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Abstract: An organic, x-ray radioluminescent colloid is fabricated by copolymerizing an organic
scintillating monomer within a polystyrene basis. The intensity of emitted light from the
radioluminescent colloidal particles can be manipulated by photonic means. © 2021 The Author(s)

1. Introduction

Colloidal particles for optical bioimaging have become an increasingly investigated area of research; however, their
utility for optical bioimaging is limited due to the intense and inherent light scattering that occurs in the blue region
of the visible spectrum. A promising strategy to mitigate this difficulty is to exploit scintillators to induce x-ray
excited optical luminescence. Scintillating particles are attractive candidates for bioimaging due to their
characteristic ability to convert ionizing energy, such as x-rays, into visible light. Additionally, x-rays offer the
advantage of superior penetration depth compared to that of visible or ultraviolet light [1]. The use of scintillators
for bioimaging is a growing research focus but is limited due to the potential toxicity of heavy metals, such as
gadolinium [2,3], used in these bioimaging agents. Using a fully organic system and an organic scintillator, such as
anthracene, the potentially harmful side effects associated with toxic heavy metals could be alleviated [4,5].

Photonic crystals describe a class of periodic dielectric materials which exhibit a photonic band-gap (i.e. rejection
wavelength) corresponding to specific wavelengths of light where propagation through the crystal is forbidden [6].
In the past few decades, particular interest has focused on photonic crystals composed of crystalline colloidal arrays
(CCAs) which exhibit iridescent structural colors similar to that of the precious opal [6-10]. These biomimetic
colloids are composed of highly ordered, closed-packed electrically charged particles which are able to self-
assemble into three-dimensional periodic arrays due to their repulsive Coulombic interactions [11,12]. While a CCA
does not exhibit a complete photonic band-gap due to a low refractive index contrast [13-15], a CCA possesses a
pseudo gap (i.e. stop band) in the visible regime that can be described by Bragg’s equation. This rejection
wavelength can be shifted across the full visible spectrum by a change in the interplanar spacing (dni), a change in
the refractive index (n.), or a combination of the two parameters [16].
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Figure 1: (a) Radioluminescence spectra of PS-
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these two spectra is shown in Figure 2(b) where a 76 % decrease in the spontaneous emission of anthracene at 433

nm and a 20 % decrease in total emission is revealed.

2. Experimental

2.1 Materials

Monodisperse, x-ray radioluminescent nanoparticles were synthesized using a modified emulsion polymerization
procedure described elsewhere [17,18] where a scintillating organic monomer (anthracene methyl methacrylate [19])
was covalently incorporated into the particle by copolymerization with the poly(styrene-co-propargyl acrylate) basis.

The resulting poly(styrene-co-propargyl acrylate-co-anthracene

methyl methacrylate) (PS-PA-PAMMA)

nanoparticles were cleaned by dialysis in deionized water at 60 °C and shaken with excess mixed bed ion-exchange
resin. The particle size and size distribution were measured using a Hitachi 7830 STEM and was determined to be

87 £ 10 nm.

2.2 Optical Characterization

Reflectance spectra of the colloid was collected using a bifurcated
fiber optic bundle (Ocean Optics) attached to a fiber coupled
spectrometer (Ocean Optics USB2000). The output arm of the fiber
bundle was attached to the spectrometer and the input arm of the
fiber bundle was attached to a white light source (Ocean Optics LS-
1-CAL). The samples were irradiated with an Amptek Mini-X x-
ray unit equipped with a tungsten target and operating at 25 kV and
158 pA. To collect the radioluminescence (RL) spectra, a MicroHR
(Horiba Jobin-Yvon) monochromator and a cooled CCD detector
(Synapse, Horiba Jobin-Yvon) was used. The signal was collected
on a grating with 600 line mm™' and a blaze of 500 nm and the
exposure time for all samples was 30 seconds with a slit width
was 1 mm. A Syner]JY (Horiba Jobin-Yvon) software was used to
analyze the spectra. The RL spectra was not corrected for the
emission of the donor. The reflectance and RL spectra collections
were performed at the [111] plane of the CCA.
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Figure 2: (a) Radioluminescence spectra and (b)
Difference in radioluminescence spectra of PS-PA-
PAMMA particles (1.55 x 10' particles/mL) with a
rejection wavelength at 433 nm and with no rejection
wavelength. The rejection wavelength (reflectance
spectra) is presented in the latter figure.
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