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ABSTRACT
Zero-inflated, heavy-tailed spatiotemporal data is common across

science and engineering, from climate science to meteorology and

seismology. A central modeling objective in such settings is to

forecast the intensity, frequency, and timing of extreme and non-

extreme eventsÐyet in the context of deep learning, this objective

presents several key challenges. First, a deep learning framework

applied to such data must unify a mixture of distributions char-

acterizing the zero events, moderate events, and extreme events.

Second, the framework must be capable of enforcing parameter

constraints across each component of the mixture distribution. Fi-

nally, the framework must be flexible enough to accommodate for

any changes in the threshold used to define an extreme event after

training. To address these challenges, we propose Deep Extreme

Mixture Model (DEMM), fusing a deep learning-based hurdle model

with extreme value theory to enable point and distribution predic-

tion of zero-inflated, heavy-tailed spatiotemporal variables. The

framework enables users to dynamically set a threshold for defining

extreme events at inference-time without the need for retraining.

We present an extensive experimental analysis applying DEMM to

precipitation forecasting, and observe significant improvements

in point and distribution prediction All code is available at https:

//github.com/andrewmcdonald27/DeepExtremeMixtureModel.
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1 INTRODUCTION

Spatiotemporal variables of interest in science and engineering

often exhibit two distinct characteristics: (i) zero-inflation, in which

there is an abundance of values exactly equal to zero or within

measurement error of zero; and (ii) heavy-tailedness, in which ex-

treme values beyond a threshold of some physical significance arise.

In meteorology, for example, zero-inflation and heavy-tailedness

naturally partitions the global distribution of rainfall into a three-

component structureÐzero, moderate, and extreme events. Specifi-

cally, over time and space, many precipitation measurements will

be exactly zero, some will be moderate (nonzero and nonextreme),

and a significant few will be extreme. A similar structure arises in

seismology, where a large proportion of readings at a given time

and location are within noise tolerance of zero, with minor and

moderate earthquakes constituting moderate values, and rare yet

significant large earthquakes constituting extreme values.

As deep learning continues to be adopted in a variety of spa-

tiotemporal applications [6, 19, 20], the importance of accurately

modeling all three components of a non-normally-distributed spa-

tiotemporal variable will only continue to increase. Accurate fore-

casts of extremes, for instance, could empower weather agencies

to warn residents in advance of a flood and empower seismolo-

gists to warn residents of an impending large earthquake. On the

other hand, accurate modeling of zero-valued and moderate-valued

events is necessary for day-to-day operations and should not be

sacrificed at the expense of extreme-valued events. A deep learning

framework capable of balancing predictive performance across all

three event classes is therefore essential. Yet developing such a deep

learning framework to accurately predict the intensity, frequency,

and timing of zero events, moderate events, and extreme events

proves challenging for a number of reasons.
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anomaly detection, in which a DNN-based autoencoder maps data

into a low-dimensional latent space and the joint density of the

data in latent space is represented by a Gaussian mixture model.

Viroli and McLachlan [25] propose a Deep Gaussian Mixture Model

(DGMM) for clustering, in which variables at each layer of a DNN

are encouraged to follow a mixture of Gaussian distributions.

Hurdle models, in which a nonnegative real-valued random vari-

able is modeled as a mixture of a zero-valued component and a

positive-valued component, were originally proposed by Cragg [9]

for application to economic data. Closely-related is the zero-inflated

Poisson model in which a nonnegative discrete-valued random vari-

able is modeled as a zero-nonzero mixture, originally proposed by

Lambert [16] and applied to manufacturing data. Continuous and

discrete hurdle models have since found several applications in

spatiotemporal settings, including precipitation forecasting [1, 2],

species abundance estimation [3], and wildfire occurrence [21].

More recently, DNNs have been applied to estimate the param-

eters of hurdle models. Kong et al. [15] propose a deep hurdle

network for multi-target regression and demonstrate its applica-

tion to multiple species abundance estimation. Vandal et al. [24]

use a deep neural network to estimate the parameters of a hurdle

model using a log-normal distribution as its second component

and leverage Monte-Carlo dropout to account for uncertainty in

model parameters in an application to precipitation downscaling

(super-resolution). Bacry et al. [13] propose a deep learning-based

Zero-inflated Mixture of Multinomial distributions (ZiMM) model

and apply it to modeling long-term post-surgery adverse events in

a medical database.

Traditional statistical approaches have long been used to infer

the distribution of extreme values [8]. However, these traditional ap-

proaches generally assume there is a relatively simple relationship

between predictors and the parameters governing the generalized

Pareto distribution used to model extreme values. In addition, these

traditional approaches fail to model the full distribution of the data,

focusing exclusively on the distribution of extremes instead. More

recent approaches combining deep learning with EVT have also

been limited in scope, failing to tightly integrate two paradigms.

Instead, EVT is used as a post-processing step [26, 27] or utilized in

a limited manner [4, 10]. Exceptions in which EVT is more tightly

integrated into the fabric of a deep learning framework include

[11, 17], but these works do not address the task of spatiotemporal

distribution and point prediction unlike the work considered here.

3 PRELIMINARIES

This section formalizes the problem statement and provides a brief

introduction to extreme value theory (EVT) and the hurdle model,

both of which are integral to the proposed DEMM framework.

3.1 Problem Statement

Let D = {(𝑋𝑙𝑤 , 𝑌𝑙𝑤) | 𝑤 ∈ {1, · · · ,𝑊 }; 𝑙 ∈ {1, · · · , 𝐿}} be a spa-
tiotemporal dataset, where 𝑋𝑙𝑤 ∈ R𝑑×𝜏 denotes the sequence of 𝑑

predictors for a prediction window𝑤 of width 𝜏 at location 𝑙 while

𝑌𝑙𝑤 ∈ R denotes the value of the target variable associated with

the prediction window. The locations are assumed to be organized

onto a spatial grid S while each prediction window𝑤 is associated

with a sequence of discrete time steps, [𝑡𝑤1 , 𝑡𝑤2 , · · · , 𝑡𝑤𝜏 ]. Thus, each

𝑋𝑙𝑤𝑖 ∈ R𝑑 represents a vector of predictors at a particular location

𝑙 at time step 𝑡
(𝑤)
𝑖 while 𝑌𝑙𝑤 denotes the observed value at the last

time step, 𝑡𝑤𝜏 . For brevity, let 𝑋:𝑤𝑖 ∈ R𝐿×𝑑 denote a gridded snap-

shot image of the predictors across all spatial locations at time step

𝑡
(𝑤)
𝑖 ∈ 𝑤 while 𝑋:𝑤 = {𝑋:𝑤𝑖 | 𝑖 ∈ {1, · · · , 𝜏}} denotes a sequence
of such snapshots. Similarly, the gridded snapshot of the target

variable at time step 𝑡
(𝑤)
𝜏 will be denoted as 𝑌:𝑤 . To determine

whether the value of the target variable is an extreme value, let

𝑈𝑙𝑤 be the excess threshold for location 𝑙 and prediction window𝑤 .

Any observation in the window𝑤 that exceeds this threshold will

be considered extreme. The set of threshold values for all locations

in a given prediction window𝑤 is denoted as𝑈:𝑤 . In practice, users

will likely assign a constant value for𝑈𝑙𝑤 in all prediction windows

and possibly all locations but for full generality, we allow it to be

defined separately at each prediction window and location.

3.2 Extreme Value Theory

There are two widely-used statistical distributions for modeling

extremesÐ(1) the generalized extreme value (GEV) distribution,

which is used to model the distribution of block maxima, and (2)

the generalized Pareto (GP) distribution, which is used to model the

distribution of excesses above a given threshold 𝑢 [8]. Since we are

primarily interested in the distributions of excesses over thresholds,

this work will focus only on the generalized Pareto distribution.

The density function of the GP distribution is given by

𝑃 (𝑦) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
𝜎

[︃
1 + 𝜉𝑦

𝜎

]︃− 1
𝜉 −1

, 𝜉 ≠ 0

1
𝜎 𝑒

− 𝑦
𝜎 𝜉 = 0

(1)

Observe that the distribution is characterized by two parameters:

shape 𝜉 , and scale 𝜎 , assuming threshold 𝑢 = 0. Note that 𝑦 may

be replaced with 𝑦 − 𝑢 when 𝑢 ≠ 0. There are two key constraints

that must be satisfied by the GP distribution parameters, namely,

a positivity constraint on its scale parameter 𝜎 and a more com-

plex constraint involving the shape, scale, and samples from the

distribution, i.e.:

𝜎 > 0 and ∀𝑦 : 1 + 𝜉𝑦

𝜎
> 0 (2)

Note that this second constraint is always satisfied when modeling

precipitation data if 𝜉 ≥ 0 since 𝑦 ≥ 0. Another important fact

about the GP distribution is that its expected value is given by

𝐸 [𝑌 ] = 𝜎
1−𝜉 when 𝜉 < 1 but is undefined otherwise.

3.3 Hurdle Model

Zero-inflated data are commonly found in many applications.When

modeling daily precipitation, for instance, most days have zero

rainfall. In these cases, a hurdle model can be used to separately

model the probability that the variable is zero or nonzero. A hurdle

model is a mixture model consisting of two components:

𝑃 (𝑌 = 𝑦) =
{︄
𝑝 𝑦 = 0

(1 − 𝑝) · 𝑓𝑌 (𝑦) 𝑦 > 0
(3)

where 𝑌 is the random variable, 𝑝 is its probability of being 0 and

𝑓𝑌 is the probability density function of𝑌 when its value is nonzero.

Any valid probability density function can be used as the second
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component of the hurdle model (i.e. 𝑓 ) as long as its integral over 𝑦

from 0 to infinity is 1 since:
∫ ∞

0
𝑃 (𝑦)𝑑𝑦 =

∫ ∞

0

(︃
𝑝 · 𝐼 [𝑦 = 0] + (1 − 𝑝) · 𝑓𝑌 (𝑦) · 𝐼 [𝑦 ≠ 0]

)︃
𝑑𝑦

(4)

= 𝑝 + (1 − 𝑝)
∫ ∞

0
𝑓𝑌 (𝑦) · 𝐼 [𝑦 ≠ 0]𝑑𝑦 (5)

= 𝑝 + (1 − 𝑝)
∫ ∞

>0
𝑓𝑌 (𝑦)𝑑𝑦 (6)

where 𝐼 [·] denotes the indicator function. Furthermore, since 𝑌 is a

continuous random variable, the density function 𝑓𝑌 is zero at any

given value of 𝑦, including 𝑦 = 0. Hence
∫ ∞
0

𝑃 (𝑦)𝑑𝑦 = 1 as long as∫ ∞
0

𝑓𝑌 (𝑦)𝑑𝑦 = 1.

4 DEEP EXTREME MIXTURE MODEL

The core of the Deep Extreme Mixture Model (DEMM) is a mixture

model which governs the conditional distribution of the target vari-

able, 𝑌𝑙𝑤 . Figure 2 presents a schematic illustration of the DEMM

architecture, which can be divided into three major components.

The first component is a 3D convolutional neural network, which

is responsible for modeling the spatiotemporal relationships within

the predictors in addition to inferring the impact of the choice of

threshold on the overall distribution. The second component is a

constraint enforcement module, which is responsible for transform-

ing the output of the neural network, 𝐴𝑙𝑤 , into a feasible set of

mixture model parameters, 𝜃𝑙𝑤 . The third component corresponds

to the mixture model itself. We will introduce the mixture model

at the heart of the DEMM first before describing the rest of the

components in detail.

4.1 Mixture Model

The DEMM is centered around estimating the parameters of a mix-

ture model. The mixture model is a combination of three probability

distributions, each of which is responsible for a different range of

values for the target variable. The three components of the mixture

model have a combined total of six parameters to be learned, which

are unique for each window𝑤 and location 𝑙 .

Because the model is intended for use with zero inflated data,

such as precipitation, it is based on a hurdle model, extended to

account for the modeling of extreme values. The first component

of the mixture model corresponds to a Bernoulli distribution to

estimate the probability the target variable has the value of zero.

Since the variable of interest is assumed to be non-negative, this

component corresponds to the lower boundary of the distribution.

The second component governs the distribution of nonzero val-

ues below a certain threshold,𝑈𝑙𝑤 . For precipitation prediction, a

truncated log-normal distribution with parameters 𝜇𝑙𝑤 and 𝑠𝑙𝑤 can

be used, though the DEMM framework can accommodate other

types of density functions. The density function of a non-truncated

log-normal distribution with parameters 𝜇𝑙𝑤 and 𝑠𝑙𝑤 is given by:

𝑓 1 (𝑌𝑙𝑤 ; 𝜇𝑙𝑤 , 𝑠𝑙𝑤) =
1

𝑌𝑙𝑤𝜎𝑙𝑤
√
2𝜋

exp

(︄

− (log𝑌𝑙𝑤 − 𝜇𝑙𝑤)2

2𝜎2
𝑙𝑤

)︄

. (7)

where the subscript 1 of the function 𝑓 1 denotes the second com-

ponent of the mixture model. Let 𝐹 1 be the cumulative distribution

function of 𝑓 1. The truncated log-normal distribution function can

be expressed as follows:

𝑓1 (𝑌𝑙𝑤) =
𝑓 1 (𝑌𝑙𝑤)

𝐹 1 (𝑈𝑙𝑤 ; 𝜇𝑙𝑤 , 𝑠𝑙𝑤)
(8)

with the domain 0 < 𝑌𝑙𝑤 < 𝑈𝑙𝑤 .

Together, the first two components of the mixture model are

similar to a conventional hurdle model. However, a third component

is needed to ensure that the mixture model fits well to the empirical

distribution, especially at the tail end of the distribution. As we

are interested in modeling excess values over a threshold,𝑈𝑙𝑤 , the

generalized Pareto distribution is chosen as the third component of

the mixture model. This ensures that the model is well specified for

large values of 𝑌𝑙𝑤 that exceed𝑈𝑙𝑤 . Its density function, denoted

as 𝑓2, is given in Equation (1), with parameters 𝜉𝑙𝑤 and 𝜎𝑙𝑤 .

To ensure that its integral over the domain of 𝑌𝑙𝑤 is equal to

1, the last two components underlying the mixture model must

be rescaled. The lognormal component is rescaled by a factor of

(1− 𝑝
(0)
𝑙𝑤

) · 𝑝 (1)
𝑙𝑤

, where 𝑝
(0)
𝑙𝑤

represents the probability that 𝑌𝑙𝑤 = 0

and 𝑝
(1)
𝑙𝑤

represents the probability it is nonzero and will not exceed

the threshold. The GP component must be rescaled by a factor of

(1 − 𝑝
(0)
𝑙𝑤

) · (1 − 𝑝
(1)
𝑙𝑤

). Thus, the full distribution of the mixture

model used in DEMM is:

𝑃 (𝑌𝑙𝑤
|︁|︁ 𝑋:𝑤 ;𝑈:𝑤 ;𝜃𝑙𝑤)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑝
(0)
𝑙𝑤

𝑌𝑙𝑤 = 0

(1 − 𝑝
(0)
𝑙𝑤

) · 𝑝 (1)
𝑙𝑤

· 𝑓1 (𝑌𝑙𝑤 ; 𝜇𝑙𝑤 , 𝑠𝑙𝑤) 0 < 𝑌𝑙𝑤 < 𝑈𝑙𝑤

(1 − 𝑝
(0)
𝑙𝑤

) · (1 − 𝑝
(1)
𝑙𝑤

) · 𝑓2 (𝑌𝑙𝑤 ; 𝜉𝑙𝑤 , 𝜎𝑙𝑤) 𝑈𝑙𝑤 ≤ 𝑌𝑙𝑤

(9)

Collectively, the parameters of the mixture model are denoted as

the following six-dimensional vector:

𝜃𝑙𝑤 = (𝑝 (0)
𝑙𝑤

, 𝑝
(1)
𝑙𝑤

, 𝜇𝑙𝑤 , 𝑠𝑙𝑤 , 𝜉𝑙𝑤 , 𝜎𝑙𝑤) (10)

The target variable is a sample from the conditional distribution

defined by this mixture model. Given the mixture model parameters,

it is easy to compute the negative log likelihood loss as follows:

LNLL = −
∑︂

𝑙𝑤

(︂
𝐼 [𝑌𝑙𝑤 = 0] · log(𝑝 (0)

𝑙𝑤
) (11)

+ 𝐼 [0 < 𝑌𝑙𝑤 < 𝑈𝑙𝑤] ·
[︂
log(1 − 𝑝

(0)
𝑙𝑤

)

+ log(𝑝 (1)
𝑙𝑤

) + log(𝑓1 (𝑌𝑙𝑤 ; 𝜇𝑙𝑤 , 𝑠𝑙𝑤))
]︂

+ 𝐼 [𝑈𝑙𝑤 < 𝑌𝑙𝑤] ·
[︂
log(1 − 𝑝

(0)
𝑙𝑤

)

+ log(1 − 𝑝
(1)
𝑙𝑤

) + log(𝑓2 (𝑌𝑙𝑤 ; 𝜉𝑙𝑤 , 𝜎𝑙𝑤)
]︂ )︂

In addition the expected value of the mixture model can be easily

computed as a weighted sum of the component means:

𝑌̂ 𝑙𝑤 = 𝑝
(0)
𝑙𝑤

· 0 (12)

+ (1 − 𝑝
(0)
𝑙𝑤

) · 𝑝 (1)
𝑙𝑤

· exp (𝜇𝑙𝑤 + 𝑠2
𝑙𝑤

/2) ·
Φ
[︁ ln(𝑈𝑙𝑤 )−𝜇𝑙𝑤−𝑠2

𝑙𝑤
𝑠𝑙𝑤

]︁

Φ
[︁ ln(𝑈𝑙𝑤 )−𝜇𝑙𝑤

𝑠𝑙𝑤

]︁

+ (1 − 𝑝
(0)
𝑙𝑤

) · (1 − 𝑝
(1)
𝑙𝑤

) ·
[︃
𝑈𝑙𝑤 + 𝜎𝑙𝑤

1 − 𝜉𝑙𝑤

]︃
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Our approach for ensuring both constraints are satisfied pro-

ceeds in three steps. First, a base GP constrainer function is applied

to ensure that 𝜉 satisfies constraint (13). Next, a shifted softplus

function is used to ensure that the GP distribution shape parameter

𝜉𝑙𝑤 < 1. Finally, a gated thresholding function will be applied to

ensure that the base GP constrainer and shifted softplus function

work appropriately together so that both constraints involving the

shape parameter are simultaneously satisfied. We discuss each of

these steps to enforce the shape parameter constraint in order.

As mentioned above, the base GP constrainer will ensure that

constraint (13) is satisfied. Let 𝐴
(5)
𝑙𝑤

and 𝐴
(6)
𝑙𝑤

be the unconstrained

neural network activations corresponding to the GP distribution

parameters 𝜉𝑙𝑤 and 𝜎𝑙𝑤 , and let𝑚 be the supremum of 𝑌𝑙𝑤 . Note

that 𝜎𝑙𝑤 = exp(𝐴(6)
𝑙𝑤

) as in (15) and define 𝑐𝜉 to be the base GP

constrainer function as follows:

𝜉𝑙𝑤 = 𝑐𝜉 [𝐴
(5)
𝑙𝑤

, 𝐴
(6)
𝑙𝑤

] = [exp(𝐴(5)
𝑙𝑤

) − 1] · exp(𝐴(6)
𝑙𝑤

)/(𝑚 + 𝜖) (16)

The initial output of the base GP constrainer is denoted as 𝜉𝑙𝑤 rather

than 𝜉𝑙𝑤 to indicate that its output must be further constrained to

ensure that the second constraint (i.e. 𝜉𝑙𝑤 < 1) is satisfied.

The second constraint 𝜉𝑙𝑤 < 1 will be enforced using the shifted

softplus function and the gated thresholding function. The shifted

softplus function is defined as:

𝑆 (𝜉𝑙𝑤) = (1 − 𝜖) − 1

𝛽
log

[︃
1 + exp[(1 − 𝜖 − 𝜉𝑙𝑤) · 𝛽]

]︃
(17)

where 𝛽 is a hyperparameter (set to 10 for this work), and 𝜖 is a small

positive value (set to 0.05 for this work). The shifted softplus func-

tion is a shifted and rotated version of the softplus function. One

may verify that lim
𝜉𝑙𝑤→∞ 𝑆 (𝜉𝑙𝑤) = (1−𝜖) and lim

𝜉𝑙𝑤→−∞ 𝑆 (𝜉𝑙𝑤) =
𝜉𝑙𝑤 . Note that the general outcome of applying the shifted softplus

function is to reduce the value of its input so that 𝑆 (𝜉𝑙𝑤) < 𝜉𝑙𝑤 .

When 𝜉𝑙𝑤 > 0 this is no problem since the only constraint 𝜉𝑙𝑤
needs to satisfy is 𝜉𝑙𝑤 < 1, but when 𝜉𝑙𝑤 < 0, this may result

in a situation where constraint (13) now becomes violated This is

avoided using the gated thresholding function 𝑇 , defined as:

𝑇 (𝜉𝑙𝑤) = 𝑣 (𝜉𝑙𝑤) · 𝑆 (𝜉𝑙𝑤) + (1 − 𝑣 (𝜉𝑙𝑤)) · 𝜉𝑙𝑤 (18)

where

𝑣 (𝜉𝑙𝑤) =
⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

0 𝜉𝑙𝑤 < 0

𝜉𝑙𝑤/(1 − 𝜖) 0 < 𝜉𝑙𝑤 < 1 − 𝜖

1 1 − 𝜖 < 𝜉𝑙𝑤 .

(19)

The basic idea of the gated thresholding function 𝑇 is that when

its input 𝜉 is less than 0, its input will be returned unchanged.

However, when the input 𝜉 is greater than 1−𝜖 , the shifted softplus
function is used to reduce its value to be less than 1. When 𝜉 is

between 0 and 1−𝜖 , it will smoothly interpolate between the identity

function and shifted softplus function to ensure continuity. This

results in a function that will constrain 𝜉𝑙𝑤 < 1 while also ensuring

its output satisfies the GP constraints as long as the input does. Thus,

the output of the constraint enforcement module consists of the

following estimates of the mixture model distribution parameters:

𝜃𝑙𝑤 = (𝑝 (0)
𝑙𝑤

, 𝑝
(1)
𝑙𝑤

, 𝜇𝑙𝑤 , 𝑠𝑙𝑤 , 𝜉𝑙𝑤 , 𝜎𝑙𝑤)

=

(︃
𝜎 (𝐴(1)

𝑙𝑤
), 𝜎 (𝐴(2)

𝑙𝑤
), 𝐴(3)

𝑙𝑤
, exp(𝐴(4)

𝑙𝑤
),

𝑇

[︃
𝑐𝜉

(︁
𝐴
(5)
𝑙𝑤

, 𝐴
(6)
𝑙𝑤

)︁
]︃
, exp(𝐴(6)

𝑙𝑤
)
)︃

(20)

4.4 Training

DEMM is trained to minimize the following loss function

L = (1 − 𝜆)LNLL + 𝜆LRMSE (21)

where LRMSE =

√︂
1

𝐿𝑊

∑︁
𝑙,𝑤 (𝑌𝑙𝑤 − 𝑌̂ 𝑙𝑤)2 and LNLL denotes the

negative log-likelihood function given in (11). 𝜆 is a hyperparam-

eter representing the tradeoff between minimizing the negative

log-likelihood and root mean squared error loss. One challenge

when training the model is choosing the appropriate value for the

threshold𝑈𝑙𝑤 at each location and time window. To provide more

flexibility and allow users to chose any reasonable threshold at test

time, during training𝑈𝑙𝑤 is sampled uniformly at random from the

interval (0.5, 0.95). In principle the range from which the threshold

is randomly selected could be extended. This ensures that at test

time any threshold from this interval is usable without retraining

the model. The DEMM framework is trained using Adam [14].

5 EXPERIMENTAL EVALUATION

5.1 Data

We evaluate our model on a real world precipitation dataset drawn

from two sources. Predictors are precipitation forecasts from the

SubX project.1 Specifically, an 11-member ensemble of daily precip-

itation forecasts is generated every week by a numerical model for

each location for the next 35 days (i.e𝑋𝑙𝑤𝑖 ∈ R11, 𝑖 ∈ {1, 2, · · · , 35}).
We compute the rolling 3-day average of each ensemble member.

Our target is observed precipitation from NLDAS-22Ðspecifically,

the average observed precipitation at each location 10-12 days in

advance. We limit our experiments to the continental United States

at a 1 degree resolution over 1999-2020. The predictors are log

transformed and standardized.

5.2 Models

We consider the followingmodels in our experiments. A comparison

is presented in Table 1.

(i) DEMM: The proposed model described in Section 4 and de-

picted in Figure 2, trained with a variable threshold𝑈𝑙𝑤 defin-

ing extremes.

(ii) DEMM-F : The proposed model, trained with a fixed threshold

𝑈𝑙𝑤 defining extremes.

(iii) Hurdle [9]: An ablation of the proposed model, keeping the

3D CNN module, but omitting the GP component of the mix-

ture distribution. This is equivalent to modeling precipitation

with a standard zero/nonzero hurdle model.

(iv) Vandal [24]: A baseline for spatiotemporal variables with

discrete-continuous structure, using a 3D CNN with Monte

1http://cola.gmu.edu/subx/
2https://ldas.gsfc.nasa.gov/nldas/v2/forcing
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Table 1: A comparison of the models evaluated in our ex-

periments. Columns S, T, Z, and E indicate whether a model

is designed to capture spatial, temporal, zero-inflated, and

extreme-valued structure, respectively.

Prediction Structure

Model Point Distribution S T Z E

DEMM ✓ ✓ ✓ ✓ ✓ ✓

DEMM-F ✓ ✓ ✓ ✓ ✓ ✓

Hurdle [9] ✓ ✓ ✓ ✓ ✓ ✗

Vandal [24] ✓ ✓ ✓ ✗ ✓ ✗

Ding [10] ✓ ✗ ✗ ✓ ✗ ✓

DCNN [12] ✓ ✗ ✓ ✗ ✗ ✗

Mean ✓ ✗ ✗ ✗ ✗ ✗

Carlo dropout for uncertainty quantification and distribution

prediction.

(v) Ding [10]: A baseline for time series prediction with extreme

values, using an EVT-motivated loss function and memory

module to capture extremes.

(vi) DCNN [12]: A deterministic 3D CNN, trained to minimize

RMSE of predicted precipitation (without EVT and zero-inflation).

(vii) Mean: An average of the ensemble member predictors over

days 10-12.

5.3 Experimental Setup

Hyperparameters were selected using grid search. Learning rates

varied in the range from 1 × 10−4 to 1 × 10−2; hidden dimension

varied in the range from 10 to 40; tradeoff 𝜆 between NLL and MSE

varied in the range from 0.7 to 0.9. The optimal hyperparameters for

DEMM were found to be a learning rate of 1e-3, a hidden dimension

of 30, and a 𝜆 of 0.9. The 3D CNN in DEMM was fixed with 4 layers

and the local FCN was fixed with 3 layers. All models were trained

for 200 epochs with checkpoints saved at lowest validation loss,

then reloaded at test time. All prediction windows were randomly

assigned to the train, validation, or test set based on a random

seed, with a total of 104 prediction windows (2 years’ worth) being

assigned to the test set, 104 to the validation set, and the remain-

ing 731 to the test set. A total of five random train-validation-test

splits were used to compute averages and standard deviations in

each metric. We consider the following evaluation metrics in our

experiments.

(i) RMSE: Root mean squared error of each model’s point pre-

diction, characterizing the average residual magnitude.

(ii) NLL:Negative log likelihood of test samples given eachmodel’s

predicted conditional distribution, characterizing the fidelity

of a predicted distribution’s center and spread beyond RMSE.

(iii) Accuracy: Test precipitation samples are assigned to one of

three classes: zero rainfall, moderate rainfall, and extreme

rainfall, where extreme rainfall is rainfall that exceeds 𝑈𝑙𝑤 .

For each model, samples can be assigned class probabilities

using that model’s CDF then assigned to the class with the

highest probability, yielding classification accuracy.

(iv) F1 Macro/Micro: A macro/micro-averaged F1 score charac-

terizing each model’s ability to distinguish between zeros,

moderates, and extremes.

(v) AUCOVO/OVRArea under the precision-recall curve of one-

vs-one/one-vs-rest classification characterizing each model’s

ability to distinguish between zeros, moderates, and extremes.

5.4 Experimental Results

In addition to characterizing the overall performance of DEMM ,

the experiments were designed to:

(i) Compare the performance of DEMM to state-of-the-art base-

lines and ablations of the full proposed model.

(ii) Compare the performance of DEMM against DEMM-F to un-

derstand the effect of using a variable versus fixed threshold

used to define extreme values during training.

(iii) Characterize the spatial locations where the DEMM outper-

forms the ensemble mean.

(iv) Evaluate the ability of the DEMM to predict the frequency and

timing of extreme events.

5.4.1 Performance Against Baselines. Table 2 compares the overall

predictive performance of DEMM against the previously discussed

baseline methods. For evaluation purposes, the excess threshold

𝑈𝑙𝑤 was set to the global 0.6 quantile value. We consider DEMM

trained with varying thresholds as described in Section 4.4 and

DEMM-F , with a fixed excess threshold at the global 0.6 quantile

value of precipitation. In the former case, the results are reported

when the threshold is set to the 0.6 quantile at test time. Our experi-

mental results show that both versions of DEMM (fixed and variable

threshold) outperform the ensemble mean in terms of their negative

log likelihood, MSE, and F1 score, and rank competitively among

other state-of-the-art baselines. The DEMM achieves lower MSE

than the ensemble mean. Because the ensemble mean is expected

to be a strong baseline, this demonstrates that the DEMM’s ability

to make accurate point predictions was not strongly inhibited by

simultaneously predicting the conditional distribution. The fact

that DEMM outperforms the hurdle model across various metrics

demonstrates the value of incorporating EVT.

Further results are presented in Tables 3 and 4, subsetting results

by the component of the target distribution to which each 𝑌𝑙𝑤
belonged: observations for which 𝑌𝑙𝑤 = 0 fall into the Zero column,

observations with 0 < 𝑌𝑙𝑤 < 𝑈𝑙𝑤 fall into the Moderate column,

and observations for which𝑌𝑙𝑤 > 𝑈𝑙𝑤 fall into the Extreme column.

We observe that DEMM achieves the lowest RMSE and NLL metrics

on the extreme component of our data, suggesting the explicit

incorporation of EVT through the generalized Pareto distribution

is indeed effective. Similarly, we observe that DEMM , DEMM-F and

the hurdle model all perform well on the zero component of our

data, supporting the notion that a discrete-continuous modeling

framework better captures zero-inflated data than an assumption

of continuity.

5.4.2 Effect of Variable Threshold. A key novelty of DEMM is the

use of variable thresholds during training to improve generalization

at inference-time without the need for retraining. We find that the

performance of DEMM is not penalized by learning to account for

this variable threshold, even beating DEMM-F in extreme-valued
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threshold, while the DEMM accurately predicts their frequency

across all thresholds. This suggests that the DEMM is well-suited

for predicting the frequency of extreme events regardless of the

threshold used to define them.

To examine predictive performance with respect to timing, we

compare the Brier score of DEMM with the hurdle model using a

variety of thresholds to define extreme values in Figure 4(b). The

Brier score is a classification metric common in meteorology, with a

lower Brier score representing better predictive performance. Given

the set of binary class labels for every observed precipitation value,

{𝑌𝑖 | 𝑖 ∈ {1, · · · , 𝑛}}, which represents whether or not each sample

is an extreme value, and the set of predicted probability of excess

for each sample, {𝑌̂ 𝑖 | 𝑖 ∈ {1, · · · , 𝑛}}, then the Brier score can be

computed as 𝐵 =
1
𝑛

∑︁𝑛
𝑖=1 (𝑌𝑖 − 𝑌̂ 𝑖 )2. The results shown in Figure

4(b) suggest that DEMM consistently outperforms the hurdle model

with respect to extreme event timing regardless of the threshold

chosen to define extreme events.

6 CONCLUSION

In this work, we propose DEMM , a novel deep learning frame-

work for predicting spatiotemporal variables with zero-inflated and

heavy-tailed structure. The proposed framework is built upon amix-

ture model incorporating EVT to model the distribution of extreme

events while accurately making point predictions. The framework

employs a set of novel reparameterization techniques to ensure

that neural network outputs satisfy the constraints placed on the

parameters of the mixture model, including a constraint on the GP

distribution shape parameter required for computing the mean of

the mixture model. The proposed framework also allows the excess

threshold to be an input to the model, thus providing flexibility for

the user to alter the threshold at inference-time without retraining.

Our experiments on a real world precipitation dataset illustrate that

DEMM is competitive against existing deep learning frameworks

for spatiotemporal distribution and point prediction, exhibiting a

strong advantage in forecasting the intensity, frequency, and timing

of extreme events.
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