
GCN-SE: Attention as Explainability
for Node Classification in Dynamic Graphs

Yucai Fan
Carnegie Mellon University
fanyucaiharold@gmail.com

Yuhang Yao
Carnegie Mellon University
yuhangya@andrew.cmu.edu

Carlee Joe-Wong
Carnegie Mellon University
cjoewong@andrew.cmu.edu

Abstract—Graph Convolutional Networks (GCNs) are a popu-
lar method from graph representation learning that have proved
effective for tasks like node classification tasks. Although typical
GCN models focus on classifying nodes within a static graph,
several recent variants propose node classification in dynamic
graphs whose topologies and node attributes change over time,
e.g., social networks with dynamic relationships, or literature
citation networks with changing co-authorships. These works,
however, do not fully address the challenge of flexibly assigning
different importance to snapshots of the graph at different times,
which depending on the graph dynamics may have more or less
predictive power on the labels. We address this challenge by
proposing a new method, GCN-SE, that attaches a set of learnable
attention weights to graph snapshots at different times, inspired
by Squeeze and Excitation Net (SE-Net). We show that GCN-
SE outperforms previously proposed node classification methods
on a variety of graph datasets. To verify the effectiveness of
the attention weight in determining the importance of different
graph snapshots, we adapt perturbation-based methods from the
field of explainable machine learning to graphical settings and
evaluate the correlation between the attention weights learned
by GCN-SE and the importance of different snapshots over
time. These experiments demonstrate that GCN-SE can in fact
identify different snapshots’ predictive power for dynamic node
classification.

Index Terms—GCN, dynamic graph, node classification, atten-
tion, squeeze and excitation

I. INTRODUCTION

Over the past several years, (deep) neural networks have
demonstrated considerable success at tackling machine learn-
ing problems ranging from image recognition to time series
prediction, among other areas. Recent efforts have extended
deep learning’s success to graphically structured data, such as
social networks where each node represents a user and edges
represent relationships between them. Graph neural networks
(GNNs) can then be used to solve problems such as node
classification [1], which assumes that each node in a graph is
associated with a label, e.g., in our social network example,
the labels might be the city in which the user lives, or the
political party to which a user belongs. The node classification
problem is then to predict the label of another user in the
social network, given knowledge of the edges connecting the
user to others and potentially other features (like the age of
the user) attached to each node in the graph. We can frame the
node classification problem as a graph-based semi-supervised
learning problem, where at training time we only know the
labels of a subset of the graph nodes. The challenge is then

to design and train a GNN that takes as input abstracted
information about the graph structure around each node, and
outputs predictions of each node’s class label.

Graph Convolutional Networks (GCN) are one of the most
widely used methods to abstract graph information for node
classification tasks. A GCN consists of multiple graph con-
volutional layers, each of which transforms the current node
representation into another, summarizing the graph structure
around a node so as to make it useful for predicting the node
label. Many prior works focus on node classification in static
graphs, where the node topology and labels do not change.
However, in practice both the node labels and graph topology
may change [2, 3]: in our social network example above, users
may move to different places (changing their labels) and form
new friendships (changing the graph topology), potentially
requiring us to retrain the GCN as the pattern of relationships
between the labels and topology changes. Indeed, dynamic
graphs are found in many applications of node classification:
in most social networks, for example, users will form new
connections over time and may migrate between groups.

Node classification on a dynamic graph focuses on predict-
ing the node labels at a specific timestep, given the history
of the graph structure at previous timesteps. Prior work has
identified three main challenges of node classification for
dynamic compared to static graphs [3]: (i) entangled spatial
and temporal information, (ii) the evolution of both node
attributes and the graph topology, and (iii) the variation in the
effect of factors like different snapshots or models on node
representations for different datasets. Since the importance of
these various factors is generally not apparent a priori for
specific datasets, it is then desirable for a node classification
method to also give information on their relative importance to
the predictions. For example, classification methods for graphs
whose topology changes rapidly may emphasize recently
formed edges, while graphs that exhibit temporal periodicity
would need classification methods that emphasize certain past
timesteps [2]. Proper classification methods should discover
and exploit such temporal patterns in predicting node labels.

Several prior works on node classification have attempted
to address these challenges by crafting a summary of the
graph topology across all prior timesteps as the input of
the prediction model, or by explicitly modeling the temporal
evolution of the node attributes and graph topology [4]. These
methods can handle the first challenge of entangled spatial

1

ar
X

iv
:2

11
0.

05
59

8v
1

 [c
s.L

G
]

11
 O

ct
 2

02
1

and temporal information and the second challenge of the
evolving node attributes and graph topology. However, they
must be flexible enough to fully capture the variation in graph
evolution patterns across different datasets and thus different
types of graphs [3]. Some prior work has proposed deep
learning methods to learn flexible models [5, 6], but many
of these black-box methods do not provide much insight into
which features or temporal patterns they are exploiting in
making their predictions. Even those that attempt to provide
such insights (generally with some form of attention [3]) rarely
verify that their metrics for feature importance are in fact
correlated with the model’s explanatory power, and do not
evaluate the significance of the graph topology at different
times [3]. Prior work in interpretable machine learning has
shown that attention may not be a good indicator of feature
importance [7], which calls into question the true interpretabil-
ity of these models. We address these challenges in this work.

In this paper, we propose GCN-SE (GCN-Squeeze and Ex-
citation), a new graph node classification method that employs
the widely known concept of attention from deep learning to
improve the performance of existing methods while explaining
the importance of information collected at different timesteps.
In doing so, we address the third challenge presented above:
by learning the attention weights, we ensure that our model
is flexible enough to perform well on multiple types of
graphs. We also address a new challenge: existing methods
to evaluate feature importance scores often rely on the ability
to perturb features like specific pixels in image inputs [8, 9],
which cannot be directly applied to our dynamic graph inputs.
We devise appropriate perturbations for graphical data and
measure their effects on the model predictions, enabling us
to precisely quantify the explanatory power of our attention-
based architecture in signaling the importance of different
factors (in particular, the graph structure at different times)
to the node classification results. We summarize our three
major contributions as follows:

• We propose GCN-SE, which uses attention methods to
solve dynamic node classification problems. The attention
weights are learned as the weights of a linear combination
of node representations over time, and attribute dynamics
can be also taken into consideration;

• We propose novel metrics to evaluate the correlation
between the importance of different timesteps and the
importance indicated by the learned attention weights,
thus quantifying the explanatory power of a given classi-
fication model;

• We finally verify that (i) GCN-SE outperforms existing
node classification methods on dynamic graph datasets,
and (ii) our use of attention can serve as an explanatory
tool to the model and data, according to the metrics
defined in our second contribution.

We contrast our approach with related work in Section II be-
fore introducing our proposed GCN-SE method in Section III.
We then evaluate the performance of GCN-SE on several
network datasets in Section IV, and show that our learned

attention weights can in fact explain GCN-SE’s prediction
results in Section V. We conclude and present some directions
for future work in Section VI.

II. RELATED WORK

Feature aggregation methods. A natural method to handle
dynamic graphs is to aggregate snapshots of the graph at
different timesteps, which we may also call subgraphs. This
aggregated snapshot can then be viewed as a static graph
representation that is fed into a classification model, just as
for static graphs. An early example [10] proposed a simple
aggregation method that added up the graph adjacency matri-
ces at each timestep and applied a static decoder to the sum to
perform predictions. Similarly, [11] takes an average of the
adjacency matrices at each timestep. In [4], the authors define a
similar aggregation, but more explicitly capture the temporal
evolution of the graph by defining a formation matrix and
dissolution matrix considering the edges having been added or
removed since the previous snapshot. More recent proposals
give more weight to more recent snapshots when node features
evolve over time [12], for example by first applying a static
feature extractor and then aggregating the results over time,
or aggregating features by taking a weighted average with
exponentially decaying weights [13, 14]. One can also learn
different exponential decay weights for different nodes in the
graph depending on their labels [2], which may also provide
tools to add interpretability to the model.

Recurrent model architectures. Aggregation methods per-
mit an easy translation of prediction methods for static graphs
to dynamic graphs, allowing us to apply the many known
methods for static graphs to dynamic ones. However, they
raise a natural question of how best to aggregate snapshots
of the graph at different timesteps. When using exponentially
decaying weighted averages, for example, choosing the correct
weight can significantly affect the prediction result [2].

Many works attempt to learn the optimal aggregation
method by using a recurrent GNN architecture: a GNN,
such as a graph convolutional network (GCN), can act as
a feature extractor, while the temporal dynamics of the ex-
tracted features are learned with the recurrent architectures
such as RNN (recurrent neural network) or LSTM (long-short
term memory) structures. For example, [15] proposed graph
attention networks (GAT), leveraging masked self-attention
layers to highlight different node features. In [16], the authors
propose to learn the dynamics by either using GCN to obtain
node embeddings that are fed into a LSTM, or taking node
features as input but replacing fully connected layers in LSTM
with graph convolutions. EvolveGCN [6] uses a RNN to
evolve the GCN parameters, thus capturing the evolution of
the graph topology. These methods, however, are generally
not interpretable due to their use of GCNs to learn new
representations of the graph topology and node features.

Attention methods and interpretability. Attention meth-
ods in particular have become a popular component of dy-
namic graph representation learning methods in recent years.
DynSAT [5] proposes to compute node representations by

2

employing self-attention to capture both structural properties
and temporal patterns, while [17] combines GCN and a con-
textual attention-based model to perform anomaly detection.
[18] uses attention to provide interpretable weights to node
features, but not to snapshots of the graph topology taken at
different times. Many of these methods claim that the use of
attention allows them to better interpret the significance of
each feature to the model prediction. None of them, however,
verify this assertion, though prior work has called into question
the use of attention to signify feature importance [7]. In this
work, we propose a novel attention-based method, GCN-SE,
that applies attention to snapshots of the node topology, as
well as node features, at different times. We further verify
that GCN-SE’s attention weights can be interpreted as the
significance of different timesteps.

III. INTRODUCING GCN-SE

This section presents Graph Convolutional Network with
Squeezing and Excitement (GCN-SE) for node classification
in dynamic graphs. We first formulate the problem, propose
our model and method, and then discuss training details.

A. Problem Definition

Suppose T to be the total number of timesteps; we use
t = 1, 2, . . . , T to denote each timestep. A dynamic graph can
be defined as an ordered sequence of snapshots or subgraphs:
S = G1, G2, ..., GT with Gt = (V,At,Xt,Θt) at each
timestep t denoting the snapshot of timestep t. Here V is
the set of nodes (which we assume to be constant over time,
as in the social network and citation datasets we consider in
Section IV), At denotes the adjacency matrix between these
nodes, only including edges formed at timestep t, Xt is a
feature matrix of the attributes associated with each node at
time t, and Θt denotes the class membership matrix (i.e., class
labels for each node in V), which can change over time. Some
graphs may not have attribute matrices, in which case Xt may
be omitted. At timestep T , given the dynamic graph S with
the incomplete membership matrix Θtrain

T that associates a
subset of “training” nodes with known class labels at time T ,
our task is to classify the remaining nodes with unknown class
labels, i.e., to estimate the membership matrix Θ̂T . Figure 1
illustrates an example dynamic graph with six nodes, where
one node changes its class and forms new edges at time t.

Fig. 1. Dynamic Graph with Changing Classes. At timestep t − 1, nodes
1, 2, 3 and nodes 4, 5, 6 respectively belong to two different classes. Node 3
changes the class membership at timestep t and forms new edges with the
members in the new class (node 4 at timestep t; node 5 and 6 at timestep
t+ 1).

B. Graph Convolutional Network

Graph convolutions are generalized convolution for graphs,
and are widely used for graph representation learning tasks
such as edge prediction, node classification, etc. Denoting their
parameter matrix as W, the l-th graph convolutional layer in a
graph convolutional network (GCN) takes node representation
Zl as input and outputs a transformed representation Zl+1.
Many designs of transform functions have been proposed (see
[19]), and here we make use of a typical design, which is
proposed by [20] and formulated as:

Zl+1 = σ
(
D̃− 1

2 ÃD̃− 1
2 ZlWl+1

)
(1)

Here σ is a non-linear function (typically ReLU, with a
softmax in the last layer), Ã = A + IN , A is the adjacency
matrix, IN is the identity matrix, and D is the degree matrix,
defined as D̃ii =

∑
j Ãij . For graphs with attribute matrices

X, Z0 can be initialized to X where the rows in X stand
for the attribute values of the nodes. For graphs without node
attributes, Z0 can be initialized to an identity matrix where
the rows are a one-hot encoding of the nodes.

C. Squeeze and Excitation

We extend the GCN idea to handle dynamic graphs by
considering the snapshot at each timestep to be a “channel”
of data, analogous to the RGB color channels in image
datasets. We then use Squeeze-and-Excitation (SE) to capture
the temporal information; we introduce the SE idea here
and explain its use in our proposed GCN-SE method in the
next subsection. Squeeze-and-Excitation is first proposed in
[21] to tackle the presence of multiple channels in training
datasets. The SE block consists of two parts: squeeze and
excitation. The “squeeze” operation aims to exploit channel
dependencies. In order to squeeze global spatial information
into a channel descriptor, the SE block uses global average
pooling to generate channel-wise statistics, represented by a
vector z ∈ RC . Here uc is the feature map input, C is the
number of channels, H and W define the height and width of
the feature maps, and each element c of z is generated by:

zc = Fsq (uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j). (2)

The purpose of “excitation” operations is to make use of the
aggregated information produced by the squeeze operations,
which learn channel-wise dynamics, and can be considered
as the extent to enhance the channel information. Suppose δ
refers to the ReLU function, W1 ∈ RL×C and W2 ∈ RC×L,
where L is the size of the hidden layer output. The excitation
is then a gating mechanism with a sigmoid activation φ:

s = Fex(z,W) = φ(g(z,W)) = φ (W2δ (W1z)) , (3)

and the final output of this squeeze-and-excitation block is

xc = Fscale (uc, sc) = scuc (4)

3

where the output X = [x1,x2, . . . ,xC] is the enhanced feature
map from the original input.

D. GCN-SE architechture

We now introduce the architecture of our proposed method,
GCN-SE. As shown in Figure 2, GCN-SE consists of two
blocks of graph convolutional layers, which act as feature
extractors. The inputs of these layers are the adjacency matrix
and node attributes as node representations over time, which
are transformed into feature maps by the graph convolutions.
Unlike prior work that approaches node classification from a
traditional recurrent network perspective, we do not explicitly
model the temporal graph evolution and instead regard the
adjacency matrices A1,A2, ...,AT at different timesteps as
separate channels of data. The features extracted from each
channel by the convolutional layers are then taken as inputs
to a squeeze and excitation block, which is used to capture
temporal dynamics and as explained above can be used for
feature map aggregation.

Fig. 2. GCN-SE model structure. The outputs of the graph convolution layers
for each timestep are fed into the SE block to generate attention weights. These
weights are then used to take a linear combination of the convolution layer
outputs, which are then used to make the classification prediction.

Inspired by SE-net, we propose to use the SE block to learn
a set of attention weights. As shown in Figure 2, these weights
are used to calculate a linear combination of the features
extracted from the convolutional layers, where the weight of
the features for each timestep in the linear combination is given
by the output of the SE block. Finally, the linear combination
across timesteps is fed into a fully connected network to
produce the final classification result.

The GCN-SE model training process is shown in Algorithm
1. After the initialization (lines 1 to 3), we pass the inputs
through two graph convolutional layers (lines 4 to 7). These
are used to learn attention weights in squeeze and excitation
operations in line 8 and line 11, respectively. In lines 12 to
15, we again pass the original inputs through a set of graph
convolutional layers; we then take a linear combination of the
result using the attention weights from the SE block (line 16)
and pass the output through a fully connected network for
classification (line 17). The training process uses the cross-

entropy error (line 18) to backpropagate the weights (line 19),
until obtaining the final classification result (line 21).

Algorithm 1 GCN-SE
Input:

Adjacency matrices: A1,A2, ...,AT ;
Node attributes matrix: X1,X2, ...,XT ;
Number of nodes: N ;
Membership matrix for training data: Θtrain

T

Output: :
Predicted probabilities for timestep T : Θ̂T

Attention weights: Watt

1: for all t from 1 to T do
2: Initialize Z

(0)
t = Xt (or IN if no attributes) available

3: end for
4: for iteration i from 1 to MAX ITER do
5: for t from 1 to T do
6: Z

(1)
t = σ

(
D̃− 1

2 ÃD̃− 1
2 Z

(0)
t W(1)

)
7: Z

(2)
t = σ

(
D̃− 1

2 ÃD̃− 1
2 Z

(1)
t W(2)

)
8: ct = Pooling(Z

(2)
t)

9: end for
10: c = (c1, c2, ..., cT)
11: Watt = φ (W2δ (W1c))
12: for t from 1 to T do
13: Ẑ

(1)
t = σ

(
D̃− 1

2 ÃD̃− 1
2 Z

(0)
t W(1)

)
14: Ẑ

(2)
t = σ

(
D̃− 1

2 ÃD̃− 1
2 Ẑ

(1)
t W(2)

)
15: end for
16: Ẑ = ΣT

t=1

(
Watt

t Ẑ
(2)
t

)
17: Θ̂T = σ

(
fc(Ẑ)

)
18: CrossEntropyLoss(Θ̂train

T , Θtrain
T)

19: Backward()
20: end for
21: ΘT = Onehot

(
arg max1≤j≤n Θ̂T

)
We finally highlight an alternative to Algorithm 1 that

explicitly handles dynamic node attributes and assigns them
attention weights that may correspond to their importance. To
do so, we can separate the aggregation into two parts: aggre-
gation for the adjacency matrix and aggregation for the node
attributes, with two set of attention weights learned separately
according to the process illustrated in Algorithm 1. We can
thus disentangle the learning of the topology and attribute
dynamics in predicting the node labels, which improves GCN-
SE’s performance as demonstrated in Section IV’s experimen-
tal results on real datasets.

IV. EXPERIMENTAL RESULTS

We next evaluate our proposed GCN-SE model by compar-
ing its results with prevailing baseline methods on several real
dynamic graph datasets.

A. Datasets
We conducted experiments on five real datasets, as shown

in Table I. All datasets have edges that form at different times

4

although only nodes in DBLP-E change their class over time.
The DBLP-3, DBLP-5, Reddit and Brain datasets also have
dynamic node attributes.

Dataset Nodes Edges Time Steps Classes Attributes
DBLP-E 6942 327392 14 2 ×
DBLP-3 4257 23540 10 3 100
DBLP-5 6606 42815 10 5 100

Brain 5000 1955488 12 10 20
Reddit 8291 264050 10 4 20

TABLE I
REAL DATASETS FOR EVALUATION OF OUR METHODS.

DBLP-E & DBLP-3 & DBLP-5 These datasets are ex-
tracted from DBLP1, which provides a large collection of bib-
liographic information from major conferences and journals in
various subfields of computer science. In these datasets, every
author is extracted as a node in a graph, and co-authorship
determines whether there is a connection between two nodes.
DBLP-E [2] considers 14 year-long timesteps, corresponding
to the years 2005 to 2018, and creates a dynamic graph by
defining the snapshot in each year based on the authorship
of each paper published in that year. The node label in each
year is defined as the primary research sub-field of the author,
as indicated by the index term that appears most frequently
in that author’s papers in that year. The label may change
from year to year as authors move between subfields. DBLP-
E is constructed without attributes and only consists of graph
topologies, while DBLP-3 & DBLP-5 include node attributes
extracted by word2vec [22] from the authors’ paper titles
and abstracts in each year. The authors in DBLP-3 and DBLP-
5 are clustered into three and five classes (corresponding to
different research areas) respectively. These classes are static
and do not change over time.

Reddit This dataset is generated from Reddit2, which is
known as a social news aggregation, web content rating, and
discussion website. The graph is constructed by considering
nodes as posts; two nodes are connected if they share key-
words. The node attributes are also generated by word2vec
on the post comments [23].

Brain This dataset is generated from functional magnetic
resonance imaging (fMRI) data3. Nodes represent cubes of
brain tissue, and two nodes are connected during a time period
if they show similar degrees of activation during that time
period. Node attributes are generated by principal component
analysis (PCA) on the fMRI data.

B. Baselines and Metrics

We compare our model with multiple baselines. GCN [20]
and GraphSage [23] are supervised methods that include
static graph structure and node attributes; they both ignore
temporal information. GC-LSTM [24] is another supervised
method that utilizes the temporal information of both graphs
and node attributes. RNNGCN [2] employed a 2-layer GCN

1https://dblp.org/
2https://www.reddit.com/
3https://tinyurl.com/y4hhw8ro

and introduced a decay weight as a learnable parameter;
information from each timestep was multiplied by this weight,
which decayed over time, and the resulting linear combination
over time was used for classification. Thus, this method is
similar to ours, but assumes that the importance of different
timesteps decays exponentially for more distant timesteps,
while we learn more flexible attention weights for different
timesteps. We evaluate the performance of all methods with the
standard accuracy (ACC), area under the ROC curve (AUC)
and F1-score classification metrics.

C. Experimental Settings

We randomly divide each dataset into 70% training / 20%
validation / 10% test points. Each method uses two hidden
Graph Neural Network layers (GCN, GraphSage, etc.) with
the layer size equal to the number of classes in the dataset.
We add a dropout layer between the two layers with dropout
rate 0.5. We use the Adam optimizer with learning rate 0.0025.
Each method is trained with 500 iterations. For our GCN-SE
model, the hidden units of SE-net are set to half the number
of channels (r = 0.5).

For static methods (GCN, GraphSage) we first accumulate
the adjacency matrices of graphs at each timestep, and then
use the normalized accumulated graph and the node attributes
at the last timestep as inputs. RNNGCN takes the temporal
graphs and attributes at the last timestep as inputs. For
GC-LSTM and our proposed GCN-SE method, we use the
temporal graphs and temporal node attributes as inputs. We
implemented the models based on the Pytorch framework. The
code of all methods and datasets are publicly available4.

D. Results

Figure 3 shows the accuracy, AUC and F1 score of the
proposed method and baseline methods on each timestep of
the DBLP-E dataset. Since node labels in DBLP-E may change
over time, we predict the labels of each time step based on
all previous graph snapshots. To demonstrate the effect of
using different weights for snapshots across time, we take RN-
NGCN [2] (which uses exponentially decaying weights) and
GCN (which uses uniform weights) as baselines. The results
indicate that GCN-SE achieved better results for accuracy and
AUC across all timesteps, while the F1 scores are close for
all three models. Since GCN is a static method, it generally
achieves flatter accuracy and AUC over time, while GCN-SE
and RNNGCN are both able to increase their performance over
time as more prior snapshots become available.

We next consider the remaining datasets, whose labels are
consistent overtime. We take RNNGCN, GraphSage, GCN,
and GC-LSTM as our baselines. To evaluate the use of
attribute dynamics in GCN-SE, we define the variants GCN-
SE-1, whose attention weights are only calculated by snapshot
topology and ignore attribute dynamics (Algorithm 1); and
GCN-SE, which has two sets of attention weights calculated
separately from the dynamic toplogy and dynamic attributes

4https://github.com/GCN-SE/GCN-SE

5

Fig. 3. GCN-SE outperforms RNNGCN and GCN on the DBLP-E dataset.

(see the discussion at the end of Section III). Tables II
to IV respectively show the accuracy, AUC and F1 scores
of proposed method and baseline methods on the DBLP-3,
DBLP-5, Reddit, and Brain datasets. On most datasets, our
proposed GCN-SE outperforms the other baselines on all three
metrics. All of the results are averaged over 30 runs.

DBLP-3 DBLP-5 Reddit Brain

GCN-SE 0.7820 0.6762 0.3009 0.5096
GCN-SE-1 0.7674 0.6683 0.3044 0.4733
RNNGCN 0.7650 0.6692 0.2891 0.4148
GraphSage 0.7610 0.6614 0.3103 0.5090

GCN 0.7589 0.6678 0.2965 0.3818
GC-LSTM 0.7674 0.6531 0.3434 0.4768

TABLE II
ACCURACY (BEST METHOD FOR EACH DATASET BOLDED).

DBLP-3 DBLP-5 Reddit Brain

GCN-SE 0.6912 0.5782 0.2151 0.4838
GCN-SE-1 0.6678 0.5570 0.1968 0.4541
RNNGCN 0.6646 0.5498 0.1755 0.4026
GraphSage 0.6618 0.5411 0.1580 0.4929

GCN 0.6598 0.5411 0.1701 0.3332
GC-LSTM 0.6813 0.5295 0.2789 0.4284

TABLE III
AUC (BEST METHOD FOR EACH DATASET BOLDED).

DBLP-3 DBLP-5 Reddit Brain

GCN-SE 0.5766 0.6253 0.5056 0.9068
GCN-SE-1 0.5180 0.5725 0.5073 0.8954
RNNGCN 0.5382 0.5540 0.5071 0.8569
GraphSage 0.5365 0.5757 0.5011 0.8987

GCN 0.5543 0.5950 0.5213 0.8701
GC-LSTM 0.5667 0.5393 0.5542 0.8908

TABLE IV
F1 SCORE (BEST METHOD FOR EACH DATASET BOLDED).

V. ATTENTION AS EXPLANATION

We next verify that our use of attention does in fact correlate
with the importance of different graph snapshots in GCN-
SE. While attention weights intuitively should correlate with
feature importance, some have argued that attention is not
always a rigorous metric for explainability [7]. Thus, it is
important to verify that the use of attention in GCN-SE does in
fact correlate with the importance of different graph snapshots.
We also demonstrate the utility of the proposed GCN-SE, by
showing that it can explain the behavior of dynamic graph
models in several practical application scenarios where the
importance of graph snapshots is expected to vary over time.

A. Verifying Attention-Importance Relationships

In this section, we construct several experiment settings in
which we know which timesteps are more important to the
classification results, and show that the attention weights from
GCN-SE match this prior knowledge. These investigations
motivate our more formal evaluation of the correlation between
attention and snapshot importance in the next section.

To construct these experiments, we note that for dynamic
graphs, the importance of a snapshot can be correlated to
either the information from graph topology or node attributes.
Thus, we can verify the relationship between attention and
the importance of different snapshots by manually enforcing
snapshots of the dynamic graph to have different relevance to
the label to be predicted. To do so, we construct simulated data
sets by first generating random labels for each node for the
first time step. At each subsequent timestep, a node’s label has
5% chance to change to a different, randomly selected class.
In each time step, edges form between nodes of the same label
with probability 10%, and between nodes of different labels
with probability 0.5%.

We would expect that deleting some edges from one
or more snapshots would reduce the importance of those
snapshots. Graphs without dynamic attributes in particular

6

(e.g., our DBLP-E dataset, or the simulated dataset above)
must predict node labels from the snapshot topologies, and
changing the topology at a given time by deleting edges of that
snapshot will disturb original information given by original
data, which reduce its relevance to the prediction target. In
Figure 4, we apply edge deletion for time steps of 3, 8 and 9.
Deletion results in apparent weight drops for the deleted time
steps comparing to baseline weights, and the weights decrease
more as we delete more edges.

Fig. 4. Deleting 10%, 20% and 50% edges on timestep 3, 8 and 9, resulting
in decrease on attention weights of these time steps to different extents

We now consider two other ways to enforce graph snapshots
to have different importance. First, for datasets where node
labels stay consistent for all time steps, we assign higher
connection probabilities for nodes within specific classes in
certain time steps, making them more relevant to the label
prediction. In Figure 5, at time steps 1, 4, 5, and 8 we choose
four classes whose nodes have a 40% probability of forming
intra-class edges and 10% for inter-class edges. Thus, these
classes are more densely connected and can be more readily
classified based on information in these snapshots. As shown
in Figure 5, the attention weights at time steps 1, 4, 5 and
8 are significantly larger than those for other time steps over
multiple runs (top figure), as is their average (bottom figure),
which aligns with our assigned importance.

Second, when node labels change over time, we would
expect that earlier snapshots are less relevant to the final
class predictions because of the randomness of label transition.
Indeed, RNNGCN [2] makes this assumption when using
exponentially decaying weights across timesteps. We vary the
labels over time in our simulated dataset and show the learned
attention weights in Figure 6: they increase for later timesteps,
matching our intuition and approximating the exponential
decay used by RNNGCN.

B. Measuring Attention-Importance Correlations

The verification experiments in Figures 4 to 6 provide
promising indications that GCN-SE’s attention weights give
some indication of snapshot importance. However, it is dif-
ficult to generalize them to real datasets, for which the
importance of graph topology and node attributes can vary
due to the model and data, and it may not be easy to manually
enforce different snapshots to carry more or less information

Fig. 5. Specific time steps (1, 4, 5, 8) are assigned greater relevance to
the label prediction. The GCN-SE attention weights correspondingly show
consistently higher values on these time steps compared to others, over
multiple runs (top) and averaged over these runs (bottom).

Fig. 6. When node labels change over time, earlier time steps are less relevant
to the prediction, which matches the attention weights learned by GCN-SE.

about the predicted label. Prior works on interpretable machine
learning models suggest applying perturbations to or masking
each input feature and measuring the resulting change in model
accuracy [8] to evaluate its importance. We adapt these ideas
by defining “perturbations” for our graph snapshots and ex-
amining the correlation between accuracy changes and GCN-
SE’s attention weights. For simplicity, we show results only
for attention weights on dynamic topologies, though similar
methods may be applied to weights for dynamic attributes.

Consider a dynamic graph with adjacency matrices A =
(A1,A2, ...,AT), where T is the total number of available
time steps. We train a GCN-SE model and acquire the
learned attention weights W through averaging multiple runs.
To evaluate whether these weights are correlated with the
snapshot importance, we use W = (W0,W1, ...,WT) to

7

Fig. 7. Decaying weights (λ = 0.5) from [2] and learned attention weights
from GCN-SE on the DBLP5 dataset.

take a linear combination of the dynamic feature maps of
another baseline model, such as GCN. With the attention
weights frozen, the baseline model is trained and we define
the resulting accuracy as m. By setting the weight value at
time step k to be 0, Wk = 0, we get a new masked attention
W̃k = (W1, ...,Wk−1, 0,Wk+1, ...,WT). For all 0 ≤ k ≤ T
and all new weights W̃k generated by masking each timestep,
we separately retrain our baseline model while applying and
freezing these masked weights in an attention layer. We denote
the resulting accuracy as mk, and the importance Ik for
timestep k is defined by the decrease in accuracy:

Ik = m−mk. (5)

We repeat the masking and attention calculation operations
above for at least 20 runs, so that the noises introduced by
randomness in the training are neutralized. With importance
defined as above, we can calculate the correlation coefficients
between the learned attention weights W and importance
vector I = (I0, I1, ..., IT). Table V shows the resulting
correlations from the DBLP-3, DBLP-5, Reddit, and Brain
datasets. The snapshot importance and the attention weights
have a positive correlation on all datasets, indicating that the
attention weights are indicative of the importance of each
graph snapshot to the prediction accuracy. As shown in Fig-
ure 7, which uses DBLP-5 as an example, the attention weights
and defined importance are highly positively correlated.

For comparison, we also calculate the correlation between
the importance and attention weights under RNNGCN’s as-
sumption of exponentially decaying weights for timesteps
further in the past. We train the RNNGCN model and calculate
each timestep’s weights, then follow the same masking and
evaluation procedure as above. Figure 7 shows the different
weights from GCN-SE and RNNGCN; as we would expect
from Table V, the accuracy drop is visibly correlated with the
learned attention. Table VI shows that under the exponential
decay assumption, there is no obvious correlation between the
explained importance and the perturbation impact. Indeed, the
correlations are slightly negative across all datasets, indicating
that these weights are not indicative of the different snapshots’
importance.

DBLP3 DBLP5 Reddit Brain
Correlation Coefficient 0.7595 0.3907 0.3828 0.4808

TABLE V
CORRELATION COEFFICIENTS BETWEEN SNAPSHOT IMPORTANCE AND

AVERAGE GCN-SE ATTENTION WEIGHTS

DBLP3 DBLP5 Reddit Brain
Correlation Coefficient 0.0341 -0.2580 -0.1041 -0.0263

TABLE VI
CORRELATION COEFFICIENTS BETWEEN SNAPSHOT IMPORTANCE AND

RNNGCN (DECAYING) WEIGHTS

C. Applications of Attention as Explanations

Having established that the GCN-SE attention weights are
correlated with the importance of each graph snapshot, we
finally introduce some scenarios where our proposed model
could be used as a tool to explain the prediction decisions.
Throughout this section, we consider the attention weights
from a GCN-SE model trained to predict the node labels of
the last time step of a dynamic graph.

Anomaly Detection. First, we can use the learned attention
weights to locate the most relevant or the most irrelevant snap-
shots to the prediction target. For example, across different
time steps there may be some irrelevant snapshots that should
be treated as outliers, e.g., in the authorship graph, 2021 might
be skewed by unusual collaboration patterns introduced by the
COVID-19 pandemic. We test this application by considering
the simulated dataset from Section V-A and assigning random
labels (and generating edges based on them) in a few selected
timesteps. The snapshots in these timesteps are then irrelevant
to the model prediction. Figure 8 compares the resulting
attention weights to the weights for the original graph, showing
that they drop below average for these selected time steps.
Conversely, we can also find the snapshot that is the most
relevant to the label prediction. In Figure 9, only one snapshot
is relevant to the prediction target, while other snapshots
are assigned random labels to make them unimportant. The
attention weight for this timestep is noticeably larger than the
GCN-SE weights for the original graph, while the weights for
other timesteps are similar to those for the original graph.

Detection of State Transitions. Suppose that at certain
time steps, the topology of the snapshot and node labels
change significantly and transition into another stable state.
For example, the rapid rise of machine learning research
might lead to a shift in collaboration patterns, which could
produce a change of state in coauthorship graphs like DBLP-
3 and DBLP-5. We can make use of attention to find the
time steps where the snapshots begin to change. To test this
idea, we change the node labels for different timesteps in our
simulated dataset from Section V-A, varying the probability
that a node will change its label for different timesteps. Similar
to the settings in Section V-A, connections among nodes are
generated based on labels.

Figure 10 shows the attention weights when time step 3 is
set to have 80% probability to change node labels while other

8

Fig. 8. Attention results on manipulated data sets, case 1: nodes of time step
5 are assigned random labels; case 2: nodes of time step 6, 7, 8 are assigned
random labels. The attention weights for these snapshots are lower than the
baseline model for both cases, capturing their irrelevance.

Fig. 9. The most relevant or important time step is time step 7, and the
learned attention weights correspondingly increase.

time steps have a 20% probability to change node labels. In
another case, time steps 3, 5, and 7 have a high probability of
changing node labels. We expect the attention weights to detect
the last time step in which the probability of label changes is
higher: at those timesteps, many nodes will change their labels,
while fewer nodes will change their labels in other timesteps.
Thus, only timesteps after the last set of changes will have
edges generated based on labels that are largely similar to
the labels in the last timestep. Figure 10’s step-like attention
weights reflect this expectation: there is a noticeable increase
in the weights at time step 3 and time step 7 in our two cases.

Periodicity Check. Attention weights learned from the
GCN-SE model can also be applied to datasets that exhibit
temporal periodicity. For example, datasets of political activity
on Twitter might exhibit yearly periodicity corresponding to
U.S. presidential elections every four years. In such cases, the
snapshots might show periodic patterns in their topology or
node attributes over time. Unlike RNNGCN or the uniform
aggregation of GCN, GCN-SE can flexibly learn attention
weights that capture this periodicity. We can then examine the
periodicity of the attention weights to detect the periodicity
of the dataset itself. Figure 11 shows the attention weights
learned from GCN-SE on modified version of the Brain
dataset, where snapshots are repeated every three timesteps
with slight noise perturbations. As shown in the top figure,

Fig. 10. By setting higher label transferring probabilities on certain time
steps, we expect attention weights can locate the last time step where this
difference happens. For case 1, time step 3 is set higher and for case 2, time
step 3, 5, 7 are set higher, we can see attention weights can successfully locate
the pattern in this scenario

Fig. 11. Periodic attention weights learned on periodic dynamic graph data,
created by modifying the Brain dataset. The top figure shows the attention
weights from different runs, and the bottom figure shows the average weights.
Both exhibit periodicity 3, matching the modified dataset.

each run shows a periodic pattern, which proves the robustness
of GCN-SE. Although the attention weights for different runs
exhibit different local minima, due to different sampling of the
training and testing datasets, the bottom picture shows that a
clear periodic pattern with periodicity of three timesteps.

VI. CONCLUSION

In this paper, we first proposed a new method, GCN-SE, to
predict nodel labels in a dynamic graph based on aggregation
of snapshots and node attributes at different timesteps. Inspired
by SE-net, which proposes Squeeze and Excitation blocks,
we use learned attention weights corresponding to different

9

timesteps in aggregating the different snapshots. We also
make use of attribute dynamics by applying separate attention
weights to these attributes. Experiments on real-world data sets
show that GCN-SE outperforms most baseline models on the
metrics of accuracy, AUC and F1 score. The attention weights
also provide a way to give interpretative capacity to the model,
by signaling the importance of snapshots at different time
steps. Inspired by perturbation-based methods in interpretable
machine learning, we rigorously define the importance of a
timestep as the change in accuracy after masking the attention
in that timestep. We propose a correlation metric to measure
the relevance between our definition of importance and our at-
tention weights, and use this metric to verify the effectiveness
of GCN-SE’s attention weights as an explainatory tool. We
finally show that these weights can be used to detect various
temporal patterns that may occur in real-world datasets.

ACKNOWLEDGEMENTS

This work was partially supported by NSF CNS-1909306.

REFERENCES

[1] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi,
P. Forsyth, and P. Poupart, “Representation learning for
dynamic graphs: A survey.” Journal of Machine Learning
Research, vol. 21, no. 70, pp. 1–73, 2020.

[2] Y. Yao and C. Joe-Wong, “Interpretable clustering on
dynamic graphs with recurrent graph neural networks,”
in Proceedings of the AAAI Conference on Artificial
Intelligence, 2021, pp. 4608–4616.

[3] D. Xu, W. Cheng, D. Luo, Y. Gu, X. Liu, J. Ni,
B. Zong, H. Chen, and X. Zhang, “Adaptive neural
network for node classification in dynamic networks,”
in 2019 IEEE International Conference on Data Mining
(ICDM). IEEE, 2019, pp. 1402–1407.

[4] R. Hisano, “Semi-supervised graph embedding approach
to dynamic link prediction,” in International Workshop
on Complex Networks. Springer, 2018, pp. 109–121.

[5] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang,
“Dynamic graph representation learning via self-attention
networks,” arXiv preprint arXiv:1812.09430, 2018.

[6] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura,
H. Kanezashi, T. Kaler, T. Schardl, and C. Leiserson,
“Evolvegcn: Evolving graph convolutional networks for
dynamic graphs,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 5363–
5370.

[7] S. Serrano and N. A. Smith, “Is attention interpretable?”
arXiv preprint arXiv:1906.03731, 2019.

[8] U. Bhatt, A. Xiang, S. Sharma, A. Weller, A. Taly,
Y. Jia, J. Ghosh, R. Puri, J. M. Moura, and P. Eck-
ersley, “Explainable machine learning in deployment,”
in Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, 2020, pp. 648–657.

[9] S. Lundberg and S.-I. Lee, “A unified approach
to interpreting model predictions,” arXiv preprint
arXiv:1705.07874, 2017.

[10] D. Liben-Nowell and J. Kleinberg, “The link-prediction
problem for social networks,” Journal of the American
society for information science and technology, vol. 58,
no. 7, pp. 1019–1031, 2007.

[11] U. Sharan and J. Neville, “Temporal-relational classifiers
for prediction in evolving domains,” in 2008 Eighth IEEE
International Conference on Data Mining. IEEE, 2008,
pp. 540–549.

[12] N. M. Ahmed and L. Chen, “An efficient algorithm for
link prediction in temporal uncertain social networks,”
Information Sciences, vol. 331, pp. 120–136, 2016.

[13] J. Zhu, Q. Xie, and E. J. Chin, “A hybrid time-series
link prediction framework for large social network,”
in International Conference on Database and Expert
Systems Applications. Springer, 2012, pp. 345–359.

[14] L. Yao, L. Wang, L. Pan, and K. Yao, “Link prediction
based on common-neighbors for dynamic social net-
work,” Procedia Computer Science, vol. 83, pp. 82–89,
2016.

[15] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Lio, and Y. Bengio, “Graph attention networks,” arXiv
preprint arXiv:1710.10903, 2017.

[16] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson,
“Structured sequence modeling with graph convolutional
recurrent networks,” in International Conference on Neu-
ral Information Processing. Springer, 2018, pp. 362–
373.

[17] L. Zheng, Z. Li, J. Li, Z. Li, and J. Gao, “Addgraph:
Anomaly detection in dynamic graph using attention-
based temporal gcn.” in IJCAI, 2019, pp. 4419–4425.

[18] D. Xu, W. Cheng, D. Luo, X. Liu, and X. Zhang, “Spatio-
temporal attentive rnn for node classification in temporal
attributed graphs.” in IJCAI, 2019, pp. 3947–3953.

[19] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu,
L. Wang, C. Li, and M. Sun, “Graph neural networks:
A review of methods and applications,” AI Open, vol. 1,
pp. 57–81, 2020.

[20] T. N. Kipf and M. Welling, “Semi-supervised classifica-
tion with graph convolutional networks,” arXiv preprint
arXiv:1609.02907, 2016.

[21] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation
networks,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 7132–
7141.

[22] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,”
arXiv preprint arXiv:1301.3781, 2013.

[23] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive
representation learning on large graphs,” arXiv preprint
arXiv:1706.02216, 2017.

[24] J. Chen, X. Xu, Y. Wu, and H. Zheng, “Gc-lstm: Graph
convolution embedded lstm for dynamic link prediction,”
arXiv preprint arXiv:1812.04206, 2018.

10

	I Introduction
	II Related Work
	III Introducing GCN-SE
	III-A Problem Definition
	III-B Graph Convolutional Network
	III-C Squeeze and Excitation
	III-D GCN-SE architechture

	IV Experimental Results
	IV-A Datasets
	IV-B Baselines and Metrics
	IV-C Experimental Settings
	IV-D Results

	V Attention as Explanation
	V-A Verifying Attention-Importance Relationships
	V-B Measuring Attention-Importance Correlations
	V-C Applications of Attention as Explanations

	VI Conclusion

