
Costa, R., Wang, C. and Baker, J. W. (2022). “Integrating Place Attachment into Housing Recovery
Simulations to Estimate Population Losses.” Natural Hazards Review, 23(4), 04022021.
https://doi.org/10.1061/(ASCE)NH.1527-6996.0000571.
This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil
Engineers.

INTEGRATING PLACE ATTACHMENT INTO HOUSING
RECOVERY SIMULATIONS TO ESTIMATE POPULATION

LOSSES

Rodrigo Costa, Chenbo Wang, and Jack W. Baker

Abstract

Following a disaster, residents of a community may be displaced from their damaged homes, leading to
expensive and lengthy disruption, with many choosing to move away permanently. Population losses may
hinder recovery and exacerbate inequalities across neighborhoods. This study considers household place
attachment and identifies groups with low place attachment along with expensive and slow post-disaster
recovery. We develop a framework to integrate place attachment considerations into housing recovery
simulations. We use data from the American Housing Survey to develop housing and neighborhood
satisfaction models and identify the neighborhoods with the least attached residents. A computational
simulation framework is used to simulate post-earthquake housing recovery for a community and assess
expected costs and time frames. We use the triad of low place attachment, high cost, and slow recovery
to identify households prone to permanently moving away from their communities. A case study of
housing recovery after a hypothetical earthquake near San Francisco is presented to demonstrate the
application of the methodology. We identify that about 10% of the population in some neighborhoods
are prone to moving away after a large earthquake. Households with low-income, renters, and older
buildings are most likely to have low place attachment and experience costly and slow recovery. While
existing approaches rely on heuristics, the approach and results in this paper provide quantitative means
to assess potential population losses and inform efforts to reduce them. The framework to integrate place
attachment into housing recovery simulations is versatile and employs publicly available information
making it transferable to other communities.

1 Introduction

The movement of individuals and households between homes is called residential mobility. Post-disaster
residential mobility may result in population replacement and loss. The former occurs when long-term
residents move away and are replaced with new residents. This process may accelerate gentrification if the
post-disaster area is reconstructed to higher standards [?], or concentrate socioeconomically disadvantaged
persons if the disaster deteriorates local property values and public infrastructures, thereby decreasing local
resettlement by more advantaged residents [?]. Residential mobility may also lead to a permanent decrease
in the population. Population losses are ’one of the most destructive ills of post-disaster cities’ [?, p. 87].
Large-scale residential mobility reduces community cohesion and hinders recovery [??]. Populations losses
as low as 5% to 10% are accompanied by significant economic impacts such as the reduction of the taxpayer
base and reduced demand from local businesses [?]. Displaced persons experience higher unemployment
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rates [?], limited participation in community recovery decisions [?], and the ’cultural trauma’ of forcibly
moving to a new community [?]. Thus, there are multiple benefits of mitigating post-disaster residential
mobility.

As communities continue work to understand and mitigate their disaster risks computer simulations become
a valuable tool to inform planning, for example, as in the HayWired Scenario study in the San Francisco
Bay Area [?]. However, these are complex problems and many of models employed in these simulations are
still being developed and refined by the engineers, planners, and social scientists leading these studies. Due
to infancy of this field, there exist limitations in our ability to simulate of certain processes. Post-disaster
residential mobility is among them. The existing models often assume that residents will wait long periods
to return home and repair as long as they can finance it [e.g., ??], or that residents are perfectly rational
decision makers who will maximize their monetary gains [e.g., ??]. However, scholars have demonstrated
that economic concerns alone cannot explain post-disaster return decisions [??]. There are non-material
aspects of the decision to migrate [?], such as the sense of loss associated with a change in the environment
in which one lives, i.e., solastalgia [??]. The aforementioned HayWired Scenario study acknowledges the
effect of one’s physical and social ties to a place, often called place attachment, on post-disaster decisions
[e.g., ?, p. 11]. Due to the lack of more sophisticated models, the study assumes that a portion of the young,
high-income renters have low place attachment and are the most likely to migrate out of the Bay Area after
an earthquake. While the assumption is justifiable, the insight that the areas with high concentration of
young, high-income renters are the most prone to population losses is a direct consequence of the model
assumptions.

The challenges in the simulation of post-disaster decisions identified in the HayWired Scenario study provide
the inspiration and practical foundation for this study. Here, the goal is to develop a methodology to simulate
the post-disaster decision of the residents with less strict assumptions. This is done in two steps. First, we
review the relevant literature on post-disaster decisions and place attachment to identify suitable ways to
estimate the place attachment of the residents of a community. Then, we use place attachment as the lenses
through which residents of single-family homes evaluate the benefits of staying and repairing against the
option to move away. This approach by-passes the need to define a priori the demographic groups most prone
to leave the community during recovery. Three contributions are offered in this study. First, we develop a
methodology to assess the place attachment of households. The methodology employs publicly available data
and is transferable to other metropolitan regions in the US. Second, we describe a workflow to assess expected
earthquake-induced losses and housing recovery time for urban communities. The workflow is applied to
a case study of San Francisco, and impacts of moment magnitude (M𝑤 ) 6.5, 7.2, and 7.9 earthquakes are
examined. Lastly, we contrast the expected losses and recovery times for individual households with the
results for place attachment. The goal is to identify the neighborhoods whose residents will jointly experience
high losses, long times to regain a sense of normalcy and low place attachment. We argue that the combined
pressure from these three factors is a better predictor of population loss than financial considerations alone.
We identify the neighborhoods and socioeconomic groups with the highest potential for population losses.
This information may help a city target neighborhoods and demographic groups that need help and foster a
healthier post-disaster recovery.
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2 Place Attachment and Disasters

Place attachment describes the deeply rooted bonds that individuals develop with their communities.
Definitions of place attachment are vast and discipline-dependent [??], often being intertwined with the
definitions of place identity, place dependence, sense of place, and rootedness [?]. ? provide a
comprehensive and up-to-date review of the literature on place attachment. The popular ? framework is
adopted in this study. It defines place attachment as the tripartite of person (individually or collectively
determined use and meanings), psychological process (affective, cognitive, and behavioral components),
and place dimensions (the symbolic aspects, whether social environment and social meanings, and the
physical environment, whether natural or built) [?]. Here, we focus on the place dimension of place
attachment which is argued to be the most important by ?. For brevity, we use the term place attachment to
refer to its place dimension in the following. Place attachment describes the qualities and specificity of the
location to which one is attached and can be divided into social and physical place attachment [??]. Social
place attachment has been defined as one’s social ties and sense of belonging to a location, e.g.,
neighborhood [?]. Physical place attachment is related to one’s dependence on the amenities or resources
provided by a location to support one’s goals. Thus, place attachment may be related to houses, streets,
parks, and other outdoor settings.

Place attachment has been shown to affect people’s risk perception, disaster preparedness, and how they
respond to disasters. Attached persons tend to minimize risks that they are exposed to making them reluctant
to landscape changes or moving out of risky areas such flood plains or wildland-urban interface zones [??].
Conversely, place attachment may positively influence disaster preparedness. It increases the likelihood that
one will take action to prevent harm to the places they are attached to [???].

In post-disaster scenarios, persons forcibly separated from their usual living place may experience grief,
similar to a situation where people lose an important social relationship [?]. Residents with weak or no
place attachment are more likely to move away in the face of environmental change such as a disaster [?].
Conversely, residents who perceive their neighborhoods as an excellent place to live have been shown to be
two to three times more likely to stay (or return) after a disaster [?]. Scholars have demonstrated that place
attachment is a better predictor of willingness to move away than whether or not the residents had been born
and raised in the region [?]. The influence of place attachment is stronger for homeowners who tend to report
a larger social and emotional place connection than renters [?].

Hurricane Katrina has been extensively investigated from the perspective of disaster-induced out-migration.
Cross-sectional studies of the recovery after Hurricane Katrina show that New Orleans’ poorest permanently
out-migrated [????]. However, ? argues that economic factors alone cannot explain the decisions of
residents of New Orleans as many displaced New Orleanians returned to the city even if that entailed paying
an economic price. ? identified that among African American and Vietnamese communities social capital
and place attachment synergistically contributed to their decision to return. Among those who returned to
the Ninth Ward after Hurricane Katrina, ? identified that they insisted that New Orleans provided a sense of
place that cannot be found or replicated elsewhere.
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3 Integrating Place Attachment into Housing Recovery Simulations

Post-earthquake housing recovery models are varied in detail and scope and often tailored to specific
applications. Figure 1 illustrates some common features in such models. On the far left is the simulation
of the ground motion. The output from these simulations is intensity maps of ground accelerations and
displacements at the locations of each building of interest. The next step is damage and loss assessment. For
portfolios, due to lack of detailed data, damage and losses are often estimated as a function of the ground
motions using fragility curves and estimates of the building replacement cost per square foot [?]. More
sophisticated approaches may split the damage and loss assessments into multiple tasks. Important outputs
from the damage and loss assessment step are estimates of repair time (i.e., worker-hours needed to repair the
building) and repair costs for each building. The next step is to assess the homeowners’ access to financing.
Financing is tied to demographic characteristics, e.g., high-income persons may have easier access to private
loans but not qualify for public grants. The mismatch between repair costs and financing available can be
used to estimate the indebtedness for each homeowner. If repairs would incur high debt, the homeowners
may opt to sell the property. Homeowners who can finance repairs compete for the limited available recovery
resources, such as construction workers. Because resources are scarce, some homeowners experience delays
in their recovery processes. Thus, the recovery time for each building may substantially exceed the estimated
repair time.

The two shaded boxes in Figure 1 indicate the contributions from this study. First, we use demographic data
to estimate the strength of place attachment for each homeowner in our study. Second, we use the estimated
indebtedness, recovery time, and place attachment to assess the likelihood of a homeowner engaging in
repairs. Based on the literature discussed above, we assume that households with low place attachment are
less willing to take on debt and wait long periods to return home after a disaster. That is, homeowners in
these conditions are prone to moving away. Thus, to assess the potential population losses, we have two main
tasks. The first is to assess place attachment for our population of interest. The second is to simulate housing
recovery to predict household debt and displacement time of displacement. Thus we can assess, for each
household, (i) the probability that its place attachment is low, 𝑃(𝐴 = 𝑙𝑜𝑤); (ii) the probability that the debt
incurred from the repair exceeds a given value, 𝑃(𝐷 > 𝑑); and (iii) the probability that the housing recovery
time exceeds some threshold, 𝑃(𝑇 > 𝑡). Some of these probabilities will change based on the demographics
of the household (𝑿) and the impact of the earthquake (𝐸). Thus, the probability of residential mobility after
an earthquake for a household, 𝑃(𝑀 |𝑿, 𝐸), is defined here as

𝑃(𝑀 |𝑿, 𝐸, 𝐴, 𝑡, 𝑑) = 𝑃(𝐴 = 𝑙𝑜𝑤 |𝑿) × 𝑃(𝐷 > 𝑑 |𝑿, 𝐸) × 𝑃(𝑇 > 𝑡 |𝑿, 𝐸) (1)

Note that Eq. 1 assumes the conditional statistical independence between place attachment, losses, and
repair time, given demographics and impact. That is, 𝐴, 𝐷, and 𝑇 are independent given 𝑿 and 𝐸 , but
they will be dependent overall because they all depend on 𝑿 and 𝐸 . This formulation allows us to build
predictive models that maintain overall dependence among variables, while simplifying the treatment of
model prediction residuals. In the following sections, we introduce the models needed to assess the three
terms on the right-hand side of Eq. 1.
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Figures/RecoveryModel.png

Figure 1. Schematic representation of a housing recovery simulation model. The numbers in each box
indicate the section in which the models are discussed. The shaded boxes indicate the contributions of this
study.

4 Place Attachment and Satisfaction

Place attachment can be challenging to measure. However, place attachment has been consistently
demonstrated to be correlated to place (housing and neighborhood) satisfaction - even if the nature of this
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correlation is a debated topic [?]. Housing satisfaction has been defined as the contentment felt when
housing aspirations are met in the actual housing inhabited [??]. Analogously, housing dissatisfaction has
been suggested as metric of the gap between housing aspirations and current housing conditions [?].
Neighborhood satisfaction is broader, encompassing one’s social networks. Social bonds take time to build,
and the longer people live in an area, the more friends they are likely to have, and stronger their place
attachment [??]. Thus, a household may be dissatisfied with a high-quality, well-maintained home because
the housing costs are too high, (e.g., affordability issue) or because the family is being expanded (e.g.,
suitability issue). An affluent neighborhood may not satisfy a household if the commute to work is too long,
or if their relatives do not live in it.

Here, we use housing and neighborhood satisfaction as proxies of household place attachment. Measures of
housing and neighborhood satisfaction are publicly available from the American Housing Survey (AHS)[?].
To measure housing satisfaction, the AHS asked the respondents ’[o]n a scale of 1 to 10, how would you
rate your home as a place to live? (10 is best, 1 is worst).’ An equivalent question was asked regarding
neighborhood satisfaction. Previous studies have used AHS data on place satisfaction to gain insights on
social capital building [?], demographic disparities [???], risk of housing problems [?], and to evaluate the
success of subsidized housing programs [?].

In 2019, 1,883 occupants of single-family homes in San Francisco responded the survey answering both
questions about place satisfaction and providing their demographic profile. We limit our scope to single-
family buildings due to limitations that arise when investigating the recovery of multi-family buildings,
which are discussed later. The responses from the 1,883 households are called ’samples’ in the following.
An overview of the AHS data employed in this study is shown in Table 1. These demographics are chosen
because they have been correlated to socioeconomic vulnerability in past studies [?]. As described in the
following, we use these data to build a model to estimate the housing and neighborhood satisfaction of
households and use these as proxies for place attachment.

Figure 2 presents the prevalence of the neighborhood scores across selected demographic groups. Few
households indicated scores below six, so values ≤ 6 are grouped. We note a significant difference in
the level of housing and neighborhood satisfaction reported by renters and owners. Recent-immigrant,
non-White, and renter households are the least likely to report high housing and neighborhood satisfaction.

We assume that a household has low place attachment when it jointly presents low housing and neighborhood
satisfaction, that is

𝑃(𝐴 = 𝑙𝑜𝑤 |𝑿, 𝐸) = 𝑃(𝐻𝑆 < 𝑠ℎ (𝑿) |𝑿, 𝐸) × 𝑃(𝑁𝑆 < 𝑠𝑛 (𝑿) |𝑿, 𝐸, 𝐻𝑆) (2)

where 𝐻𝑆 and 𝑁𝑆 are the housing and neighborhood satisfaction, and 𝑠ℎ (𝑿) and 𝑠𝑛 (𝑿) are thresholds of
housing and neighborhood scores that characterize ’low satisfaction.’ The conditional dependence of 𝑁𝑆 on
𝐻𝑆 reflects a significant correlation between housing and neighborhood satisfaction that we identified while
preparing the data for this study. The users define the thresholds 𝑠ℎ (𝑿) and 𝑠𝑛 (𝑿). In this communication
we employ the premise that all households have a consistent interpretation of satisfaction. However, the
approach provides flexibility for the thresholds to be adjusted based on the household demographics. For
example, disadvantaged households may indicate high satisfaction (e.g., 8) with a deteriorated home because
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Table 1. Demographic data available from the American Housing Survey. Demographics marked with a ∗

are used as independent variables.

Demographic Categories

Housing Unit
Year built real number
Building value real number

Householder
Immigrant yes, no
Race White, Black, Asian
Hispanic yes, no
Bachelor degree yes, no
Gender female, male

Household
Tenure owner, renter
Income bracket high, moderate, low
Income value real number
Size integer number
Year moved in integer number
Has children yes, no
Has elderly yes, no
Has disable member yes, no
Housing score∗ integer number [1,10]
Neighborhood score∗ integer number [1,10]

the alternative is homelessness. In these cases, the user may opt to use 𝑠ℎ (𝐼𝑛𝑐𝑜𝑚𝑒 = 𝐿𝑜𝑤) = 9. We next
construct the models for 𝑃(𝐻𝑆 < 𝑠ℎ |𝑿, 𝐸) and 𝑃(𝑁𝑆 < 𝑠𝑛 |𝑿, 𝐸) from the AHS data. One challenge that
arises when building a model for 𝑃(𝐻𝑆 < 𝑠ℎ |𝑿, 𝐸) is that if 𝑠ℎ = 6, for example, the majority of the samples
have scores above the threshold. A model fitted to this imbalanced data is prone to be biased towards the
majority class. To mitigate this bias when predicting households’ housing and neighborhood scores, we
employ an approach that combines minority oversampling with an ensemble classifier.

4.1 SMOTEBoost Classifier

Several techniques exist to reduce the class imbalance. Undersampling consists of using only a subset of the
samples from the majority class so that balance is achieved. A common drawback of undersampling is the
loss of information from discarding many samples in the majority class. Conversely, oversampling consists
of increasing the number of samples in the minority class to match the majority class samples. Oversampling
is often achieved by drawing with replacement from the samples in the minority class. A potential problem
in this approach is that oversampled sets may contain many copies of the same sample, leading to overfitting.

Another group of techniques focuses on creating synthetic samples from the minority class. In this study,
we employ the Synthetic Minority Oversample TEchnique (SMOTE) [?]. The SMOTE creates synthetic
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Figures/Fig_SatisfactionPerDemographic.png

Figure 2. Percent of respondents indicating a given housing or neighborhood score for selected demographic
group. The vertical axis is normalized by the number of households in each group.

samples of the minority class based on its nearest K minority neighbors. Estimators fit using the SMOTE
are less prone to overfitting and do not incur a loss of information.

Once the class imbalance in the classification problem is adjusted, we employ Adaptive Boosting (AdaBoost)
to perform the model fitting [?]. AdaBoost has three main ideas. First, it uses many weak learners rather than
a single more sophisticated learner. Weak learners are classification models that are intentionally simple and
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which do not have strong prediction capacity. In most applications, the weak learners employed in AdaBoost
are decision trees with a single node, often called ’decision stumps.’ The predictions of each stump are later
combined to determine the most probable class for each sample. Second, classifications made by each stump
are weighted by the errors it makes. Thus, the more incorrect one stump’s prediction is, the less weight
its vote has in the final classification. This property contrasts with the uniform weights used in a Random
Forest, for example. Third, errors made by each stump are used to inform the creation of the next stump.
This adaptive behavior once again contrasts with the independent trees in a Random Forest. Using these
three ideas, an ensemble of weak learners trained via AdaBoost can make accurate predictions while being
less susceptible to overfitting [?].

Combining the SMOTE and boosting algorithms is called ’SMOTEBoosting’ and it improves prediction in
imbalanced data sets [?, p. 107-119]. The data in Table 1 were used to fit the models using SMOTEBoosting.
The model for housing satisfaction uses the modified housing scores (i.e., scores below six were grouped) as
the dependent variable. With the exception of the neighborhood scores, all other variables in Table 1 are used
as independent variables. We use the housing satisfaction model to predict the housing scores for the 1,883
samples. The model for neighborhood satisfaction is fitted using the modified neighborhood scores (i.e.,
scores below six were grouped) as the dependent variable. The demographics in Table 1 and the predicted
housing scores are used as independent variables in the neighborhood model. The predicted housing scores
are used in place of the surveyed housing scores to simulate the behavior of the SMOTEBoosting classifier
when applied to a new data set for which surveyed scores scores are not available.

To test the SMOTEBoost classifier, we first split the 1,883 samples in the AHS into a training set (1318)
and a testing set (565). The classifier is trained on the training set and used to predict the testing set. We
tested the ability of the classifier to predict ’low satisfaction’ using different scores as the thresholds. That
is, for each household in the testing set we predicted if 𝐻𝑆 < 𝑠ℎ and 𝑁𝑆 < 𝑠𝑛 for different 𝑠ℎ and 𝑠𝑛. To
assess the quality of the classifier, Figure 3 shows the receiver operating characteristic (ROC) curves for
each threshold. ROC curves summarize the trade-off between the true positive and false-positive rates for
a predictive model using different probability thresholds. The ROC curve for a naive model that is correct
50% of the time is a straight line with a 45-degree slope. This line is shown in Figure 3. The area under the
curve (AUC) for this model is equal to 0.5. Models with AUC>0.5 outperform the naive model, and AUCs
closer to the unity are desirable. The models for neighborhood scores are slightly less accurate because they
use the predicted housing scores as an independent variable. However, Figure 3 shows that all models fitted
for all thresholds offer significant improvements over the naive model. These results demonstrate the quality
of the SMOTEBoost classifier and its suitability to assess the probability that a household has low place
attachment as per Eq. 2.
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Figures/Fig_ROCs.png

Figure 3. Receiver operating characteristic curves for the predicted (left) housing and (right) neighborhood
scores considering different thresholds.

5 Post-earthquake Housing Recovery Simulations

This section describes the steps used to simulate post-earthquake housing recovery and estimate repair cost
and time for each household. The steps described in Figure 1 are employed for this purpose.
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5.1 Simulation of Buildings and Households

This study employs the Federal Emergency Management Agency’s Hazus methodology [?] to build a
portfolio of all single-family buildings in San Francisco from 2019 SimplyAnalytics [?] projections based
on the 2010 Census data. The methodology allows us to estimate the structural type, code design level, and
replacement cost for each considered single-family building. We associate one household (defined by the
demographics in Table 1) with each single-family home in the portfolio. The demographics of the households
are sampled from the distributions in each census tract, and correlations between demographics are not
directly simulated. For example, if in Census tract 𝑇 50% of the households have a Black householder, i.e.,
P(𝑅𝑎𝑐𝑒 = 𝐵𝑙𝑎𝑐𝑘 |𝑇)=0.5, and 30% have a low income, i.e., P(𝐼𝑛𝑐𝑜𝑚𝑒 = 𝑙𝑜𝑤 |𝑇)=0.3, the probability that a
household has a Black householder and low income is P(𝑅𝑎𝑐𝑒 = 𝐵𝑙𝑎𝑐𝑘 |𝑇)P(𝐼𝑛𝑐𝑜𝑚𝑒 = 𝑙𝑜𝑤 |𝑇)=0.5× 0.3 =

0.15. San Francisco is comprised of 184 Census tracts and this approach partially captures the spatial
correlation that exists between demographics. For the example above, the Pearson correlation coefficient is
𝑟 (𝑅𝑎𝑐𝑒 = 𝐵𝑙𝑎𝑐𝑘, 𝐼𝑛𝑐𝑜𝑚𝑒 = 𝑙𝑜𝑤)=0.55.

5.2 Simulation of Ground Motion, Damage, and Losses

Shaking intensities are simulated at the centroid of each census block group. The ground-shaking simulations
provide estimates of the peak-ground acceleration (PGA) and spectral acceleration (SA). The Open-Source
Seismic Hazard Analysis (OpenSHA) Event Set Simulator is used to predict median values of PGA and SA
[?]. The distributions of ground shaking at each location, and the correlations between spectral acceleration
values at multiple periods and multiple locations, are predicted using empirical models [???]. Variability in
predictions is captured by generating 𝑁 realizations of ground shaking intensities associated with the given
rupture of interest.

We consider buildings to potentially be on liquefiable soil, 𝑝𝑙, equal to the fraction of liquefiable soil within
the census block group. For building on liquefiable soil, the probability of liquefaction is calculated as
a function of the on-site PGA, the magnitude of the earthquake, the liquefaction susceptibility, which is
assumed to be ’high,’ and a five-feet ground-water level which is the default value for [?, Eq. 4-20]. Using
the probability of liquefaction and the on-site PGA, we calculate permanent ground deformation considering
the expected lateral spreading and ground settlement [?, Section 4.2.2.1.4]. The output from this assessment
is a vector of permanent ground deformations. The estimated ground shaking and ground deformations are
used to estimate damage using the methodology described in Sections 5.4 through 5.6.3 in ?. Vectors of
structural and non-structural damage states are output at this step, and then associated to vectors of repair
costs (𝑪𝒓 ) and repair times (𝑻𝒓 ) for all buildings [?, Table 15.9].

5.3 Simulation of Housing Recovery Debt

We adopt the model of ?, with modifications, to simulate recovery financing. This model was developed
considering post-earthquake housing recovery financing for a household in San Jose, California. Four
funding sources are included: earthquake insurance, bank loans, Small Business Administration (SBA)
loans, and Community Development Block Group for Disaster Recovery (CDBG-DR) grants. If the claims
and applications are successful, insurance and loans are disbursed within weeks. The grants from CDBG-
DR may take months to years to be disbursed since these funds have to be approved by Congress after each
disaster. Funding from the Federal Emergency Management Agency Individuals and Households Program
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is not accounted for due to these grants being relatively small when compared to the expected losses [?]. For
each funding source, the model provides the probability of receiving funding, the expected amount received,
and the time to receive the funding.

The original model considers that homeowners who cannot obtain total financing cannot repair. Because we
are interested in identifying the burden of repairing one’s home, we assume that all homeowners will attempt
to repair it. However, the gap between the financing needed to repair the home (𝑅𝑐), and the financing that
homeowners can obtain from insurance (𝐹𝑖), bank loans (𝐹𝑏), SBA loans (𝐹𝑠𝑏𝑎), and CDBG-DR grants
(𝐹𝑐𝑑𝑏𝑔) is assessed and it is defined as the ’indebtedness’ associated with the disaster, 𝐷 (𝑿, 𝐸), that is

𝐷 (𝑿, 𝐸) = 𝑅𝑐 (𝐸) −
(
𝐹𝑖 (𝑿, 𝐸) + 𝐹𝑏 (𝑿, 𝐸) + 𝐹𝑠𝑏𝑎 (𝑿, 𝐸) + 𝐹𝑐𝑑𝑏𝑔 (𝑿, 𝐸)

)
(3)

where 𝑿 and 𝐸 denote dependence on the household demographics and losses associated with the earthquake
being considered. We assume homeowners will use their savings, sell non-liquid assets, or get high-interest
loans to pay this debt. Thus, this amount is used to proxy the additional challenges households need to
surpass to repair their homes. The probability that 𝐷 exceeds a threshold 𝑑, 𝑃(𝐷 > 𝑑 |𝑿), is needed for Eq.
1 and is given by

𝑃ℎ (𝐷 > 𝑑 |𝑿) = 1
𝑁

𝑁∑︁
𝑖=1

1(𝐷𝑖 > 𝑑 |𝑿, 𝐸) (4)

where 𝑁 represents the number of realizations of the earthquake of interest and 1 is an indicator function that
returns 1 if 𝐷𝑖 > 𝑑 and zero otherwise. Note that 𝑃ℎ (𝐷 > 𝑑 |𝑿) is only calculated for owner households.
Renters are not responsible for paying for repairs. Therefore, we do not consider debt as a factor influencing
their decisions. The consequence of this assumption is that homeowners require one more adverse condition
to be present for them to be susceptible to housing mobility. This assumption reflects findings from empirical
studies that identified that homeowners are less likely to move away in the aftermath of disasters.

5.4 Simulation of Recovery Times

We estimate an available construction workforce of 1,000 crews in San Francisco, based on data from the
Business Analyst Online [?]. The availability of other types of workers (e.g., inspectors or engineers) is not
accounted for. The housing recovery of single-family homes is often ’bottlenecked’ by the availability of
contractors [?]. We assume that if the demand for contractor crews is higher than the local supply, workers
come from nearby communities over time up to a limit. If the available supply exceeds this limit, workers
leave the city also over time. The limit used in this study is 80% of the current demand, which yields housing
recovery rates similar to those observed in previous large disasters [?]. Thus, during recovery the number of
construction crews in the community is at least 1,000, but it can increase to 80% of the total demand if the
demand is higher than 1,000 crews.

The recovery is simulated over discrete time steps. At each time step, households that have obtained funds
(Section 5.3) ’request’ a contractor crew. If the number of contractor crews available exceeds the number of
requests in the current time step, all households that requested a contractor can start repairs. The contractors
stay allocated to the households for a time equal to the repair time of each building, 𝑇𝑟 . After that, they
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become available for another household. When there are more requests than contractors, available contractors
are allocated to the household that made the earliest request. This process produces the recovery trajectories
indicated at the far right in Figure 1.

The recovery simulation allows us to estimate recovery time for each homeowner. The recovery time for a
household with demographics 𝑿 after earthquake 𝐸 , 𝑇 (𝑿, 𝐸), is:

𝑇 (𝑿, 𝐸) = 𝑇 𝑓 (𝑿, 𝐸) + 𝑇𝑐 (𝑿, 𝐸) + 𝑇𝑟 (𝐸) (5)

where 𝑇𝑟 is the repair time, 𝑇 𝑓 is the time needed to obtain financing, and 𝑇𝑐 is the time need for a contractor
to become available to work in the building. That is, 𝑇𝑐=0 if there are contractors immediately available
in the community. The recovery trajectories for each earthquake simulation provide the probability that a
household’s recovery time exceeds t given its demographics, 𝑃ℎ (𝑇 > 𝑡 |𝑿, 𝐸). This probability is the last
factor needed to assess Eq. 1. For each household, this probability is

𝑃ℎ (𝑇 > 𝑡 |𝑿, 𝐸) = 1
𝑁

𝑁∑︁
𝑖=1

1(𝑇𝑖 > 𝑡 |𝑿, 𝐸) (6)

where 𝑇𝑖 is the recovery time after each earthquake simulation 𝑖 = 1, . . . , 𝑁 . Thus, 𝑃(𝑇 > 𝑡 |𝑿) is the
probability that the recovery time for a household will exceed t after an earthquake.

6 Assessing Potential Population Loss

To combine the models described above and demonstrate the application of the proposed framework, we
present a case study that investigates the impact of earthquakes on 124,563 single-family buildings in San
Francisco. Three earthquakes occurring on the San Andreas fault with moment magnitudes of 6.5, 7.2,
and 7.9 are selected. These earthquakes represent planning scenarios that the City of San Francisco has
considered. One hundred simulations post-earthquake housing recovery for each earthquake are conducted
to capture uncertainty. In each simulation, random variables representing the ground motion, damage,
losses, repair time, repair financing, and recovery speed of each household take different values. Conversely,
household demographics and physical place attachment are simulated once before the first simulation is run.

The case study only includes the recovery of single-family homes for several reasons. Single-family homes
are less varied in terms of their structural features than multi-family homes. The financing mechanisms
available to repair single-family homes are more straightforward than those available to multi-family homes.
More importantly, multi-family homes are often owned or managed by companies or strata, and the processes
involved in deciding to rebuild are not trivial to simulate. It is thus unclear if place attachment plays a pivotal
role in the decision to repair multi-family buildings. Figure 4 shows the spatial distribution of single-family
homes in San Francisco. These are concentrated on the west side of the city, in wealthier neighborhoods,
which are also closer to the San Andreas fault, the source of the earthquakes considered in the following
analyses.
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Figures/Fig_SFResidences.png

Figure 4. Number of single-family residences per census tract in San Francisco.

6.1 Place Attachment

The first step in using Eq. 1 to estimate potential population loss is to assess the number of households
with low place attachment. Once the demographics of each household are simulated from Census data,
the SMOTEBoost classifier is used to estimate their housing and neighborhood satisfaction. Households
with housing and neighborhood scores below seven are considered to have low place attachment. Figure 5
shows the probability of low place attachment for households in each Census tract. Lighter colors indicate
areas whose residents are more prone to residential mobility. The areas in white contain fewer than 50
single-family residences (e.g., Golden Gate Park). The Northeast and Southeast parts of the city present
the highest percentage of households with low pre-disaster place attachment. These areas have a significant
number of households with low income and under-represented minorities. The earthquakes considered in
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this study come from the San Andreas fault to the West of the city. Thus, based on distance from the
source, the neighborhoods with the lowest place attachment are on average exposed to lower ground motion
intensities.

Figures/Fig_LowPlaceAttachment.png

Figure 5. Estimated percentage of households with low place attachment. Areas in white contain fewer
than 50 single-family residences. Lighter colors indicate areas whose residents more prone to residential
mobility.

6.2 Housing Recovery Simulations

The impact of the three earthquakes on the housing stock in Figure 4 is summarized in Table 2. Not
surprisingly, the number of buildings with severe or complete damage, and the losses, increase with the
earthquake magnitude. It is assumed that only buildings at severe or complete damage require major repairs
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[?]. Repair time is a function of the damage state; hence it is constant. Repair delay measures the time from
the day of the event to the moment when repairs start. Repair delay is bound by the ability of households
to obtain financing and the competition for the skilled workforce in the community. There is significant
variability in the repair delay (e.g., due to the funding sources available to each homeowner). The mean repair
delay is slightly higher for completely damaged buildings, reflecting the longer period needed to finance the
more expensive repairs to these buildings. The mean repair delays also increase slightly with earthquake
magnitude, reflecting additional delays due to supply constraints when damage is more widespread.

Table 2. Expected impacts of the three earthquakes on the building portfolio.

Earthquake Structural Number of Mean loss per Repair Mean repair
magnitude [M𝑤 ] damage state buildings building [US$] time [days] delay [days]

7.9 Severe 22,269 131,495 90 496
Complete 16,584 217,541 180 526

7.2 Severe 11,488 92,565 90 499
Complete 5,694 161,159 180 528

6.5 Severe 1,003 60,954 90 489
Complete 443 125,958 180 498

Figure 6 shows the spatial distribution of the impacts from the M𝑤 7.9 earthquake, the most damaging of the
three. The results are aggregated by Census tract. The maps show the average repair costs for the buildings
in the tract considering 100 realizations of the earthquake, calculated as

𝐿𝑡 =
1

100 · 𝑁𝑏

100∑︁
𝑗=1

𝑁𝑏∑︁
𝑖=1

𝑅𝑐,𝑖, 𝑗 (7)

where 𝑁𝑏 is the number of buildings. Losses are affected by distance to the San Andreas fault, building
value, soil conditions, and the age of the buildings.

Recovery is then simulated over eight years following the earthquake for each damage realization, using
14-days time steps. Each simulation takes about 20 minutes to run in a high-performance computer and
results in one recovery curve. The average recovery curve for each earthquake is presented in Figure 7.
Although not shown in the figure, there is significant variability in the immediate damage, i.e., the drop in
the number of habitable residences at time 𝑡 = 0. The recovery progresses quickly until about three years
after the earthquake. Around this time, all households that are not dependent on public grants funding have
repaired their homes. After this point, the constant slope of the recovery curves reflects the slow distribution
of public grants funding in time.

The housing recovery simulations are used with Equations 4 and 6 to estimate the number of households
experiencing long recovery time and high debt. The equations require the thresholds d and t to be defined.
These thresholds can vary based on household demographics. For example, a young family with no children
has fewer restrictions to moving away and may be less willing to wait long periods to repair their home. San
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Figures/Fig_MapLoss79.png

Figure 6. Average repair cost per Census tract per building expected after the 𝑀𝑤 7.9 earthquake. Areas in
white contain fewer than 50 single-family homes.

Francisco also has a strong housing market, and the prospect of long-term gains may justify housing repair
costs that would not be viable in other parts of the country. For exploratory studies, ’what-if’ scenarios can
be used to determine lower and upper bounds. Here, we consider two combinations of 𝑡 and 𝑑. The first
represents a household with strict thresholds to decide to stay; namely, recovery should cause a debt that is
less than its annual income and be finished within one year. The second combination represents a household
willing to incur a debt equal to twice their annual income and wait up to two years to return home. We adopt
𝑡=2 years as the upper bound because support to disaster-induced displaced persons typically lasts no longer
24 months [?].

The results from the two ’what-if’ scenarios are presented in Figure 8. Lighter colors correspond to the more
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Figures/Fig_RecoveryCurves.png

Figure 7. Post-earthquake housing recovery curves. The curves represent average results from the 100
simulations of each earthquake.

strict scenario. Two key insights are drawn from the figure. First, the choice of the thresholds 𝑡 and 𝑑 has a
similar impact on the results as the choice of a different earthquake magnitude. These results highlight the
need for community-specific quantitative research to assess the willingness of households to spend on and
wait for recovery. Second, in the case study, there is a low probability (< 3%) that a homeowner will not be
able to afford repairs using funding from insurance, public and private loans, and grants after an earthquake.
However, there is a non-negligible probability (30% for the M𝑤 7.9 earthquake) that the recovery process
will take longer than two years, i.e., the upper bound assumed for 𝑡. Our residential mobility results are thus
primarily controlled by the recovery time rather than costs.
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Figures/Fig_Sensitivity.png

Figure 8. Percentage of households experiencing high repair costs and recovery time after an earthquake on
the San Andreas fault. Symbols indicate the mean results. Dashed lines indicate the one-standard deviation
confidence intervals.

6.3 Population Loss

The results from Figs. 8 and 5 allows us to use Eq. 1 to estimate the probability that a given household will
move away after a earthquake, 𝑃ℎ (𝑀 |𝑿, 𝐸). In turn, it allows us to estimate the potential population loss at
different parts of the city as

𝐿𝑐 (𝐸) =
1
𝐻

𝑁𝑏∑︁
𝑖=1

𝑃ℎ (𝑀 |𝑿ℎ, 𝐸) (8)

where 𝐿𝑐 (𝐸) is the population loss in a census tract with 𝑁𝑏 single-family homes. Equation 8 can be applied
to any combination of earthquake and thresholds 𝑡 and 𝑑 to gain insights about potential population losses.
For brevity, Figure 9 shows the results for the 𝑀𝑤 7.9M earthquake considering the strict scenario. The map
is overlayed with the contour lines of the planning districts in the city. The Richmond and Outter Sunset
districts are the most prone to losing population after any earthquake.
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Figures/Fig_PopulationLoss79.png

Figure 9. Potential residential mobility as percentage of Census tract population considering the strict
scenario for the M𝑤 7.9 earthquake scenario.

The socioeconomic characteristics of the at-risk households are as crucial as their locations. Figure 10
presents the demographics of the households most likely to leave the city during recovery under the
assumptions in the case study. The total heights of the bars represent the results for the 𝑀𝑤 7.9M
earthquake, and the dashed lines are the results for the 𝑀𝑤 7.2M earthquake. Expected population losses
after the 𝑀𝑤 6.5M are minimal and not shown. Disparities are observed across building and household
characteristics. Low-income renters who occupy the more physically vulnerable buildings (i.e., low-code
buildings) are the most prone to residential mobility following an earthquake. Disparities across racial,
ethnic, and immigrant groups are minor. Note that the earthquake intensity is higher on the west side of the
city and that we only include single-family buildings in the analysis. Non-white immigrant households are
more prevalent on the east side of the city, and these households tend to occupy multi-family buildings.
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Lastly, the disparities between owners and renters are higher for the 𝑀𝑤 7.2M earthquake.

Figures/Fig_PMDemographics.png

Figure 10. Probability of out-migration for households in different socioeconomic groups. The heights of
the bars indicate the results for the M𝑤 7.9 earthquake. The dashed lines indicate the results for the M𝑤 7.2
earthquake.

To conclude the analyses in this case study, we compare the results obtained from the proposed approach
(shown in Fig. 10 to two other approaches. In the first approach, indicated as ’None,’ place attachment
is not accounted for, e.g., the PA terms is not included in Eq. 1. In the second approach, indicated as
’HayWired’, only young, high-income renters are assumed to move out, which is similar to the assumption
in the HayWired Scenario study. The results considering the M7.9 earthquake are shown in Figure 11.
The probabilities of residential mobility across all demographics for each approach are P𝑁𝑜𝑛𝑒(𝑀 |𝐸)=0.14,
P𝐻𝑎𝑦𝑊 𝑖𝑟𝑒𝑑(𝑀 |𝐸)=0.033, and P𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑(𝑀 |𝐸)=0.034. Thus, the if place attachment is disregarded, near
five times more households are considered at prone to moving away. To gain insights on how each approach
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distributes P(𝑀 |𝐸) across demographics, the results in Figure 11 are normalized. That is, the ordinate axis
shows P(𝑀 |𝐸, 𝑋𝑖)/P(𝑀 |𝐸) and values above the red line at 𝑌=1 indicates a demographic is over-represented
among those expected to move away. The normalization eliminates the influence of the selection of thresholds
in Eq. 1. The major disagreement between approaches is in regards to the influence of income on P(𝑀 |𝐸).
If place attachment is not accounted for (i.e., ’None’ approach), P(𝑀 |𝐸) is evenly distributed (i.e., all
close to 𝑌=1.) In the ’HayWired’ approach, high-income households are the only ones at risk of moving
away permanently. In the proposed approach, lower income residents are more prone to residential mobility.
Thus, the proposed approach has similar data requirements, yields results similar to those from the HayWired
Scenario approach albeit using a less strict assumption, and is more consistent with empirical findings which
show that socioeconomically disadvantaged persons are more likely to out-migrate [?????].
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Figures/Fig_PMDemographics_2.png

Figure 11. Probability of out-migration for households in different socioeconomic groups using different
approaches to simulate the effect of place attachment on the decision to stay: ’None’ considers place
attachment has no effect; ’HayWired’ considers only young, high-income renters are prone to moving away
and; ’Proposed’ is the approach described in this study. Values above the red horizontal line indicate a
demographic group is overrepresented among those expected to move away.

7 Discussion

The results in this case study show an overlap between the demographics of the households with low place
attachment and those with difficulty to promptly finance post-earthquake housing repairs. We emphasize that
these results do not directly predict population loss. Rather, they identify households who have to spend more
(relative to their incomes), have to wait longer, and have fewer reasons to stay. San Francisco’s long-term
resilience plan includes measures to ’increase neighborhood quality of life, overall physical conditions and, to
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build community capacity’ [?, p. 109]. These measures are expected to improve housing and neighborhood
conditions and foster place attachment. The framework presented in this paper helps to assess the benefits
of these actions.

Nonetheless, the problem tackled in this study is complex, and the framework has limitations. Per the ?
framework, we only tackle the place dimension of place attachment. The person and process dimensions
are not accounted for, and our findings should be interpreted in light of this simplification. Furthermore,
we use satisfaction as a proxy of place attachment. Although this has a basis in the literature, it is not a
direct measure of place attachment. Moreover, the American Housing Survey satisfaction scale may not be
consistently interpreted by all respondents. We envision that these limitations can be overcome if questions
related to place attachment are included in the American Housing Survey, [e.g., ?, p. 14]. That data could
be employed in the proposed framework with minimal modifications.

Housing prices in San Francisco are much higher than the national average. Thus, the decision of homeowners
to stay and repair or sell and leave may be significantly affected by their perception of the future monetary
benefits from having a home in San Francisco. Moreover, we assume that each homeowner possess one
home in San Francisco, and that homeowners wish to repair their homes as soon as possible. More detailed
data regarding homeowners with multiple homes would allow this assumption to be refined. While our case
study demonstrates the application of the proposed models, further investigation is needed to determine if
the empirical findings regarding the role of place attachment on post-earthquake decisions observed in other
communities are transferable to San Francisco.

Another limitation is with our model for financing the repair of rented housing. Owners of rented buildings
do not have the same access to financing that is available for owner-occupied buildings. Thus, their financing
processes are unclear. Here we optimistically assume that all landlords are high-income persons with
sufficient insurance and private financing. With a more realistic model requiring longer waits for funding in
some cases, a larger number of renter households would be prone to moving away. However, no such realistic
models are available at present. Lastly, the model assumes that buildings will be repaired to a pre-disaster
state. Given San Francisco’s competitive real state market, it is likely that some homeowners and landlords
will improve damaged buildings or replace them with higher-density units.

These limitations stem from the complexity of the problem and the challenges of anticipating human
decisions. However, the proposed framework can be used in ’what-if’ studies, and these assumptions are
consistent across all scenarios considered. In that case, the impact of these limitations is minimized, and the
comparable results yield meaningful comparisons.

8 Conclusion

In this study, we integrate place attachment considerations into housing recovery simulations. Place
attachment is used as a surrogate for willingness to rebuild. We identify the households with low place
attachment and whose housing recovery process is expected to be the most challenging. Our premise is that
households with low place attachment are less willing to take on debt and wait extended periods to restore
their livelihoods. We introduce a classification algorithm that combines the Synthetic Minority
Oversampling TEchnique and Adaptive Boosting (SMOTEBoost) to estimate household place attachment
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from data from the American Housing Survey (AHS). We use the place attachment estimates to study
post-earthquake decision of households. We introduce a housing recovery simulation framework to
estimate repair costs and housing recovery time for single-family buildings. We combine the place
attachment, repair cost, and repair time results to estimate population losses. The place attachment
assessment and the housing recovery simulations are decoupled. Thus, the place attachment assumptions
can be revised without rerunning the computationally expensive housing recovery simulation. While we
focus on post-earthquake decisions, the SMOTEBoost algorithm can be used to assess place attachment and
investigate post-disaster decisions after other types of extreme events such as hurricanes and floods.

The application of framework is demonstrated in a case study of the potential population loss in San
Francisco during the recovery from hypothetical earthquakes on the San Andreas fault. The case study
quantifies housing repair costs (relative to household income), time to secure funding, and building repair
time for 124,563 single-family households in San Francisco. The potential population loss is investigated
under different scenarios. The results indicate that low-income renters occupying older buildings are the
most prone to moving away after a disaster.

The framework presented in this study addresses the concern with the loss of populations with low place
attachment which has recently emerged in studies of the regional impacts of earthquakes [?, p. 11]. Previous
studies have ignored the influence of place attachment or assumed a priori which demographic groups are
most prone to moving away after a disaster. In consequence, existing approaches provide limited insights
on the demographic groups expected to struggle and perhaps move away during post-earthquake recovery.
The framework in this paper is based on a review of studies of previous disasters. It employs data from the
American Housing Survey which are publicly available for multiple locations in the US. It is empirically-
based, can be employed to multiple regions, and is more nuanced in determining the demographic groups
most prone to residential mobility. The framework can be incorporated in pre-disaster studies to estimate
population losses using ’what-if’ scenarios [?, e.g.] and to evaluate the benefits of taking actions to improve
neighborhood cohesion [?, p. 109]. Some challenges remain in the application of the proposed framework,
as highlighted in the Discussion section. Nonetheless, it offers a more robust procedure that can replace
semi-heuristic approaches and help formalize the simulation of housing recovery.

9 Funding

Funding for this for this work was provided by the Stanford Urban Resilience Initiative.

25


