods are either re-

quiring information from the entire video or heavily rely on

taxonomy-based prior knowledge and dense action classifi-

cation labels.

Therefore, we propose a new task named the Generic

Action Start Detection (GASD), which aims to detect the

action start point within streaming videos by learning the

intrinsic action characteristics rather than the specific pre-

Figure 1: Illustration of GASD and its relationship with
ODAS, GEBD. ODAS focuses on localizing the start point

of specific action categories in untrimmed, streaming video;

GEBD aims to detect generic, taxonomy-free event bound-

aries that segment a whole video into chunks and requires

all the information from the full video and can only be per-

formed offline. The newly proposed GASD aims for online

action start detection on generic scenarios without the limi-

tation of action categories.

defined taxonomy-based information. There are three main

contributions in our paper: (1) We propose a new task

GASD for overcoming existing issues in both related online

and offline action start detection algorithms; (2)We design

a edge device friendly 3D MLP-mixer based method for the

GASD task; (3)The proposed method outperforms other on-

line action start algorithms in two benchmark datasets and

the GASD has more potentials in real-world applications.

2 Related Work

TAL task aims to localize all the temporal boundaries

of interested actions in untrimmed videos. Full information

from the videos is required that can only be conducted un-

der offline settings. Dense temporal annotations for every

action instance is also needed for better performance [2, 3].

ODAS is to distinguish the specific start of action of
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Figure 2: Overview of the whole joint-training architec-
ture video clips are first sampled by multiscale sampling

strategy, I3D features are extracted for each clip and input

into the 3D MLP-mixer based start point detection model,

two loss branches, the BG/FG branch, and the SPL branch

jointly determine the if there exists an action start and pre-

dicts the index within the clip.

interests from its proceeding complex background. Solu-

tions for the ODAS task [4, 5, 10] usually combine a frame-

level action classification with a start point localization. Ex-

tensive frame-level labeling (including action category and

start point annotation) is required.

Generic Event Boundary Detection (GEBD) [9] is

newly proposed that aims to detect generic, taxonomy-free

event boundaries that segment a whole video into chunks.

It is designed to localize the moments where humans natu-

rally perceive event boundaries and scales to generic videos.

Similar to the TAL problem, as a boundary detection task,

GEBD also requires all the information from the full video

and can only be performed offline.

3 Methodology

Given an untrimmed, streaming video, the GASD task

is to detect the action start as soon as it occurs in an on-

line manner without prior knowledge of action categories.

We proposed a novel yet simple design(see Figure. 2), a 3D

MLP-mixer based architecture with a multi-scaled sampling

strategy, which is favorable for the edge deployment.

3.1 Multi-scale Sampling and Feature Extraction

Given facts that (1) datasets include action instances with

starting points annotations are scarce, (2) action instances

have different speeds and duration, and (3) the difference

in appearance and feature space between adjacent video

clips is trivial, we adopt multiscale sampling scheme for

data augmentation as well as multiscale temporal informa-

tion modeling. Video clips are sampled at various durations

and fixed t frames are uniformly sub-sampled from each

video clip. Sub-sampled video clips are either labeled as

’foreground(FG)’ which contains the action start point or

’background(BG)’ otherwise. Those ”BG/FG” labels will

be utilized in the training stage. The I3D network [1] pre-

trained on Kinetics is used as a feature extractor. Each sub-

sampled video clip is fed into the I3D feature extractor to

obtain a 3D appearance feature representation which is then

taken as the input for the 3D MLP-mixer architecture.

3.2 3D MLP-mixer based Architecture

An MLP-mixer based architecture, MLP3D, is proposed

for the GASD task. The MLP3D can be regarded as an ex-

tension of the original MLP-mixer architecture [11] into the

3D dimension which models the temporal relationship. Dif-

ferent from the original MLP-mixer, which does a channel

fusion process immediately after the image token mixing

layer, the proposed MLP3D indeed takes another temporal

token mixing process between the image token mixing and

the channel fusion process. The 3D mixer layer can be de-

scribed as:
H∗,∗,i = X∗,∗,i + MLP1(X∗,∗,i), i ∈ [1, C],

U∗,j,∗ = H∗,j,∗ + MLP2(H∗,j,∗), j ∈ [1, T ],

Yk,∗,∗ = Uk,∗,∗ + MLP3(Uk,∗,∗), k ∈ [1, S],

(1)

where X is the input of the MLP3D mixer layer, which is

a 4-dimension features (batch size, temporal axis, frame to-

ken axis, embedding channel axis), C is the number of im-

age patch tokens for each frame, T is the temporal length

of the input feature, and S is the dimension of the embed-

ding channels. The MLP1, MLP2, and MLP3 is the MLP

structure for frame token axis, temporal axis and the chan-

nel axis respectively. The MLP structure is consists of two

fully-connected layers connecting by a GELU nonlinearity

activation layer.

There are two outputs from the proposed MLP3D archi-

tecture: BG/FG classification and the start point localiza-

tion(SPL). The SPL output returns the action start point in

frame-level once the current input clip triggers the FG de-

termination.

To coordinate two outputs of the proposed architecture,

two kinds of focal losses [8] are utilized due to imbalanced

data and hard negative samples in the GASD task. For the

BG/FG output branch, a binary focal loss is implemented as

Lbgfg = −α(1−P )γYlog(P )−(1−α)P γ(1−Y)log(1−
P ) ,where α is the weight for the imbalanced data distribu-

tion of background and foreground sample clips, γ is the

hyper-parameter for hard negative samples, Y is the ground

truth label for the foreground, and P is the probability of

predicting the positives. For the SPL branch on the start

frame localization, it can be treated as a classification prob-

lem with (t+1) classes, where t is the frame number together

with a background class. The multi-class focal loss is uti-

lized: Lspl = −α
∑t+1

τ=1 τP ′(1− P ′
τ )

γ log(P ′
τ ) , where τP ′

is the one-hot ground truth label for denoting the action start

frame and P ′
τ is the probability of predicting the action start.
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Therefore, the total loss for the entire framework is com-

puted as: L = Lspl + λ ∗ Lbgfg. Where λ is the trade-off

hyper-parameter between the BG/FG outputs and the SPL

outputs during the joint training.

4 Experiments
In this section, we presented the evaluation protocols

and experimental results of our proposed model on two

benchmark datasets: THUMOS’14 [7] and ActivityNet
v1.2 [6]. THUMOS’14 contains 20 sports classes and

each action instance is temporally annotated with start/end

timestamp. Following the previous work [4, 5, 10], we

trained our model on the validation set with 200 untrimmed

videos including 3K action instances, and evaluated on the

test set with 214 untrimmed videos including 3.3Ks action

instances. ActivityNet v1.2 involves 100 actions with an

average of 1.5 action instances per video. We trained our

model on the validation set with 4819 untrimmed videos

and evaluated on the test set with 2383 untrimmed videos.

4.1 Implementation Details

As mentioned in section 3, each sub-sampled video clip

is fixed to t = 16 frames. For untrimmed videos, we con-

duct temporal sliding windows at varied durations (e.g., [16,

32, 64, 128, 256, 512] frames) with 75% overlap. The

BG/FG sample ratio is set to 3 : 1. The multiscale sampling

strategy is disabled during the inference stage that each test-

ing video clip is sampled at consecutive frames. Given that

the frame index prediction might need the temporal order

information within the clip, the parameters within the I3D

network are frozen from the first layer to the intermediate

i3d.mixed4f layer, which leads to an output with a shape of

4 × 832 × 14 × 14. α is set to be 0.5 and 0.25 for Lbgfg and

Lspl respectively, γ is set to 2 in both focal loss equations.

λ in the loss function L is fixed at 1 for the best reported

model. Batch size is set to be 48. We use SGD as opti-

mizer and set the initial learning rate to be 1 × 10−2. For

the MLP3D model, we set the depth of the mixer layer as 6.

The method is implemented with pytorch.

4.2 Evaluation Protocol
The outputs from the BG/FG branch and the SPL branch

jointly determine the start point during the inference stage,

the final start point is only generated if the input clip is pre-

dicted to be a foreground, and the predicted start point index

is within range.

We use precision/recall as offline evaluation metric to

test the performance on the FG/BG branch as its perfor-

mance determines the coarse-grained precision on the start

point detection. For THUMOS’14 the precision is 67.5%,

the recall is 48% and for ActivityNet 1.2 the precision is

59.9%, the recall is 17.0%. The low recall on ActivityNet

is due to more complicated background in videos.

The point-based average precision (P-AP) [10], is used

as the online evaluation metric. The P-AP evaluates the pre-

cision of correct action start predictions at different tempo-

ral tolerance in an online fashion. Similar to segment-level

average precision, no duplicate detections are allowed for

the same ground-truth point. During the testing stage, we

evaluated the video clips by their temporal order, measured

the average precision (AP) in each video under specific tem-

poral tolerance, and the final P-AP is obtained by the aver-

age of all the testing videos’ results.

The online test results are summarized in Table 1. The

SOTA method on ODAS task, WOAD 1 , is used as a com-

parison. The results from WOAD on THUMOS’14 are ob-

tained by using their official codes and models but removing

the action classification part.As demonstrated in Table 1,

our methods outperformed the WOAD method on all the

temporal offsets. In addition, for ActivityNet1.2, there are

no available official codes for ODAS task so we only report

our GASD model results.

4.3 Ablation Study
Our performance improvements benefit from (1) the

multiscale sampling strategy (2) the joint training of BG/FG

and SPL branch (3) the novel MLP-based start point detec-

tion model.The contribution of each module/strategy in the

proposed solution is summarized in Table 2. To make the

results more consistent, the offline tests on THUMOS’14

are used to evaluate all the model variants.The joint training

of SPL and BG/FG branch will improve the performance of

GASD by 3%−4% due to the additional regularization. The

new proposed MLP3D algorithm together with the multi-

scale sampling scheme will further gain 4% improvement

in precision as well.

We also compared our proposed method with WOAD on

efficiency. Though our proposed methods has more param-

eters (136M) compared to WOAD (110 M), our FLOPS is

1.6G, which is only half of the WOAD model’s. Moreover,

our MLP-based method is more easily to be optimized (e.g.,

weight pruning or integer aware training), making it a more

edge device friendly algorithm. Take another closer look

at Table 1, it also shows the limitation of directly applying

the current ODAS methods to the newly proposed GASD

tasks. The ODAS related solutions strongly depend on the

category-dependent prior knowledge and frame-level anno-

tations, which is unavailable for GASD task. Therefore, the

start point localization module from the ODAS task is not

as capable as our proposed method for the GASD task.

Moreover, our proposed GASD algorithm is versatile

and can be easily extended for the ODAS task. Either a

Multi-class action classification branch or a third loss to

learn the action categories can be added on the top of the

current GASD architecture. Adopting the same evaluation

1https://github.com/salesforce/woad-pytorch
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Evaluation on THUMOS’14 Dataset
Offsets (second) 0.1 0.3 0.5 0.8 1 2 3 4 5 6 7 8 9 10

WOAD 0.9 13.1 14.0 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1

Ours 4.1 13.3 14.1 16.1 17.9 21.2 22.4 25.7 26.2 26.7 28.8 29.1 29.3 29.5
Evaluation on ActivityNet 1.2

Ours - - - - 7.4 16.9 17.5 17.7 18.1 18.1 18.1 18.1 18.1 18.1

Table 1: Evaluation on THUMOS’14, ActivityNet 1.2 For THUMOS’14, the results from WOAD on GASD task is obtained

by using their pretrained models with official codes and removing the action classification part. For both two datasets, using

p-mAP at depth Rec=1.0.

criteria, our modified GASD model can achieve competi-

tive performance with 19.6%-45.5% mean P-AP over 1-

10s offset. The reported SOTA performance on ODAS

tasks are [4] 19.5%-39.8% mean P-AP with appearance

feature only and [5] 21.9%-53.1% mean P-AP with two-

stream features over 1-10s offset on THUMOS’14 dataset.

The performance gap between our modified GASD and

WOAD [5] on the ODAS task owes to the fact that only

the appearance feature is used in our GASD model while

additional motion features will also contribute to the ODAS

task.

5 Conclusion
In this paper, we propose a new task GASD that fo-

cuses on learning the intrinsic action characteristics for

taxonomy-free action start detection. Our proposed archi-

tecture, MLP3D, is designed to independently determine

the action start point for each input video clip and thus has

low demand for prior knowledge from previous frames. The

experiment results demonstrate that the proposed method

achieves the State-of-the-Art performance on the GASD

task with high efficiency that enables the potential for edge

device deployment.
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