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ABSTRACT

We study a sequential resource allocation problem where, at each
round, the decision-maker needs to allocate its limited budget
among different available entities. In doing so, the decision-maker
obtains the reward for each entity in that round. The goal of the
decision-maker is to maximize the expected cumulative reward or
equivalently minimize cumulative regret over a total of T rounds.
Sequential resource allocation can be modeled as a combinatorial
bandit by viewing the allocation of a budget to an entity as a base
arm. In the context of resource allocation, the rewards received
under different budget allocations are likely to be correlated. We
propose a novel correlated combinatorial bandit framework that
explicitly models such correlations. We develop a novel Correlated-
UCB algorithm for online resource allocation, which yields signifi-
cantly reduced regret relative to correlation-agnostic algorithms.
In certain cases, our proposed algorithm even achieves bounded
regret, which is an order-wise reduction in the regret relative to
the correlation-agnostic approach, which incurs logarithmic regret
under all scenarios. We validate these performance gains through
experiments on several applications such as online power allocation
across wireless channels, job scheduling in multi-server systems
and online channel assignment for the slotted ALOHA protocol.
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1 INTRODUCTION
1.1 Background and Motivation

Resource allocation is a fundamental challenge that arises in wide
ranging applications, including wireless networks [1, 2], computer

* indicates equal contribution.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MobiHoc 22, October 17-20, 2022, Seoul, Republic of Korea

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9165-8/22/10.

https://doi.org/10.1145/3492866.3549727

systems [3], multi-server scheduling [4] and financial optimization
[5]. In the case of financial optimization, the company needs to
decide the investment of its limited financial budget across different
products with the goal of maximizing its overall revenue. In the
context of power allocation in multi-channel wireless systems, the
goal is to maximize the throughput of the system by allocating the
power across different available channels. In such problems, the
task is to distribute a limited budget (i.e., money, power, etc.) among
available entities (i.e., product teams, channel etc.) with the objective
of maximizing the reward attained (i.e., revenue, throughput, etc.).
These budget allocation problem can be framed as

S=(ay,a,...ax

K
maximize Z fre(ag)
b M

K

Z ap < Q,ar €A,
k=1

with S being the budget allocation vector (ay, az, . .. ag) and Q rep-
resenting the total available budget. The function fi (ay) represents
the reward attained from entity k upon allocating a budget of a;. to
entity k. This budget is selected from a set A, which may or may
not be countable. Depending on the problem setting, the reward
functions f may or may not be known. For instance, under the
financial optimization example, the company distributes its total
budget of Q among K different products with the goal of maximiz-
ing the total revenue, which is the sum of revenue fi(ay) from
individual products. In this example, the reward function f (ax)
may not be known. In the power allocation problem for wireless
systems, a total power of Q needs to be distributed across K dif-
ferent channels, and the throughput at each channel depends on
the power allocated to that channel and is typically known as a
function of the power allocated to the channels.

Moreover, in these problems, the reward obtained upon allocat-
ing a budget of a; to entity k may be random and may depend
on the underlying randomness associated with entity k. For in-
stance, the revenue of the product may depend on the underlying
unknown demand/market factors. Similarly, in the power alloca-
tion problem, with allocated power g, the throughput at channel

subject to

k is log (1 + ;ZTIZ) where X is the background noise associated

with channel k and is random. As a result, the problem of budget
allocation would now be

K
maximize E ka(ak,Xk)
S=(a1,a,...ax) =i
k 2)
subject to Z ar < Q,a; € A.
k=1

In this scenario, the optimization problem can be solved if

E [ fx (ag, Xi)] is known for all (ag, k) pairs, i.e., the mean reward
of each entity k is known at all budget allocations gy for entity
k. In view of this, we refer to (2) as the offline budget allocation
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problem. In practice, the reward function may be unknown and the
Xi’s may be random variables with unknown distributions. For
instance, in the financial optimization, the reward obtained for a
given budget allocation aj. for product k may depend on underlying
market conditions X}, and one may not know the corresponding
reward function fi.. As a result, E [ f (a, Xi)] remains unknown.
In the power allocation example, X} corresponds to the background
noise, which is a latent variable whose distribution is unknown,
and correspondingly one does not know E [ f;. (ax, X)] a priori.

Motivated by this, we study the online resource allocation prob-
lem, where the goal is to sequentially decide a budget allocation
St = (ayr. a2t ... ag,) for each round ¢, so as to maximize the
cumulative reward attained over a total of T rounds. To perform
this allocation, there is a need to estimate E [ fi (ag, Xi)] for each
(ag, k) pair and subsequently use these estimates to decide a bud-
get allocation Sy that generates the maximum possible reward in
round ¢t. When deciding a budget allocation S;, the decision-maker
has two conflicting goals. Firstly, the allocation S; should try to
gather as much information as possible about the unknown reward
distributions (exploration), and secondly the allocation should try
to maximize the reward in each round (exploitation).

Resource allocation as a combinatorial bandit problem. In
order to balance this exploration-exploitation trade-off, we can
view the online resource allocation problem as a combinatorial
multi-armed bandit (CMAB) problem, which is a variant of the clas-
sical multi-armed bandit (MAB) problem [6, 7]. Under the classical
multi-armed bandit framework, the decision-maker is faced with M
different base arms whose distributions are unknown and the goal
is to maximize the long-term cumulative reward over a total of T
rounds by selecting one amongst the available M base arms in each
round t and observing its reward. Under the combinatorial bandit
framework [8], the decision-maker can select multiple base arms in
a given round from a given pre-defined set and observe the reward
for each of the selected base arms. By viewing the allocation of
budget a. to entity k as a base arm (ag, k), we can view the online
resource allocation problem as a combinatorial bandit problem [8].
The underlying distribution of the reward of each base arm (a, k),
ie., fx(ag, k), is unknown, and the goal is to maximize the cumula-
tive reward over a total of T rounds by selecting K different base
arms in each round t, i.e., one corresponding to each entity k. Upon
the budget allocation, we receive rewards for all the base arms se-
lected in round ¢, which is then used to decide the budget allocation
in round t + 1. By modeling the resource allocation problem as a
CMAB problem, we can use the existing CMAB algorithms to solve
the resource allocation. However, these algorithms do not exploit
the structural correlations in reward functions fi (ag, Xy ). Taking
advantage of these correlations is the main challenge of our work.

1.2 Main Contributions

Novel correlated combinatorial bandit framework for on-
line resource allocation. The combinatorial bandit framework
described above considers the reward obtained for different base
arms to be independent of each other. However, in the context of
resource allocation, the rewards may be correlated in two ways. 1)
the rewards received for one entity k at budget i and for the same
entity k at budget j are likely to be correlated. For instance, in the
power allocation example, the throughput observed at channel k
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under power i gives some information on what the throughput
would have been if power j were allocated to channel k. ii) the re-
wards received across two different entities may also be correlated.
In the financial optimization example, the revenue obtained from
product k under budget i may give some information on what the
revenue would have been at product £ under budget j. This may
occur if the sales of two products are related to one another. In this
work, we model such correlations through pseudo-rewards, which
are upper bounds on conditional expected reward of each base-arm
(j, £) given reward sample of base-arm (i, k). In the financial opti-
mization example, this amounts to the knowledge of the form "what
is the maximum revenue the company can expect from product ¢
at budget j given the observed revenue of product k under budget
i?". The details of this framework are presented in Section 2.

Correlated and Combinatorial UCB. For this novel framework,
we propose the correlated upper confidence bound algorithm for
online resource allocation. It makes use of the correlations across
base-arms to select an allocation S; that balances the task of gain-
ing information about the reward distributions of fi (ay, Xj) for
each (ag, k) pair and maximizing the expected reward in round
t based on the available information. More specifically, it com-
putes an upper confidence bound on E [ fi (ax, Xi)] for each (ag, k)
pair through the reward samples observed of fi (ag, Xj) till round
t. These reward samples may be obtained directly from the past
reward samples of base arm (ag, k) or indirectly through the pseudo-
rewards of base arm (ay, k) from the past reward samples of other
base arms (j, £). These upper confidence bounds on E [ f; (ax, Xi)]
are then used to select an allocation S; to be played in round ¢ + 1.
The proposed algorithm is detailed in Section 3 of the paper. As our
proposed approach makes use of the correlation information in the
selection of S;, as opposed to prior work that is correlation-agnostic,
we observe significant performance gains.

Reduction in cumulative regret through correlations. We
evaluate our proposed algorithm in terms of the cumulative regret,
which is defined as the difference between the total reward ob-
tained by our online algorithm and the total reward obtained by the
optimal offline solution, where the offline problem has complete
knowledge about the joint distribution of X. We introduce novel
proof techniques to analyze the regret, and show that the regret of
our proposed algorithm is C - O(log T) where 0 < C < KA, with A
denoting the size of the set A from which budget a; is allocated
to each entity. We prove such results by jointly handling two key
complexities, i) the correlations in reward across different base
arms, and ii) selecting multiple base arms in a round to maximize
the underlying objective function in the presence of budget con-
straints. The performance gains are a significant improvement over
approaches that are agnostic to correlation [9], which have a regret
of the form of KA - O(log T). In a lot of practical settings, C = 0,
which implies that our proposed algorithm achieves a bounded re-
gret. This is an order-wise improvement over correlation-agnostic
approaches as shown in Section 4 of our paper. Our novel analysis
technique, in particular Claim 1, is of independent interest as it can
be used to analyse the generic combinatorial bandit framework [8]
in an alternate manner.

Synthetic experiments on real-world problems. We validate
the performance of our algorithm by evaluating it on three practical
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problems in Section 6. We conduct experiments for i) the power
allocation problem in wireless systems, ii) channel assignment in
slotted ALOHA protocol and iii) scheduling of jobs in a multi-server
system. For all the three problems, we see that using our correlated
and combinatorial UCB algorithm achieves significant improvement
in performance relative to correlation agnostic approaches.

1.3 Related Works

The classical offline resource allocation problem, i.e., the setting
where the distributions of f; (ag, Xi) are known, has been exten-
sively studied for decades [1, 10, 11] and has been applied in several
application settings such as financial optimization [5], wireless sys-
tems [1, 2], scheduling in multi-server systems [12], etc. Recently,
the online resource allocation problem has attracted much attention
as the distribution of rewards fi (ag, Xy ) is typically unknown in
practice [9, 13-15]. First, the online resource allocation problem
was studied in a setting where the reward functions fi (ay, Xi)
were assumed to be linear [13, 16]. This was extended by [15], as
they assume the reward functions to be concave. More recently,
[9] studied this problem in the most general setting by placing no
restriction on the type of reward functions f. (ag, Xx)-

In [9], the online resource allocation is modeled as a combina-
torial multi-armed bandit problem by viewing the allocation of
budget ay to entity k as a base arm. Subsequently, they extend
the UCB algorithm for combinatorial bandits [17] to the online
resource allocation problem. The action space A in [9] is allowed
to be countable, unlike [17] which restricted the action space to be
binary. A drawback of the approach in [9] is that it considers the
rewards corresponding to different base arms to be independent
of each other, and it does not make use of the fact that the reward
obtained from one base arm may give some information on what
the reward would have been for a different base arm.

In this paper, we fill this gap by proposing our correlated combi-
natorial bandit framework to study the online resource allocation
in the most general setting. To the best of our knowledge, this is
the first work that models the correlation in a combinatorial bandit
framework. The idea of capturing correlations in reward across
different arms was previously studied in the context of classical
multi-armed bandits, i.e., the setting where only one base-arm is
played in each round t, in [18, 19]. Another closely related line of
work, where only one base-arm is played in each round, is that of
structured bandits [20-22], where mean rewards corresponding to
different base arms are related to one another through a hidden
parameter . While mean rewards between different arms are re-
lated to one another in structured bandits, they are not necessarily
correlated. Due to this, the correlated bandit framework [18, 19] fits
better to the problem setting of online resource allocation where
reward realizations are known to be correlated. We extend this idea
of correlated bandits to the combinatorial bandit framework, where
multiple base-arms may be played in each round ¢, and propose
the correlated UCB algorithm for online resource allocation. The
extension is non-trivial as the classical multi-armed bandit and
combinatorial bandit often require different design of algorithms
and regret analysis due to selection of multiple base arms within
provided constraints as opposed to the selection of the single base
arm in each round t. Upon doing so, we are able to exploit the
correlations to obtain significant performance improvements as
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demonstrated in Sections 4 and 6. To the best of our knowledge,
this is the first work to show that O(1) regret can be achieved in
certain online resource allocation problems.

2 PROBLEM SETUP
2.1 Offline Resource Allocation

Consider the offline resource allocation problem where a decision-
maker splits the available budget among K different entities. For
each entity k € [K], the decision-maker needs to decide a budget
ar € A, where A is the feasible budget space. Notice that the
budget space A could be either discrete (e.g., N) or continuous (e.g.,
R>0). We focus on the discrete action space first and then consider
the case of continuous action space separately in Section 5. We
denote the overall budget allocation vector as S = (ay, - - - , ax). We
consider a general reward function fi (ag, Xy) for each entity k,
where X} (which can be discrete or continuous) is a hidden random
variable that reflects the random fluctuation of the obtained reward
within entity k. We also consider m general constraints, denoted as
hi(S) <0,i=1,2,---,m.

For the offline setting where the distribution D = (Dy,..., D)
of X = (Xi,...Xg) is known, our goal is to maximize the ex-
pected total reward collected from all entities, which we denote by

r($,D)=E [Zle fr(ag, Xk)]. This problem can be formulated as

K
maximize E (ar, Xx)
gnaimize, kZ:lfk ko Xk i
subject to ar € AVk € [K];hi(S) £0,i=1,2,---,m.

The above formulation is a general version of (1) and (2), which
contain just one constraint hy (S) = i ar — Q. We could have more
complex constraints on S through h;(S), e.g., maxgar — W < 0.
These constraints on budgets are known to the decision-maker. For
instance, if fi (ag, Xy ) is convex over ag, h;(S) is convex over S, and
A is a convex set, it becomes a convex optimization problem that
might be solved exactly; if A is a discrete set, it can be a NP-hard
combinatorial optimization problem.

As the reward functions fi.() may not be known in practice
(e.g., the financial optimization example in Section 1), we do not
specify the exact form of the reward functions f (ax, Xi) and con-
sider them to be unknown. We assume that there exists an offline
approximation oracle A, which outputs an allocation S9 such
that r(S9,D) > a - opt(D), where «a is the approximation ratio
and opt(D) = supgr(S, D) is the optimal solution to the budget
allocation problem. The oracle can output such an allocation if
E [ fx(ag, Xi)] is known for all (ax, k) € A X K.

2.2 Online Resource Allocation as a
Combinatorial Bandit Problem

Now we introduce the online version of the resource allocation,
which is a sequential decision making problem. In each round ¢,
we allocate aj , budget to each entity k, subject to the budget con-
straints, h;j(S) < 0,i = 1,2,---,m. We then obtain fk(ak,t’Xk,t)
reward from each entity k, where Xj ; is sampled from an un-
known distribution Dj. The total reward obtained in round ¢ is
ZIIS:l fe(ag ¢, X ¢)- Our goal is to accumulate as much total reward
as possible through this sequential budget allocation.



MobiHoc °22, October 17-20, 2022, Seoul, Republic of Korea

g \\\\ ~
’// 1 \\< \\\ ,/ /I \\ \\\
GO 6
Reward Reward
Riy = f1(i, X1) Rije = fie (i, Xic)

7, W
AN

Figure 1: The rewards corresponding to a base arm (i, k), i.e.,
budget i to entity k, are a function of the allocated budget i
and underlying randomness X} associated with entity k. The
rewards for base arms (i, k) and (j, k), i.e., different budget
allocations within entity k, are correlated through X;. There
may be also correlation in the rewards across different enti-
ties if X1, X», ... Xk are correlated.

We denote the overall budget allocation in round t as S; =
(ays azt, - -+, ak,) and the joint distribution of all X ,;’s as D =
(D1, D3, ..., Dg). We define the expected total reward obtained in
round t as r(S¢, D) = E Zlk(:l ﬁc(ak,pXk,t)]- We consider a learn-
ing algorithm 7 that makes the budget allocation S7¥ in round t. We
can measure the performance of by its (expected) regret, which
is the difference in expected cumulative reward between always
taking the best offline allocation and taking the budget allocation
selected by algorithm 7. The best offline allocation can be obtained
through the offline oracle O, which knows the underlying joint
distribution D, and attains r(SO, D) > a - opt(D). In view of that,
we use the following approximation regret for T rounds:

RegZ(T;D) =T -a-opt(D) — X (ST, D). (@)

Since the obtained reward fy (a, Xy ) of entity k is determined by
the allocated budget ay, following the combinatorial multi-armed
bandit framework [8], we can view allocating budget i to entity k as
a base arm and denote it as (i, k). The overall budget allocation S¢
can be considered as a super arm that consists of multiple base arms.
For each base arm (i, k), we denote the expected reward of playing
itasp; = Ex; ,~Dy [fk(i, Xk,t)] . We can rewrite the expected total
reward obtained in round ¢:

K K
r($6D) =B | Y filare Xe) | = D D i Mage =i}, (5)
k=1 k=1ieA

Note that the expected total reward depends only on the mean
rewards of base arms (i, k), therefore it can be re-written as

K
rSem =) D ik Make = ik (©)
k

=1ieA

If the mean rewards y; . of individual base arms (i, k) were
known, then one can use the offline oracle to obtain the optimal
budget allocation in each round. As the mean rewards of individual
base arms are unknown, they need to be estimated from the histor-
ical observations until round t. The mean reward of the base arm
(i, k) can be estimated either through the past samples in which
budget i was allocated to entity k, or through the side information
collected from other observations. We discuss the latter next.
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2.3 Proposed Correlated Combinatorial Bandit

Framework

In several application settings, there may be some information
on the knowledge of reward functions f (ag, Xy ). As a result, the
knowledge of the reward from one base arm (i, k) may provide
some information on the reward that would have been obtained
from entity k if budget j was allocated to entity k. This is illustrated
in Figure 1. For instance, in the power allocation example, where the
objective is to allocate the total power Q among K different channels
to maximize the total throughput, the throughput at channel k is
given by log (1 + %) Here, aj; represents the power allocated in
channel k and Xj denotes the hidden noise in channel k at round t.
As the expression of throughput, i.e., the reward function f(ag, Xg),
is known, the throughput in channel k at power i provides some
information on what the reward would have been if power j was
allocated to channel k. More generally, rewards obtained from one
base arm (i, k) may provide some information on the reward of
another base arm (j, ). As a result, the rewards corresponding to
different base arms are correlated. We capture the presence of such
correlations in the form of pseudo-rewards, as defined below:

DEFINITION 1 (PSEUDO-REWARD). Suppose that we sample base
arm (i, k) and observe reward r. We call a quantity s j ) (ix)(r) as
the pseudo-reward of base arm (j, £) with respect to base arm (i, k) if
it is an upper bound on the conditional expected reward of (j, ?), i.e.,

E[fe(1, Xe) | fi . Xe) =71 < 5¢5,0),(1k) (7)- (7)
For convenience, we sets(j ) (j.¢)(r) =1, ¥j, L.

When no information is known, pseudo-rewards between two
base arms are not known, then they can be set equal to the maximum
possible reward. This makes our formulation quite general and
subsumes the correlation agnostic CMAB framework studied in [9].
The connection will be made explicit through Remark 1 in Section 3.
Next, we show how the pseudo-rewards can be evaluated.
Obtaining pseudo-rewards from reward correlations within
the same entity. These pseudo-rewards can be evaluated easily
in several different practical settings. For instance, if the form of
the functions fi (ag, Xy ) is known, then the pseudo-reward of base
arm (J, k) with respect to base arm (i, k) can be obtained as

Sk, (k) (1) = m)zcixfk(j, x) st fi(i,x)=r. (8)

Note that pseudo-rewards can be obtained even in the scenario
where only probabilistic upper and lower bounds on fi (ak, Xy) are
known, i.e., fk(ak,Xk) < filae Xi) < filag, X)) wp. 1 — k. In
this scenario, we can construct pseudo-rewards as follows:

S(k), (k) (1) = (1= K)?% max Fie U Xe)

(X f (X0 <r <fie(i.Xp0) }
+(1-(1-x)*)xM, (9

where M is the maximum possible reward that a base arm can pro-
vide. We evaluate this pseudo-reward by first identifying the range
of values within which X}, lies based on the reward with probability
1 — k. The maximum possible reward of the base arm (j, k) within
the identified range of X} is then computed with probability 1 — .
Due to this, with probability (1 — K)Z, the conditional reward of
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Figure 2: Upon observing a reward r from a base arm, pseudo-
rewards s s (i) (7), give us an upper bound on the condi-
tional expectation of the reward from base arm (j, ¢) given
that we observed reward r from arm (i, k). Reward received
for entity k at a given budget i may provide some informa-
tion on what the reward would have been if budget j were
allocated to entity k, leading to correlations within entity.
The rewards of different entities may also be correlated.

base arm (j, k) is at most maXXk:fk(i,Xk)Srka(i,Xk) [ (G, Xg). As
the maximum possible reward is M otherwise, we get (9).

Obtaining pseudo-rewards from reward correlation across
entities. In the most general scenario, there may be knowledge of
reward correlations across entities as shown in Figure 2. This can
occur if the random variables Xj. and X, i.e., the hidden random
variables corresponding to two different entities k and ¢, are cor-
related. These correlations can be incorporated in our framework
through pseudo-rewards s ¢ (j x)> Which are an upper bound on
the conditional expected reward. For instance, in the application
of financial optimization, the company may invest its total budget
among different products. As the performance of different products
are likely to be correlated, the reward feedback under budget i
for product k may inform something about the reward feedback
for product ¢ under budget j. Such correlations can be modeled
through pseudo-rewards, which may either be known from domain
knowledge or from previously performed controlled experiments.
For example, based on previously performed experiments, it may
be known that the expected reward obtained from product ¢ under
budget j is at most y whenever the reward obtained for product k
under budget i is x. Note that in this modeling, one does not need
to explicitly capture what the inherent randomness X, represents
and its corresponding values. This is a key strength of our proposed
framework, as in several applications X} could be hard to interpret
and model. For instance, in the financial optimization example, X}
may represent underlying market conditions, which are complex,
and subsequently the reward functions f (a, k) are also unknown.
Even in such settings, the pseudo-reward based framework allows
one to capture the correlation across different base arms.

3 PROPOSED ALGORITHM

We now propose the correlated-Upper Confidence Bound algorithm
for resource allocation (corr-UCB-RA) that uses existing correlation
in rewards across base arms to maximize the long-term cumulative
reward. Before describing our algorithm, we first review the UCB
algorithm for resource allocation (UCB-RA) proposed in [9].
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3.1 The UCB Algorithm for Resource Allocation

In order to solve the online resource allocation problem, the UCB-
RA algorithm maintains a set of base arms {(k, a) | k € [K],a € A},
where the total number of base arms is equal to KA, with A denoting
the size of the discrete set A. If the mean reward of each base
arm were known, then the resource allocation problem can be
easily solved by the use of the available offline oracle O, which
produces an allocation Sto such that r(StO, 1) = a-opt(p). As the
underlying mean rewards of the base arms are unknown, the UCB-
RA algorithm maintains the empirical mean f;  (¢) for each base
arm (i, k) at round t. Using these empirical means, it then computes
an upper confidence bound (UCB) index for each base arm (i, k) as

2logt
neig (1)

where n(; ) (t) denotes the number of times budget i was allocated
to entity k. UCB-RA algorithm then feeds these upper confidence in-
dices of the base arms to the available offline oracle (i.e., substitute u)
and obtains an allocation Sy = (a,+, a2y, . . . ak,¢). It then uses this
allocation for round ¢ and observes the feedback of fi (a s, Xi ) Vk.
Note that the upper confidence indices are large if base arm (i, k)
has a large empirical mean reward or if it has been sampled fewer
times relative to other base arms.

Uik () = figip (1) +

3.2 The Proposed Correlated-UCB Algorithm
for Resource Allocation

Under the correlated combinatorial bandit framework, the pseudo-
reward for base arm (j, £) with respect to the base arm (i, k) pro-
vides an estimate on the reward of base arm (j, £) based on the
reward obtained from base arm (i, k). We now define the notion of
empirical pseudo-reward, which can be used to obtain an optimistic
estimate of yij p) through just reward samples of base arm (i, k).

DEFINITION 2 (EMPIRICAL AND EXPECTED PSEUDO-REWARD). Af-
ter t rounds, a base arm (i,k) is sampled n;)(t) times. Using
n(; k) (t) rewardrealizations, we construct the empirical pseudo-reward

é(j,[),(i,k) (t) for (j, £) with respect to base arm (i, k) as follows.
—1 Liikyes, sGo.Gik) (e (s Xk 2))

bein (i (D) = . (10
D0, (i.k) (D) N (10)
(U, 0) e Kx A\ {(i,k)}. (11)

The expected pseudo-reward of (j, £) with respect to (i, k) is
S0,k = E [5G0 (i Xe)) ] - (12)

For convenience, we set ¢(; x).(ik) (t) = f(ik) () and ¢(ip) (ik) =
H(ik)- Note that the empirical pseudo-reward (j;(j,[),(i,k) () is defined
with respect to base arm (i, k) and it is only a function of the rewards
observed by sampling base arm (i, k).

DEFINITION 3 (PSEUDOUCB INDEX Uy 4 (1,k) (t)). We define the
PseudoUCB Index of base arm (j, £) with respect to base arm (i, k) as

.7 2logt
Uiy, (ik) (1) = $(j,0.ik) () + ‘/n(i,k)(f)' (13)

The algorithmic blocks for UCB-RA and Corr-UCB-RA are presented in the appendix
of the full paper at www.andrew.cmu.edu/user/gaurij/corr_comb_bandits.pdf.
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Furthermore, we defineU(; ¢) (t) = min; k) U(j ) (i.k) (2), the tightest
of the KA upper bounds for base arm (j, ).

At each round, the algorithm computes these pseudo-UCB in-
dices U ¢y for each base arm (j, £). These indices are then fed to
the oracle to obtain the budget allocation vector S¢ at round ¢. At
the end of each round we update the empirical pseudo-rewards
qg(j,t’),(i,k) (t) for all (j, £), the empirical reward for arm (i, k) € S,
where S; denotes the set of base arms played in round ¢. The de-
scription of this algorithm is given in the appendix.

REMARK 1 (REDUCTION TO COMBINATORIAL MULTI-ARMED BAN-
pITs). When all pseudo-reward entries are unknown, then all pseudo-
reward entries can be filled with the maximum possible reward for
each base arm, that is, S(i.k),(j,0) (r) = M Vr,t,k,i, j. In that case, the
proposed Corr-UCB-RA algorithm reduces to the UCB-RA algorithm.

4 REGRET BOUNDS AND ANALYSIS
4.1 Main Results

We now characterize the performance of our proposed algorithm in
terms of regret (See Eq. (4)). Here, (ST, D) represents the expected
total reward obtained in round ¢, which can be written as,

K
=0 page - Ui = ag). (149)

k=1acA

r(S¢,u) =E

K
> filage Xis)
k=1

For the regret analysis, we assume without loss of generality that
the rewards are between 0 and 1 for all base arms (i, k). Further-
more, we denote the oracle’s optimal budget allocation vector as
§*, i.e., the allocation vector that provides an a-optimal solution
to the offline resource allocation problem, where E [ fi (ar, Xi)]
is known for all base arms. For simplicity, we assume that there
is a unique solution S* to the offline resource allocation problem.
Correspondingly, we denote the set of base arms selected in S* as
the set of optimal base arms S*. To bound the regret, we rely on
two properties of r(S, p).

PROPERTY 1. (Monotonicity). The expected reward of playing any
action S; is monotonically increasing with respect to the expectation
vector of base arms, ie., if for all (i,k) € AXK, if y; . < ,ulf,k, then
we have r(Sg, ) < r(Se, p’) VS¢.

PROPERTY 2. (Bounded Smoothness). 3 an increasing function
g(.) such that, if Sy is the super-arm selected in round t and ||pus, —
”§t||w < A, then

Ir (St 1) = (St 1")| < g(A).

Here, the infinity norm between pg, and ygt is defined as
max; kyes, [Hik) — ”Ei k)| with S; denoting the set of base arms
played in round t.

It is easy to see that both properties hold from the definition of
r(St, p) in Eq. (5). Before stating our main result for the correlated
UCB algorithm, we first review the regret bound under the UCB-RA
algorithm [9].

The full proofs and the intermediate Lemmas are available in the appendix of the full
paper at www.andrew.cmu.edu/user/gaurij/corr_comb_bandits.pdf.
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LEmMA 1. The regret for UCB-RA algorithm is upper bounded as

i 8logT
Reg, (T, D) < AR P08 | 4K AAmax
(i,k) eKx A (g—l (qui}l;)))
= KA-O(logT) + O(1), (15)

with A = 1 (8*, 1) — max(r(S, p)|S € Sg, (i, k) € A x K),

min
ASR) — (8%, 1) — min(r (S, p)|S € S, (i, k) € A x K),
(i.k)
A = Ay s
T ke M
where Sp is the set of all sub-optimal actions and S* is the oracle’s
optimal allocation.

The result follows from the intuition that after the UCB indices
of all the base arms are relatively close to their true mean rewards,
the algorithm selects the budget allocation $* with high probability.
Under the UCB-RA algorithm, each base arm needs to be sampled
O(logT) times to ensure that the UCB indices are close to their
true means. Due to which, the regret of UCB-RA algorithm is of
the form of KA - O(log T). We formalize this intuition for both the
UCB-RA and our proposed Corr-UCB-RA algorithms through the
following claim. This claim is a novel contribution of our work
and it provides an alternative methodology to analyse the generic
combinatorial bandit formulation [8] as well.

Cram 1. IfU(ix) 2 pik), V(i k) € KX A and the UCB-RA and
Corr-UCB-RA algorithms select a budget allocation Sy at round t,

Bk < Uik < figr) YK €St
then S; is equal to the oracle’s optimal allocation S*. Here, the thresh-
olds fi(; x) are defined as

_ 1,4 Gk
Hik) = H(ik) +9 1(Ai,l”»n))

Using this claim, we will show regret bounds for our proposed
Corr-UCB-RA algorithm. To state our results, we first define the
notion of competitive and non-competitive base arms.

DEFINITION 4 (COMPETITIVE AND NON-COMPETITIVE BASE ARMS).
If o0,k < (e for some (i,k) € S then base arm (j,f) is
called Non-competitive, otherwise it is called Competitive. Here, S*
denotes the set of base arms played in the oracle’s optimal budget
allocation vector S*. Furthermore, we define the pseudo-gap of a base

arm (j,£) as Aj o) = fi(j,¢) — MaX(i k) eS* P(ji0), (ik)-

Note that the pseudo-gap is greater than zero for non-competitive
base arms and is less than or equal to zero for competitive base arms.
The definition of pseudo-gap is useful to state our regret bounds.
Intuitively, a base arm (j, £) is non-competitive if it can be inferred
that the mean reward of (j, £) is smaller than the threshold fi; )
through just the samples of a base arm belonging to the oracle’s
optimal budget allocation S*. In what follows, we refer to the total
number of competitive base arms as C and the set of competitive
base arms as C. As mentioned earlier, the Corr-UCB-RA algorithm
selects the budget allocation S* with high probability if the indices
of base arms Uj; ) are close to their true means. In the presence
of correlations, we show that this can be achieved by sampling
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competitive base arms O(log T) times and non-competitive base
arms only O(1) times. This occurs as the non-competitive base
arms can be identified as sub-optimal based on samples of optimal
base arms. We formalize this intuition to get the following regret
bound for our Corr-UCB-RA algorithm.

THEOREM 1 (UPPER BOUND ON CUMULATIVE REGRET). The ex-
pected cumulative regret of the Correlated-UCB algorithm for resource
allocation is upper bounded as

ik 8log T
Rego(T.D) < )" Apa) #
(ilec (9‘1 (Am}n ))
Alnax ) (4K Aty + 6(KAY®) + 2(KA Ay (16)
(", k") eKxA\{C}
=C-0O(logT) + O(1), an

where C C K x A is set of competitive base arms with cardinality C

and ty = inf {T >2:971 (Af};lﬁ)) > 4\[2K1+gf V(i k),
A(i,k) > 4"&;@‘[ V(i,k) € A X(](\C}.

We now present a proof of our Claim 1, which is then used to
provide a proof sketch of Theorem 1. The proof of Claim 1 is of
independent interest as well as these techniques can be used to
analyse the regret of the UCB algorithm in generic combinatorial
bandits as well (e.g., the combinatorial UCB algorithm in [8]).

4.2 Proof Sketch

Proof of Claim 1. In total there are |K| X |A| base arms. Index
these base arms with indices z in the set {1,2,...|K| X |A|} such
that A > A® > AB 5 5 AUKIXIAD
min — min — min — - min
We consider a case where p, < U, (t) < pz+g’1(Ar(nZi)n) VzeS;
and U; > pi;Vz. Define y to be the smallest index such that base arm
y is selected in S;. From the definition of base arm y and through

Property 2 we have,

1Us, () = pis, oo < g7 (ALY ) = |r(S¢, U(E)) = r(St, m)| < &Y

min min’

(18)

As Uz(t) > pz Vz, we have the following from the monotonicity
condition (Property 1),

F(Se )+ A > F(SLU®) = r(SLUM) 2 1(S* ) (19)

The third inequality arises from the monontonicity condition as
Uz > pz, Vz. This shows thatif p, < U,(t) < ,uz+g_1(A(1) ),Vz € S;

min

and U, > p, Vz, the expected reward for the budget allocation S,

F(Sto ) > r(S% ) = AL (20
As base arm y is selected in S¢, then by definition of Afrf/l.)n,

max(r(Se, )|S¢ € Sp, (k) =y € S) < r(s*, p) - ALY (21)
which shows that the maximum reward that can be attained if
the allocation S; was sub-optimal and base arm y was selected
is upper bounded by r(S*, u) — Al(nylzl Upon comparing (21) and

(20), we conclude that if p, < U,(t) < pz + g~ (Ar(jl)n) VzeS;
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and U, > p,Vz, then the budget allocation vector S; is equal to S*,
which is the oracle’s unique optimal solution.

Proof of Theorem 1. We now discuss the regret analysis of Theo-
rem 1. In order to bound the regret, we first define the notion of a
responsible base arm.

DEFINITION 5 (RESPONSIBLE). A base arm (i, k) is said to be re-
sponsible at round t, if

(1) It was selected in round t and
(2) Ugigy (1) = Agik)

By Claim 1, if a sub-optimal budget allocation was selected in
round t, it implies that either U;x)(t) < p(;k) for some (i, k) €
K x A or at least one of the selected base arms in Sy was responsible.
Therefore, the expected number of rounds in which a sub-optimal
allocation was played (referred to as bad rounds) can be upper
bounded by

E[Bad rounds(T)] < Y [E[r(i’k)(T)] +E[nu, 0 <, (D1
{ik)
(22)

with r(; ) (T) denoting the number of rounds for which base arm
(i, k) is responsible up until round T and MU o) <H(ike) (T) repre-
senting the number of rounds in which Uy; x) (t) < p (k) for some
(i, k) until round T. This inequality arises as a result of the union
bound and linearity of expectation. Moreover, whenever arm (i, k)
is responsible in round ¢, the regret incurred in that round can be
upper bounded by by Af,ﬁ;f;) (by definition of Ag;ﬁ? in Lemma 1).
In scenarios where Uj; 1) (t) < (k) for some (i, k), the regret in-
curred in that round can be upper bounded by Apmax (by definition
of Amax in Lemma 1). Using this observation, we have

E[Reg(T)] < )
(i,k) €KX A

> Bl <pn (D] X Amax. (23
(i,k) eXxA

ik
E[r (i) (T)] X AR

Using Hoeffding’s inequality, it can be shown that the second
term is upper bounded by an O(1) constant, the details are pre-
sented in Lemma 7 in the appendix. To bound the regret in (23), we
bound E [r( ik) (T)] separately for non-competitive and competitive
base arms. More specifically, we show that E [”(i,k) (T)] is upper
bounded by an O(1) constant for non-competitive base arms and is
O(log T) for competitive base arms. There are two key components
to show upper bounds on E [r( ik) (T)] for non-competitive base
arm (i, k). Suppose the base arm is non-competitive with respect
to (4, %), i.e., ¢(i,k),(j,£) < A(ik) and (j,¢) € S*.

(1) The probability of base arm (i, k) being responsible in round ¢

jointly with the event that nj,(t) > % is small.

2t 3
P . . > —| < v KAt.
T (resp(l,k)(t),n(]’g)(t) z3)= t t > 3KAty

This occurs as upon obtaining a large number of samples of base
arm (j, £), the expected pseudo-reward of base arm (i, k) is smaller
than fi(; x) with high probability. As a result, the probability that
base arm (i, k) is responsible is small. (See Lemma 4.)
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(2) The probability that a sub-optimal budget allocation is made
for more than % times till round ¢ is upper bounded as,

t -2
— Yt > 3KAty,
SKA) 0

We show this in Lemma 9 through Lemma 6,8 by showing that
r(i,k) (T), which is the number of rounds for which base arm (i, k) is

Pr (Tsub“’P‘(t) > g) < 6(KA)? (

responsible till round T, is smaller than ﬁ with high probability.
Additionally, nyy, ) <, (T), representing the number of rounds
in which U ) () < p(ix) for some (i, k) till round T, is smaller
than % with high probability. Using these two arguments (1) and (2)
above, we bound the expected times a non-competitive base arm
(i, k) is responsible until round ¢ in Lemma 10 as

T
B [r (1)) < 3KAR+ | 173 +6(KA)? (L)_2 <0(1).
(BRI = 3KA)
1=3KAt,
(29)

Next, we bound the term E [r( ik) (T)] for competitive sub-optimal
arms. We do so in Lemma 11, by showing that after base arm (i, k)
has been sampled O(log T) times, the probability of base arm being
responsible at round ¢ decays as 2 and as a result E [’”(i,k) (T)] is
O(log T). This combined with (24), leads to Theorem 1.

4.3 Discussion on the Regret Bound

Competitive and Non-competitive base arms. Recall that a
base arm (i, k) is said to be non-competitive if the expected pseudo-
reward of base arm (i, k) with respect to some base (j,f) € S* is
smaller than fi; x). Note that the optimal set of arms S*, reward
distributions of individual base arms are unknown at the beginning
and as a result the Corr-UCB-RA initially does not know which
base arms are competitive and non-competitive.

Reduction in the effective set of base arms. Upon comparison
with the regret of the UCB-RA algorithm, from Lemma 1, we see
that our proposed algorithm reduces the regret from KA X O(log T)
to CxO(logT), since only C out of the total KA need to be sampled
O(logT) times before the condition in Claim 1 is met with high
probability. As a result, the Corr-UCB-RA only explores C out of
the KA base arms explicitly and effectively reduces the problem
with KA base arms to one with C base arms.

Bounded regret in certain settings. Whenever the set C is empty,
the proposed Corr-UCB-RA algorithm achieves bounded regret,
which is an order-wise improvement over the regret of correlation
agnostic UCB-RA algorithm. One scenario in which this can occur
is if the functions fi(-) are invertible with respect to X given
ar. More generally, whenever the sub-optimal base arms can be
identified as sub-optimal through just the samples of optimal base
arms, we get a bounded regret. Note that the algorithm initially has
no knowledge about the optimality/sub-optimality of base arms
and in such cases it identifies them by sampling the sub-optimal
base arms only O(1) times.

5 CONTINUOUS BUDGET SETTING

So far we have studied the resource allocation problem under the
assumption that the set A from which budget ay. for each entity k
is allocated is a countable set. In this section, we discuss settings
where A is uncountable. One instance where this could occur is if
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ar € R. In such scenarios, it is still possible to design an algorithm
while achieving bounded regret in some cases.

Reward functions are invertible. Suppose the reward functions
fr(a, X)) are invertible in X and are known to the algorithm.
In this case, it is possible to estimate X} directly from the reward
samples of entity k. Therefore, one can maintain an empirical mean
X (t) for each entity. This empirical mean can then be used to
evaluate the upper confidence bound indices for base arm (i, k) as

N lo
Ut (8) = fili, X (5) + 4 /ik—(*‘if,

. 2ot Gy (0, (T (D)
where ni(t) = X jnjr(t) and X (t) = %

Gy (0).k Xk (1)) = fr(a (1), Xk (t)) and rg (7) is the reward attained
from entity k at round 7.

One can then use these UCB indices to obtain an allocation S
from the offline oracle as done in Corr-UCB-RA algorithm, which
will then be used to select the action in the next round. Using
techniques in Section 4.2, it can be shown that this algorithm in
cases where reward functions are invertible will lead to an O(1)
regret. This occurs as the information about the sub-optimal base
arms can be obtained through the samples of the optimal action.
Non-invertible reward functions. In scenarios where reward
functions are non-invertible, it is still possible to extend the Corr-
UCB-RA algorithm. This can be done by discretizing the budget
space and making assumptions about Lipschitz continuity as done
in [9]. Specifically, the regret is affected by the discretization gran-
ularity and [9] provided an optimized value for it. After the dis-
cretization, we can use Corr-UCB-RA on the countable action set.

6 EXPERIMENTAL RESULTS

To validate the effectiveness of our algorithm, we conduct experi-
ments on three applications with synthetic and real data. First, we
consider a dynamic user allocation problem in wireless networks,
where we need to allocate new incoming users to different wireless
access points with unknown number of existing users. We evaluate
our algorithm in the setting with non-invertible reward function.
Next, we study an online server assignment problem, where the
servers need to be assigned to different job streams with unknown
job arrival rates. Different from the first application, the reward
function of this problem is invertible, so it is possible to obtain O(1)
regret. However, we also study a partial feedback setting for this
application, which leads to sublinear regret. Finally, we apply our
algorithm to an online water filling problem [23] that is essential
to the power allocation in OFDM systems [24]. It is a continuous
budget allocation problem with invertible reward functions, and
we study its partial feedback setting as well. Since the forms of
the reward functions are known in all applications, we can directly
compute the pseudo-rewards defined in Eq. (8).

ere

6.1 Dynamic User Allocation

In this section, we apply our corr-UCB-RA algorithm to a dynamic
user allocation problem in wireless networks. Our goal is maximize
the total throughput of wireless access points (APs) by allocating
new incoming users to them. The number of existing users associ-
ated to each AP is time-varying, which affects the traffic load on the
AP. We assume each user has a fixed traffic load of 0.2 and consider
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Figure 3: Comparison between regret of UCB-RA and Corr-
UCB-RA as a function Q (new incoming users) for the appli-
cation of dynamic user allocation.
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the well-known ALOHA protocol [25] for each AP. We consider K
APs and Q new incoming users at each round. Let X;. denote the
number of existing users in each AP k and a; denote the number
of new users allocated to it. Note that we assume all the users of
an AP will leave when the round ends, so ag in the current round
will not affect X in the future rounds. Our goal is to maximize the
total throughput of all APs:

K K
max Z 0.2(X; + ak)e—o.z(kak)’ s.t. Z ar =Q,ap €N.
ax k=1 i=k

We extract {X} }, the number of existing users in each AP, from a
real-world dataset [26]. We choose 4 APs (91, 92, 94, 95) on the 3rd
floor of Building 3 on campus, and record their associated users
from 13:00 to 16:00 on March 2, 2015. The detailed distribution
of the number of existing users on different access points can be
found in the Appendix. In our experiment, at each round, we first
sample {X;} from the extracted distribution, then allocate Q = 8
new users to these four APs. Since the throughput function is non-
invertible, our algorithm cannot directly infer X} from the observed
throughput of each AP and needs to maintain the pseudoUCB in-
dices of base arms as explained in Section 3. We compare it with
the UCB-RA algorithm. Figure 4a shows the average regrets with
95% confidence interval over 20 experiments. The result is consis-
tent with our analysis in Section 4: corr-UCB-RA achieves 25% less
regret than correlation agnostic UCB-RA algorithm. This occurs as
the corr-UCB-RA algorithm is able to make use of the correlations
between the reward of base arms to incur a regret of C-O(log T) as
opposed to KA-O(log T). We also show the relationship between Q
and the total regret after 2000 rounds in Figure 3: with the increase
of Q, the total regret of corr-UCB-RA increases much more slowly
than that of UCB-RA.

6.2 Online Server Assignment

We consider 4 independent job streams (i.e., K = 4) with unknown
expected job arrival rates A = (0.2, 0.4, 0.6, 0.8). For each job stream
k, the realized job arrival rate X} follows a uniform distribution
U(Ag — 0.1, A + 0.1). We assume each job stream has one initial
server to ensure it is a stable system with bounded expected waiting
time. There are 8 additional servers (i.e., Q = 8) to be assigned and
we denote the number of additional servers allocated to stream k
as ag. We assume the service rate of all servers as 1, and our goal is
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to minimize the average expected waiting time of all job streams:
K
min

ak

1 Xi

T X VK vy
k=11~ g D Xk

We consider both the full feedback and the partial feedback settings.
In the full feedback setting, we assume the waiting times of all job
stream are always observable. Since the waiting time function is
invertible, our algorithm can directly infer {X}.} and update the
pseudo-rewards of other base arms as per (8). Notice that our goal
is to minimize the expected waiting time, so we need to maintain
the lower confidence bound (LCB) indices of all base arms, instead
of the UCB indices for reward maximization and correspondingly
pseudo-rewards would be lower bounds on conditional expected
reward. In the partial feedback setting, the waiting time can only be
observed when a;. > 1, i.e., at least one additional server is assigned
to stream K. When no server is assigned to stream K, the pseudo-
reward of other assignments with respect to such an assignment is
set to the minimum possible reward. We repeat the experiment 20
times and Figure 4b shows the average regrets with 95% confidence
interval. In the full feedback setting, corr-UCB-RA obtains O(1)
regret as there is no cost for inferring {Xj }. In the partial feedback
setting, corr-UCB-RA has to balance between the actions of a; = 0
and a; > 0, which incurs a sublinear regret. It still outperforms
UCB-RA due to the utilization of correlation information.

K
, st Zak <Q,a €N.
i=k

6.3 Online Water Filling

We finally consider the water filling problem where a total amount
of one unit power has to be assigned to 4 communication channels,
ie.,Q = 1,K = 4, with the objective of maximizing the total through-
put. The throughput of the k' channel is given by log(X + ar),
where gy represents the power allocated to channel k and X} rep-
resents the floor above the baseline at which power can be added
to the channel. It can be written as a convex optimization problem:

K K
max ) log(Xy +ag), s.t. ar < Q,a; > 0.
For the online water filling problem, the {X} } are unknown and
need to be learned. For each channel k, we assume the expectation
Hr = E[X}] is uniformly sampled from [0.8, 1.2], and the realization
of X, follows a uniform distribution U(yy — 0.5, g + 0.5). As it
is a online continuous resource allocation problem, we choose
UCB-RA algorithm with discretization granularity 0.2 (ie., A =
{0,0.2,0.4,0.6,0.8,1}) as the baseline. Similar to the online server
assignment problem, we consider both the full feedback and the
partial feedback settings. In the full feedback setting, the throughput
log(Xj + ai) is always observable. Since the reward function is
invertible, our algorithm can directly infer {X}.} and update the
pseudoUCB indices as described in Section 5. In the partial feedback
setting, we assume log(Xj + ai) can be observed only if a; > 0.2.
For channel k with a < 0.2, we update the pseudo-rewards of
other base arms with the maximum possible rewards. We repeat
the experiment 20 times and Figure 4c shows the average regrets
with 95% confidence interval. We see that corr-UCB-RA algorithm
achieves significantly reduced regret relative to UCB-RA in both the
full feedback and the partial feedback settings. For the full feedback
case, corr-UCB-RA obtains O(1) regret as the water filling reward
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Figure 4: Performance comparison between the Corr-UCB-RA and the UCB-RA algorithm for different application problems.

function is invertible and there is no cost in inferring {ag }. For the
partial feedback case, since the minimal power needs to be 0.2 to
observe the throughput, corr-UCB-RA needs to balance between
the actions of a; < 0.2 and a; > 0.2, due to which it incurs a
sublinear regret. The regret is still smaller than UCB-RA as it makes
use of the available correlation information.

7 CONCLUDING REMARKS

In this paper, we study the problem of sequential resource allo-
cation by modeling it through a combinatorial bandit framework,
where the allocation of a budget to an entity is considered as a base
arm. In several practical settings, rewards received under different
budget allocations are often correlated. We propose a novel corre-
lated combinatorial bandit framework to tackle the online resource
allocation problem. In particular, we model the correlations through
pseudo-rewards, which represent an upper bound on the conditional
expected reward of a budget-entity pair. Using the knowledge of
these pseudo-rewards, we propose the correlated UCB algorithm
for resource allocation (Corr-UCB-RA) which incurs a regret of
C-O(logT) as opposed to KA - log T regret attained by prior corre-
lation agnostic approach in [9]. The value of C can be much smaller
than KA and can even be 0 in certain settings, under which our
proposed Corr-UCB-RA algorithm attains O(1) regret. These re-
sults are validated by our experimental results on multiple different
application settings. While we study this problem in the context
of online resource allocation, the algorithm and analysis could be
easily extended to the general combinatorial bandit framework
[8] as well. An interesting future direction is to learn correlations
in an online manner. As multiple base arms are sampled in each
round, it is possible to learn correlation information on the go and
subsequently use them for budget allocation in the future rounds.
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