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Abstract—Edge computing capabilities in 5G wireless networks
promise to benefit mobile users: computing tasks can be offloaded
from user devices to nearby edge servers, reducing users’ expe-
rienced latencies. Few works have addressed how this offloading
should handle long-term user mobility: as devices move, they
will need to offload to different edge servers, which may require
migrating data or state information from one edge server to
another. In this paper, we introduce MoDEMS, a system model
and architecture that provides a rigorous theoretical framework
and studies the challenges of such migrations to minimize the
service provider cost and user latency. We show that this cost
minimization problem can be expressed as an integer linear
programming problem, which is hard to solve due to resource
constraints at the servers and unknown user mobility patterns.
We show that finding the optimal migration plan is in general NP-
hard, and we propose alternative heuristic solution algorithms
that perform well in both theory and practice. We finally validate
our results with real user mobility traces, ns-3 simulations,
and an LTE testbed experiment. Migrations reduce the latency
experienced by users of edge applications by 33% compared to
previously proposed migration approaches.

I. INTRODUCTION

Cloud computing is a popular way to access computing
resources and generated 20.6 Zettabytes of traffic in 2021,
compared to 6.8 Zettabytes in 2016 [1]. While it offers flexible
and scalable access to plentiful resources, sending data to
and from remote cloud servers may incur unacceptably high
latencies. For example, augmented reality (AR) on mobile
devices requires remote computing for compute-intensive tasks
[2] that must be completed quickly.

The ongoing deployment of 5G technologies will soon
allow cellular service providers to offer low-latency edge
computing services. By separating the user plane from the
control plane function, a 5G network now explicitly supports
edge services by using a unified gateway called UPF (User
Plane Function) [3] that can be integrated with MEC (Multi-
access Edge Computing) [4] near or co-located with a 5G base
station distributedly [5], [6]. Such systems have been proposed
to reduce latency and bandwidth consumption in offloading
computations from mobile devices to nearby servers [7]–[10]
and reducing mobile device battery consumption [11]. A sim-
ple diagram of an edge computing system is shown in Figure
1. The mobile user in the vehicle offloads computations (e.g.,
inferences from large machine learning models) to the nearest
edge server, which is geographically closer than the cloud

Fig. 1: A mobile user’s task is migrated between edge servers.

server. However, to maintain their geographical advantage over
cloud servers, multiple edge servers should be deployed across
the service region, like the servers in Figure 1.

A. Challenges: Edge Computing and Migrations

Despite latency benefits, deploying edge computing raises
research challenges. Edge servers generally have fewer
available resources and higher operating costs than cloud
servers [7]. Edge computing solutions must also handle user
mobility [12]–[14]: as users move, their applications should
be serviced at a different and closer edge server to min-
imize latency. However, migrating an application’s virtual
machine (VM) or container from one edge server to another
utilizes potentially limited bandwidth on links between the
edge servers, and occupies resources on both the source and
destination servers since applications need to maintain an
active edge server connection during migration. Finding the
optimal placement that balances these constraints with user
needs is then difficult: user applications should coordinate to
avoid overwhelming edge server and link capacities.

Placing applications on edge servers becomes even more
difficult when user mobility is not fully known: application
migration takes time, making reactive solutions that migrate
only after a user has moved ineffective [12]–[14], and a
misplaced migration may incur a higher cost than no migration
at all. Users with different mobility patterns, e.g., car drivers
versus pedestrians, may then need different migration plans,
greatly enlarging our plan search space since users should also
coordinate to respect capacity constraints. Machine learning
algorithms embedded in 5G networks may predict short-term
user movement [15], [16], but long-term patterns may not be
known in advance. Simple solutions to alleviate uncertain mo-



bility predictions, such as continuously replicating applications
across multiple servers, require prohibitive amounts of edge
resources. We address these challenges.

B. MoDEMS: Mobility Dependent Edge Migration System

In this paper, we propose MoDEMS (Mobility Dependent
Edge Migration System) for generating migration plans. In
more detail, our technical contributions are as follows:

• We design the first system that optimizes edge computing
deployments using a rigorous theoretical framework to
jointly address practical deployment challenges of re-
source constraints, mobility uncertainty, concurrent mi-
grations for multiple users, and implementation overhead.

• We formulate a linear integer optimization problem to
optimize latency and resource costs given diverse user-
specific mobility models. We show the problem is NP-
hard due to the concurrent service of users despite re-
source constraints. We propose a distributed heuristic that
optimizes over user-specific mobility and intelligently
minimizes users’ coordination across different resources,
showing analytically that it performs and scales well.

• We perform extensive experiments to evaluate the linear
integer optimization solution and variations of our pro-
posed heuristic on real user mobility traces [17], ns-3
simulations, and an LTE testbed. The heuristic outper-
forms previous methods that do not consider mobility
prediction or resource constraints by 20 to 35% .

The remainder of this paper is organized as follows. Sec-
tion II contrasts MoDEMS with related works. Section III
presents the system model and MoDEMS architecture. We
then show in Section IV that the MoDEMS model allows us
to formulate a linear integer optimization problem for edge
migrations. Section V analyzes the complexity of this problem
and theoretically examines our proposed scalable heuristic so-
lution. Finally, we experimentally validate our work compared
to prior approaches in Section VI. We conclude in Section VII.
All proofs are provided in our technical report [18].

II. RELATED WORK

Virtual machine (VM) migration is a major research chal-
lenge in edge computing [14], [19], [20]. Prior works of [21]
and [22] develop integer programming problems similar to
ours. However, these works propose reactionary migration
policies that do not utilize user mobility predictions [21]–[25].
Other works have proposed dynamic policies given unknown
costs of migration that follow Markovian user mobility pat-
terns [26] or use Markov decision processes [25], [27]. How-
ever, such works generally do not consider resource capacity
constraints at edge servers, which may force applications onto
the cloud if resources run out. They also do not predict
individual user movement, imposing the same migration policy
on all users at the same location. Our evaluation shows that
MoDEMS significantly (by > 20%) lowers costs by consider-
ing both these factors. Lyapunov optimization frameworks are
used as well [28], [29], while [30] simultaneously allocates
bandwidth and compute resources to different users.

As we show in Section V, resource constraints make the
optimal migration problem considerably more difficult. Works
accounting for resource constraints that allow VMs to con-
currently run on multiple edge servers simplifies the optimal
migration problem and may not be practical [31], [32]. Other
works analyze the allocation of computation and bandwidth
at an operating system level, dividing tasks between local
devices and edge servers [24], [33]. In comparison, we present
the first theoretical framework and algorithms that (i) con-
sider resource constraints, long term migrations, and variation
between individual users, (ii) validate its effectiveness with
realistic network experiments and (iii) design a distributed
method to navigate the larger search space that results from
individualized mobility predictions instead of uniform ones.

Migration in edge computing has also been studied in the
context of complex event processing (CEP) applications [34],
[35], in which streams of information from multiple mobile
sources must be jointly analyzed at an edge server. However,
that work does not use formal mobility models or optimization.

Network function virtualization (NFV) and software-defined
networks (SDN) similarly aim to deploy service chains inside
VMs hosted on geographically advantageous edge nodes to
decrease bandwidth usage and latency [36], [37]. However,
the middleboxes do not migrate according to user mobility.

III. MODEMS SYSTEM MODEL AND ARCHITECTURE

This section builds a system model that depicts the physical
system of edge nodes and users (Section III-A). We formalize
data migrations within this model in Section III-B.

A. Physical Model

We consider an edge computing service provider with
multiple edge servers, e.g., located at mobile base stations.
The provider has S servers to service U users, each with one
process request, who can offload computation tasks to any of
the edge servers by opening a personal VM or container on
that server (our framework can model either), each of which
serves one process at a time. Although we associate each user
with a single process (e.g., one mobile application), our model
can be easily extended to multiple processes per user.

We let [X] represent the set {1, 2, ..., X}. We consider
discrete time steps t ∈ [T ]. While our model is agnostic to the
exact time step length, in practice, the time steps would likely
last a few minutes. At this granularity, we can meaningfully
represent user movement around a city via their locations
at different times, while ensuring that migrations complete
within a single time step. For simplicity and following prior
work [38], all users enter the system at time t = 1 and exit
at t = T , though their requests may start after t = 1 and end
before t = T . Table I summarizes our notation.

Servers and links. We suppose that the servers are dis-
persed across a given geographical region. Each server s has
its resource capacity defined by the vector Rs, which may
include CPU, RAM, and storage provided to process VMs.

We assume that servers will have wired connections with
one another following a given network topology. For example,



Rs n× 1 vector for capacities of n resource types at server s #»cs n× 1 vector of each unit resource cost at server s

hu,t1,t2
s1,s2

Decision variable returning 1 for migration for user u between
time steps t1 and t2 from server s1 to s2 and 0 o.w

#  »wu
n× 1 vector representing the amount of resources required
of each type for user u’s process

qtu,s
Binary indicator variable that returns 1 if the process for user
u is at server s at time t and 0 otherwise ϵu

Migration amount for the VM of user u in terms of total
bandwidth consumption

ju,ts1,s2
Migration rate fraction ([0, 1]) that returns the portion of the
VM migrated for user u at time t from server s1 to s2

Wu
Consumption of service bandwidth per unit time step between
user and process VM for user u

gtu,s
Variable that returns 1 if a VM migration is taking place
to server s at time t for user u and 0 otherwise Zs1,s2

Cost of using unit amount of bandwidth for single time step
between servers s1 and s2

B S × S vector of bandwidth capacity between servers Y u,t
r Actual latency experienced by user u at time t

itu,s Binary indicator of 1 if user u at server s at time t and 0 o.w. Y u
x Maximum latency limit for user u

P [itu,s] Probability ([0,1]) of user u being at server s at time t Du
Y Monetary value of latency violation per unit for user u

TABLE I: Physical system variables (left), cost and migration graph variables (right).

edge servers may be connected to regional controllers in
a hierarchical topology or with direct-wired links to each
other [34]. For simplicity in presentation and analysis, we
assume that all servers are connected directly with one another.
All communication between any two servers (migrations and
service) occurs only through the link directly connecting the
two servers. Our system set up and analysis can easily extend
further to scenarios with more realistic topologies as well.

User mobility. If we know how users will move over time,
or if we are only concerned with past locations, we use the
variable

{
itu,s; t = 1, 2, . . . , T

}
, a binary indicator of whether

user u is closest to server s at time t. If user mobility is
being predicted for future time steps and not known with full
confidence, we set the variable itu,s = P [itu,s] to indicate the
probability that user u is at server s at time t; thus P [itu,s] is a
continuous variable in [0, 1]. This model is quite general and
can represent individual user movement that follows a range of
typical mobility models, e.g., Markovian mobility as in [38].

User service. We use qtu,s to indicate at which server a
VM for user u is located. Note that this is not necessarily the
closest server to the user u’s location. Users at any location in
the region will always connect to the geographically closest
server, captured by the variable itu,s and predicted by P [itu,s].
From there, the user will pull data as needed from the VM at
the server indicated by qtu,s over the network backbone.

B. MoDEMS Architecture

System Modules. Figure 2 displays a flow diagram of
MoDEMS’ system modules, implemented in a distributed
manner. The process begins with the user spawning a VM
at the closest available edge server. The central controller,
e.g., the 5G Radio Intelligent Controller [15] potentially at
a cloud, coordinates access to multiple 5G base stations, each
equipped with an edge server. Using the resource tracker and
mobility data, the controller gathers compute and bandwidth
resource availability as well as user movement patterns by
communicating with the edge servers. The mobility predictor
uses the stored mobility data to generate probabilistic predic-
tions of future movements for specific users. This information
is then sent to a plan generator at each user’s VM, where it is
used to generate migration plans. In a centralized MoDEMS
system, the plan generator is instead placed at the central
controller. Our goal is to develop an effective and efficient

Fig. 2: Flowchart of the distributed approach on solving the
edge computing migration problem via MoDEMS.

Fig. 3: Simple migration graph used to capture physical model
and cost of edge computing system. A migration plan is
extracted from the dotted path in red. The migration plan is
also described in terms of the optimization variable hu,t1,t2

s1,s2 .

plan generator, which can be understood as optimizing over a
migration graph, as we discuss below and in Section IV.

Migration Plan Generation. The migration graph data
structure visualizes a process’s migration decisions and associ-
ated costs [34], [39]. It has a start and end node before the first
time step and after the last time step respectively. For notation,
we set the server index for both the start and end nodes as
s = 0. We define the other nodes in the migration graph as
server-time pairs, representing the possible placements of a
VM at every time step. An edge between the vertices (s1, t1)
and (s2, t2), s1 ̸= s2, represents a migration from server s1 to
server s2 that starts at time t1 and ends at time t2 > t1. During
a migration, the process remains at the source server, while a
copy VM is built at the destination. Unlike prior work [26],
[38], [40], we may have t2 > t1 + 1, i.e., migrations may
take place over multiple time steps. This ability may allow
more migrations to take place if there is limited bandwidth
to migrate. If s1 = s2, the edge represents simply staying at
server s1. Such edges only last one time step since long-term



edges are redundant. We associate each edge with a weight
that represents the per-unit costs of taking that path on the
migration graph, as defined in Section IV. Figure 3 depicts a
migration graph over three time steps in a two-server system.

For each VM of user u, we define a feasible migration
plan as any path, or continguous sequence of edges, from
the start node to the end node in the migration graph. Thus,
VMs can only migrate to one server at any time. We represent
a migration plan for user u’s VM by defining the indicator
hu,t1,t2
s1,s2 as equal to 1 if the path from server s1 to s2 and

from time t1 to t2 is included in the migration plan, e.g., the
dashed migration plan in Figure 3, and 0 otherwise.

We ensure the feasibility of the chosen migration plan by
constraining

{
hu,t1,t2
s1,s2

}
to ensure that (i) every entry to a

node on a migration graph must have a departure, and (ii)
a migration plan leaves the start node exactly once while
arriving at the end node exactly once. In terms of notation,
x ∈ ([X] > xo) indicates the set {xo +1, xo +2, ..., X}, with
analogous definitions for x ∈ ([X] ≤ xo) and x ∈ ([X] ̸= xo).
Furthermore, s ∈ {0, [S]} represents a set {0, 1, ..., S} to
include the server index for the start and end node. Formally:∑
t1∈([T ]<t)

∑
s1∈(0,[S])

hu,t1,t
s1,s =

∑
t2∈([T+1]>t)

∑
s2∈(0,[S])

hu,t,t2
s,s2∑

s∈[S]

hu,0,1
0,s =

∑
s∈[S]

hu,T,T+1
s,0,1 = 1.

(1)

To ensure that edges that do not exist cannot be taken, we
constrain hu,t1,t2

s1,s2 ≤ Hu,t1,t2
s1,s2 . Hu,t1,t2

s1,s2 returns 1 if an edge
from s1 to s2 and from t1 to t2 is viable, and 0 otherwise.

We can now define qtu,s in terms of the migration plan
variables hu,t1,t2

s1,s2 . If a process for user u is being migrated
from s1 to s2, it is serviced by s1 until the migration finishes.

qtu,s =
∑

s1∈[S]

∑
t1∈([T ]<t)

∑
t2∈([T ]≥t)

hu,t1,t2
s1,s

−
∑

s2∈(0,[S])

∑
t3∈([T ]<t)

∑
t4∈([T ]≥t)

hu,t3,t4
s,s2

(2)

We can then define the variable ju,ts1,s2 ∈ [0, 1] as the rate
of transfer at time t during a migration from s1 to s2. For
example, if hu,t,t+1

s1,s2 = 1, then ju,ts1,s2 = 1 as the entirety of the
process has been migrated between time t and t+ 1.

ju,ts1,s2 =
∑

t1∈([T ]≤t)

∑
t2∈([T ]>t)

hu,t1,t2
s1,s2

t2 − t1
(3)

For convenience, we also define gtu,s to equal 1 if the
process of user u at time t is in the midst of a migration
to server s, and 0 otherwise. Thus, gtu,s = 1 if and only if
hu,t1,t2
s1,s = 1 for some server s1 ̸= s, and time t1 ≤ t < t2:

gtu,s =
∑

s1∈([S] ̸=s)

∑
t1∈([T ]≤t)

∑
t2∈([T ]>t)

hu,t1,t2
s1,s (4)

IV. OPTIMIZATION PROBLEM FORMULATION

In this section, we show that finding the migration plan
in the centralized MoDEMS scenario can be formulated as a

linear integer program. We consider two types of costs: the
operational cost, which is incurred by the service provider of
operating the edge servers and links; and the user dissatisfac-
tion cost, the compensation required when the service provider
cannot meet users’ quality-of-service (QoS) requirements, e.g.,
if it incurs high latencies. This compensation may be enforced
via service level agreements between users and the edge
provider. In order to formulate the problem, we assume known
arrival and departure times of all processes, which we relax
in Section V. Table I summarizes our notation.

Operational Cost. The operation cost includes both place-
ment and bandwidth cost. The placement cost incurred for a
single user during a single time step is the sum of the costs
of using each type of resource at an edge server s. With #»c s

and #  »wu as the cost and demand vectors of each resource at s
for user u respectively, the placement cost is:

CP =
∑
t∈[T ]

∑
u∈[U ]

∑
s∈[S]

(gtu,s + qtu,s)(
#»w⊺

u
#»c s), (5)

since user u utilizes resources at s both when it is located at
s
(
qtu,s = 1

)
and in the process of migrating to s

(
gtu,s = 1

)
.

The bandwidth cost includes the cost of migrations, CBm
,

and the use of network bandwidth to service processes, CBs

(e.g., for conveying the results of edge server computations to
the user device). The amount of bandwidth used for migration,
Bm, is then defined as

∑
t∈[T ]

∑
u∈[U ] B

u,t
m where: Bu,t

m =

ϵu
∑

s1∈[S]

∑
s2∈([S] ̸=s1)

ju,ts1,s2 , i.e., the migration size ϵu mul-
tiplied by the rate of migration

(
ju,ts1,s2

)
. The cost of bandwidth

used for migrations is CBm =
∑

t∈[T ]

∑
u∈[U ] C

u,t
Bm

, where
Cu,t

Bm
is the sum of each term in Bu,t

m multiplied by the link
cost Zs1,s2 .

Similarly, the amount of bandwidth used for service
Bs is defined as

∑
t∈[T ]

∑
u∈[U ] B

u,t
s where: Bu,t

s =

Wu

∑
s1∈[S]

∑
s2∈([S] ̸=s1)

iu,ts1 q
u,t
s2 . Here, Wu is the throughput

of the service bandwidth demanded by u that travels to and
from the user

(
iu,ts1

)
and VM server

(
qu,ts2

)
. The resulting cost

is CBs =
∑

t∈[T ]

∑
u∈[U ] C

u,t
Bs

, where Cu,t
Bs

is the sum of the
terms of Bu,t

s multiplied by the link usage cost Zs1,s2 . When
the bandwidth is owned and allocated by the operator [30], it
is possible to omit the costs related to bandwidth.

User Dissatisfaction Cost. We measure user dissatisfaction
by the latency of user’s experienced service, i.e., the time of
communication between the user and the server hosting its
process. We suppose that each user u specifies a threshold of
maximum latency Y u

x , with an increasing user dissatisfaction
cost at latency above Y u

x . For example, this cost may represent
a user’s future unwillingness to use the edge system or
monetary compensation for the system being unable to provide
the specified maximum latency. VR and AR applications, for
instance, may have such costs when the latency rises above a
user perception threshold [2]. The latency violation cost CY =∑

t∈[T ]

∑
u∈[U ] C

u,t
Y is defined as: Cu,t

Y = max(0, Y u,t
r −

Y u
x )Du

Y . The value Y u,t
r is the actual latency experienced

by user u at time step t, which depends on the physical
distance between the VM server and the server to which a user



connects: Y u,t
r =

∑
s1∈[S]

∑
s2∈([S] ̸=s1)

L(s1, s2)i
u,t
s1 q

u,t
s2 . The

value of L(s1, s2) represents the latency incurred over a direct
link between servers s1 and s2. The constant Du

Y represents
the monetary value of the usability the user has lost.

Formulation. Given the placement, bandwidth, and user
dissatisfaction costs, we wish to solve the problem:

min
h∈H

Ctotal = CP + CBm + CBs + CY (6)

s.t. (1),
∑
u∈[U ]

(gtu,s + qtu,s)(
#»wu) ≤ Rs∀s, Bm +Bs ≤ B

where we have imposed server and link capacity constraints.

V. SOLVING THE OPTIMAL MIGRATION PROBLEM

In this section, we discuss solution algorithms for problem
(6). We show that the problem is NP-hard and propose heuris-
tic solution algorithms that have only quadratic complexity. We
then analyze our algorithms’ ability to handle the challenges
of resource constraints and unknown user mobility.

A. Complexity Analysis

We begin by establishing the complexity of the migration
graph that we define in Section III-B.

Proposition 1 (Number of migration paths). The number of
migration paths for a process grows at least as fast as O(ST ).

Proof: For each t ∈ [T ], there are S possible locations
for a given process. Since a migration plan must place the
process at a server at each time step, the result follows.

As we might expect from Proposition 1, the optimization
problem of finding the best path for each process is NP-hard:

Proposition 2 (NP-hardness). Solving (6) is NP-hard.

Proof: The generalized assignment problem, which is NP-
hard [41], is a special case of (6).

Despite the exponential growth of the migration graph with
respect to the number of time steps, the proof of NP-hardness
considers only a single time step. The main difficulty in
solving this problem arises from the need to concurrently
determine migration plans for multiple users.

Choosing the migration plan for a single user in isolation
is similar to finding the shortest path through the migration
graph, which is solvable in polynomial time [42]. This intu-
ition informs our proposed solution heuristic, Seq-Greedy.

B. Seq-Greedy Solution Heuristic

Our proposed Seq-Greedy method can be run in either a
centralized or distributed (Figure 2) MoDEMS deployment.
The distributed Seq-Greedy method begins by generating a
migration graph for each process at the edge server that is
available and initially closest to the user. Once migration
graphs are created for all processes in the system, migration
plans are generated by optimizing over the migration graph.
Unlike the linear integer programming approach, the Seq-
Greedy approach generates one migration plan at a time, and
thus does not require knowledge of the arrival and departure
times of processes in the system. The shortest path is found

along the migration graph and is set as the temporary migration
plan. The plan is then broadcast to the central controller. If
there are enough computation and bandwidth resources to
support it, the necessary resources are reserved by the central
controller. Otherwise, the migration graph is edited to remove
the nodes and edges with no resources and the sequence is run
again. Unlike the static optimization approach, Seq-Greedy is
a dynamic algorithm that solves for jobs arriving in real time.
This method is much more scalable than outright solving the
migration optimization problem:

Proposition 3 (Complexity of Seq-Greedy). The number of
edges and vertices in the migration graph grows as O

(
S2T 2

)
for large numbers of servers and time steps. The complexity
is equal to O

(
D(S2T 2)

)
, where D(x) denotes the complexity

of finding a shortest path in a graph with x vertices.

This result implies that generating the migration graph
incurs a cost that grows quadratically with the numbers of
servers and time steps. Finding a migration plan given the
migration graph, on the other hand, is simply equivalent
to finding the shortest path for each process in sequence.
Djikstra’s algorithm, for instance, runs in O

(
S4T 4

)
time

[42]. We further note that the shortest path algorithms can be
implemented distributedly across the different vertices. Thus,
the edge servers can solve the migration plan with only the
resource information from the cloud controller. This property
is particularly useful when users cross from one controller
domain to another, as it removes the need for complex handoff
mechanisms. The distributed method also leverages existing
computation resources at the edge to compute migration plans.

Next, we introduce in Algorithm 1 the batch method
that is designed to handle stochastic and individualized user
movement. In lines 4-15, the batch method defines a series
of time windows and creates one migration graph for each
window. It iteratively generates plans for all users using Seq-
Greedy for each window and executes the plan. We expect
this approach will yield better plans, as the user mobility
predictions are improved by conditioning on the user’s location
at the end of each time window, as seen in line 5. Although
Algorithm 1 assumes that all users have equal sized batches
generated at the same time step, variable window lengths
across users are possible. Like Seq-Greedy, the batch method
is also a dynamic algorithm that further reduces the time
horizon for which the migration problem is solved. Although
the batch method makes long-term migrations spanning time
lengths greater than the windows impossible, it limits the
complexity of the Seq-Greedy method by limiting the number
of time slots considered within time window.

We note that reducing the number of servers provides an
equivalent reduction in Seq-Greedy’s complexity as reducing
the number of time steps (Proposition 3). Indeed, if resources
are not too constrained, then a server far away from a user
is unlikely to be optimal due to high latency costs. Since
Seq-Greedy considers each user individually, we can remove
servers from migration graphs depending on individual users’
movement predictions. We introduce a new parameter γ such



Algorithm 1: Batch method for all users in the system

1 Upon trigger batch plan(jobs, users, num batch);
2 batch id ← 1;
3 while batch id ≤ num batch do
4 for u ∈ users do
5 usr MC(u) ← update user MC(u);
6 mig graph(u) ←

make batch graph(usr MC(u), jobs(u));
7 check(u) ← false;
8 while check is false do
9 mig plan(u) ← make plan(mig graph(u));

10 check(u) ← reserve resource(mig plan(u));
11 mig graph(u) ← update resource()
12 end
13 end
14 execute(mig plan);
15 batch id ← batch id + 1;
16 end

Fig. 4: The truncation method is used to disregard servers
when generating the migration graph based on user movement
distribution. We include servers that are within the user
movement radius (ϕ1(r)), and those that are outside but have
service areas overlap with the user movement area (ϕ2(r)).

that we only include servers s in the user’s migration graph if
the probability that a user lies in s’s coverage area at time t
is at least γ. We evaluate this truncation method’s impact on
the system complexity in terms of γ in Section VI.

Deciding which servers to truncate then lies in determining
the probability that the user will lie in each server’s coverage
area at a given time. To do so, we define Xt

u as user u’s
location after t time steps, given a stochastic mobility model.
Using [43]’s results on two-dimensional random walks, we
can find the cumulative distribution function FXt

u
for the

magnitude of travel for user u at time t. Thus, with probability
γ, user u is located within a circle of radius F−1

Xt
u
(γ).

We finally estimate the reduction in complexity due to
truncation. Let ϕ(r) denote the expected number of servers
whose coverage areas intersect a circle of radius r. As seen
in Figure 4, if a server’s coverage area intersects a circle of
radius r = F−1

Xt
u
(γ), then it must include at least one point

on the circumference of this circle. We can then define the
probability distribution of the expected distance from each
point z to its closest server, Fl = mins∈[S] {∥ls − z∥2} where
ls denotes the location of server s and is uniformly distributed
over the region. Then with probability Fl(ρ), all servers

included in our truncation lie within a larger circle of radius
ρ+F−1

Xt
u
(γ) around the user’s location, i.e., E

[
ϕ
(
F−1
Xt

u
(γ)

)]
≤

π
(
F−1
Xt

u
(γ) + ρ

)2
S
A with probability Fd(ρ), if the servers are

uniformly distributed throughout the service region. Here, A
represents the total physical area of consideration. In Sec-
tion VI, we show that taking γ = 0.9 leads to 25% fewer
edges in the user migration graphs, significantly reducing Seq-
Greedy’s complexity with little increase in cost.

C. Optimality of Our Seq-Greedy Heuristic

We assess the optimality of our heuristic, focusing mainly
on how the presence of resource constraints and unknown user
mobility change the optimal migration plans and make finding
the optimal plans more difficult.

Effect of resource constraints. We first consider an al-
ternative method for solving (6): relaxing the integer linear
program and rounding the solution to an integer solution:

Proposition 4 (Optimality of the relaxed problem). Suppose
all bandwidth costs equal zero (CBs+CBm = 0), and network
resource constraints do not exist. Then if all processes have the
same size #»wu = #»w at every time step and the server capacities
Rs are integer multiples of #»w, the optimal solution of (6) is
the same as the optimal solution to the relaxed version of (6)
where we let hu,t1,t2

s1,s2 ∈ [0, 1].

Proof: We show that the solution to the relaxed problem
is integral, and thus solves the original problem (6). The key
step is to recognize that the cost of any fractional solution can
be reduced by shifting processes between servers.

The assumption that all processes have the same size may
hold if we consider a specific application from multiple
users, e.g., small VMs that store machine learning models
occasionally called by the application. In general, however, we
may consider heterogeneous applications, as in Section VI’s
evaluation. Thus, we next analyze Seq-Greedy. Proposition 1
suggests that the edge servers’ capacity constraints signifi-
cantly contribute to the complexity of solving the optimization
problem. We verify that intuition by showing that Seq-Greedy
is optimal with no resource constraints:

Proposition 5 (Seq-Greedy optimality with sufficient re-
sources). Given enough resources to serve all users simultane-
ously, i.e.,

∑U
u=1 2

#»wu ≤ Rs; ∀s,
∑U

u=1 B
u,t
s +Bu,t

m ≤ B; ∀t,
Seq-Greedy converges to the optimal solution of (6).

Proof: The assumption of sufficient resources allows us
to ignore the resource constraints; thus, (6) reduces to finding
the minimum cost migration path for each process. Since the
objective is additively separable across users, it decomposes
into minimizing each user’s cost, independent of the other
users. This is exactly our heuristic.

When resource constraints are effective, we do not expect
Seq-Greedy to generally find the optimal solution. However,
we can show that it out-performs a baseline algorithm that
does not take mobility into account:



Proposition 6 (Comparison with a naı̈ve baseline). Suppose
S = 2 and that #»c 1 = #»c 2. Then if Seq-Greedy finds migration
paths for users in descending order of Wu, the resulting total
cost is no greater than that incurred without migrations.

Proof: It suffices to consider only those users whose
server assignment deviates from the optimal migration path
without constraints. The result follows on observing that the
cost incurred in the timeslots with such a deviation is no larger
than that incurred when all users remain stationary.

Thus, at least when there are few servers present, Seq-
Greedy out-performs a naı̈ve static baseline, for any number
of users. The assumption that S = 2 is reasonable if users
have limited mobility, e.g., among students who stay on a
college campus; or if edge servers serve large areas, e.g., mini-
datacenters serving city neighborhoods. We numerically show
that this result still holds for S > 2 servers in Section VI.

Effect of movement uncertainty. We now consider our
algorithm performance in the context of our second challenge,
uncertain user mobility. While we might expect that a stochas-
tic formulation would help the migration plan better track user
movement, in some cases uncertainty can actually hurt:

Proposition 7 (Migrations with uncertain mobility). If user
movements are Markovian, then for T sufficiently large there
exists a time tu < T for each user u such that for t ≥ tu, the
optimal migration plan does not migrate u’s VM.

Proof: The result follows from the convergence of the
distribution of user locations to a steady state.

In essence, under a stochastic mobility model users’ move-
ment is eventually so uncertain that there is no value to mi-
grating. Thus, even when Proposition 6’s conditions hold and
the optimal migration plan should outperform the stationary
solution with known mobility, when mobility uncertainty is
introduced into the model the stationary solution becomes op-
timal. Our batch method avoids this result by re-optimizing the
migration every few time slots, and we show in Section VI that
it indeed outperforms Seq-Greedy given stochastic mobility.

VI. EVALUATION

In this section, we numerically evaluate MoDEMS, validat-
ing, and going beyond Section V’s results. Specifically, we aim
to show that we have solved the primary research challenges
introduced in Section I: designing a feasible migration algo-
rithm that (i) scales to realistic edge computing systems, (ii)
respects the lack of resources at edge servers and links, and
(iii) optimizes over uncertain user movement. After describing
our experimental setup, we examine the achieved scalability
and cost of Seq-Greedy and our proposed variants compared
to baseline algorithms, under different resource constraints
and mobility patterns. We finally evaluate the improvement in
edge user experience with Seq-Greedy in a realistic network
environment simulated by ns-3 [44] and a LTE testbed.

A. Numerical Analysis Setup

We use synthetic server locations spread out evenly within
an area of 5 miles by 5 miles. We consider edge servers with

limited resources, aggregation servers with more resources,
and a cloud server with high resources and latency. All edge
servers are connected to the closest aggregation server, and
all aggregation servers are connected to the cloud server.
Initial locations of users are drawn from a uniform distribution
and Markovian user movements are estimated from the Yon-
sei/Lifemap mobility dataset [17]. The size of the simulation
space is set based on the area of downtown Seoul, South Korea
(where the traces are from), an urban area typical of edge
computing deployments [45]. Time steps are five minutes long
unless otherwise stated.

To evaluate the effects of resource limitations, the simula-
tions are run with either limited or ample resources. In the
limited resource setting, resource capacities are drawn from
uniform distributions such that edge servers on average can
service 2.5 processes simultaneously and each link can migrate
six processes in a single time step. Resource constraints do
not affect migration decisions with ample resources. Servers
provide three resources: CPU cores, RAM, and storage, with
prices per five-minute time step of $0.02 per CPU core, $0.01
per GB of RAM, and $0.02 per GB of storage, following
current cloud prices [46]. Process sizes are chosen to simulate
VR, AR, and personal assistant applications as measured
in [47], [48]. To conserve space, we do not separately examine
the effects of limited edge server and link capacity resources.

We compare our proposed Seq-Greedy approach and its
batch and truncation extensions to the optimization approach
and three baselines. The naı̈ve approach minimizes the cost
with no migrations while choosing the closest server avail-
able, as in SDN/NFV placement optimization [36], [37]. The
myopic approach migrates processes to the closest feasible
server at every time step, as in reactive migration frameworks
[20]; this comparison shows the value of predicting individual
user mobility. The cloud approach generates migrations that
minimize user costs without considering resource constraints,
as in [27]. The cloud then serves processes violating resource
constraints, showing the value of accounting for these con-
straints in the optimization itself.

Unless otherwise stated, we show the average and standard
deviation of results over 5 to 10 trials.

B. Comparing the Different Migration Plan Methods

We first compare Seq-Greedy and the batch method to the
optimal migration solution and our three baselines, under our
two resource scenarios. We then show how an operator might
choose the batch length and truncation parameters before
evaluating the effect of different user mobility patterns on Seq-
Greedy’s cost and recommended migrations.

Comparison to optimal approach. We compare the cost
achieved by the optimization and Seq-Greedy approaches un-
der limited and ample resources in Figure 5a. The optimization
has a slightly lower cost, since the Seq-Greedy method places
processes sequentially. Under ample resources, their perfor-
mance is equivalent (Proposition 5). As we would expect from
Section V-A’s complexity analysis (Propositions 1–3), the
number of edges in the migration graph grows approximately



(a) Sub-cost comparison between opti-
mization (ILP) and Seq-Greedy approach
(6 users, 5 servers, 5 time steps).

(b) Cost incurred by different plan meth-
ods for limited and ample resources (20
users, 10 servers, 10 time steps).

(c) Sub-cost of the heuristic and baseline
methods presented (20 users, 10 servers,
10 time steps, limited resources).

Fig. 5: Our proposed Seq-Greedy and batch methods out-perform the cloud, myopic and naı̈ve baselines, though they are not
optimal. BW represents bandwidth cost, while UD represents user dissatisfaction (latency) costs.

(a) Number of servers available at each
time step for migration during truncation
of Seq-Greedy method (30 total servers).

(b) The cost generally decreases with
batch size (7 servers, 10 users, 12 time
steps, and limited resources).

(c) Migrations occur more with faster travel
and smaller batches (20 users, 8 servers, 12
time steps, ample resources).

Fig. 6: Effect of system settings such as batch length, truncation rates, and user speed in plan generation.

Servers
5 10 15 20

Probability (γ)

1.0 TS 5 172 576 1305 2347
TS 20 2071 9166 16736 27624

0.9 TS 5 109 361 687 1198
TS 20 1628 5434 11420 19098

0.7 TS 5 87 224 509 696
TS 20 1554 4834 11202 15835

TABLE II: Average edge counts per user given 30 users for
Seq-Greedy migration graph as a function of radius truncation
probability levels and the numbers of time steps and servers.

quadratically with respect to the number of servers and time
steps (Table II), leading to a runtime for Seq-Greedy that is
two order of magnitude shorter than the optimization approach.

Comparison to heuristic baselines. As seen in Figure 5b,
all plan generation methods induce lower cost with ample
compared to limited resources, as low latency placements
are possible for every process. Seq-Greedy and the batch
method significantly outperform the naı̈ve and myopic baseline
algorithms due to less frequent misplaced VM migrations
compared to user location. Most notably, the batch method
saves 35% in cost compared to the naı̈ve method and 26%
compared to the myopic method under limited resources.
Under limited resources, the Seq-Greedy method outperforms
the cloud method due to lower latencies as processes are not
necessarily placed on the cloud given resource constraints,
while their performances are equivalent given ample resources
as no processes are sent to the cloud. Figure 5c shows the

sub-costs for the Seq-Greedy and batch heuristics without
truncation, as well as the three baseline algorithms. The
heuristic approaches outperform the baselines largely due to
closer process placements and less user dissatisfaction. The
naı̈ve approach does not perform migrations and suffers as
users move away from their original position, verifying that
Proposition 6 holds for more general scenarios. The myopic
method has a lower latency cost incurred than both the Seq-
Greedy and the cloud method due to frequent migrations,
but incurs higher placement and bandwidth usage cost in the
process. The batch approach outperforms the Seq-Greedy and
cloud methods due to its superior predictions of user mobility
by updating its conditioning on the user Markov chain.

Effect of truncation and batch length parameters. We
next examine the truncation technique. Figure 6a shows that
as the truncation probability increases, more servers are in-
cluded for the migration graph. As we would expect, the
number of servers included increases over time for each fixed
truncation probability, as users move further distances from
their current locations. Even a high truncation probability of
0.9, however, reduces the optimization complexity by 25%
(Table II), indicating that truncation is an effective way to
decrease complexity without significantly increasing cost.

The choice of batch length also affects the cost and com-
plexity. As we increase the number of batches from 1 (Seq-
Greedy) to higher values, the migrations per user increases,
as seen in Figure 6c, as there is more certainty in user
locations. Figure 6b similarly shows that the cost falls as the



number of batches increases (which also reduces the algorithm
complexity, as in Table II). When there are more batches
present in the system due to shorter batch lengths, more
frequent updates to user movement predictions allow for better
migrations. However, because shorter batches prevent longer
migrations that cross batch windows, the cost increases again
when the batch length becomes too small, indicating that it
should be carefully chosen to balance the cost effects, given
the uncertainty present in user mobility patterns.

Effect of user mobility. To observe the impact of user
movement on migration plan generation, Figure 6c shows the
number of migrations a typical user undergoes for the lifetime
of the requested service against the average speed per time step
of users drawn from an exponential distribution. Users with
higher average speeds incur more migrations, since the closest
server to the user changes more frequently. Thus, MoDEMS
adapts to different mobility characteristics in different areas.

C. Network Simulator Experiments

We validate MoDEMS’ results by running our migration
plans in a ns-3 simulator that mimics realistic network
delays. We simulate 10 edge servers, each connected to a
base station (e.g., eNB) through a point-to-point connection.
When a user sends a packet, it is received by the virtual
device and then forwarded by IP forwarding to the edge server
connected to the eNB, and then on to another edge server
if needed. All eNBs use the LTE socket with Proportional
Fair scheduling [49] to forward packets to users. The users’
transmission mode is set to MIMO Spatial Multiplexity (2
layers). There are 20 users over 10 discrete time steps of
200s. We compare the performance of the batch (with batches
of 2 time steps each), myopic, and naı̈ve methods when
transferring 1MB of data, which could represent computation
results from the edge, from the VM to the UE per time step.
Low throughput levels between eNBs simulate heavy traffic.

Figure 7a shows the resulting cumulative distribution of the
average request completion times of all 20 users for each plan
generation scheme, after removing outliers. As is consistent
with Figure 5c, the average transmission times are the shortest
for the batch method (31% less than the naı̈ve method),
followed by the myopic, Seq-Greedy, and naı̈ve methods.

D. LTE Testbed Experiments

The importance of preemptive migrations is demonstrated
with LTE testbed experiments (Figure 7b). The testbed has
two eNodeBs (eNBs), UEs (user equipment) in a shield box,
a signal attenuator, and edge servers. The Evolved Packet Core
(EPC, not shown for simplicity) manages the network, includ-
ing connecting to the Internet. We use two commercial indoor
LTE small cell products, Juni JL620 [50], each connected to
an edge server. UEs inside the shield box communicate via
antennas connecting the eNBs and shield box. To emulate
various RF situations, including handover between two eNBs,
we install a signal attenuator between the eNBs and feed its
output to the shield box. By changing the input power of each
eNB, we can emulate a handover where a UE connects to

an adjacent eNB of more robust signals. The wired latency
between the two eNBs is set at 40ms, while wireless latency
between an eNB and UE is approximately 60ms.

We monitor round trip times (RTT) between the UE and
servicing VM over 120 seconds. The VM migration from edge
server 1 to server 2 always starts at time t = 0s, and completes
around t = 80s subject to network conditions. The UE moves
from base station 1 to base station 2 at t = {0s, 40s, 80s}. User
movement at t = 0s represents a reactive migration scheme,
such as the myopic baseline, as the VM migration only begins
after the user has moved. The t = {40s, 80s} cases represent
preemptive migrations, such as the batch method.

Figure 7c shows the resulting cumulative distribution of
the round trip times between the UE and the servicing VM
given different migration times. Consistent with the user
dissatisfaction cost in Figure 5c and the service completion
times of Figure 7a, migration schemes that have preemptive
migrations (e.g. batch method) incur overall lower round trip
times than migration schemes with reactive migrations (e.g.
myopic method) by approximately 33%.

VII. CONCLUSION

While the use of cloud computing has grown in recent
years, the distance between the cloud and the user presents
issues of long latencies and limited bandwidth. Edge and
fog computing mitigate those issues but require the strategic
placement and migration of processes due to user movement.
In this paper, we introduce MoDEMS, the first system to opti-
mize edge computing deployments according to user mobility
with a theoretical framework that jointly addresses practical
deployment challenges, and experimental validation on real
mobility traces and an LTE testbed. We formulate a linear
integer programming problem and the Seq-Greedy heuristic
used to generate migration plans that minimize system cost and
user latency. Seq-Greedy saves orders of magnitude in terms of
overhead compared to the optimization approach. Compared
to a naı̈ve approach that does not migrate processes, a myopic
migration approach that does not attempt to predict user
movement, or a cloud-based approach that does not account for
resource constraints, we can save significant system cost and
improve user experience. Moving forward, we can examine
how migration plans can be generated for processes that serve
many users at once on multiple edge nodes.
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(a) CDF of each user’s average service
completion times in the ns-3 simulator.

(b) Setup of the LTE base station experi-
ments with handover.

(c) CDF of user-VM round trip times for
different preemptive migration times.

Fig. 7: Setup and cumulative distribution functions (CDFs) of measurement results for ns-3 and LTE testbed experiments.
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