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Abstract—Following the rapid progress in the post-quantum
cryptography (PQC) field that many efforts have been gradu-
ally switched to the hardware implementation side, this paper
presents a novel systolic accelerator for polynomial multiplication
within two lattice-based PQC algorithms, key encapsulation
mechanism (KEM) Saber and binary Ring-Learning-with-Errors
(BRLWE)-based encryption scheme. Based on the observation
that polynomial multiplication over ring is the key arithmetic
operation for the two PQC schemes, we have proposed a novel
systolic accelerator for the targeted polynomial multiplications
(applicable to two PQC schemes). Mathematical formulation is
given to illustrate the proposed algorithmic operation for both
schemes. Then, the proposed systolic accelerator is presented.
Finally, field-programmable gate array (FPGA) implementation
results have been provided to confirm the efficiency of the
proposed systolic accelerator under two schemes. The proposed
accelerator is highly efficient, and the following work may focus
on cryptoprocessor design and side-channel attacks.

Index Terms—BRLWE-based scheme, KEM Saber, polynomial
multiplication, PQC, systolic accelerator.

I. INTRODUCTION
Post-quantum cryptography (PQC) has drawn significant

attention from the research community recently as the existing
public-key cryptosystems such as RSA (Rivest, Shamir, and
Adleman) and elliptic curve cryptography (ECC) are proven to
be vulnerable against quantum attacks [1], [2]. Overall, lattice-
based cryptography, known for its strong security proof and
relatively low implementation cost, has the solid potentiality
to be deployed in emerging applications [2], [3].

Many of the lattice-based PQC algorithms are based on the
Learning-with-Errors (LWE) problem or its variants [3]. Ring-
LWE, a variant of LWE, is then proposed with reduced com-
plexity [4]. After that, binary Ring-LWE (BRLWE, a variant
of Ring-LWE) is proposed to build the ultra-lightweight PQC,
BRLWE-based encryption scheme [5], as it uses binary errors
to replace the regular Gaussian distributed ones. Meanwhile,
Learning-with-Rounding (LWR) is also a variant of LWE
[6], which has attracted a good number of works on the
related PQC scheme [7], [8], including the National Institute
of Science and Technology (NIST)’s 3rd round finalist, i.e.,
the key encapsulation mechanism (KEM) Saber [2].

On the other hand, not many hardware implementations
have been released on the mentioned two PQC schemes,
e.g., field-programmable gate array (FPGA) devices. As it is
observed that polynomial multiplication over ring Zq/(x

n+1)

is the critical arithmetic operation for the mentioned two
schemes (with different parameter settings) [5], [6], a uniform
method can be developed to implement them efficiently.

Systolic structure has been deployed for many high-
performance processor designing, due to its superior features
such as high-throughput, high modularity, and regularity [8].
Systolic accelerators for PQC schemes, however, have not been
reported yet. As the mentioned two PQC algorithms, KEM
Saber and BRLWE-based encryption scheme, can be used in
high-performance applications such as servers, the need to
develop systolic accelerators for PQC is at an all-time high.

With this consideration, in this paper, we propose a novel
systolic accelerator for polynomial multiplication of KEM
Saber and BRLWE-based scheme (though with differences on
the parameters). The major contributions of this work include:

• Delineating algorithmic derivations for the polynomial
multiplication of targeted schemes for systolic processing.

• Presenting a novel systolic accelerator following opti-
mized algorithm-to-architecture co-design strategies.

• Implementing the proposed accelerators on the FPGA
platform (two schemes) and comparing them with the
competing ones to demonstrate their efficiency.

Specifically, to the authors’ best knowledge, this is the first
systolic polynomial multiplication accelerator for KEM Saber
and BRLWE-based PQC, which offers many unique fea-
tures: (i) unified structure fits all security ranks; (ii) high-
performance operation; and (iii) overall area-time efficiency.

The rest of this paper is organized as follows. Preliminaries
are introduced in Section II. Algorithmic operation is for-
mulated in Section III. The proposed systolic accelerator is
provided in Section IV. Implementation and comparison are
presented in Section V. Conclusions are given in Section VI.

II. PRELIMINARIES
For simplicity of discussion, we just use the original nota-

tion to give the background information for two PQC schemes.
KEM Saber: Module LWR (MLWR)-based Encryption
Scheme. As a variant of the LWE problem, LWR uses the
errors that are produced from a rounding operation [6]. The
samples are generated from (a, b = ⌊p

q ⟨a, s⟩⌉p) ∈ Zn
q × Zp.

The LWR with module matrices is called as MLWR.
KEM Saber is adaptive chosen ciphertext attack (IND-

CCA2) secure, which is built on the hardness of the MLWR



problem [8]. Overall, KEM Saber has three phases: key
generation, encapsulation, and decapsulation, see [6].
Module Ranks. KEM Saber has three module ranks named as
LightSaber, Saber, and FireSaber, which correspond with NIST
security levels 1, 3, and 5, respectively (l = 2, 3, and 4). The
sampled secrets are in the range of [-5,5] (LightSaber), [-4,4]
(Saber), and [-3,3] (FireSaber), respectively [6]. Besides that,
polynomial degree is n = 256 with q = 213 and p = 210.
BRLWE-based Encryption Scheme. BRLWE-based PQC
involves three phases: key generation, encryption, and de-
cryption. As shown in [5], one can conclude that the major
arithmetic operation of the BRLWE-based PQC is the polyno-
mial multiplication (followed by a polynomial addition), where
one polynomial consists of integer coefficients and another
polynomial has merely binary coefficients (see details in [5]).
Inverted Range Representation. [10] has proposed using the
inverted range representation (−⌊q/2⌋ , ⌊q/2⌋ − 1) for the
BRLWE-based scheme, to facilitate using two’s complement
format. We also follow this strategy here.
Security of the BRLWE-based Scheme. BRLWE-based scheme
is based on the average-case hardness of the BRLWE problem
[5]. The BRLWE-based PQC achieves 73-bits & 140-bits
quantum security for (n, q)=(256,256) and (n, q)=(512,256),
respectively, which fits well lightweight applications [11].
Prior Works for KEM Saber. There exist two types of hard-
ware implementations for KEM Saber, namely the hardware-
software co-design and full hardware design. The former type
of designs can be seen at [12] and [13], respectively. While
for the latter type, the first hardware implementation was
presented in [14]. A Karatsuba based hardware Saber was
reported in [15]. Efficient polynomial multiplication structures
for KEM Saber were then presented in [16]. A compact KEM
Saber processor was proposed [17]. High-performance KEM
Saber polynomial multiplications were given in [18].
Prior Works for BRLWE-based Scheme. The first software
implementation of the BRLWE-based scheme was reported in
[5]. The first hardware BRLWE-based PQC was presented in
[19]. This work was then followed by a pair of high-speed
and ultra-lightweight structures in [10]. An efficient high-
speed BRLWE-based PQC architecture was proposed in [20]
recently. A new compact design was reported in [21].
Polynomial Multiplication for KEM Saber. Polynomial
multiplication of KEM Saber has the setup as: one polynomial
has small-size coefficients (e.g., [-4,4] for Saber) and the other
one has coefficients of 10-/13-bit (we use 13-bit here) [6].
Polynomial Multiplication for BRLWE-based Scheme. One
polynomial has only binary values while another one has
coefficients of 8-bit (log2q = log2256 = 8) [5].

III. ALGORITHMIC DERIVATION
General Notation Definition. Without loss of generality, we
can define a general polynomial multiplication for KEM Saber
and BRLWE-based scheme as (f(x) = xn + 1)

W = BD mod f(x), (1)

where W =
∑n−1

i=0 wix
i, B =

∑n−1
i=0 bix

i, and D =∑n−1
i=0 dix

i, where bi is the small-size coefficient (e.g., [-

4,4] for Saber) and di and wi are larger-size coefficients
over ring (e.g., 8-bit for BRLWE-based scheme). Note that
an additional integer polynomial G =

∑n−1
i=0 gix

i is needed
for the operations within BRLWE-based PQC, following [10].

We then have W =
∑n−1

i=0 di(Bxi mod f(x)), which is

W = w0 + w1x + · · ·+ wn−1x
n−1

=( b0d0 + b1d0x + · · ·+ bn−1d0x
n−1)

+ · · · · · · · · ·
+(−b1dn−1 − b2dn−1x− · · ·+ b0dn−1x

n−1),

(2)

where xn ≡ −1 is substituted (xn + 1 ≡ 0). We then have
w0

w1

...
wn−1

 =


b0 −bn−1 · · · −b1
b1 b0 · · · −b2
...

...
. . .

...
bn−1 bn−2 · · · b0

×


d0
d1
...

dn−1

 ,

(3)

which can be [W ] = [B] × [D]. Based on (3), we can define
each element within matrix [B] as [B]i,j (1 ≤ i, j ≤ n), e.g.,
[B]1,1 = b0 and [B]1,n−1 = −b1 (similarly, [W ]j,1 and [D]j,1
refer to an element in the vector). For n = uv (u and v are
integers), we can have the proposed algorithmic operation as:
Algorithm 1: Proposed algorithmic operation for poly-
nomial multiplication (KEM Saber and BRLWE-based
PQC scheme)
Input : B, D, and G (G is only for BRLWE-based

scheme; B has small-size coefficients; D (or
G) has larger-size coefficients;

Output: W = BD mod f(x) (f(x) = xn +1); // G is
also added for BRLWE-based PQC

Initialization step
1 Make ready B and D (or G);
2 Z = 0;

Main step
3 Z = [G]; // this operation only applies to BRLWE-

based PQC
4 for j = 1 to v do
5 for i = 1 to n do
6 Z = Z +

∑u
k=1[B]i,ju+k[D]iu+k,1;

7 end
8 end
9 W = Z;

Final step
10 Deliver the output W ;

Note that during actual implementation, we assume the ele-
ments within [B] are l1-bit (including sign) and the elements
of [D] and [W ] (even [G]) are l2-bit (with sign involved), e.g.,
l1 = 2 when BRLWE-based encryption scheme is applied.

IV. PROPOSED SYSTOLIC ACCELERATOR
Following Algorithm 1 of Section II, we can have the pro-

posed hardware accelerator for the major arithmetic operation
of KEM Saber and BRLWE-based PQC as shown in Fig. 1
(general form). The proposed accelerator contains u number
of processing elements (PEs), one accumulation cell (AC), and
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Fig. 1. Proposed systolic accelerator for polynomial multiplication (KEM Saber and BRLWE-based scheme), where the blue highlighted components are only
applicable to BRLWE-based PQC. PE: processing element. AC: accumulation cell. Note that all the [B] inputs are represented in the sign magnitude format.
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Fig. 2. Internal structure of (a) PE (black box is the register); (b) multiplier; (c) circular-shifting cell (CSC); IC (inverter cell); (d) AC.

one controller. Note that all the [B] inputs are represented in
the sign magnitude format (other inputs/outputs use the two’s
complement). These components are described as follows.

PE. The internal structure of the PE is shown in Fig. 2(a),
where it has one circular-shifting cell (CSC), one multiplier
cell, one adder cell, and two register cells. In total, n · l1
bits from B are fed to the PE (attached to the multiplier
cell and CSC). The multiplier cell has n parallel MUXes,
where each MUX is fed with all the pre-computed point-
wise values. Benefited from the sign magnitude representation
format, only positive results and ‘0’ are included here through
the pre-computation (PR) cell. For instance, for BRLWE-based
scheme, only ‘0’ and ‘X’ values are needed for each MUX
(assume ‘X’ is the value of the l2-bit input from the bottom).
Similar strategy applies to the case of KEM Saber, e.g., ‘2X’,
‘3X’, and ‘4X’ will be calculated from PR cell (when the l1-
bit input lies in [-4,4]). The adder cell has n number of l2-bit
full adders working in parallel to produce n · l2 bits (adding
another input of the PE). The detail of the CSC is shown in
Fig. 2(c), where it circularly shifts the input by one position
with one value being inverted through the inverter cell (IC).
The IC contains 1 NOT-gate (based on sign magnitude format).
The output of the CSC and the adder cell are then fed to the
following n · l1- and n · l2-size registers, respectively. Note that
PE-u does not have CSC since it connects with AC directly.

AC. The AC contains n number of l2-size adders followed
by n number of l2-size registers (Fig. 2(d)). The AC functions
to accumulate the sequentially computed results from these
PEs to produce the final output according to Algorithm 1.
Note that for the BRLWE-based scheme, the output of AC
(n · l2-size) is also attached to n XOR gates to generate the
decryption output (each XOR is connected with two most
significant bits (MSBs) of a l2-bit output coefficient).

Controller. A controller is needed for the systolic acceler-
ator to execute the algorithmic operation in Algorithm 1. The
controller is based on a finite state machine (FSM) to produce
all necessary signals for the operations of the accelerator.

Overall operation. The two inputs B and G (G is only
for the BRLWE-based scheme) are fed to the accelerator
according to the format shown in Fig. 1. While the coefficients
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Fig. 3. Proposed CSR for producing all [B] inputs.
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Fig. 4. Proposed CSR for producing all [D] inputs.

of D are accordingly divided into several groups to be fed to
the respective PEs (matching corresponding [B]i,ju+k). PE-u
delivers its first output to AC after u cycles (after [B]i,1 or [G]
are fed to PE-1) and will keep delivering results to AC in the
following cycles. The accumulation takes v cycles and then
all the output coefficients are available in parallel (decryption
output is also available for the BRLWE-based PQC).

V. IMPLEMENTATION AND COMPARISON
For a detailed complexity analysis of the proposed systolic

accelerator (applicable to both KEM Saber and BRLWE-based
scheme), we have implemented the corresponding polynomial
multiplication accelerators for both PQC schemes on the
FPGA platform. The experimental setup is as follows:

(i) With respect to the practical application environment, we
have set that the input/output data are read/write from/to a 64-
bit RAM. Besides that, we have used circular-shift registers
(CSRs) to produce related [B] and [D] inputs (see Fig. 3 and
Fig. 4). Meanwhile, an output buffer is also attached to the
AC of Fig. 1 such that the output is delivered back to the 64-
bit RAM serially and the delivery time is matched with input
loading time (for the sake of systolic processing).

(ii) The proposed systolic accelerators for KEM Saber (n =
256, l1 = 4 as [-4,4], l2 = 13) and BRLWE-based PQC of
(n, q) = (256, 256) and (n, q) = (512, 256) (l1 = 2, l2 = 8)



TABLE I
COMPARISON OF FPGA IMPLEMENTATION RESULTS FOR DIFFERENT BRLWE-BASED PQC ACCELERATORS/STRUCTURES

design n phase device u ALMs Fmax(MHz) latency1 delay ADP2 ADP reduction
[20] 256 Dec. Stratix-V - 4,495 321.03 258 0.804 3,612 -

Prop. Work 256 Dec. Stratix-V 4 13,211 277.32 68 0.245 3,239 10.32%
8 25,212 277.32 40 0.131 3,298 8.70%

[20] 512 Dec. Stratix-V - 9,038 317.06 514 1.621 14,651 -

Prop. Work 512 Dec. Stratix-V 4 26,368 253.81 132 0.520 13,713 6.40%
8 50,285 249.19 72 0.289 14,529 0.83%

The recent high-speed design of [20] is listed here for comparison ([21] is a compact design with low-speed). Unit for delay (critical-path×latency): µs.
Dec.: decryption phase. 1: Latency cycles (decryption phase), where CSRs’ loading and final output delivery time are not included. 2: ADP=#ALM×delay.

TABLE II
COMPARISON OF FPGA IMPLEMENTATION RESULTS FOR DIFFERENT KEM SABER-BASED POLYNOMIAL MULTIPLICATION STRUCTURES

design n device u ALMs LUT FF Slice Fmax (MHz) latency1 delay ADP2 ADP reduction3

[16] (HS-I) 256 Ultrascale+ - - 10,844 5,150 - 250.00 256 1.02 11.10 1.9%
[16] (HS-II) 256 Ultrascale+ - - 22,118 4,920 - 250.00 128 0.51 11.32 -
[18] (Fig.7) 256 Stratix-V - 14,341 - - - 204.54 128 0.63 8.97 -

Prop. Work 256 Stratix-V 4 19,782 - - - 287.6 68 0.24 4.68 47.9%
8 32,989 - - - 278.4 40 0.14 4.74 47.2%

Prop. Work 256 Ultrascale+ 4 - 29,450 24,603 4,821 250.00 68 0.27 8.01 29.2%
8 - 49,640 38,210 8,659 250.00 40 0.16 7.94 29.8%

Unit for delay (critical-path×latency): µs. 1: Latency cycles, not including CSRs’ loading and final output delivery time.
2: For Stratix-V: ADP=#ALM×delay; For Ultrascale+: ADP=#LUT×delay. 3: Calculation is based on the same FPGA device.

are coded with VHDL and implemented on different FPGA
devices for u = 4 and u = 8. The obtained results are shown
in Table I and II, respectively, along with the existing designs.

The proposed accelerators have significantly better perfor-
mance than the existing designs, even though the proposed
accelerator has included complete input/output processing
components (which is missing in the existing designs). The
proposed accelerator (KEM Saber) achieves at least 29.2%
less area-delay product (ADP) than the state-of-the-art designs
[16], [18]. Similarly, the proposed accelerator (BRLWE-based
PQC) also has better ADP than [20]. Besides, as the proposed
accelerator has matched input & output processing time, the
actual performance (processing successively) is much better
than the existing designs due to systolic operation.

Overall, the proposed accelerators have features of: (i) ap-
plicable to two PQC schemes and different security levels; (ii)
high-performance operation; (iii) overall area-time efficiency.
Due to the adding of practical input/output processing com-
ponents, the proposed accelerators may have slightly slower
frequency than the existing ones (e.g., Table I). Nevertheless,
our reported data are based on practical setup and can be con-
sidered as actual results under high-performance operations.

This is the first report on the systolic polynomial multipli-
cation accelerator for KEM Saber and BRLWE-based PQC.
The following work may focus on extending the accelerator to
actual cryptoprocessor design and related side-channel attacks.

VI. CONCLUSION
This paper, for the first time, has proposed a novel systolic

accelerator for polynomial multiplication within KEM Saber
and BRLWE-based PQC. The related algorithmic operation is
proposed and then mapped into a novel systolic accelerator.
Following implementation and comparison have demonstrated
the superior performance of the proposed accelerator.
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