
FedSoft: Soft Clustered Federated Learning with Proximal Local Updating

Yichen Ruan, Carlee Joe-Wong
Carnegie Mellon University

yichenr@andrew.cmu.edu, cjoewong@andrew.cmu.edu

Abstract

Traditionally, clustered federated learning groups clients with
the same data distribution into a cluster, so that every client
is uniquely associated with one data distribution and helps
train a model for this distribution. We relax this hard associa-
tion assumption to soft clustered federated learning, which al-
lows every local dataset to follow a mixture of multiple source
distributions. We propose FedSoft, which trains both locally
personalized models and high-quality cluster models in this
setting. FedSoft limits client workload by using proximal up-
dates to require the completion of only one optimization task
from a subset of clients in every communication round. We
show, analytically and empirically, that FedSoft effectively
exploits similarities between the source distributions to learn
personalized and cluster models that perform well.

1 Introduction
Federated learning (FL) is an innovative privacy-preserving
machine learning paradigm that distributes collaborative
model training across participating user devices without
users’ sharing their raw training samples. In the widely
used federated learning algorithm FedAvg (McMahan et al.
2017), clients jointly train a shared machine learning model
by iteratively running local updates and synchronizing their
intermediate local models with a central server. In spite
of its success in applications such as next word prediction
(Hard et al. 2018) and learning on electronic health records
(Brisimi et al. 2018), FL is known to suffer from slow model
training when clients’ local data distributions are heteroge-
neous, or non-IID (non- independently and identically dis-
tributed). In response to this challenge, some recent works
propose to bypass data heterogeneity by performing local
model personalization. Instead of pursuing one universally
applicable model shared by all clients, these algorithms’
training objective is to create one model for each client that
fits its local data. Personalization methods include local fine
tuning (Sim, Zadrazil, and Beaufays 2019), model interpo-
lation (Mansour et al. 2020), and multi-task learning (Smith
et al. 2017). In this paper, we focus on an alternative ap-
proach: clustered federated learning, which we generalize to
train both cluster and personalized models on realistic distri-
butions of client data.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Clustered FL relaxes the assumption of FL that each client
has an unique data distribution; instead, it allows different
clients to share one data distribution, with fewer source data
distributions than clients. The objective of clustered FL is
to train one model for every distribution. In traditional clus-
tered FL, a client can only be associated with one data dis-
tribution. We thus call this method hard clustered federated
learning. Under the hard association assumption, the non-
IID problem can be easily resolved: simply group clients
with the same data distribution into one cluster, then conduct
conventional FL on each cluster, within which the data dis-
tribution is now IID among clients. Unlike other personaliza-
tion methods, clustered FL thus produces centrally available
models that can be selectively migrated to new users that
are unwilling, or unable, to engage in the subsequent local
adaptation process (e.g. fine tuning) due to privacy concerns
or resource limitations. This convenience in model adop-
tion is particularly valuable for the current training-testing-
deployment lifecycle of FL where deployment, rather than
the training itself, is the end goal (Kairouz et al. 2019).

However, hard clustered FL faces two fundamental prob-
lems in practice. First, multiple clients may be unlikely to
possess identical data distributions. In fact, the real-world
user data is more likely to follow a mixture of multiple dis-
tributions (Marfoq et al. 2021). E.g., if each client is a mobile
phone and we wish to model its user’s content preferences,
we might expect the clients to be clustered into adults and
children. However, adult users may occasionally view chil-
dren’s content, and devices owned by teenagers (or shared
by parents and children) may possess large fractions of data
from both distributions. Similarly, content can be naturally
grouped by users’ interests (e.g., genres of movies), each of
which may have a distinct distribution. Data from users with
multiple interests then reflects a mixture of these distribu-
tions. Since the mixture ratios can vary for different clients,
they may have different overall distributions even though the
source distributions are identical. Clustering algorithms like
the Gaussian mixture model (Reynolds 2009) use a similar
rationale. Clients may then require models personalized to
their distributions to make accurate predictions on their data,
in addition to the cluster models used for new users.

Hard clustered FL’s second challenge is that it cannot
effectively exploit similarities between different clusters.
Though FL clients may have non-IID data distributions, two

ar
X

iv
:2

11
2.

06
05

3v
2

 [c
s.L

G
]

22
 M

ar
 2

02
2

different distributions may still exhibit some similarity, as
commonly assumed in personalization works (Smith et al.
2017). For example, young people may have more online
slang terms in their chatting data, but all users (generally)
follow the same basic grammar rules. Thus, the knowledge
distilled through the training on one distribution could be
transferred to accelerate the training of others. However, in
most hard clustered FL algorithms, different cluster models
are trained independently, making it difficult to leverage the
potential structural likeness among distributions. Note that
unlike in other personalization methods where the discus-
sion of similarity is restricted to similarities between indi-
vidual clients, here we focus on the broader similarities be-
tween source cluster distributions. Thus, we can gain better
insight into the general data relationship rather than just the
relationships between participating clients.

To overcome clustered FL’s first challenge of the hard
association assumption, in this paper, we utilize soft clus-
tered federated learning. In soft clustered FL, we suppose
that the data of each client follows a mixture of multiple
distributions. However, training cluster models using clients
with mixed data raises two new challenges. First, the work-
load of clients can explode. When all the data of a client
comes from the same distribution, as in hard clustered FL,
it ideally only needs to contribute towards one training task:
training that distribution’s model. However, in soft clustered
FL, a client has multiple data sources. A natural extension
of hard clustered FL is for the client to help train all clus-
ter models whose distributions are included in its mixture
(Marfoq et al. 2021). However, the workload of participat-
ing clients then grows linearly with the number of clusters,
which can be large (though typically much smaller than the
number of clients) for some applications. This multiplying
of client workload can make soft clustered FL infeasible,
considering the resource restrictions on typical FL user de-
vices and the long convergence time for many FL models
(McMahan et al. 2017). Second, the training of cluster mod-
els and the local personalization are distinct. In hard clus-
tered FL, client models are the same as cluster models since
a client is uniquely bound to one cluster. In soft clustered
FL, local distributions differ from individual cluster distri-
butions, and thus training cluster models does not directly
help the local personalization. Complicating things further,
these local distributions and their exact relationships to the
cluster models are unknown a priori. Combining the training
of cluster and personalized models is then challenging.

To solve these two challenges, and handle the second dis-
advantage of hard clustered FL discussed above, we utilize
the proximal local updating trick, which is originally devel-
oped in FedProx (Li et al. 2018) to grant clients the use
of different local solvers in FL. During the course of prox-
imal local updating, instead of working on fitting the local
model to the local dataset, each client optimizes a proximal
local objective function that both carries local information
and encodes knowledge from all cluster models. We name
this proposed algorithm FedSoft.

In FedSoft, since the fingerprints of all clusters are inte-
grated into one optimization objective, clients only need to
solve one single optimization problem, for which the work-

load is almost the same as in conventional FL. In addition,
by combining local data with cluster models in the local ob-
jective, clients can perform local personalization on the fly.
Eventually, the server obtains collaboratively trained clus-
ter models that can be readily applied to new users, and
each participating client gets one personalized model as a
byproduct. Proximal local updating allows a cluster to utilize
the knowledge of similar distributions, overcoming the sec-
ond disadvantage of the hard clustered FL. Intuitively, with
all clusters present in the proximal objective, a client can
take as reference training targets any cluster models whose
distributions take up non-trivial fractions of its data. These
component distributions, co-existing in the same dataset, are
similar by nature. Thus, a personalized local model integrat-
ing all its component distributions can in turn be utilized by
the component clusters to exploit their similarities.

Our contributions are: We design the FedSoft algorithm
for efficient soft clustered FL. We establish a convergence
guarantee that relates the algorithm’s performance to the
divergence of different distributions, and validate the ef-
fectiveness of the learned cluster and personalized models
in experiments under various mixture patterns. Our results
show the training of cluster models converges linearly to a
remaining error determined by the cluster heterogeneity, and
that FedSoft can outperform existing FL implementations in
both global cluster models for future users and personalized
local models for participating clients.

2 Related Works
The training objective of hard clustered FL is to simulta-
neously identify the cluster partitions and train a model for
each cluster. Existing works generally adopt an Expectation-
Maximization (EM) like algorithm, which iteratively alter-
nates between the cluster identification and model training.
Based on how the partition structure is discovered, these al-
gorithms can be classified into four types:

The first type leverages the distance between model pa-
rameters, e.g., Xie et al. (2021) propose to determine client
association based on the distances between client models
and server models. Similarly, Briggs et al. (2020) suggest
to apply a distance-based hierarchical clustering algorithm
directly on client models. The second type determines the
partition structure based on the gradient information, e.g.,
the CFL (Sattler, Müller, and Samek 2020) algorithm splits
clients into bi-partitions based on the cosine similarity of
the client gradients, and then checks whether a partition is
congruent (i.e., contains IID data) by examining the norm
of gradients on its clients. Likewise, the FedGroup (Duan
et al. 2020) algorithm quantifies the similarity among client
gradients with the so-called Euclidean distance of decom-
posed cosine similarity metric, which decomposes the gra-
dient into multiple directions using singular value decompo-
sition. The third type utilizes the training loss, e.g., in Hy-
perCluster (Mansour et al. 2020), each client is greedily as-
signed to the cluster whose model yields the lowest loss on
its local data. A generalization guarantee is provided for this
algorithm. Ghosh et al. (2020) propose a similar algorithm
named IFCA, for which a convergence bound is established
under the assumption of good initialization and all clients

having the same amount of data. The fourth type uses ex-
ogenous information about the data, e.g., Huang et al. (2019)
and Qayyum et al. (2021) group patients into clusters respec-
tively based on their electronic medical records and imaging
modality. This information usually entails direct access to
the user data and thus cannot be applied in the general case.

Recently, Marfoq et al. (2021) propose a multi-task learn-
ing framework similar to soft clustered FL that allows client
data to follow a mixture of distributions. Their proposed
FedEM algorithm adopts an EM algorithm and estimates
the mixture coefficients based on the training loss. How-
ever, FedEM requires every client to perform a local up-
date for each cluster in each round, which entails signifi-
cantly more training time than conventional FedAvg. Their
analysis moreover assumes a special form of the loss func-
tion with all distributions having the same marginal distribu-
tion, which is unrealistic. In contrast, FedSoft requires only
a subset of clients to return gradients for only one optimiza-
tion task in each round. Moreover, we show its convergence
for generic data distributions and loss functions.

The proximal local updating procedure that we adopt in-
corporates a regularization term in the local objective, which
is also used for model personalization outside clustered set-
tings. Typical algorithms include FedAMP (Huang et al.
2021), which adds an attention-inducing function to the lo-
cal objective, and pFedMe (Dinh, Tran, and Nguyen 2020),
which formulates the regularization as Moreau envelopes.

3 Formulation and Algorithm
Mixture of distributions. Assume that each data point at
each client is drawn from one of the S distinct data distri-
butions P1, · · · ,PS . Similar to general clustering problems,
we take S as a hyperparameter determined a priori. Data
points from all clients that follow the same distribution form
a cluster. In soft clustered FL, a client may possess data from
multiple clusters. Given a loss function l(w;x, y), the (real)
cluster risk Fs(w) is the expected loss for data followingPs:

Fs(w)
∆
= E(x,y)∼Ps [l(w;x, y)] (1)

We then wish to find S cluster models c∗1 · · · c∗S such that
all cluster objectives are minimized simultaneously. These
cluster models will be co-trained by all clients through coor-
dination at the central server:

c∗s = argminwFs(w), s = 1, · · · , S (2)

Suppose a client k ∈ [N] with local dataset Dk has
|Dk| = nk data points, among which nks data points are
sampled from distribution Ps. The real risk of a client can
thus be written as an average of the cluster risks:

fk(wk)
∆
=

1

nk
E

 S∑
s=1

∑
(xik,y

i
k)∼Ps

l(wk;xik, y
i
k)


=

1

nk

∑S

s=1
nksFs(wk) =

∑S

s=1
uksFs(wk)

(3)

Here we define uks
∆
= nks/nk ∈ [0, 1] as the importance

weight of cluster s to client k. In general, uks’s are unknown

in advance and the learning algorithm attempts to estimate
their values during the learning iterations. It is worth noting
that while we directly work on real risks, our formulation
and analysis can be easily extended to empirical risks by
introducing local-global divergences as in (Li et al. 2018).

Proximal local updating. Since fk is a mixture of cluster
risks, minimizing (3) alone does not help solve (2). Thus, we
propose each client instead optimize a proximal form of (3):

hk(wk; ct, ut)
∆
= fk(wk) +

λ

2

∑S

s=1
utks‖wk − cts‖2 (4)

Here λ is a hyperparameter and utks denotes the estima-
tion of uks at time t. In the local updating step, every client
searches for the optimal local model w∗k that minimizes hk
given the current global estimation of cluster models {cts}.
As in (Li et al. 2018), clients may use any local solver to
optimize hk. This design of the proximal objective entails
cluster models {cts} be shared among all clients through the
server, as is usual in clustered FL (Ghosh et al. 2020). We
thus alternatively call {cts} the centers.

The regularization term λ
2

∑S
s=1 u

t
ks‖wk − cts‖2 in the

proximal objective serves as a reference point for the local
model training. It allows clients to work on their own spe-
cific dataset while taking advantage of and being guided by
the globally shared knowledge of the centers. The regular-
ization is weighted by the importance weights uks, so that
a client will pay more attention to distributions that have
higher shares in its data. To see why compounded regular-
ization helps identify individual centers, assume we have a
perfect guess of utks ≡ uks. The minimization of (4) can
then be decoupled as a series of sub- optimization problems
hk(wk; ct) =

∑S
s=1 uks

(
Fs(wk) + λ

2 ‖wk − c
t
s‖2
)
. Thus,

after hk is minimized, the sub-problems corresponding to
large uks will also be approximately solved. We can hence
utilize the output local model wtk

∗ to update these centers
with large uks. Moreover, wtk

∗ trained in this manner forges
all its component distributions {Ds|utks 6= 0}, which may
share some common knowledge. Thus, the training of these
clusters are bonded through the training of their common
clients, exploiting similarities between the clusters.

The output model wtk
∗ is itself a well personalized model

that leverages both local client knowledge and the global
cluster information. Marfoq et al. (2021) show that under
certain conditions, the optimal client model for soft clustered
FL is a mixture of the optimal cluster models. The same im-
plication can also be captured by our proximal updating for-
mulation. When

∑
s u

t
ks = 1, the gradient ∇hk is

∇wkhk = ∇fk(wk) + λ

(
wk −

∑S

s=1
utksc

t
s

)
(5)

which implies that w∗k should be centered on
∑
s uksc

∗
s . As

a result, through the optimization of all hk, not only will the
server obtain the trained cluster models, but also each client
will obtain a sufficiently personalized local model.

Algorithm design. We formally present FedSoft in Al-
gorithm 1. The first step of the algorithm is to estimate the
importance weights {utks} for each client k (lines 3-14). The

Algorithm 1: FedSoft
1 Input: Global epoch T , importance weights

estimation interval τ , number of clients N , client
selection size K, counter smoother σ;

2 for t = 0, · · · , T − 1 do
3 if t mod τ = 0 then
4 Server sends centers {cts} to all clients ;
5 for each client k do
6 for each data point (xik, y

i
k) do

7 j = argminsl(c
t
s;x

i
k, y

i
k) ;

8 ntkj = ntkj + 1 ;
9 end

10 Send utks = max{n
t
ks

nk
, σ} to server ;

11 end
12 else
13 Set utks = ut−1

ks ;
14 end
15 Server computes vtsk as in (6) ;
16 Server selects S sets of clients Selts ⊂ [N] at

random for each cluster, where |Selts| = K, and
each client gets selected with probability vtsk;

17 Selected clients download {cts}, then compute
and report wt+1

k = argminwkhk(wk; ct, ut) ;
18 Server aggregates ct+1

s = 1
K

∑
k∈Selts

wt+1
k ;

19 end

algorithm obtains them by finding the center that yields the
smallest loss value for every data point belonging to that
client, and counting the number of points {ntks} matched
to every cluster s. If a client k has no samples matched to s
(ntks = 0), the algorithm sets utks = σ, where 0 < σ � 1 is
a pre-defined smoothing parameter.

Once the server receives the importance weights {utks}, it
computes the aggregation weights vtsk as follows (line 15):

vtsk =
utksnk∑

k′∈Selts
utk′snk′

(6)

i.e., a client that has higher importance weight on cluster s
will be given higher aggregation weight, and vice versa. The
introduction of the smoother σ avoids the situation where∑
k u

t
ks = 0 for some cluster, which could happen in the

very beginning of the training when the center does not ex-
hibit strength on any distributions. In that case, vtsk = 1

N ,
i.e., the cluster will be updated in a manner that treats all
clients equally. Otherwise, since σ is very small, a client
with utks = σ will be assigned a vtsk ≈ 0, and the aggre-
gation weights of other clients will not be affected.

Though calculating and reporting {utks} is computation-
ally trivial compared to the actual training procedure, send-
ing centers to all clients may introduce large communication
costs. FedSoft thus allows the estimations of uks to be used
for up to τ ≥ 1 iterations (line 3). In practice, a client can
start computing utks for a cluster before it receives all other
centers, the delay of transmission is thus tolerable.

Next, relevant clients run proximal local updates to find
the minimizer wt+1

k for the proximal objective htk, which
entails solving only one optimization problem (line 17).
In the case when all clients participate, the cluster mod-
els are produced by aggregating all client models: ct+1

s =∑N
k=1 v

t
skw

t+1
k . However, requiring full client participation

is impractical in the federated setting. We thus use the client
selection trick (McMahan et al. 2017) to reduce the training
cost (lines 16). For each cluster s, the algorithm randomly
selects a small subset of clients Selts to participate in the
local updating at time t, where |Selts| = K < N .

Clustered FL generally entails more clients to be selected
compared to conventional FL, to ensure the convergence of
all cluster models. Since FedSoft clients can contribute to
multiple centers, however, we select only | ∪s Selts| clients
instead of

∑
s |Selts| = SK clients in the usual clustered

FL. For example, if each distribution has the same share in
every client, then in expectation only N

(
1−

(
1− K

N

)S)
clients will be selected. This number equals 2K − K2

N when
S = 2, i.e., K

2

N clients are selected by both clusters.
Once the server receives the local models {wt+1

k } for se-
lected clients, it produces the next centers by simply aver-
aging them (line 18). After completion, the algorithm yields
trained cluster models {cTs } as outputs, and each client ob-
tains a personalized local model wTk as a byproduct.

4 Convergence Analysis
In this section, we provide a convergence guarantee for Fed-
Soft. First, note that we can rewrite (4) as follows:

hk(wk; ct) =
∑

s,uks 6=0

ukshks(wk; cts) (7)

hks(wk; cts)
∆
= Fs(wk) +

λ

2

utks
uks
‖wk − cts‖2 (8)

Here hks is only defined for uks 6= 0, and we call opti-
mizing each hks a sub-problem for client k.

Our analysis relies on the following assumptions:
Assumption 1. (γ0-inexact solution) Each client produces
a γ0-inexact solution wt+1

k for the local minimization of (4):

‖∇hk(wt+1
k ; ct)‖ ≤ γ0 min

s
‖∇Fs(cts)‖ (9)

Assumption 2. (β-similarity of sub-problems) The sub-
problems hks of each client k have similar optimal points:∑
s′

uks′‖∇hks′(w∗ks; cts)‖2 ≤ β‖∇hks(cts; cts)‖2, ∀s (10)

for some β > 0, where w∗ks = argminwkshks(wks; c
t
s).

Assumption 3. (Strong convexity and smoothness) Cluster
risks are µF strongly convex and LF smooth.
Assumption 4. (Bounded initial error) At a certain time of
the training, all centers have bounded distance from their
optimal points. We begin our analysis at that point:

‖c0s − c∗s‖ ≤ (0.5− α0)
√
µF /LF δ, ∀s (11)

where 0 < α0 ≤ 0.5.

Assumption 1 assumes significant progress is made on the
proximal minimization of hk, which is a natural extension
from assumptions in FedProx (Li et al. 2018). Assumption 2
ensures the effectiveness of the joint optimization of hk, i.e.,
solving one sub-problem can help identify the optimal points
of others. Intuitively, if the sub-problems are highly diver-
gent, we would not expect that solving them together would
yield a universally good solution. This assumption quanti-
fies our previous reasoning that different distributions co-
existing in one local dataset have some similarities, which
is the prerequisite for local models to converge and cluster
models to be able to learn from each other. Assumption 3
is standard (Ghosh et al. 2020), and Assumption 4 is intro-
duced by Ghosh et al. (2020) in order to bound the estima-
tion error of utks (Lemma 1). Note that with Assumption 3,
each sub-problem hks is also µλ strongly convex and Lλ
smooth, where µλ ≥ µF , Lλ ≥ LF , and the subscript λ
indicates they increase with λ.

To measure the distance of different clusters, we quantify

δ ≤ ‖c∗s − c∗s′‖ ≤ ∆, ∀s 6= s′ (12)

As we will see later, soft clustered FL performs best when
δ and ∆ are close. Intuitively, a very small δ indicates two
clusters are almost identical, and thus might be better com-
bined into one distribution. On the other hand, a very large
∆ implies that two clusters are too divergent, making it hard
for one model to acquire useful knowledge from the other.

Next, we bound E[utks] with respect to the true uks, for
which we reply on the following lemma (Ghosh et al. 2020):

Lemma 1. Suppose Assumptions 3 and 4 hold. Denoting by
Ej,j

′

t the event that a data point (xj , yj) ∼ Pj is incorrectly
classified into cluster j′ 6= j at t, there exists a cε such that

P(Ej,j
′

t) ≤ pε
∆
=

cε
α2

0δ
4

(13)

Based on Lemma 1, we can bound E[utks] as follows

Theorem 1. (Bounded estimation errors) The expectation
of utks is bounded as

E[utks] ≤ (1− pε)uks + p′ε (14)

Here p′ε = pε + σ, and the expectation is taken over the
randomness of samples.

Next, we seek to characterize each sub-problem hks at
the γ0-inexact solution wt+1

k that approximately minimizes
hk. Intuitively,wt+1

k should perform better for sub-problems
with larger uks. On the other hand, if uks = 0, we generally
cannot expect that wt+1

k will be close to c∗s . We summarize
this intuition in Theorems 2 and 3.

Theorem 2. (Inexact solutions of sub-problems) If uks > 0,
and Assumptions 1 to 3 hold, then

‖∇hks(wtk; cts)‖ ≤
γ
√
uks
‖∇Fs(cts)‖ (15)

where γ =
√

(γ2
0 + β)Lλ/µλ.

Theorem 3. (Divergence of local model to centers) If As-
sumptions 1, 3, and 4 hold, we have

‖wt+1
k − cts‖ ≤ r∆, ∀s (16)

where r = γS+1
4

√
LF
µF

+ 1
2

√
µF
LF

+ 1.

Theorem 2 indicates that if the hk is solved with high
quality wt+1

k (small γ0), and the sub-problems are suffi-
ciently similar (small β), then sub-problems with uks > 0
can also be well solved by wt+1

k . It also justifies using vtsk ∝
utks as aggregation weights in (6). In the case uks = 0, ac-
cording to Theorem 3 (which holds for any uks), approach-
ing cts with wtk will introduce an error of at most O(∆).

Finally, we show the convergence of Fs(cts). The follow-
ing analysis does not depend on τ ; we show how τ affects
the convergence in Appendix B.
Theorem 4. (Convergence of centers) Suppose Assumptions
1 to 4 hold, and define the quantities: n ∆

=
∑
k nk, ns

∆
=∑

k uksnk,ms
∆
=
∑
k,uks 6=0 nk, m̄s

∆
=
∑
k,uks=0 nk, m̂s

∆
=

(1 − pε)ms + p′ε
∑
k,uks 6=0

nk
uks

. Suppose λ is chosen such

that ρ ∆
= ns−γms

λ − (γ+1)LFms
µλλ

− p′εm̄s
2µλ

− LF (γ+1)2m̂s
2µ2
λ

−
4LF (γ+1)2m̂s

µ2
λ

√
K

− (γ+1)2m̂s+(1−pε)ns+p′εn
µλ
√

2K
> 0 and denote

R
∆
= 1

2 (µλ + LF) m̄sr
2 + (4LF+µλ)m̄sr

2

√
K

. Then we have

E[Fs(c
t+1
s)]− Fs(cts)

≤− ρ‖∇Fs(cts)‖2

(1− pε)ns + p′εn
+

p′εR∆2

(1− pε)ns − p′ε(S − 2)n

(17)

at any time t, where the expectation is taken over the selec-
tion of clients and all {utks}.
Corollary 1. Suppose Fs(c0s)−F ∗s = Bs. After T iterations,

T∑
t=1

ρE‖∇Fs(cts)‖2

(1− pε)ns + p′εn
≤ Bs

T
+O(pε∆

2) (18)

The choices of λ to make ρ > 0 is discussed in (Li et al.
2018). From Corollary 1, the gradient norm converges to a
remaining error controlled by pε. Intuitively, when cts = c∗s ,
further updating cts with misclassified models will inevitably
move cts away from c∗s . This bias cannot be removed unless
we have a perfect guess of uks. Recall that pε = O(1

δ4), and
thus the remaining term isO(∆2

δ4), which decreases as ∆ ap-
proaches δ. Thus, FedSoft performs better when the diver-
gences between clusters are more homogeneous. Note that
Corollary 1 seems to imply the remaining error will explode
if δ → 0, but Lemma 1 is only valid when pε < 1. Thus
when δ is very small, i.e., there exist two distributions that
are extremely similar, the remaining error is determined by
the maximum divergence of the other distributions. Further-
more, the divergence ∆ determines the degree of non-IID of
a local dataset (not among clients), which also implicitly af-
fects the accuracy of local solutions γ0. Intuitively, a larger
∆ implies it is more difficult to exactly solve a local problem
involving multiple distributions, resulting in a greater γ0.

To see the role of cluster heterogeneity, suppose ‖c∗1−c∗2‖
is closer than the distance of all other centers to c1, then
the misclassified samples for cluster 1 are more likely to be
matched to cluster 2. Thus, cluster 2 gets more updates from
data that it does not own, producing greater remaining train-
ing error that drags its center towards cluster 1. On the other
hand, if the cluster divergence is homogeneous, then the ef-
fect of mis-classification is amortized among all clusters, re-
sulting in a universally smaller remaining error.

Theorem 4 shows the convergence of cluster models {cs}
in terms of the cluster risks {Fs}. For the local models {wk},
we focus on how clients integrate global knowledge into
their local personalizations, which cannot be captured only
with the original client risk functions {fk(w)}. Thus, we are
interested in the convergence performance of {wk} with re-
spect to the proximal objective {hk}. Note that under As-
sumption 3, FedSoft is effectively a cyclic block coordinate
descent algorithm on a jointly convex objective function of
{wk} and {cs}, for which the convergence is guaranteed:

Theorem 5. (Joint convergence of cluster and client
models) For fixed importance weights ũ, let w∗, c∗ =

argmin
∑N
k=1 hk(wk; c, ũk), and wT , cT be the outputs of

FedSoft. Then wT → w∗, cT → c∗ linearly with T .

5 Experiments
In this section, we verify the effectiveness of FedSoft with
two base datasets under various mixture patterns. For all
experiments, we use N = 100 clients, and the number of
samples in each client nk is chosen uniformly at random
from 100 to 200. For ease of demonstration, for every base
dataset, we first investigate the mixture of S = 2 distribu-
tions and then increase S. In the case with two distributions,
suppose the cluster distributions are namedDA andDB . We
evaluate the following partition patterns:

• 10:90 partition: 50 clients have a mixture of 10%DA and
90% DB , and 50 have 10% DB and 90% DA.

• 30:70 partition: Same as above except the ratio is 30:70.
• Linear partition: Client k has (0.5 + k)% data from DA

and (99.5− k)% data from DB , k = 0, · · · , 99.

We further introduce the random partition, where each
client has a random mixture vector generated by dividing
the [0, 1] range into S segments with S − 1 points drawn
from Uniform(0, 1). We use all four partitions for S = 2,
and only use the random partition when S > 2 for simplifi-
cation. Each partition produces non-IID local distributions,
i.e., clients have different local data distributions. Specifi-
cally, the 10:90 and 30:70 partitions yield 2 local distribu-
tions, while the linear and random partitions yield 100. Un-
less otherwise noted, we choose FedSoft’s estimation inter-
val τ = 2, client selection size K = 60, counter smoother
σ = 1e-4, and all experiments are run until both cluster
and client models have fully converged. All models are ran-
domly initialized with the Xavier normal (Glorot and Bengio
2010) initializer without pre-training, so that the association
among clients, centers, and cluster distributions is built au-
tomatically during the training process.

Figure 1: Evolution of the test mean squared error of cen-
ters (top) and the importance weight estimation of clients
(bottom) over time for the mixture of two synthetic distribu-
tions under the 10:90 partition. The left/right columns rep-
resent the first/second distributions. Center indices are as-
signed randomly in the beginning. The importance weight
estimations ūta:b are averaged on clients with the mixture co-
efficients a : b (i.e., they have the same local distribution).

We compare FedSoft with two baselines: IFCA (Ghosh
et al. 2020) and FedEM (Marfoq et al. 2021). Both baseline
algorithms produce one center for each cluster, but they do
not explicitly generate local models as in FedSoft. Never-
theless, they also estimate the importance weights for each
client, we thus use the center corresponding to the largest
importance weight as a client’s local model. Since we ex-
pect cluster models will be deployed to new users, we eval-
uate their test accuracy/error on holdout datasets sampled
from the corresponding cluster distributions. For local mod-
els, they are expected to fit the local data of participating
clients, we hence evaluate their accuracy/error on local train-
ing datasets. Throughout this section, we use c̄ and w̄ to rep-
resent the average accuracy/error of the cluster and client
models, not the accuracy/error of the averaged models.

We use three datasets to generate the various distributions:
Synthetic, EMNIST and CIFAR-10. Due to the space limit,
we put the details of experiment parameters and CIFAR-10
results in Appendix C.
• Synthetic Data. We generate synthetic datasets accord-

ing to yi = 〈xi, θs〉 + εi where θs ∼ N (0, σ2
0I10),

xi ∼ N (0, I10), εi ∼ N (0, 1) (Ghosh et al. 2020). Un-
less otherwise noted, we use σ0 = 10. We use the con-
ventional linear regression model for this dataset.

• EMNIST Letters. We use the handwritten images of En-
glish letters in the EMNIST dataset to create 2 distri-
butions for the lower and uppercase letters (Guha, Tal-
walkar, and Smith 2019), each with 26 classes. Then we
rotate these images counterclockwise by 90◦ (Lopez-Paz
and Ranzato 2017), resulting in 4 total distributions. In
the S = 2 setting we compare the two 0◦ distributions.
A rotation variant CNN model is used for this dataset.

In general, the letter distributions share more similarities
with each other, while the synthetic distributions are more
divergent, e.g., letters like “O” have very similar upper and

Table 1: MSE or accuracy of cluster models for the mixture
of two distributions. Each row represents the distribution of
a test dataset. The center with the smallest error or highest
accuracy is underlined for each test distribution.

Synthetic data: mean squared error
10:90 30:70 Linear Random

c0 c1 c0 c1 c0 c1 c0 c1
θ0 68.4 29.5 44.2 49.6 38.2 59.1 42.2 60.6
θ1 21.8 58.6 41.3 36.3 47.1 27.8 42.7 27.0

EMNIST letters: accuracy (%)
10:90 30:70 Linear Random
c0 c1 c0 c1 c0 c1 c0 c1

Lower 68.9 70.3 65.9 65.8 71.8 71.7 72.0 72.5
Upper 74.6 73.3 70.1 70.4 73.9 74.1 77.7 77.2

Table 2: Comparison between FedSoft and baselines on the
letters data. c∗lo/c

∗
up represents the accuracy of the center that

performs best on the lower/upper distribution, and the num-
ber in the parenthesis indicates the index of that center. w̄ is
the accuracy of local models averaged over all clients.

10:90 Linear
c∗lo c∗up w̄ c∗lo c∗up w̄

FedSoft 70.3(1) 74.6(0) 90.9 71.8(0) 74.1(1) 86.5
IFCA 58.5(0) 61.3(1) 65.2 55.4(0) 57.2(0) 62.9

FedEM 67.4(1) 69.8(1) 63.6 65.9(0) 69.0(0) 62.4

lowercase shapes and are invariant to rotations. On the other
hand, data generated from y = x and y = −x can be easily
distinguished. We thus expect the mixture of synthetic data
to benefit more from the personalization ability of FedSoft.

The typical convergence process of FedSoft is shown in
Figure 1. In this example of the synthetic data, FedSoft is
able to automatically distinguish the two cluster distribu-
tions. After around 5 global epochs, center 1 starts to exhibit
strength on the first cluster distribution, and center 0 con-
centrates on the other, which implies a correct association
between centers and cluster distributions. Similarly, the im-
portance weight estimations utks, which are initially around
50:50, soon converge to the real mixture ratio 10:90.

Table 1 lists the mean squared error (MSE) or accuracy
of the output cluster models. FedSoft produces high quality
centers under all mixture patterns. In particular, each center
exhibits strength on one distribution, which indicates that
FedSoft builds correct associations for the centers and clus-
ter distributions. The performance gap between two distri-
butions using the same center is larger for the synthetic data.
This is because the letter distributions have smaller diver-
gence than the synthetic distributions. Thus, letter models
can more easily transfer the knowledge of one distribution
to another, and a center focusing on one distribution can per-
form well on the other. Notably, the 30:70 mixture has the
worst performance for both datasets, which is due to the de-
grading of local solvers when neither distribution dominates.
Thus, the local problems under this partition are solved less
accurately, resulting in poor local models and a large value

Figure 2: The clients’ estimation of importance weights on
the first cluster (uTk0) under the 10:90 partition of the EM-
NIST dataset. The X axis is the index of clients and each
point represents a client.

of γ in Theorem 2, which then produces high training loss
on cluster models according to Theorem 4.

Table 2 compares FedSoft with the baselines. Not only
does FedSoft produce more accurate cluster and local mod-
els, but it also achieves better balance between the two
trained centers. Similarly, Figure 2 shows the importance es-
timation of clients for the first cluster. FedSoft and IFCA
are able to build the correct association (though the latter is
a hard partition), while FedEM appears to be biased to the
other center by putting less weights (< 0.5) on the first one.

Next, we evaluate the algorithm with the random parti-
tion for the mixture of more distributions. Tables 3 and 4
show the MSE or accuracy of cluster models for the mixture
of 8 and 4 distributions on synthetic and letters data, where
we still observe high-quality outcomes and good association
between centers and cluster distributions.

Table 3: Test MSE of centers for the mixture of 8 synthetic
distributions with randomly generated weights θ0 · · · θ7.

c0 c1 c2 c3 c4 c5 c6 c7
θ0 62.2 62.7 64.0 63.2 61.4 57.6 63.7 61.9
θ1 65.0 67.8 69.4 65.8 64.3 67.1 64.2 64.5
θ2 60.1 59.9 57.8 58.6 62.6 63.2 60.0 59.9
θ3 96.8 95.4 96.8 98.8 93.2 93.8 95.3 96.8
θ4 86.1 89.8 91.8 87.3 85.4 86.6 85.6 84.9
θ5 161.2 160.3 156.0 160.0 164.7 167.3 162.0 163.6
θ6 110.2 106.7 104.8 109.0 111.0 107.8 111.5 110.1
θ7 34.5 33.8 34.8 33.9 34.2 34.1 34.4 35.0

Table 4: Test accuracy (%) of centers for the mixture of 4
distributions with original and 90◦-rotated letter images.

c0 c1 c2 c3
0◦ 90◦ 0◦ 90◦ 0◦ 90◦ 0◦ 90◦

Lower 71.5 67.6 71.3 67.3 71.3 67.6 72.3 67.3
Upper 70.2 71.7 70.8 71.3 70.3 71.9 70.3 71.0

6 Conclusion
This paper proposes FedSoft, an efficient algorithm general-
izing traditional clustered federated learning approaches to
allow clients to sample data from a mixture of distributions.
By incorporating proximal local updating, FedSoft enables

simultaneous training of cluster models for future users, and
personalized local models for participating clients, which is
achieved without increasing the workload of clients. Theo-
retical analysis shows the convergence of FedSoft for both
cluster and client models, and the algorithm exhibits good
performance in experiments with various mixture patterns.

Acknowledgments
This research was partially supported by NSF CNS-1909306
and CNS-2106891.

References
Briggs, C.; et al. 2020. Federated learning with hierarchical
clustering of local updates to improve training on non-IID
data. In 2020 International Joint Conference on Neural Net-
works (IJCNN), 1–9. IEEE.
Brisimi, T. S.; Chen, R.; Mela, T.; Olshevsky, A.; Pascha-
lidis, I. C.; and Shi, W. 2018. Federated learning of predic-
tive models from federated electronic health records. Inter-
national journal of medical informatics, 112: 59–67.
Dinh, C. T.; Tran, N. H.; and Nguyen, T. D. 2020. Per-
sonalized federated learning with moreau envelopes. arXiv
preprint arXiv:2006.08848.
Duan, M.; Liu, D.; Ji, X.; Liu, R.; Liang, L.; Chen, X.;
and Tan, Y. 2020. FedGroup: Ternary Cosine Similarity-
based Clustered Federated Learning Framework toward
High Accuracy in Heterogeneous Data. arXiv preprint
arXiv:2010.06870.
Ghosh, A.; Chung, J.; Yin, D.; and Ramchandran, K. 2020.
An efficient framework for clustered federated learning.
arXiv preprint arXiv:2006.04088.
Glorot, X.; and Bengio, Y. 2010. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on arti-
ficial intelligence and statistics, 249–256. JMLR Workshop
and Conference Proceedings.
Guha, N.; Talwalkar, A.; and Smith, V. 2019. One-shot fed-
erated learning. arXiv preprint arXiv:1902.11175.
Hard, A.; Rao, K.; Mathews, R.; Ramaswamy, S.; Beaufays,
F.; Augenstein, S.; Eichner, H.; Kiddon, C.; and Ramage, D.
2018. Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604.
Huang, L.; Shea, A. L.; Qian, H.; Masurkar, A.; Deng, H.;
and Liu, D. 2019. Patient clustering improves efficiency of
federated machine learning to predict mortality and hospital
stay time using distributed electronic medical records. Jour-
nal of biomedical informatics, 99: 103291.
Huang, Y.; Chu, L.; Zhou, Z.; Wang, L.; Liu, J.; Pei, J.; and
Zhang, Y. 2021. Personalized cross-silo federated learning
on non-iid data. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, 7865–7873.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. 2019. Advances and open problems in
federated learning. arXiv preprint arXiv:1912.04977.
Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.;
and Smith, V. 2018. Federated optimization in heteroge-
neous networks. arXiv preprint arXiv:1812.06127.
Lopez-Paz, D.; and Ranzato, M. 2017. Gradient episodic
memory for continual learning. Advances in neural infor-
mation processing systems, 30: 6467–6476.

Luo, Z.-Q.; and Tseng, P. 1992. On the convergence of the
coordinate descent method for convex differentiable mini-
mization. Journal of Optimization Theory and Applications,
72(1): 7–35.
Mansour, Y.; Mohri, M.; Ro, J.; and Suresh, A. T. 2020.
Three approaches for personalization with applications to
federated learning. arXiv preprint arXiv:2002.10619.
Marfoq, O.; Neglia, G.; Bellet, A.; Kameni, L.; and Vidal,
R. 2021. Federated Multi-Task Learning under a Mixture of
Distributions. International Workshop on Federated Learn-
ing for User Privacy and Data Confidentiality in Conjunc-
tion with ICML 2021 (FL-ICML’21).
McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-efficient learning of
deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, 1273–1282. PMLR.
Qayyum, A.; Ahmad, K.; Ahsan, M. A.; Al-Fuqaha, A.; and
Qadir, J. 2021. Collaborative federated learning for health-
care: Multi-modal covid-19 diagnosis at the edge. arXiv
preprint arXiv:2101.07511.
Reynolds, D. A. 2009. Gaussian mixture models. Encyclo-
pedia of biometrics, 741: 659–663.
Sattler, F.; Müller, K.-R.; and Samek, W. 2020. Clustered
federated learning: Model-agnostic distributed multitask op-
timization under privacy constraints. IEEE transactions on
neural networks and learning systems.
Sim, K. C.; Zadrazil, P.; and Beaufays, F. 2019. An
investigation into on-device personalization of end-to-end
automatic speech recognition models. arXiv preprint
arXiv:1909.06678.
Smith, V.; Chiang, C.-K.; Sanjabi, M.; and Talwalkar, A.
2017. Federated multi-task learning. arXiv preprint
arXiv:1705.10467.
Xie, M.; Long, G.; Shen, T.; Zhou, T.; Wang, X.; Jiang, J.;
and Zhang, C. 2021. Multi-center federated learning. arXiv
preprint arXiv:2108.08647.

A Proof of Theorems
Proof of Theorem 1
Let Gki, i = 1, 2 · · · be some virtual group of client k’s data points that follow the same distribution. Thus,

Proof.

E[utks] ≤
1

nk

 ∑
Gki∼Ps

P (argmins′Fs′(Gki) = s) |Gki|+
∑

Gki 6∼Ps

P (argmins′Fs′(Gki) = s) |Gki|

+ σ

≤ 1

nk

nks +
∑

Gki 6∼Ps

pε|Gki|

 =
1

nk
(nks + pε(nk − nks)) + σ = (1− pε)uks + p′ε

(19)

Proof of Theorem 2
Proof. For simplification we drop the dependency of cts in hk and hks. Take w∗ks = argminwkshks(wks), we have

γ2
0‖∇Fs(cts)‖2 ≥ ‖∇hk(wtk)‖2 ≥ 2µλ

(
hk(wtk)− hk(w∗ks)

)
=2µλ

∑
s′

uks′
(
hks′(w

t
k)− hks′(w∗ks)

)
= 2µλuks

(
hks(w

t
k)− h∗ks

)
− 2µλ

∑
s′ 6=s

uks′
(
hks′(w

∗
ks)− hks′(wtk)

)
≥µλ
Lλ

uks‖∇hks(wtk)‖2 −
∑
s′ 6=s

uks′‖∇hks′(w∗ks)‖2 ≥
µλ
Lλ

uks‖∇hks(wtk)‖2 − β‖∇Fs(cts)‖2
(20)

Thus,

µλ
Lλ

uks‖∇hks(wtk)‖2 ≤
(
γ2

0 + β
)
‖∇Fs(cts)‖2 (21)

Reorganizing, we have

‖∇hks(wtk)‖ ≤
√

(γ2
0 + β)Lλ/µλ√

uks
‖∇Fs(cts)‖ =

γ
√
uks
‖∇Fs(cts)‖ (22)

Proof of Theorem 3
Proof. Let s′ = argmaxsuks, we have uks′ ≥ 1

S , thus

‖wt+1
k − cts‖ = ‖wt+1

k − cts′ + cts′ − cts‖

≤ 1

µλ
‖∇hks′(wt+1

k ; cts′)−∇hks′(cts′ ; cts′)‖+ ‖cts′ − cts‖

≤ 1

µF

(
γ

uks′
‖∇Fs′(cts′)‖+ ‖∇Fs′(cts′)‖

)
+

1

2

√
µF
LF

δ + ∆

≤ (γS + 1)LF
µF

‖cts′ − c∗s′‖+

(
1

2

√
µF
LF

+ 1

)
∆

≤

(
γS + 1

4

√
LF
µF

+
1

2

√
µF
LF

+ 1

)
∆

(23)

Proof of Theorem 4
We first introduce the following lemma:

Lemma 2. E
[

utksnk∑
k′ u

t
k′snk′

]
≤ E[utksnk]E

[
1∑

k′ u
t
k′snk′

]
, where the expectation is taken over {utks}.

Proof. Let rt =
∑
k′ 6=k u

t
k′snk′ , and note that utks ⊥ rt since each client estimates its utks independently. Thus,

E
[

utksnk∑
k′ u

t
k′snk′

]
= E

[
utksnk

utksnk + rt

]
= E

[
1− rt

utksnk + rt

]
=Ert

[
E{utks}|rt

[
1− rt

utksnk + rt

]]
≤ Ert

[
1− rt

E[utksnk|rt] + rt

]
=E[utksnk]Ert

[
1

E[utksnk] + rt

]
≤ E[utksnk]Ert

[
E{utks}|rt

[
1

utksnk + rt

]]
=E[utksnk]E

[
1∑

k′ u
t
k′snk′

]
(24)

We then formally prove Theorem 4:

Proof. For uks 6= 0, define

et+1
ks

∆
= ∇hks(wt+1

k ; cts) = ∇Fs(wt+1
k) + λ

utks
uks

(wt+1
k − cts) (25)

using Theorem 2, we have
‖et+1
ks ‖ ≤

γ
√
uks
‖∇Fs(cts)‖ ≤

γ

uks
‖∇Fs(cts)‖ (26)

Define
c̄t+1
s

∆
=
∑
k

vtskw
t+1
k = Evtsk [wt+1

k] (27)

thus,

c̄t+1
s − cts =− 1

λ

∑
k,uks 6=0

(
uksnk∑
k′ u

t
k′snk′

∇Fs(wt+1
k)− uksnk∑

k′ u
t
k′snk′

et+1
ks

)
+

∑
k,uks=0

vtsk(wt+1
k − cts) (28)

Next we bound ‖wt+1
k − cts‖ for uks 6= 0,

‖wt+1
k − cts‖ ≤

1

µλ
‖∇hks(wt+1

k ; cts)−∇hks(cts; cts)‖

≤
(

γ

µλ
√
uks

+
1

µλ

)
‖∇Fs(cts)‖ ≤

γ + 1

µλ
√
uks
‖∇Fs(cts)‖ ≤

γ + 1

µλuks
‖∇Fs(cts)‖

(29)

Therefore,

‖c̄t+1
s − cts‖2 ≤ Evtsk [‖wt+1

k − cts‖2]

≤
(
γ + 1

µλ

)2 ∑
k,uks 6=0

utksnk
uks

∑
k′ u

t
k′snk′

‖∇Fs(cts)‖2 +
∑

k,uks=0

utksnk∑
k′ u

t
k′snk′

r2∆2 (30)

Define M t+1
s such that c̄t+1

s − cts = − 1
λ

(∑
k uksnk∑
k u

t
ksnk
∇Fs(cts) +M t+1

s

)
M t+1
s =

∑
k,uks 6=0

(
uksnk∑
k′ u

t
k′snk′

∇Fs(wt+1
k)− uksnk∑

k′ u
t
k′snk′

et+1
ks

)
−
∑
k uksnk∑
k u

t
ksnk

∇Fs(cts)− λ
∑

k,uks=0

vtsk(wt+1
k − cts)

=
1∑

k u
t
ksnk

∑
k,uks 6=0

(
uksnk

(
∇Fs(wt+1

k)−∇Fs(cts)
)
− uksnket+1

ks

)
− λ

∑
k,uks=0

vtsk(wt+1
k − cts)

(31)

thus,

‖Mt+1‖ ≤
1∑

k u
t
ksnk

∑
k,uks 6=0

(
uksnkLF ‖wt+1

k − cts‖+ uksnk‖et+1
ks ‖

)
+ λ

∑
k,uks=0

vtsk‖wt+1
k − cts‖

≤ ms∑
k u

t
ksnk

(
(γ + 1)LF

µλ
+ γ

)
‖∇Fs(cts)‖+ λ

∑
k,uks=0

utksnk∑
k′ u

t
k′snk′

r∆

(32)

Using the smoothness of Fs, we have

Fs(c̄
t+1
s) ≤ Fs(cts) + 〈∇Fs(cts), c̄t+1

s − cts〉+
LF
2
‖c̄t+1
s − cts‖2

≤Fs(cts)−
1

λ

∑
k uksnk∑
k u

t
ksnk

‖∇Fs(cts)‖2 −
1

λ
〈∇Fs(cts),M t+1

s 〉+
LF
2
‖c̄t+1
s − cts‖2

≤Fs(cts)−
1

λ

ns∑
k u

t
ksnk

‖∇Fs(cts)‖2 +
ms

λ
∑
k u

t
ksnk

(
(γ + 1)LF

µλ
+ γ

)
‖∇Fs(cts)‖2

+

 ∑
k,uks=0

utksnk∑
k′ u

t
k′snk′

r∆

 ‖∇Fs(cts)‖+
LF
2

(
γ + 1

µλ

)2 ∑
k,uks 6=0

utksnk
uks

∑
k′ u

t
k′snk′

‖∇Fs(cts)‖2

+
LF
2

∑
k,uks=0

utksnk∑
k′ u

t
k′snk′

r2∆2

=Fs(c
t
s)−

1∑
k u

t
ksnk

(
ns − γms

λ
− (γ + 1)LFms

µλλ

)
‖∇Fs(cts)‖2 +

 ∑
k,uks=0

utksnk∑
k′ u

t
k′snk′

r∆

 ‖∇Fs(cts)‖
+
LF
2

(
γ + 1

µλ

)2 ∑
k,uks6=0

utksnk
uks

∑
k′ u

t
k′snk′

‖∇Fs(cts)‖2 +
LF
2

∑
k,uks=0

utksnk∑
k′ u

t
k′snk′

r2∆2

(33)

Taking expectations over {utks}, and applying Lemma 2, we have

E[Fs(c̄
t+1
s)] ≤ Fs(cts)− E

[
1∑

k u
t
ksnk

]{(
ns − γms

λ
− (γ + 1)LFms

µλλ

)
‖∇Fs(cts)‖2

− (p′εm̄sr∆) ‖∇Fs(cts)‖ −
LF
2

(
γ + 1

µλ

)2

m̂s‖∇Fs(cts)‖2 −
LF
2
p′εm̄sr

2∆2

}

≤Fs(cts)− E
[

1∑
k u

t
ksnk

](
ns − γms

λ
− (γ + 1)LFms

µλλ
− p′εm̄s

2µλ
− LF (γ + 1)2m̂s

2µ2
λ

)
‖∇Fs(cts)‖2

+E
[

1∑
k u

t
ksnk

]
p′ε
2

(µλ + LF) m̄sr
2∆2

(34)

Define

ρ0
∆
=
ns − γms

λ
− (γ + 1)LFms

µλλ
− p′εm̄s

2µλ
− LF (γ + 1)2m̂s

2µ2
λ

(35)

R0
∆
=

1

2
(µλ + LF) m̄sr

2 (36)

then

E[Fs(c̄
t+1
s)] ≤ Fs(cts)− E

[
1∑

k u
t
ksnk

]
ρ0‖∇Fs(cts)‖2 + E

[
1∑

k u
t
ksnk

]
p′εR0∆2 (37)

Next we incorporate the client selection.
We can write ct+1

s = 1
K

∑K
l=1 ĉ

t+1
s,l , where ĉt+1

s,l =
∑N
k=1 1(k ∈ Selts,l)w

t+1
k , and

P(k ∈ Selts,l) =
utksnk∑
k′ u

t
k′snk′

= vtsk (38)

Thus,

ESelts [ĉ
t+1
s,l] = Evtsk [wt+1

k] (39)

We then bound the difference between Fs(ct+1
s) and Fs(c̄t+1

s)

Fs(c
t+1
s) ≤ Fs(c̄t+1

s) + 〈∇Fs(c̄t+1
s), ct+1

s − c̄t+1
s 〉+

LF
2
‖ct+1
s − c̄t+1

s ‖2

≤Fs(c̄t+1
s) +

(
‖∇Fs(c̄t+1

s)‖+
LF
2
‖ct+1
s − c̄t+1

s ‖
)
‖ct+1
s − c̄t+1

s ‖

≤Fs(c̄t+1
s) +

(
‖∇Fs(c̄t+1

s)−∇Fs(cts)‖+ ‖∇Fs(cts)‖+
LF
2

(
‖ct+1
s − cts‖+ ‖c̄t+1

s − cts‖
))
‖ct+1
s − c̄t+1

s ‖

≤Fs(c̄t+1
s) +

(
‖∇Fs(cts)‖+ LF ‖c̄t+1

s − cts‖+
LF
2

(
‖ct+1
s − cts‖+ ‖c̄t+1

s − cts‖
))
‖ct+1
s − c̄t+1

s ‖

=Fs(c̄
t+1
s) +

(
‖∇Fs(cts)‖+

LF
2
‖ct+1
s − cts‖+

3LF
2
‖c̄t+1
s − cts‖

)
‖ct+1
s − c̄t+1

s ‖︸ ︷︷ ︸
Qts

.

(40)

Thus, we only need to bound E[Qts]

ESelts [Q
t
s] =

(
‖∇Fs(cts)‖+

3LF
2
‖c̄t+1
s − cts‖

)
ESelts [‖c

t+1
s − c̄t+1

s ‖] +
LF
2

ESelts [‖c
t+1
s − cts‖ · ‖ct+1

s − c̄t+1
s ‖]

≤
(
‖∇Fs(cts)‖+ 2LF ‖c̄t+1

s − cts‖
)
ESelts [‖c

t+1
s − c̄t+1

s ‖] +
LF
2

ESelts [‖c
t+1
s − c̄t+1

s ‖2]

≤
(
‖∇Fs(cts)‖+ 2LF ‖c̄t+1

s − cts‖
)√

ESelts [‖c
t+1
s − c̄t+1

s ‖2] +
LF
2

ESelts [‖c
t+1
s − c̄t+1

s ‖2]

(41)

Note that Evts [w
t+1
k] = c̄t+1

s , we have

ESelts [‖c
t+1
s − c̄t+1

s ‖2] =
1

K2
ESelts,l

∥∥∥∥∥
K∑
l=1

(
ĉt+1
s,l − c̄

t+1
s

)∥∥∥∥∥
2
 ≤ 2

K2

K∑
l=1

ESelts,l

[∥∥∥ĉt+1
s,l − c̄

t+1
s

∥∥∥2
]

=
2

K
Evtsk

[∥∥wt+1
k − c̄t+1

s

∥∥2
]

=
2

K
Evtsk

[∥∥wt+1
k − cts‖2 − 2〈wt+1

k − cts, c̄t+1
s − cts〉+ ‖c̄t+1

s − cts
∥∥2
]

=
2

K
Evtsk

[∥∥wt+1
k − cts‖2 − ‖c̄t+1

s − cts
∥∥2
]
≤ 2

K
Evtsk

[∥∥wt+1
k − cts

∥∥2
]

(42)

Combining with (30), we can obtain

ESelts [Q
t
s] ≤

√
2

K

√
Evtsk

[∥∥wt+1
k − cts

∥∥2
]
‖∇Fs(cts)‖+

(
2LF

√
2

K
+
LF
K

)
Evtsk

[∥∥wt+1
k − cts

∥∥2
]

≤1

2

√
2

K

(
µλEvtsk

[∥∥wt+1
k − cts

∥∥2
]

+
1

µλ
‖∇Fs(cts)‖2

)
+

(
2LF

√
2

K
+
LF
K

)
Evtsk

[∥∥wt+1
k − cts

∥∥2
] (43)

where

E
[
Evtsk [‖wt+1

k − cts‖2]
]
≤ E

[
1∑

k u
t
ksnk

]{(
γ + 1

µλ

)2

m̂s‖∇Fs(cts)‖2 + p′εm̄sr
2∆2

}
(44)

hence,

E[Qts] ≤
1

µλ

√
1

2K

(
(γ + 1)2m̂sE

[
1∑

k u
t
ksnk

]
+ 1

)
‖∇Fs(cts)‖2

+

(
2LF

√
2

K
+
LF
K

+
µλ
2

√
2

K

)
︸ ︷︷ ︸

≤ 4LF+µλ√
K

E
[

1∑
k u

t
ksnk

]
p′εm̄sr

2∆2

+

(
2LF

√
2

K
+
LF
K

)
︸ ︷︷ ︸

≤ 4LF√
K

E
[

1∑
k u

t
ksnk

](
γ + 1

µλ

)2

m̂s‖∇Fs(cts)‖2

(45)

Combining (37), (40), and (45) we have

E
[
Fs(c

t+1
s)

]
≤ E

[
Fs(c̄

t+1
s)

]
+ E[Qts]

≤Fs(cts)− E
[

1∑
k u

t
ksnk

](
ρ0 −

4LF (γ + 1)2m̂s

µ2
λ

√
K

− (γ + 1)2m̂s

µλ
√

2K

)
‖∇Fs(cts)‖2 +

1

µλ
√

2K
‖∇Fs(cts)‖2

+E

[
1∑

k(1−
∑
s′ 6=s u

t
ks)nk

]
p′ε

(
R0 +

(4LF + µλ)m̄sr
2

√
K

)
∆2

(46)

Let λ be chosen such that ρ0 − 4LF (γ+1)2m̂s
µ2
λ

√
K

− (γ+1)2m̂s
µλ
√

2K
> 0, thus

E
[
Fs(c

t+1
s)

]
≤ Fs(cts)−

(
ρ0 − 4LF (γ+1)2m̂s

µ2
λ

√
K

− (γ+1)2m̂s+(1−pε)ns+p′εn
µλ
√

2K

)
(1− pε)ns + p′εn

‖∇Fs(cts)‖2+
p′ε

(
R0 + (4LF+µλ)m̄sr

2

√
K

)
∆2

(1− pε)ns − p′ε(S − 2)n
(47)

Proof of Theorem 5
Note that under Assumption 3, the sum of proximal objectives h(w1 · · ·wN , c1 · · · cS) =

∑N
k=1 hk(wk; c, ũk) is jointly convex

on (w1 · · ·wN , c1 · · · cS) for fixed ũk, and the training process of FedSoft can be regarded as a cyclic block coordinate descent
algorithm that sequentially updatesw1 · · ·wN , c1 · · · cS while other blocks are fixed. This type of algorithm is know to converge
at least linearly to a stationary point (Luo and Tseng 1992).

To see why the averaging of centers correspond to the minimization of them, simply set the gradients to zero

∇csh =

N∑
k=1

ũks (cs − wk) = 0 (48)

This implies the optimal c∗s equals

c∗s =
∑
k

ũkswk∑
k ũks

(49)

which is exactly the updating rule of FedSoft.

B The impact of τ on the convergence
Note that τ only affects the accuracy of the importance weight estimations utks, which determines the estimation error pε.

To incorporate τ into the analysis, we first generalize Assumption 4 as follows (Ghosh et al. 2020)

‖cts − c∗s‖ ≤ (0.5− αt)
√
µF /LF δ, ∀s (50)

where 0 < αt ≤ 0.5 for all t.
If the algorithm works correctly, the distance between cts and c∗s should decrease over time, thus αt will gradually increase

from α0 to 0.5. Then we can change the definition of pε in Lemma 1:

P(Ej,j
′

t) ≤ pt,τε
∆
=

cε
α2
τbt/τcδ

4
(51)

Here we replace α0 with ατbt/τc, which takes the same value within each estimation interval. Since we expect αt to be
increasing, we have ατbt/τc ≤ αt. Thus, the estimation error pt,τε increases when we choose a larger interval τ . Plugging
this new definition of pt,τε to Corollary 1 we have

T∑
t=1

ρt,τE‖∇Fs(cts)‖2

(1− pt,τε)ns + (pt,τε)′n
≤ Bs

T
+O(p0,τ

ε ∆2) (52)

where ρt,τ is defined by replacing all pε with pt,τε . This gives us the same asymptotic convergence rate with time as in Corollary
1, except for small differences in constant terms.

C Experiment Details
Experiment parameters
• Synthetic data. We use a conventional linear regression model without the intercept term. All clients use Adam as the local

solver. The number of local epochs equals 10, batch size equals 10, and the initial learning rate equals 5e-3. The same solver
is used for both FedSoft and the baselines. The regularization weight λ = 1.0 for FedSoft. The training lasts for 50 global
epochs.

• Letters data. We use a CNN model comprising two convolutional layers with kernel size equal to 5 and padding equal to
2, each followed by the max-pooling with kernel size equal to 2, then connected to a fully-connected layer with 512 hidden
neurons followed by ReLU. All clients use Adam as the local solver, with the number of local epochs equal to 5, batch
size equal to 5, and initial learning rate equal to 1e-5. The same solver is used for both FedSoft and the baselines. The
regularization weight λ = 0.1 for FedSoft. The training lasts for 200 global epochs.

Impact of regularization weight λ
In previous experiments on the letters dataset, we choose λ = 0.1, which is selected through grid search. We show in Table 6
the accuracy of cluster and client models for different choices of λ on the letters dataset, while all other parameters are kept
unchanged. As we can see, when λ = 0, no global knowledge is passed to clients, thus the local training is done separately
without any cooperation, resulting in poorly trained models. On the other hand, when λ is increased to 1, the local updating is
dominated by fitting the local model to the average of global models, and the local knowledge is less emphasized, which also
reduces the algorithm performance.

Table 5: Accuracy of cluster and client models for different choices of λ for the linear partition of lower and uppercase letters.
All the other parameters are kept unchanged.

λ = 0 λ = 0.1 λ = 1
c0 c1 w̄ c0 c1 w̄ c0 c1 w̄

Lower 48.4 50.1 - 71.8 71.7 - 55.1 55.2 -
Upper 47.7 47.5 - 73.9 74.1 - 58.7 58.6 -
Local - - 72.7 - - 86.5 - - 63.6

Impact of divergence among distributions ∆

Finally, we show how the divergence among different distributions ∆ affects the performance of FedSoft. For this experiment
we use the synthetic dataset, and we control the divergence by choosing different values of σ0 (i.e. ∆ increases with σ0). As we
can see, the MSE significantly increases as the divergence between distributions gets larger, which validates Theorem 4.

Table 6: MSE of cluster and client models for different choices of σ0 for the mixture of two synthetic distributions under the
random partition. All the other parameters are kept unchanged.

σ0 = 1 σ0 = 10 σ0 = 50 σ0 = 100
c0 c1 w̄ c0 c1 w̄ c0 c1 w̄ c0 c1 w̄

θ0 5.9 4.2 - 42.2 60.6 - 225.3 89.9 - 782.4 454.4 -
θ1 3.2 4.6 - 42.7 27.0 - 117.6 89.9 - 432.8 812.0 -

Local - - 0.6 - - 4.96 - - 18.8 - - 78.3

CIFAR-10 Results
In this section we evaluate the performance of FedSoft for the CIFAR-10 dataset. We consider two data distributions: the
original CIFAR-10 images and their rotation by 90◦counterclockwise. All images are preprocesseed with standard data aug-
mentation tools (Ghosh et al. 2020). We use a CNN model with six convolutional layers, whose channel sizes are sequentially
32, 64, 128, 128, 256, 256. Each convolutional layer follows the ReLU activation and every two convolutional layer follows a
max pool layer. The fully connected layer has dimension 1024×512.

20 clients are used for this experiment. We choose client selection size K = 15, importance estimation interval τ = 2,
regularization weight λ = 0.01. The local solvers are Adam with initial learning rate equals 5e-4, number of local epochs
equals 10, batch size equals 64. The training lasts for 200 global epochs.

Table 7: Accuracy of cluster models for the mixture of two CIFAR-10 distributions. Each row represents the distribution of a
test dataset. The center with the highest accuracy is underlined for each test distribution.

10:90 30:70 Linear Random
c0 c1 c0 c1 c0 c1 c0 c1

0◦ 74.8 77.6 78.9 78.9 77.2 77.4 76.1 76.0
90◦ 77.4 75.3 79.0 78.8 78.5 78.0 75.3 75.8

Table 8: Comparison between FedSoft and baselines on the CIFAR-10 data. c∗0/c∗90 represents the accuracy of the center that
performs best on the 0◦/90◦distribution, and the number in the parenthesis indicates the index of that center. w̄ is the accuracy
of local models averaged over all clients.

30:70 Linear
c∗0 c∗90 w̄ c∗0 c∗90 w̄

FedSoft 78.9(1) 79.0(0) 98.8 77.4(1) 78.5(0) 98.6
IFCA 75.6(0) 76.1(0) 99.0 75.1(0) 75.3(0) 98.8

FedEM 76.0(1) 74.6(1) 96.6 76.3(0) 75.8(0) 82.0

Table 7 shows the accuracy of cluster models for all the four data partition patterns presented in Section 5. As we can see,
FedSoft yields high quality cluster models with a clear separation of different distributions. Table 8 compares FedSoft with
IFCA and FedEM. FedSoft has the best performance for cluster models, and produces fairly accurate local models.

	1 Introduction
	2 Related Works
	3 Formulation and Algorithm
	4 Convergence Analysis
	5 Experiments
	6 Conclusion
	A Proof of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	B The impact of on the convergence
	C Experiment Details
	Experiment parameters
	Impact of regularization weight
	Impact of divergence among distributions
	CIFAR-10 Results

