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ABSTRACT

Zero-inflated, heavy-tailed spatiotemporal data is common across
science and engineering, from climate science to meteorology and
seismology. A central modeling objective in such settings is to
forecast the intensity, frequency, and timing of extreme and non-
extreme events—yet in the context of deep learning, this objective
presents several key challenges. First, a deep learning framework
applied to such data must unify a mixture of distributions char-
acterizing the zero events, moderate events, and extreme events.
Second, the framework must be capable of enforcing parameter
constraints across each component of the mixture distribution. Fi-
nally, the framework must be flexible enough to accommodate for
any changes in the threshold used to define an extreme event after
training. To address these challenges, we propose Deep Extreme
Mixture Model (DEMM), fusing a deep learning-based hurdle model
with extreme value theory to enable point and distribution predic-
tion of zero-inflated, heavy-tailed spatiotemporal variables. The
framework enables users to dynamically set a threshold for defining
extreme events at inference-time without the need for retraining.
We present an extensive experimental analysis applying DEMM to
precipitation forecasting, and observe significant improvements
in point and distribution prediction All code is available at https:
//github.com/andrewmcdonald27/DeepExtremeMixtureModel.
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1 INTRODUCTION

Spatiotemporal variables of interest in science and engineering
often exhibit two distinct characteristics: (i) zero-inflation, in which
there is an abundance of values exactly equal to zero or within
measurement error of zero; and (ii) heavy-tailedness, in which ex-
treme values beyond a threshold of some physical significance arise.
In meteorology, for example, zero-inflation and heavy-tailedness
naturally partitions the global distribution of rainfall into a three-
component structure—zero, moderate, and extreme events. Specifi-
cally, over time and space, many precipitation measurements will
be exactly zero, some will be moderate (nonzero and nonextreme),
and a significant few will be extreme. A similar structure arises in
seismology, where a large proportion of readings at a given time
and location are within noise tolerance of zero, with minor and
moderate earthquakes constituting moderate values, and rare yet
significant large earthquakes constituting extreme values.

As deep learning continues to be adopted in a variety of spa-
tiotemporal applications [6, 19, 20], the importance of accurately
modeling all three components of a non-normally-distributed spa-
tiotemporal variable will only continue to increase. Accurate fore-
casts of extremes, for instance, could empower weather agencies
to warn residents in advance of a flood and empower seismolo-
gists to warn residents of an impending large earthquake. On the
other hand, accurate modeling of zero-valued and moderate-valued
events is necessary for day-to-day operations and should not be
sacrificed at the expense of extreme-valued events. A deep learning
framework capable of balancing predictive performance across all
three event classes is therefore essential. Yet developing such a deep
learning framework to accurately predict the intensity, frequency,
and timing of zero events, moderate events, and extreme events
proves challenging for a number of reasons.
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Figure 1: Spatial and temporal autocorrelation of precipitation challenges conventional deep learning frameworks. The first
two columns depict similarity of precipitation distributions at neighboring grid cells (1° latitude apart) in (a) WA and (b) AZ;
yet there is clear spatial heterogeneity between precipitation in WA and AZ. Similarly, the distributions of precipitation in CA
for (c) Dec/Jan and (d) Aug/Sep are similar; yet there is clear temporal heterogeneity between winter and summer.

First, the probability distributions governing the zero, moderate,
and extreme events have distinct characteristics, constraints, and
parameters that must be estimated from data. Yet, these three distri-
butions must be connected to generate predictions approximating
a continuous, real-valued target variable, necessitating the con-
struction of a well-defined mixture model from which conditional
mean and confidence interval predictions may be derived. Unifying
the three distributions within a single differentiable deep learning
framework presents the first major challenge to be addressed.

Second, the probability distribution used to model extreme events
exhibits natural constraints on its parameters. These constraints
must be enforced to ensure a model’s fidelity in characterizing the
tail distribution of a random variable, leading to numerical instabil-
ity without an appropriate reparameterization scheme. Designing
an appropriate reparameterization scheme to enable constraint
enforcement of the probability model inferred by a deep neural
network presents the second major challenge to consider.

Finally, the model predictions may depend on the choice of
threshold used to define extreme events. It is likely that users will
want to vary this threshold when making predictions to test differ-
ent scenarios. Yet in general, a model trained on a specific threshold
for extreme values may not necessarily perform well when applied
to different thresholds. Thus, developing a robust framework which
enables users to dynamically set the extreme threshold at runtime
without requiring the model to be retrained presents the third major
challenge to be investigated in this study.

In addition to these major challenges, a model trained to fit the
spatiotemporal data must account for spatial and temporal autocor-
relation (Figure 1), non-linear interactions, feedback effects, and
teleconnections. Properly leveraged, these features can improve
model performance: for instance, spatial and temporal autocorrela-
tion dictate that it is likely for extreme precipitation to be recorded
at a location conditional on the knowledge that extreme precipita-
tion was recorded nearby. Improperly ignored, these features can
lead a predictive model astray. Accounting for the unique structure
present in spatiotemporal data when developing our framework is
thus a fourth challenge we consider.

To address these challenges, this paper presents a novel Deep
Extreme Mixture Model (DEMM), fusing a deep learning-based
hurdle model with extreme value theory (EVT) to predict point
and distribution estimates of a spatiotemporal variable taking zero,
nonzero-nonextreme, and extreme values. A typical hurdle model is
a mixture model with two underlying components, one governing
the strictly zero values and a second governing the distribution of
its nonzero values. DEMM extends this paradigm by incorporating
a third component using the generalized Pareto (GP) distribution to
model the distribution of extreme values above a specified threshold.
DEMM captures spatial and temporal relationships within the data
using a 3D convolutional neural network (CNN), while an objective
function consisting of root mean squared error (RMSE) and negative
log-likelihood (NLL) terms is used in training to encourage sensible
point and distribution predictions.

To summarize, the main contributions of this work are as follows.

(i) We propose DEMM, a novel framework capable of producing
point and distribution estimates of the intensity, frequency,
and timing of zero events, moderate events, and extreme events
in non-normally-distributed spatiotemporal data.

(ii) We propose a novel reparameterization which ensures that
the GP distribution used to model extremes is well-defined
with valid parameters.

(iif) We propose a technique for allowing the user to dynamically
alter their chosen extreme event threshold at test time without
retraining the model.

(iv) We demonstrate the effectiveness of the DEMM in predicting
the intensity, frequency, and timing of extreme events on a
real world precipitation dataset.

2 RELATED WORKS

An early combination of neural networks (NNs) with mixture mod-
els, known as Mixture Density Networks, was developed to rep-
resent arbitrarily learned conditional distributions, from which
point predictions could be derived [5]. More recently, deep neural
networks (DNNs) have been integrated with mixture models for
a wider range of purposes. Zong et al. [28] propose a Deep Au-
toencoding Gaussian Mixture Model (DAGMM) for unsupervised
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anomaly detection, in which a DNN-based autoencoder maps data
into a low-dimensional latent space and the joint density of the
data in latent space is represented by a Gaussian mixture model.
Viroli and McLachlan [25] propose a Deep Gaussian Mixture Model
(DGMM) for clustering, in which variables at each layer of a DNN
are encouraged to follow a mixture of Gaussian distributions.

Hurdle models, in which a nonnegative real-valued random vari-
able is modeled as a mixture of a zero-valued component and a
positive-valued component, were originally proposed by Cragg [9]
for application to economic data. Closely-related is the zero-inflated
Poisson model in which a nonnegative discrete-valued random vari-
able is modeled as a zero-nonzero mixture, originally proposed by
Lambert [16] and applied to manufacturing data. Continuous and
discrete hurdle models have since found several applications in
spatiotemporal settings, including precipitation forecasting [1, 2],
species abundance estimation [3], and wildfire occurrence [21].

More recently, DNNs have been applied to estimate the param-
eters of hurdle models. Kong et al. [15] propose a deep hurdle
network for multi-target regression and demonstrate its applica-
tion to multiple species abundance estimation. Vandal et al. [24]
use a deep neural network to estimate the parameters of a hurdle
model using a log-normal distribution as its second component
and leverage Monte-Carlo dropout to account for uncertainty in
model parameters in an application to precipitation downscaling
(super-resolution). Bacry et al. [13] propose a deep learning-based
Zero-inflated Mixture of Multinomial distributions (ZiMM) model
and apply it to modeling long-term post-surgery adverse events in
a medical database.

Traditional statistical approaches have long been used to infer
the distribution of extreme values [8]. However, these traditional ap-
proaches generally assume there is a relatively simple relationship
between predictors and the parameters governing the generalized
Pareto distribution used to model extreme values. In addition, these
traditional approaches fail to model the full distribution of the data,
focusing exclusively on the distribution of extremes instead. More
recent approaches combining deep learning with EVT have also
been limited in scope, failing to tightly integrate two paradigms.
Instead, EVT is used as a post-processing step [26, 27] or utilized in
a limited manner [4, 10]. Exceptions in which EVT is more tightly
integrated into the fabric of a deep learning framework include
[11, 17], but these works do not address the task of spatiotemporal
distribution and point prediction unlike the work considered here.

3 PRELIMINARIES

This section formalizes the problem statement and provides a brief
introduction to extreme value theory (EVT) and the hurdle model,
both of which are integral to the proposed DEMM framework.

3.1 Problem Statement

Let D = {(Xj» Yiw) | w € {1,--- ,W} 1 € {1,---,L}} be a spa-
tiotemporal dataset, where Xj,, € R denotes the sequence of d
predictors for a prediction window w of width 7 at location I while
Y;,, € R denotes the value of the target variable associated with
the prediction window. The locations are assumed to be organized
onto a spatial grid S while each prediction window w is associated
with a sequence of discrete time steps, [1‘1w , tZW ,---,t]. Thus, each
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Xjui € RY represents a vector of predictors at a particular location
(w)
i

time step, t”. For brevity, let X.,,; € RL¥ denote a gridded snap-
shot image of the predictors across all spatial locations at time step

[ at time step t; ~~ while Y},, denotes the observed value at the last

t;w) € w while X.,, = {X.y; | i € {1,---,7}} denotes a sequence
of such snapshots. Similarly, the gridded snapshot of the target
(w)

variable at time step t;’ will be denoted as Y.,,. To determine
whether the value of the target variable is an extreme value, let
U}, be the excess threshold for location [ and prediction window w.
Any observation in the window w that exceeds this threshold will
be considered extreme. The set of threshold values for all locations
in a given prediction window w is denoted as U.,,. In practice, users
will likely assign a constant value for Up,, in all prediction windows
and possibly all locations but for full generality, we allow it to be
defined separately at each prediction window and location.

3.2 Extreme Value Theory

There are two widely-used statistical distributions for modeling
extremes—(1) the generalized extreme value (GEV) distribution,
which is used to model the distribution of block maxima, and (2)
the generalized Pareto (GP) distribution, which is used to model the
distribution of excesses above a given threshold u [8]. Since we are
primarily interested in the distributions of excesses over thresholds,
this work will focus only on the generalized Pareto distribution.
The density function of the GP distribution is given by

14
, £#0

£E=0

Observe that the distribution is characterized by two parameters:
shape &, and scale o, assuming threshold u = 0. Note that y may
be replaced with y — u when u # 0. There are two key constraints
that must be satisfied by the GP distribution parameters, namely,
a positivity constraint on its scale parameter ¢ and a more com-
plex constraint involving the shape, scale, and samples from the
distribution, i.e.:

&y
1+7

1)

e

Qe

1
P(y)=1°
1
o

o>0 and Vy:l+§v—y>0 (2)
o
Note that this second constraint is always satisfied when modeling
precipitation data if £ > 0 since y > 0. Another important fact
about the GP distribution is that its expected value is given by
E[Y] = &f when & < 1 but is undefined otherwise.

3.3 Hurdle Model

Zero-inflated data are commonly found in many applications. When
modeling daily precipitation, for instance, most days have zero
rainfall. In these cases, a hurdle model can be used to separately
model the probability that the variable is zero or nonzero. A hurdle
model is a mixture model consisting of two components:

p y=0
1=-p)-fry) y>0

where Y is the random variable, p is its probability of being 0 and
fy is the probability density function of Y when its value is nonzero.
Any valid probability density function can be used as the second

P(Y=y)= { ®)
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component of the hurdle model (i.e. f) as long as its integral over y
from 0 to infinity is 1 since:

/P(y)dy=/ (- 1ly=01+ (=) (o) 11y 01 )y
0 0

@
=p+<1—p)/o Fr(y) - Ily # 0ldy 5)
—p+(1-p) />O Fr(y)dy ©)

where I[-] denotes the indicator function. Furthermore, since Y is a
continuous random variable, the density function fy is zero at any
given value of y, including y = 0. Hence fooo P(y)dy = 1 as long as

B frydy =1

4 DEEP EXTREME MIXTURE MODEL

The core of the Deep Extreme Mixture Model (DEMM) is a mixture
model which governs the conditional distribution of the target vari-
able, Y,,. Figure 2 presents a schematic illustration of the DEMM
architecture, which can be divided into three major components.
The first component is a 3D convolutional neural network, which
is responsible for modeling the spatiotemporal relationships within
the predictors in addition to inferring the impact of the choice of
threshold on the overall distribution. The second component is a
constraint enforcement module, which is responsible for transform-
ing the output of the neural network, Aj,,, into a feasible set of
mixture model parameters, 6;,,. The third component corresponds
to the mixture model itself. We will introduce the mixture model
at the heart of the DEMM first before describing the rest of the
components in detail.

4.1 Mixture Model

The DEMM is centered around estimating the parameters of a mix-
ture model. The mixture model is a combination of three probability
distributions, each of which is responsible for a different range of
values for the target variable. The three components of the mixture
model have a combined total of six parameters to be learned, which
are unique for each window w and location [.

Because the model is intended for use with zero inflated data,
such as precipitation, it is based on a hurdle model, extended to
account for the modeling of extreme values. The first component
of the mixture model corresponds to a Bernoulli distribution to
estimate the probability the target variable has the value of zero.
Since the variable of interest is assumed to be non-negative, this
component corresponds to the lower boundary of the distribution.

The second component governs the distribution of nonzero val-
ues below a certain threshold, Uy,,. For precipitation prediction, a
truncated log-normal distribution with parameters y;,, and s;,, can
be used, though the DEMM framework can accommodate other
types of density functions. The density function of a non-truncated
log-normal distribution with parameters y;,, and sy,, is given by:

; (log Yy, — pi1aw)?
F1(Y005 By S1w) = € - Wz . )
YwO1w V2 207, ,
where the subscript 1 of the function JAC1 denotes the second com-
ponent of the mixture model. Let F; be the cumulative distribution
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function of J}1~ The truncated log-normal distribution function can
be expressed as follows:

_ Sl
F1(Urss Hiws Stw)
with the domain 0 < Yp,, < Uj,,.

Together, the first two components of the mixture model are
similar to a conventional hurdle model. However, a third component
is needed to ensure that the mixture model fits well to the empirical
distribution, especially at the tail end of the distribution. As we
are interested in modeling excess values over a threshold, Uj,,, the
generalized Pareto distribution is chosen as the third component of
the mixture model. This ensures that the model is well specified for
large values of Y;,, that exceed Uyp,,. Its density function, denoted
as f, is given in Equation (1), with parameters ¢;,, and oy,,,.

To ensure that its integral over the domain of Y},, is equal to
1, the last two components underlying the mixture model must
be rescaled. The lognormal component is rescaled by a factor of
(1- pl(a)) . p;vlv) where pl(a) represents the probability that ¥;,, = 0

and p l(vlv) represents the probability it is nonzero and will not exceed

the threshold. The GP component must be rescaled by a factor of
(1- p(0>) - (1= pl(;)) Thus, the full distribution of the mixture

Iw

model used in DEMM is:
P(Yjoy | Xrws Unnis O14y)

fl(Ylw) = ®)

Pl Yy =0
= =P o) i) 0 < Vi < Uy ©)

=P (=) - f5(Viagi Elvr 1) Upay < Yooy
Collectively, the parameters of the mixture model are denoted as
the following six-dimensional vector:

01 = (Pl(a,)’pl(‘lv)djlw Staws Elws Olaw) (10)

The target variable is a sample from the conditional distribution
defined by this mixture model. Given the mixture model parameters,
it is easy to compute the negative log likelihood loss as follows:

Ly == ) (1Y = 0] - log(p{0) (11)

Iw

+1I[0 < Ypyy < Upy,l - [IOg(l _PI(SV))
+10g(p{1)) +10g(fi (Vv 1 51)) |
+1[Upy < Viy] - [ log(1 - p{2)

+1og(1 = p{ 1)) +108(fo (Vi £ o1 )

In addition the expected value of the mixture model can be easily
computed as a weighted sum of the component means:

Viw=p 0 (12)
ln(Ulw)_lllw_s2
o 2Lkt

Slw
o [ In(Upw) —pw ]

Slw

+(1—pl(ff) 'pl(;) - exp (i + 57,,/2) -

+(1-phy-(-pty-

Iw

Olw
Ul + ]
Yo _flw
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Figure 2: An overview of the proposed DEMM architecture. A 3D CNN capturing spatiotemporal relationships maps input X:,,
to features Z.,,, which are combined with randomly sampled thresholds U.,, and passed to a FCN to compute activations A.,,
Constraint enforcement is then applied to extract 6.,, parameterizing a three-component mixture model, trained to minimize a
weighted sum of negative log-likelihood and root mean squared error.

where @ is the cumulative distribution function of a standard normal
distribution. The value Y;,, can be used as a point prediction.

4.2 Deep Neural Network

This section introduces the deep neural network architecture that
is responsible for modeling spatiotemporal relationships among
the predictors to generate output activations that can be used to
estimate the distribution parameters, 6;,,, given in Equation (10).
As the distribution parameters depend on the threshold used to
define extreme events, a key innovation of DEMM is its flexibility
in allowing the choice of threshold to be varied at inference time
without requiring the model to be retrained. To provide such flexi-
bility, the DNN learns the distribution parameters as a function of
input predictors X:, and thresholds U.,,. These thresholds can be
varied randomly during training as will be described in Section 4.4.

The mapping from the input predictors and thresholds for a par-
ticular window to the final activation is performed in two stages.
First, a 3D convolutional neural network (3D CNN) is used to learn
a feature representation of the spatio-temporal input predictors. 3D
CNNs [12] are generalizations of the 2D convolutions convention-
ally used in image processing and are applied here across latitude,
longitude, and time. The 3D CNN works by computing the inner
product between a filter of parameters with small localized regions
within the 3D spatiotemporal volume. These convolutional layers
alternate with non-linear activation functions such as the ReLU or
tanh functions. Similar 3D CNNs have had success in other spa-
tiotemporal applications [7, 12, 18, 22, 23]. The application of the
3D CNN to the predictors can be written formally as z.,, = g(X.y)
where z.,, € RF*? and g is the non-linear function associated with
the trained 3D CNN.

Once the spatiotemporal features have been extracted, they are
combined with the chosen threshold at each location so that the
parameters of the mixture model can be estimated. This is accom-
plished by concatenating the threshold at each location, Uy,,, to the
location’s spatiotemporal feature representation, z;,,, and feeding
the results to a fully connected neural network (FCN). The output

of the network is Ay, = (A(l) A(Z) Al(i:)) = h(z14y, Upyy) € RS,

where h represents the non-linear function associated with the fully
connected neural network. Observe that each location and window
are processed separately by the fully connected neural network.

4.3 Constraint Enforcement

Since the output of the deep neural network is completely uncon-
strained, it may not be suitable for use as parameters of the mixture
model, which must satisfy certain feasibility conditions including
the GP inequality constraints in Equation (2). Specifically, the mix-
ture probabilities p( ) and p( )
1, s, and oy, are constramed to be non-negative, and &;,, and oy,
must jointly satisfy the following inequality [8]:
VYIW:1+M>O (13)
Olw

are constrained to be between 0 and

Given that the mean of the mixture model ?lw will be used as a
point estimate of Y},,, this requires computing the mean of the
three components of the mixture model. However, the mean of the
GP distribution is only well-defined when &,, < 1. This imposes
another constraint that needs to be satisfied.

The constraint enforcement module transforms the output ac-
tivation of the neural network, Ay,,, into parameters of the mix-
ture model, 0;,,, such that all the constraints are satisfied. First,
Hlw = A( ) is unconstrained. The constraints on p(o) and p(l)
easy to achleve by passing the corresponding activations through a
sigmoid function, 0'[~] ie.:

(1) _ (27 =
A<1>’ Py, =olA 1= w (14
1+e “Iw 1+e “iw
The non-negativity constraints on s;,, and oy,, are similarly easy to

achieve by passing the activations through the exponential function:

S = explA],) ]

pt¥ = olalD] =

o1y = exp[ALY)] (15)

More challenging, however, is enforcing the constraints involving
the shape parameter of the GP distribution, £],,. Recall that there
are two constraints on the GP distribution shape parameter: (i) the
constraint specified in (13), and (ii) £,, < 1 to ensure that the mean
of the GP distribution, and entire mixture model, is well-defined.
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Our approach for ensuring both constraints are satisfied pro-
ceeds in three steps. First, a base GP constrainer function is applied
to ensure that & satisfies constraint (13). Next, a shifted softplus
function is used to ensure that the GP distribution shape parameter
&1,y < 1. Finally, a gated thresholding function will be applied to
ensure that the base GP constrainer and shifted softplus function
work appropriately together so that both constraints involving the
shape parameter are simultaneously satisfied. We discuss each of
these steps to enforce the shape parameter constraint in order.

As mentioned above, the base GP constrainer will ensure that
constraint (13) is satisfied. Let Al(i? and Al(fv) be the unconstrained
neural network activations corresponding to the GP distribution
parameters £}, and o0y,,, and let m be the supremum of Y;,,. Note
that oy,, = exp(Al(fv)) as in (15) and define c; to be the base GP
constrainer function as follows:

Bl = (A, A9] = [exp(A) ~ 1] - exp(A\?) /(m+€) (16)

The initial output of the base GP constrainer is denoted as &, rather
than &}, to indicate that its output must be further constrained to
ensure that the second constraint (i.e. &, < 1) is satisfied.

The second constraint &,, < 1 will be enforced using the shifted
softplus function and the gated thresholding function. The shifted
softplus function is defined as:

s<§1w>=(1—e>—%log Lrexpl(1-e—&p) Bl (17)

where f is a hyperparameter (set to 10 for this work), and € is a small
positive value (set to 0.05 for this work). The shifted softplus func-
tion is a shifted and rotated version of the softplus function. One
may verify that Iimé;lw_wo S(¢;,,) = (1—€)and limglw_)_oc S(é) =
é’ 1w Note that the general outcome of applying the shifted softplus
function is to reduce the value of its input so that S(Z;,,) < 3 T
When glw > 0 this is no problem since the only constraint &,,
needs to satisfy is &,, < 1, but when g-’lw < 0, this may result
in a situation where constraint (13) now becomes violated This is
avoided using the gated thresholding function T, defined as:

(&) = 0(&p,,) - SE,) + (1-0(8,) - &, (18)

where
0 Elw <0
o) ={E,/(1—€) 0<§, <1-€ (19)
1 1-e<§,,

The basic idea of the gated thresholding function T is that when
its input § is less than 0, its input will be returned unchanged.
However, when the input ;f is greater than 1 — ¢, the shifted softplus
function is used to reduce its value to be less than 1. When g is
between 0 and 1—¢, it will smoothly interpolate between the identity
function and shifted softplus function to ensure continuity. This
results in a function that will constrain &;,, < 1 while also ensuring
its output satisfies the GP constraints as long as the input does. Thus,
the output of the constraint enforcement module consists of the
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following estimates of the mixture model distribution parameters:

O = (pl(a,)’Pl(i,)sﬂlw Staws Elws Olaw)

w’

- (G(Aﬁj), o(AP), AP exp(alV),

5 6
rlecaf2, 42)

: exp<A§fj>) (20)

4.4 Training

DEMM is trained to minimize the following loss function

L= (1-21)LnrL + ALrMSE (21)

where LrMsE = \/LLW Siw (Y — ¥1,,)? and L1, denotes the
negative log-likelihood function given in (11). A is a hyperparam-
eter representing the tradeoff between minimizing the negative
log-likelihood and root mean squared error loss. One challenge
when training the model is choosing the appropriate value for the
threshold Uy, at each location and time window. To provide more
flexibility and allow users to chose any reasonable threshold at test
time, during training Uj,, is sampled uniformly at random from the
interval (0.5, 0.95). In principle the range from which the threshold
is randomly selected could be extended. This ensures that at test
time any threshold from this interval is usable without retraining
the model. The DEMM framework is trained using Adam [14].

5 EXPERIMENTAL EVALUATION
5.1 Data

We evaluate our model on a real world precipitation dataset drawn
from two sources. Predictors are precipitation forecasts from the
SubX project.! Specifically, an 11-member ensemble of daily precip-
itation forecasts is generated every week by a numerical model for
each location for the next 35 days (i.e X,,; € R, i € {1,2,---,35}).
We compute the rolling 3-day average of each ensemble member.
Our target is observed precipitation from NLDAS-2%—specifically,
the average observed precipitation at each location 10-12 days in
advance. We limit our experiments to the continental United States
at a 1 degree resolution over 1999-2020. The predictors are log
transformed and standardized.

5.2 Models

We consider the following models in our experiments. A comparison
is presented in Table 1.

(i) DEMM: The proposed model described in Section 4 and de-
picted in Figure 2, trained with a variable threshold Uy, defin-
ing extremes.

(ii) DEMM-F: The proposed model, trained with a fixed threshold
U}, defining extremes.

(iii) Hurdle [9]: An ablation of the proposed model, keeping the
3D CNN module, but omitting the GP component of the mix-
ture distribution. This is equivalent to modeling precipitation
with a standard zero/nonzero hurdle model.

(iv) Vandal [24]: A baseline for spatiotemporal variables with
discrete-continuous structure, using a 3D CNN with Monte

!http://cola.gmu.edu/subx/
Zhttps://1das.gsfc.nasa.gov/nldas/v2/forcing
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Table 1: A comparison of the models evaluated in our ex-
periments. Columns S, T, Z, and E indicate whether a model
is designed to capture spatial, temporal, zero-inflated, and
extreme-valued structure, respectively.

Prediction Structure
Model Point Distribution § T Z E
DEMM
DEMM-F
Hurdle [9] X
Vandal [24] X X
Ding [10] X X X
DCNN [12] X X X X
Mean X X X X X

Carlo dropout for uncertainty quantification and distribution
prediction.

(v) Ding [10]: A baseline for time series prediction with extreme
values, using an EVT-motivated loss function and memory
module to capture extremes.

(vi) DCNN [12]: A deterministic 3D CNN, trained to minimize

RMSE of predicted precipitation (without EVT and zero-inflation).

(vii) Mean: An average of the ensemble member predictors over
days 10-12.

5.3 Experimental Setup

Hyperparameters were selected using grid search. Learning rates
varied in the range from 1 X 10™% to 1 x 10~2; hidden dimension
varied in the range from 10 to 40; tradeoff A between NLL and MSE
varied in the range from 0.7 to 0.9. The optimal hyperparameters for
DEMM were found to be a learning rate of 1le-3, a hidden dimension
of 30, and a A of 0.9. The 3D CNN in DEMM was fixed with 4 layers
and the local FCN was fixed with 3 layers. All models were trained
for 200 epochs with checkpoints saved at lowest validation loss,
then reloaded at test time. All prediction windows were randomly
assigned to the train, validation, or test set based on a random
seed, with a total of 104 prediction windows (2 years’ worth) being
assigned to the test set, 104 to the validation set, and the remain-
ing 731 to the test set. A total of five random train-validation-test
splits were used to compute averages and standard deviations in
each metric. We consider the following evaluation metrics in our
experiments.

(i) RMSE: Root mean squared error of each model’s point pre-
diction, characterizing the average residual magnitude.

(if) NLL: Negative loglikelihood of test samples given each model’s
predicted conditional distribution, characterizing the fidelity
of a predicted distribution’s center and spread beyond RMSE.

(iii) Accuracy: Test precipitation samples are assigned to one of
three classes: zero rainfall, moderate rainfall, and extreme
rainfall, where extreme rainfall is rainfall that exceeds Up,,.
For each model, samples can be assigned class probabilities
using that model’s CDF then assigned to the class with the
highest probability, yielding classification accuracy.
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(iv) F1 Macro/Micro: A macro/micro-averaged F1 score charac-
terizing each model’s ability to distinguish between zeros,
moderates, and extremes.

(v) AUC OVO/OVR Area under the precision-recall curve of one-
vs-one/one-vs-rest classification characterizing each model’s
ability to distinguish between zeros, moderates, and extremes.

5.4 Experimental Results

In addition to characterizing the overall performance of DEMM,
the experiments were designed to:

(i) Compare the performance of DEMM to state-of-the-art base-
lines and ablations of the full proposed model.

(if) Compare the performance of DEMM against DEMM-F to un-
derstand the effect of using a variable versus fixed threshold
used to define extreme values during training.

(iii) Characterize the spatial locations where the DEMM outper-
forms the ensemble mean.

(iv) Evaluate the ability of the DEMM to predict the frequency and
timing of extreme events.

5.4.1 Performance Against Baselines. Table 2 compares the overall
predictive performance of DEMM against the previously discussed
baseline methods. For evaluation purposes, the excess threshold
U;,, was set to the global 0.6 quantile value. We consider DEMM
trained with varying thresholds as described in Section 4.4 and
DEMM-F, with a fixed excess threshold at the global 0.6 quantile
value of precipitation. In the former case, the results are reported
when the threshold is set to the 0.6 quantile at test time. Our experi-
mental results show that both versions of DEMM (fixed and variable
threshold) outperform the ensemble mean in terms of their negative
log likelihood, MSE, and F1 score, and rank competitively among
other state-of-the-art baselines. The DEMM achieves lower MSE
than the ensemble mean. Because the ensemble mean is expected
to be a strong baseline, this demonstrates that the DEMM’s ability
to make accurate point predictions was not strongly inhibited by
simultaneously predicting the conditional distribution. The fact
that DEMM outperforms the hurdle model across various metrics
demonstrates the value of incorporating EVT.

Further results are presented in Tables 3 and 4, subsetting results
by the component of the target distribution to which each Y;,,
belonged: observations for which Y;,, = 0 fall into the Zero column,
observations with 0 < Y;,, < Uj,, fall into the Moderate column,
and observations for which Yy,,, > Up,, fall into the Extreme column.
We observe that DEMM achieves the lowest RMSE and NLL metrics
on the extreme component of our data, suggesting the explicit
incorporation of EVT through the generalized Pareto distribution
is indeed effective. Similarly, we observe that DEMM, DEMM-F and
the hurdle model all perform well on the zero component of our
data, supporting the notion that a discrete-continuous modeling
framework better captures zero-inflated data than an assumption
of continuity.

5.4.2  Effect of Variable Threshold. A key novelty of DEMM is the
use of variable thresholds during training to improve generalization
at inference-time without the need for retraining. We find that the
performance of DEMM is not penalized by learning to account for
this variable threshold, even beating DEMM-F in extreme-valued
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Table 2: Results over 5 random test splits of 104 (2 years’ worth) prediction windows, denoted X + s representing sample mean

and standard deviation. ,

, and bronze entries denote the best, second, and third result for each metric.

Model RMSE | NLL | Accuracy T F1 Macro | F1MicroT AUCOVOT AUCOVRT
DEMM 3.312 + 0.142 0.267 £0.003  0.186 + 0.003  0.267 = 0.003
DEMM-F 2.179 £ 0.080 0.334 + 0.004 0.334 + 0.004 0.639 +0.002 0.627 +0.002
Hurdle [9] 3.935 £ 0.235 2.251 £0.054  0.223 £0.005  0.232 £0.004  0.223 £ 0.005
Vandal [24]  6.933 £ 2.434 0.510 £ 0.007  0.509 £ 0.007
Ding [10] 4.300 + 0.263 N/A 0.233 + 0.004 0.504 £ 0.002  0.506 + 0.002
DCNN [12] N/A 0.296 £ 0.003  0.257 £0.005  0.296 £ 0.003  0.564 £ 0.003  0.556 + 0.003
Mean 3.891 £ 0.101 N/A 0.307 £0.003  0.279 + 0.004  0.307 £ 0.003 0.567 = 0.003 0.559 = 0.003
Table 3: RMSE partitioned by class of 1;,, into zero, moderate, 0o
. . R 1.0 290
and extreme components. Notation equivalent to Table 2. ‘H ;‘ 7 : 1| | E LE
"ﬁ“h s ] 0.0 E»SE
= =Lt - 0go
RMSE | : R (e c13
L (a) r ] (b)| f-10 32
Model Zero Moderate Extreme
DEMM 2.321£0074  2.329 £ 0.069 Figure 3: A spatial view comparing the performance of (a)
DEMM-F 22580049 5.681 +0.379 DEMM with its hurdle model ablation and (b) DEMM with an
Hurdle [9] 2.123 £0.124 5.804 £ 0.401 ensemble mean baseline, as measured by a signed difference
Vandal [24] 6.309 £3.980  7.087 +3.185  6.077 + 0.626 in mean absolute error. Red indicates DEMM is outperform-
Ding [10] 6.653 = 0.426 ing; blue indicates DEMM is underperforming.
DCNN [12] 1.996 +0.037 2.170 +0.034 5.667 + 0.404
Mean 2.809 £0.055  3.297 +£ 0.069

Table 4: NLL partitioned by class of Y;,, into zero, moderate,
and extreme components. Notation equivalent to Table 2.

NLL |
Model Zero Moderate Extreme
DEMM 1.634 + 0.014
DEMM-F 4.289 £ 0.029 1.819 £ 0.085
Hurdle [9] 1.198 + 0.118 3.893 + 0.080
Vandal [24] 4.197 + 0.117
Ding [10] N/A N/A N/A
DCNN [12] N/A N/A N/A
Mean N/A N/A N/A

NLL and RMSE. Indeed, Tables 2, 3, and 4 demonstrate that re-
gardless of the chosen metrics, the two methods results in almost
identical performance.

5.4.3 Spatial Analysis. Figure 3 shows the spatial distribution of
locations where DEMM improves over the hurdle ablation and en-
semble mean baseline. The average MAE of the DEMM at each of
location, taken over all samples and all data splits, is subtracted
from the corresponding MAE for one of the baselines so that posi-
tive values shaded in red (blue) represent locations where DEMM
outperforms (underperforms) the baseline. It is clear that DEMM
outperforms the hurdle model at almost all locations. We see that
the improvement in absolute error over the ensemble mean baseline

g 05 g >

o === Hurdle Model S 0.34{ === Hurdle Model ____.----~~

3 0.4 DEMM ‘{_’ DEMM

c 2 -

S 03 5 0.30

t "

o n

2 0.2 © 0.26

B OY @ | §o22 (b)
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& Empirical Proportion Excess Quantile Threshold for Excess Values

Figure 4: DEMM outperforms its hurdle model ablation in
predicting the frequency and timing of extreme events. With
respect to frequency, DEMM predicts a proportion of extreme
events aligned with the empirically-observed proportion of
extremes (a). With respect to timing, DEMM achieves a low
Brier score in classifying extreme events (b).

is less consistent; nevertheless, the improvements over the ensem-
ble mean baseline are concentrated at locations in the Eastern U.S.
where precipitation values are largest and most variable.

5.4.4 Extreme Event Frequency & Timing. In addition to the pre-
vious evaluations, we wish to evaluate whether DEMM is able to
correctly predict the frequency and timing of extreme events. To ex-
amine predictive performance with respect to frequency, in Figure
4(a) we plot predicted vs. empirical frequency of extreme values at
varying thresholds. The empirical frequency is the quantile defin-
ing the extreme threshold within the model, while the predicted
frequency is calculated by computing the probability of an excess
value occurring (as described in Section 5.3) averaged across all sam-
ples in the test set. We find that the hurdle model consistently under
predicts the frequency of extreme values regardless of the quantile
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threshold, while the DEMM accurately predicts their frequency
across all thresholds. This suggests that the DEMM is well-suited
for predicting the frequency of extreme events regardless of the
threshold used to define them.

To examine predictive performance with respect to timing, we
compare the Brier score of DEMM with the hurdle model using a
variety of thresholds to define extreme values in Figure 4(b). The
Brier score is a classification metric common in meteorology, with a
lower Brier score representing better predictive performance. Given
the set of binary class labels for every observed precipitation value,
{Y; | i € {1,---,n}}, which represents whether or not each sample
is an extreme value, and the set of predicted probability of excess
for each sample, {¥i]ie€{1,---,n}}, then the Brier score can be
computed as B = % (Y- ¥;)2. The results shown in Figure
4(b) suggest that DEMM consistently outperforms the hurdle model
with respect to extreme event timing regardless of the threshold
chosen to define extreme events.

6 CONCLUSION

In this work, we propose DEMM, a novel deep learning frame-
work for predicting spatiotemporal variables with zero-inflated and
heavy-tailed structure. The proposed framework is built upon a mix-
ture model incorporating EVT to model the distribution of extreme
events while accurately making point predictions. The framework
employs a set of novel reparameterization techniques to ensure
that neural network outputs satisfy the constraints placed on the
parameters of the mixture model, including a constraint on the GP
distribution shape parameter required for computing the mean of
the mixture model. The proposed framework also allows the excess
threshold to be an input to the model, thus providing flexibility for
the user to alter the threshold at inference-time without retraining.
Our experiments on a real world precipitation dataset illustrate that
DEMM is competitive against existing deep learning frameworks
for spatiotemporal distribution and point prediction, exhibiting a
strong advantage in forecasting the intensity, frequency, and timing
of extreme events.
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