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Abstract— We present a distributed method for contact-

implicit trajectory optimization which enables a group of

robots to collaboratively manipulate an object through contact.

Each robot computes its torques and contact forces locally to

manipulate the object while communicating with its neighbors

over a wireless network. While the global collaborative

manipulation problem consists of multiple sets of non-smooth

contact dynamics constraints for all robots, each robot in our

method considers only its own contact dynamics constraints

without those of other robots in its trajectory optimization

problem, enabling each robot to efficiently compute its forces

and torques. Our approach does not require each robot to share

its torques, objective functions, and local constraints with other

robots. We demonstrate our method in the manipulation of

a sliding rod along a surface with friction, as well as in the

manipulation of an object falling under gravity by a group of

quadrotors.

I. INTRODUCTION

In many scenarios, collaborative manipulation requires
robots to make and break contact with the object they are
manipulating, especially when the robots have to manipulate
the object in constrained spaces, e.g., through doorways,
windows, and hallways, or when the kinematic limitations of
the robots require re-grasping. These situations also arise
with multiple robots manipulating furniture in a house,
carrying assemblies in a factory, or moving large objects
in a warehouse. However, many distributed collaborative
manipulation methods assume that the participating robots
maintain a fixed grasp for the duration of the manipulation
task, an assumption which limits the scope of possible
manipulation tasks achievable by these methods. We present a
distributed algorithm where the robots compute the trajectories
and contact forces required to manipulate an object through
contact.

Trajectory optimization involving contact proves
particularly challenging due to the non-smooth contact
constraints, known as complementarity constraints, arising
within these problems. Previous works have attempted to
reduce this difficulty by specifying the contact phases and
contact points on the robot before solving the optimization
problem. Although these approaches generally work well for
less complex systems where the possible contact sequences
can be specified, these approaches fail to scale to multiple
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Fig. 1. A group of quadrotors manipulate an object falling under gravity
after it has been dropped from a height. Our method enables each robot to
compute its forces and torques locally by solving a contact-implicit trajectory
optimization problem while communicating with its neighbors.

collaborating robots, as the number of contacts grows
exponentially with the number of independent contact points
(and therefore the number of robots). Other approaches
involve solving a contact-implicit trajectory optimization
problem with the contact forces included as variables in the
problem. These methods represent the contact dynamics
using complementarity constraints. While these approaches
allow for optimization over the contact sequences, solving
the resulting problems often proves challenging due to the
non-smooth complementarity constraints imposed at each
time interval. Contact-implicit optimization problems for
collaborative manipulation face an even greater challenge as
each robot requires a separate complementarity constraint
for its contact dynamics.

We derive our algorithm from the Alternating Direction
Method of Multipliers (ADMM), exploiting a structural
property of contact-implicit trajectory optimization to separate
the components of the objective function and the problem
constraints among the robots. Each robot iteratively (i)
optimizes a local objective and (ii) communicates a candidate
object trajectory with neighbors until all robots converge to
a common optimized trajectory for the object. Each robot
solves a contact-implicit trajectory optimization itself, only
involving the robot’s own contact forces, constraints, and
dynamics, without explicitly considering other robots. This
reduces the complexity of the underlying global optimization
problem, while maintaining the same constraint satisfaction
and local optimality guarantees of a centralized approach.
The object trajectories computed by each robot converge
to the locally optimal solution of the non-convex contact-
implicit trajectory optimization problem. Because the number
of constraints and optimization variables for the trajectories
and torques remains fixed per robot as more robots are
added, our approach scales efficiently to large numbers

2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS)
November 4-5, University of Cambridge, United Kingdom

978-1-6654-2926-9/21/$31.00 ©2021 IEEE 56

20
21

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n 
M

ul
ti-

Ro
bo

t a
nd

 M
ul

ti-
Ag

en
t S

ys
te

m
s (

M
RS

) |
 9

78
-1

-6
65

4-
29

26
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

M
RS

50
82

3.
20

21
.9

62
06

65

Authorized licensed use limited to: Stanford University. Downloaded on September 30,2022 at 16:54:29 UTC from IEEE Xplore.  Restrictions apply. 



of collaborating robots. In contrast, centralized through-
contact planners typically struggle with a large number of
contact points. Moreover, in our method, each robot does not
share its own trajectory, torques, objective function, dynamic
models, and local constraints with other robots, reducing the
communication bandwidth required by our method. Instead,
each robot only communicates its computed trajectory for
the object itself to its one-hop neighbors in a communication
network.

We demonstrate our method in the manipulation of a
rod by a group of robots where the robots slide the rod
along a surface with friction to a specified desired position
and orientation before bringing the rod to rest. In addition,
we apply our approach in the manipulation of an object
by a group of quadrotors as the object falls under gravity.
The quadrotors manipulate the object through contact while
supporting it and bring the object to rest at its desired position
and orientation.

A. Contributions
Our contributions are as follows:
• We present D-COPT a distributed contact-implicit

trajectory optimization method for collaborative
manipulation which enables a group of robots to
manipulate an object through contact, unlike previous
distributed methods which require a fixed grasp of the
object.

• In our approach, each robot computes its torques and
contact forces locally from an optimization problem
considering only its contact dynamics constraints without
those of other robots, overcoming the numerical
optimization challenges posed by the multiple non-
smooth contact dynamics constraints in collaborative
manipulation problems.

• Our method achieves a notably higher success
rate in solving the global contact-implicit trajectory
optimization problem, finding a solution to the problem
even when centralized methods fail. In addition, the
local optimization problems in our algorithm require
shorter computation times compared to these centralized
methods.

• Based on our knowledge, our method represents the
first distributed approach for solving contact-implicit
trajectory optimization problems.

II. RELATED WORKS

A. Collaborative Manipulation
Notable challenges arise in centralized approaches for

collaborative manipulation from the need to communicate
with a central agent for computation of all forces and torques
required to manipulate an object [1–3]. Addressing these
challenges, distributed approaches allow each robot to obtain
its forces and torques without communication with a central
agent. Leader-follower methods designate a single robot as
a leader which computes the forces and torques for all the
robots within the group. In some of these methods, the robots
communicate their dynamics models and problem constraints

such as the feasible forces and torques which can be applied
by the robots to the leader [4]. However, communication of
the problem information between the leader and followers
makes these methods unsuitable for problems involving varied
communication topology and dynamics models. Other leader-
follower methods attempt to resolve these challenges by
enabling the followers to infer the motion of the leader
using force or impedance sensors without communicating
with the leader. The followers apply forces and torques to
complement the forces applied by the leader using feedback
controllers [5], impedance controllers [6], and adaptive control
[7]. In these methods, the leader manipulates the object
without any consideration of the limitations of the followers,
possibly resulting in infeasible trajectories for the followers.
In addition, these approaches do not allow for trajectory
planning and require the specification of a desired trajectory
for the leader to manipulate the object by a human operator
[8].

In caging approaches, the robots surround the object and
move it to a desired location while keeping the object enclosed
for the duration of the task using gradient-based control laws
[9, 10]. These approaches introduce significant limitations on
the range of possible manipulation tasks as the robots must
enclose the object during the task. Other methods take an
optimization approach to collaborative manipulation [11]. In
the distributed methods, each robot solves an optimization
problem for its forces and torques required to manipulate the
object locally, enabling the robots to avoid collisions in their
environments while considering the dynamics limitations of
the robots [12, 13].

All the above methods for collaborative manipulation
assume each robot grasps the object before the beginning
of the task and maintains the grasp for the duration of the
task. This assumption can be debilitating in manipulation
within complex environments where the manipulation task
can only be achieved through a variety of distinct contact
interactions between the robots and the object. In these
situations, the robots have to contact the object at distinct
times to manipulate the object through narrow paths and
around complex features within the environment. Requiring
the robot to maintain its grasp for the entirety of the
task effectively makes the manipulation task infeasible. We
develop a distributed method without any of these limitations,
enabling a varied set of contact interactions between the
robots and the object. With our approach, each robot makes
and breaks contact with the object as required to complete
the manipulation task.

B. Trajectory Optimization with Contact
Trajectory optimization methods with contact planning can

be classified into multi-phase approaches and contact-implicit
approaches, depending on the procedure taken to incorporate
the effects of the contact dynamics into the optimization
problem. Multi-phase methods require the specification of the
contact phases and contact points on the robot and introduce
different constraints for each phase, reflecting the robot’s
dynamics within each phase [14–16]. These methods do not
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optimize over the possible contact points on the robot. To
allow for optimization over the contact points on the robot
and the corresponding surfaces, some methods solve a mixed-
integer convex program [17] with additional binary variables
indicating the status of a contact point and its assignment
to a contact surface. However, these methods require the
specification of the possible convex contact surfaces in the
environment which might not be readily available. Moreover,
mixed-integer optimization presents notable computation
challenges. To reduce the computation difficulty, some of
these methods introduce the contact dynamics constraints
into the objective function, allowing for violations of the
constraints. In general, these approaches are only feasible for
systems with relatively simple dynamics where the contact
phases and contact points can be specified.

In contact-implicit approaches, the contact forces are
incorporated as variables into the optimization problem
with an associated constraint describing the contact model.
These methods introduce the contact dynamics constraints
at every time instance within the optimization, and hence
do not require specification of the contact phases. Many
approaches represent the contact dynamics as a set of
linear complementarity constraints [18–21], representing the
existence of contact forces only when the two surfaces have
a non-zero gap. This approach for modeling the dynamics
involving contact has been employed in simulation and
trajectory optimization with realistic results. However, the
non-smooth contact dynamics makes numerical optimization
notably challenging. Some other approaches consider a
stochastic representation of the complementarity constraints
to account for uncertainties in the physical properties of the
colliding surfaces [22].

To reduce the computation difficulty, some methods utilize
a smooth contact model with virtual forces at contact points,
removing the discontinuities in the contact force, and solve
the resulting problem using trust-region based sequential
convex programming [23] or an iterative Linear-Quadratic
Regulator (iLQR) approach [24, 25]. Other methods take a
bilevel optimization approach, where the upper-level problem
involves computing the optimal trajectory of the problem
which depend on the contact forces computed in the lower-
level problem [26, 27]. However, these approaches do not
preclude the existence of contact forces at a distance and
penetration of the colliding surfaces, producing unrealistic
results.

We model the contact dynamics between the robots and
the object using linear complementarity constraints. By
distributing the complementarity constraints among the robots,
each robot solves a contact-implicit trajectory optimization
problem considering only its own contact dynamics,
overcoming the challenges to numerical optimization posed
by the non-smooth contact constraints. With this approach,
our method does not require any explicit specification of the
discrete contact phases between each robot and the object.

Our paper is organized as follows: in Section III, we
formulate collaborative manipulation as a contact-implicit
trajectory optimization problem, introducing the contact

constraints, dynamics models, and local constraint functions.
We derive our distributed method D-COPT which enables
each robot to compute its torques and contact forces locally in
Section IV and demonstrate our method in the manipulation of
a sliding rod on a surface with friction by a group of robots in
Section V. We further apply our method in the manipulation
of an object by a group of quadrotors as it falls under gravity
after it has been dropped from a height, showing our method
requires about 15 times shorter computation times to solve
each instance of the optimization problem. We conclude in
Section VI.

III. PROBLEM FORMULATION

We consider a manipulation problem where N robots
manipulate an object to a desired position and orientation. The
robots begin from arbitrary locations at the beginning of the
manipulation task and apply normal and friction forces on the
object through contact. We assume the inertial properties of
the object and robots are known, in addition to the coefficient
of friction for tasks involving sliding an object along a
surface. Robot i applies a contact force fi 2 Rnf,i consisting
of a normal component ci and j tangential components
{↵i,k, k = 1, · · · , j}.

A non-zero contact force exists when the distance between
a robot and the object equals zero, which we represent as
the constraint

ci · �i(xi, xobj) = 0 (1)

where ci 2 R represents the magnitude of the normal
contact force with ci � 0 and �i(xi, xobj) represents
the distance function between robot i and the object
with xi 2 Rni representing robot i’s configuration and
xobj 2 Rb representing the object’s configuration. The normal
component of the contact force fi,n acts in the direction
of the gradient of the distance function with respect to the
object’s configuration given by

fi,n = ci ·
r�i(xi, xobj)

kr�i(xi, xobj)k2
(2)

with r�i(xi, xobj) 2 Rb.
The relationships between the contact force and the distance

function between robot i and the object are represented by
the complementarity constraints

ci · �i(xi, xobj) = 0

�i(xi, xobj) � 0, ci � 0
(3)

indicating the existence of non-zero contact forces only when
robot i makes contact with the object. We assume the object
is manipulated by underactuated robots, where each robot
applies joint torques ⌧ to actuate a subset of its joints.

By representing the combined configuration of the
robots and the object as x = [xobj, xi, i = 1, · · · , N ] with
x 2 Rns , the combined torques applied by the robots as
⌧ = [⌧i, i = 1, · · · , N ] with ⌧ 2 Rn⌧ , and the combined
contact forces as f = [fi, i = 1, · · · , N ] with f 2 Rnf , the
combined dynamics of the robots and the object is described
by

Mẍ+ g(ẋ,x) = V ⌧ +W Tf (4)
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where M 2 Rns⇥ns represents the combined inertia of the
robots and object, g(·) represents the non-linear friction,
Coriolis, and gravity terms influencing the dynamics of the
robots and object, and W 2 Rns⇥nf represents the Jacobian
for the contact forces in the dynamics. The robots apply the
torque ⌧ , and V 2 Rns⇥n⌧ distributes the torques in ⌧ to the
relevant components of the combined dynamics relationship.
The dynamics model in (4) applies equally to fully-actuated
robots.

A. Friction Constraints
We assume the tangential forces generated by contact

between the robot and the object remain within the friction
cone. To represent this constraint, we use the Coulomb friction
model with

k↵ik2  µci (5)

where ↵i represents the tangential components of the contact
force between robot i and the object, µ represents the
coefficient of friction at the surface of contact, and ci

represents the normal component of the contact force.

B. Collision Avoidance
To manipulate the object, we desire contact between the

robots and the object while avoiding collisions (unwanted
contact) between the robots, differentiating our problem from
other collaborative manipulation scenarios in which robots are
rigidly attached to the object. We incorporate these constraints
into the problem as

 (xi, xj) � di,j (6)

using a collision function  (xi, xj) specifying the distance
between robots i and j with the minimum safe distance
between the robots represented by di,j .

C. Optimization Problem
With this formulation of the contact dynamics, we compute

the torques required by the robots to manipulate the object
by solving the problem

minimize
x,⌧ ,f

NX

i=1

Z T

0
�i(xi, ⌧i,f) dt

subject to Mẍ+ g(ẋ,x) = V ⌧ +W Tf

h(x, ẋ) = 0

r(x, ⌧ ,f)  0

(7)

where h(·) represents constraints on the initial and desired
configuration and velocities of the robots and object and r(·)
represents the contact dynamics constraints described by (2),
(3), and (5) in addition to the collision avoidance constraint in
(6) and constraints on the torques applied by each robot. The
objective function �i(·) may depend on time t, although we
do not indicate its dependence explicitly in the problem. In
many trajectory optimization problems, �i(·) takes a quadratic
form, including terms representing the energy expended by the
actuators on the robots and the deviation of the configuration
of the robots from desired values.

Communication Network
We represent the communication network among the

robots as an undirected connected graph G = (V, E), with
V = {1, · · · , N} representing the robots, and an edge (i, j)
exists in E if robots i and j share a communication link. We
denote the neighbor set of robot i as Ni, describing the set
of robots that can communicate with robot i.

IV. DISTRIBUTED TRAJECTORY OPTIMIZATION

To compute the torques required by the robots, we
discretize the continuous-time optimization problem in (7)
for transcription to a numerical optimization problem using a
time interval of �t seconds and select its value based on the
manipulation task. We utilize a receding-horizon approach
in solving the numerical optimization problem where we
solve the problem over a smaller time span of duration Tr.
The robots apply the first set of torques from the resulting
solution. Subsequently, we advance the time span by one
interval which defines the next optimization problem. We
repeat this process until the completion of the manipulation
task with each numerical optimization given by

PC : minimize
x,ẋ,⌧ ,f

NX

i=1

`i(xi, ⌧i,f)

subject to m(ẋ) + g(ẋ,x) = V ⌧ +W Tf

h(x, ẋ) = 0

r(x, ⌧ ,f)  0

(8)

with

`i(xi, ⌧i,f) =
TrX

s=0

�i(xi, ⌧i,f , s) (9)

where x and ẋ represent the configuration of the robots and
objects and their corresponding velocities concatenated over
all time intervals, and `i(·) represents the objective function
of robot i (including the sum over all time intervals). We
discretize the dynamics model in (4) to obtain the discrete-
time dynamics model in (8), where m(ẋ) represents the
inertial term which depends on the mass matrix and the
joint accelerations. For notational convenience, we write
the resulting dynamics model as a single vector expression
applying to all time intervals, rather than breaking out
each time step separately. The problem PC consists of the
objective function and local constraints of all robots, which
is unavailable to any single robot, necessitating centralized
computation of the required torques at a station with access
to all the problem information.

After discretizing the optimization problem in (7), some
previous approaches apply the complementarity constraint
between the contact forces and the distance function at the
beginning of each time interval. This approach allows for
the existence of non-zero contact forces even when contact
between the robot and the object breaks away within the
interval. To avoid this issue, other approaches enforce this
constraint at the end of the interval which ensures that contact
forces only exist if the robot and object maintain contact at
the end of the time interval. However, this approach only
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provides a partial remedy as non-zero contact forces can
still exist within an interval when the robot does not remain
in contact with the object as long as the robot contacts the
object at the end of the interval. To preclude this situation, we
introduce a constraint on the contact forces and the relative
velocity between robot i and the object �̇i(xi, xobj) given by

ci · (�̇i(t+�t) + ��̇i(t)) = 0 (10)

where � represents the coefficient of restitution. For the
manipulation tasks in this work, we focus on inelastic
collisions between the robot and the object, described by
the coefficient of restitution � = 0. This constraint ensures
that non-zero contact forces exist between the robot and the
object only when the robot remains in contact with the object
over the time interval, indicated by zero relative velocity
between the robot and the object over this time interval.

We develop a distributed method D-COPT where each
robot computes its torques without computing the torques of
other robots, while collaboratively manipulating an object.
The combined dynamics of the robots and object in (8)
introduces coupling between the robots and object. For
distributed computation of the torques in (8), we decompose
the combined dynamics into the individual dynamics models
for each robot and the object, resulting in the set of dynamics
models

mi(ẋi) + gi(ẋi, xi) = Vi⌧i +W
T
i fi

mb(ẋobj) + gb(ẋobj, xobj) = W Tf
(11)

for robot i and the object. Note that the object dynamics
includes the combined contact forces of all robots f with
the combined Jacobian matrix W . We introduce local
variables for the contact forces applied by the robots and the
object configuration and velocity, resulting in the distributed
optimization problem

PD : minimize
x,ẋ,⌧ ,f

NX

i=1

`i(xi, ⌧i,fi)

subject to vi(x̆i,
˙̆xi, ⌧i,fi) = 0 8i

hi(x̆i,
˙̆xi) = 0 8i

ri(x̆i,
˙̆xi, ⌧i, fi)  0 8i

fi = fj 8j 2 Ni, 8i
x̊i = x̊j 8j 2 Ni, 8i

(12)

where x̆i = [xobj, xi] represents the configuration of robot
i and the object concatenated over all times steps,
˙̆xi = [ẋobj, ẋi] represents the corresponding velocities, x and
ẋ include the local variables of the object configuration and
velocities, and f includes the local variables of the contact
forces applied by the robots. The dynamics constraints in
vi(·) include the dynamics model of robot i and the object
in (11) without the dynamics models of the other robots.
Consequently, each robot does not require the dynamics
models of other robots. In addition, each robot maintains
a single set of complementary constraints for its contact
dynamics in ri(·) which also includes constraints on its
torques and collision-avoidance constraints. We represent

the constraints on the initial and desired configuration and
velocities of robot i and the object with hi(·) and robot i’s
local variables of the object configuration and velocity as
x̊i = [xobj,i, ẋobj,i] with x̊i 2 Rno .

Proposition 1. The optimization problem PD in (12) is
equivalent to the optimization problem PC in (8) with the
same optimal solution and optimal objective value.

Proof. All robots compute the same combined contact force
from the equality constraints between fi and fj 8(i, j) 2 E
in (12), noting that the communication graph G is connected.
Likewise, all robots compute the same trajectory for the
object from the equality constraints on x̊. Consequently, we
can replace the local combined contact force along with the
configuration and velocity of the object computed by each
robot by common optimization variables f̃ , x̃obj, and ˙̃xobj
respectively. With these variables, the optimization problem
in (12) has the same feasible set with the problem in (8), in
addition to having the same objective function. As such, the
optimization problems in (12) and (8) have the same optimal
solution and optimal objective value.

Although typical distributed optimization methods can
be applied to solve the problem in (12), utilizing these
methods will result in a worse computational efficiency
compared to the centralized case. Rather, we apply the SOVA
optimization method in [28] to derive D-COPT a distributed
method for (12). Using SOVA, each robot only computes
variables relevant to its local objective and constraint functions
rather than computing the entire set of optimization variables,
as done in other distributed approaches. Our approach
proves particularly efficient in solving the problem in (12)
considering the computation challenges introduced by the
non-smooth contact dynamics constraints.

We distribute the problem variables among the robots based
on the relevance of each variable to each robot. For example,
each robot has no use of the torques applied by the other
robots, making optimization over these variables unnecessary
for each robot. Hence, robot i computes its configuration and
the object configuration x̆i, the corresponding velocities ˙̆xi,
torques ⌧i, and its contact forces fi.

Upon distributing the problem variables among the robots,
we derive update procedures for the optimization variables
of each robot from the augmented Lagrangian of (12). The
augmented Lagrangian La is given by

La(·) =
NX

i=1

⇣
`i(xi, ⌧i,fi)

+
X

j2Ni

�
T
ij(fi � aij) + ⌫

T
ij(fj � bij)

+
X

j2Ni

�
T
ij (̊xi � uij) + ⌘

T
ij (̊xj � wij)

+
⇢

2

X

j2Ni

kfi � aijk22 + kfj � bijk22

+
⇢

2

X

j2Ni

kx̊i � uijk22 + kx̊j � wijk22
⌘

(13)
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with the dual variables �ij 2 Rnf , ⌫ij 2 Rnf , �ij 2 Rno ,
and ⌘ij 2 Rno for the equality constraints between the
contact forces and the object configuration and velocity
of neighboring robots. Each robot updates its problem
variables as the minimizers of the augmented Lagrangian
using its dual variables at the previous iteration before
subsequently updating its dual variables. Robot i solves the
local optimization problem

PL : minimize
x̆i, ˙̆xi,⌧i,fi

Ji(xi, ⌧i,fi)

subject to vi(x̆i,
˙̆xi, ⌧i,fi) = 0

hi(x̆i,
˙̆xi) = 0

ri(x̆i,
˙̆xi, ⌧i, fi)  0

(14)

with

Ji(·) = `i(xi, ⌧i,fi) + p
kT
i fi + q

kT
i x̊i

+ ⇢

X

j2Ni

���fi �
fk
i + fk

j

2

���
2

2
+
���x̊i �

x̊
k
i + x̊

k
j

2

���
2

2

(15)
to update its problem variables.

Notably, the local contact-implicit trajectory optimization
problem (PL) solved by each robot in (14) consists of a single
set of complementarity constraints for the non-smooth contact
dynamics of the robot, reducing the numerical challenges to
solving the global optimization problem (PC) in (8). This
approach enables the robots to compute a solution to (14)
even in cases when solving (7) proves particularly difficult.
Moreover, each robot does not require the dynamics models,
objective functions, and constraints of other robots in (14).
Since the optimization variable computed by each robot in
(14) does not change as the number of robots increases, our
method scales efficiently to manipulation problems with large
groups of collaborating robots.

Remark 1. Although each robot considers only its local
constraints in (14), the resulting trajectories of the robots
and object satisfy all the problem constraints in (12) since
all the robots compute the same object trajectory and all the
problem constraints are enforced by at least one robot.

After computing its problem variables, robot i shares its
local object trajectory x̊

k+1
i and contact force fk+1

i with
its neighbors and updates its dual variables pi 2 Rnf and
qi 2 Rno using

p
k+1
i = p

k
i + ⇢

X

j2Ni

�
fk+1
i � fk+1

j

�

q
k+1
i = q

k
i + ⇢

X

j2Ni

�
x̊
k+1
i � x̊

k+1
j

� (16)

where the dual variables pi and qi represent combined dual
variables for �ij , ⌫ij , �ij , and ⌘ij . This follows the dual
update format introduced in [28].

Theorem 1. Assuming the objective function of (12) has
Lipschitz continuous gradients, the trajectories of the robots
and object converge to a locally optimal solution of (12).

Proof. If the objective function of (12) has Lipschitz
continuous gradients, the augmented Lagrangian La(·) of (13)
decreases monotonically at every iteration until convergence
[29]. In addition, the sequence {xk

, ẋk
, ⌧ k

,fk
, p

k
, q

k}
converges to a stationary point {x?

, ẋ?
, ⌧ ?

,f?
, p

?
, q

?} of
La(·), corresponding to a locally optimal solution of (12).

Algorithm 1 outlines D-COPT our distributed contact-
implicit trajectory optimization method for collaborative
manipulation.

Algorithm 1: Distributed Contact-Implicit Trajectory
Optimization (D-COPT)

do in parallel i = 1, · · · , N
(x̆i,

˙̆xi, ⌧i,fi) OptimizeTrajectory(x̆i(t), ˙̆xi(t))
⌧i(t) ⌧i(0)
Apply torque ⌧i(t)

while manipulation task is in progress;

Algorithm 2: OptimizeTrajectory(x̆i(t), ˙̆xi(t))
Initialization:
k  0
(pi, qi)0  0

(x̆i,
˙̆xi, ⌧i,fi)0  argminimize

�
Problem (14)

 

do in parallel i = 1, · · · , N
(x̆i,

˙̆xi, ⌧i,fi)k+1  Equation (14)

(pi, qi)k+1  Equation (16)

k  k + 1
while not converged or stopping criterion is not met;
return (x̆i,

˙̆xi, ⌧i,fi)

The robots compute their torques from the
OptimizeTrajectory procedure to manipulate the object at each
time instant, repeating the procedure as the manipulation task
occurs over a receding horizon. Each robot does not share
its trajectory and torques with other robots, which reduces
the communication bandwidth required for implementation
of our method. We initialize the succeeding problem using
the optimal solution from the previous instance of the
optimization problem which improves the convergence of
the solution, especially in situations where the optimization
problem changes slowly over time.

V. SIMULATIONS

We evaluate our distributed contact-implicit trajectory
optimization method D-COPT in collaborative manipulation
problems, comparing the performance of D-COPT to
centralized contact-implicit trajectory optimization methods
[19, 20]. We assume each robot can communicate with its
neighbors within a communication radius and examine our
method in the manipulation of a sliding rod along a surface
with friction in addition to the manipulation of an object as it
falls under gravity. In both cases, the robots bring the object to
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rest at the end of the manipulation task. We solve the resulting
contact-implicit optimization problems on a consumer-grade
laptop with an Intel i7 processor using IPOPT [30], an interior-
point optimization solver, and set the maximum number of
iterations at 5000. In each optimization problem, we use the
MA-57 linear solver within IPOPT.

A. Manipulating a Sliding Rod
We consider a manipulation task with N robots where

the robots collaboratively manipulate a rod through contact
by sliding it along a surface with friction. We represent the
configuration of the rod as xobj 2 R3 consisting of the rod’s
position and orientation, its velocities as ẋobj 2 R3, and the
configuration of robot i as xi 2 Rni . The robots manipulate
the rod from its initial configuration to a desired position and
orientation before bringing the rod to rest at the end of the
manipulation task. We assume the rod slides on a surface with
friction and constrain the tangential components of the contact
force using (5). By representing the contact dynamics between
each robot and the object using a set of complementarity
constraints, the robots compute their torques from the local
optimization problem (PL) in (14). We consider a quadratic
objective function given by

`i(xi, ⌧i,f) = ⌧
T
i Hi⌧i (17)

where Hi 2 Rn⌧,i⇥n⌧,i denotes a positive definite matrix.
The objective function represents our desire for each robot
to manipulate the object using minimal torques.

In Figure 2, a group of 4 robots (in red colors) manipulate
a blue rod by sliding it along the surface to a desired position
and orientation which is indicated by the gray rod. The robots
move the rod through contact before bringing the rod to rest
at the end of the manipulation task in Figure 2 (right). The
attached video shows the group of robots manipulating the
rod along the surface.

We examine the success rate of the interior-point solver
in solving the contact-implicit optimization problems in the
centralized method and D-COPT for the manipulation task
with 4 robots. We discretize the optimization problem over
70 ms intervals, resulting in 1954 optimization variables in
the centralized method, with 1186 variables per robot in D-
COPT. A problem is solved successfully if the interior-point
solver finds a solution within 5000 iterations. We keep the
initialization the same across both methods and evaluate the
success rate in 100 manipulation tasks. From Table I, the
centralized method attains a 28% success rate, highlighting
the difficulty in solving the global contact-implicit trajectory
optimization problem (PC ). In contrast, D-COPT achieves a
higher success rate of 88%, resulting from the decomposition
of the global problem into smaller local problems solved by
each robot.

We provide the mean computation time along with the
standard deviation using the centralized method and D-COPT
in Table II with the number of communication rounds in
Algorithm 2 set at 12. In D-COPT, each robot required a
mean time of 0.111 seconds for each iteration of Algorithm 2,
giving a total time of 1.331 seconds to solve the distributed

TABLE I
SUCCESS RATE IN SOLVING THE CONTACT-IMPLICIT OPTIMIZATION

PROBLEM IN SECTION V-A

Method Success Rate (%)

Centralized 28
D-COPT 88

optimization problem. Meanwhile, the centralized method
took a mean computation time of 9.910 seconds to solve for
the torques of all the robots, showing the difficulty in solving
the global problem in (8) with all the non-smooth constraints
present.

TABLE II
COMPUTATION TIME FOR THE PROBLEM IN SECTION V-A

Method Time (sec)

Centralized 7.320± 0.0385
D-COPT 1.331± 0.332

Fig. 2. A group of 4 robots (in red colors) manipulate a blue rod by sliding
it along a surface with friction to a desired position and orientation indicated
by the gray rod. The robots manipulate the rod through contact (center),
before bringing it to rest at its desired position and orientation (right).

In Figure 3, we consider a task with 16 robots sliding
the rod along a surface and show the normal and tangential
components of the contact force applied by each robot. The
magnitudes of the normal and tangential components of
the contact force indicate the discrete contact interactions
between each robot and the object, with non-zero contact
forces existing only when the robot makes contact with the
object.
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Fig. 3. The normal components (left) and tangential components (right)
of the contact forces applied by each robot as 16 robots slide a rod to a
desired position and orientation along a surface, showing the discrete contact
interactions between each robot and the object as the object slides along its
surface.

B. Manipulating an Object Falling Under Gravity

In this manipulation task, N robots manipulate an object
falling under gravity, through contact, after it has been
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dropped from an elevated platform, bringing the object to
rest at a desired position and orientation.

We represent the orientation of the object at time t by
a rotation matrix R(t) 2 R3⇥3 and its angular velocity by
! 2 R3. By applying an angular velocity ! on the object
through contact over a time interval of length �t, the object
rotates through an angle � 2 R around the rotation axis
u 2 R3. The change in the rotation matrix representing the
orientation of the object is described by

Rdt = cos(�)I + (1� cos(�))uuT + sin(�)!̂ (18)

where I 2 R3⇥3 represents the identity matrix and !̂ 2 R3⇥3

represents a skew-symmetric matrix derived from ! with
� = k! ·�tk2 and u = !·�t

� . The resulting dynamics for the
rotation matrix is given by

R(t+ 1) = RdtR(t) (19)

which remains a valid rotation matrix.
To compute the torques required to manipulate the object,

each robot solves the local optimization problem in (14)
where the configuration of the object xobj(t) 2 R12 includes
its position and orientation (represented with a rotation matrix)
and ẋobj(t) 2 R6 includes its linear and angular velocities
at time t with a single set of complementarity constraints
for its contact dynamics. We specify the initial and desired
configuration and velocities of robot i and the object in hi(·).

In Figure 4, a group of 3 quadrotors manipulate an object as
it falls under gravity after it has been dropped. The quadrotors
contact the object to support and manipulate it to its desired
orientation from Figure 4 to Figure 5, noticeable from the
green cap on the object’s top. The quadrotors bring the
object to rest on the wooden box in Figure 5. The attached
video shows the quadrotors manipulating the object. We
discretize the problem over 70 ms intervals, resulting in
2430 optimization variables in the centralized method, with
2082 variables per robot in D-COPT. We provide the mean
computation time and its standard deviation of D-COPT
and the centralized method in Table III. In D-COPT, each
robot took a mean time of 17.510 seconds to compute its
torques, with each of the 12 iterations in Algorithm 2 requiring
an average of 1.459 seconds. This optimization problem is
significantly larger than the problem in Section V-A, therefore
requiring more computation time. In contrast, the centralized
method required 49.782 seconds to solve for the torques of
all robots, and repeatedly fails to find a solution in many
instances of the problem, as noted in Section V-A.

TABLE III
COMPUTATION TIME FOR THE PROBLEM IN SECTION V-B

Method Time (sec)

Centralized 49.782± 0.559
D-COPT 17.510± 10.312

In Figure 6, we consider 12 robots manipulating the same
object. The normal and tangential components of the contact
forces highlight the discrete contact interactions between each
robot and the object.

Fig. 4. A group of 3 quadrotors manipulate an object falling under gravity
after it has been dropped to a desired position and orientation. The quadrotors
approach the object to manipulate it before bringing it to rest on the wooden
box.

Fig. 5. The quadrotors manipulate the object and bring the object to rest
at its desired position and orientation on the wooden box.
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Fig. 6. The normal components (left) and tangential components (right) of
the contact forces applied by each quadrotor on the object as 12 quadrotors
manipulate an object falling under gravity. Each quadrotor makes discrete
contact interactions with the object to manipulate the object.

VI. CONCLUSION

We present D-COPT a distributed contact-implicit
trajectory optimization method enabling a group of robots
to collaboratively manipulate an object through contact.
By separating the objective functions and non-smooth
dynamics constraints among the robots, each robot solves a
local optimization problem only considering a single set
of complementarity constraints for its contact dynamics,
overcoming the notable numerical optimization challenges
to solving the global contact-implicit trajectory optimization
problem. Particularly, our method produces a solution when
the global contact-implicit trajectory optimization problem
proves difficult to solve. Each robot communicates with its
neighbors to compute its torques and contact forces, without
computing the torques and contact forces of other robots,
allowing our method to scale efficiently to collaborative
manipulation problems with large groups of robots. Further,
the robots do not share their torques, objective functions, and
other local constraints with other robots.
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