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Abstract—Modern data center applications are user fac-
ing/latency critical. Our work analyzes the characteristics of
such applications i.e., high idleness, unpredictable CPU usage,
and high sensitivity to CPU performance. In spite of such exe-
cution characteristics, datacenter operators disable sleep states
to optimize performance. Deep-sleep states hurt performance
mainly due to: a) high wake-latency and b) cache warm-up after
exiting deep-sleep. To address these challenges, we quantify three
necessary characteristics required to realize deep-sleep states in
datacenter applications: a) low wake-latency, b) low resident
power, and c) selective retention of cache-state. Using these
observations, we show how emerging technological advances can
be leveraged to improve the energy efficiency of latency-critical
datacenter workloads.

Index Terms—Non-volatile Memory, Sleep States, Datacenter

I. INTRODUCTION

The growth of cloud and internet services has induced a

paradigm shift in the nature of applications executing in dat-

acenter servers. Application footprints are now dominated by

sub-millisecond latency-critical/user facing workloads rather

than traditional, long running batch jobs. Google claims this

as the ”era of the killer microsecond” [1] as the technology

stack in existing datacenters is not well suited to serve requests

demanding sub-millisecond service times.

The primary performance metric that characterizes the exe-

cution efficiency of user facing workloads is tail latency, rather

than average request latency. Most applications utilize a metric

like 99th percentile tail latency, i.e., the service time of the

99th slowest request out of every 100 in a small window

of execution time (typically one second). Due to such strict

Quality of Service (QoS) targets, datacenter servers are kept

lightly loaded with utilization between 10% to 50% [2], [3].

As a result, the energy efficiency of servers take a huge

hit injecting long periods of idleness in between subsequent

requests.

This work was partially sponsored by the National Science Foundation
(NSF) under grant number 1822923.

To study the idleness existing in between requests in data-

center workloads, we created an experimental setup executing

memcached a popular key value store application in a server

for high load(500k qps) and low load scenarios(10k qps).

Our experimental setup allowed us to surgically enable/disable

processor C-states in different CPU cores. The goal of this

experiment was to find out if there is idleness and the nature

of residencies in shallow and deep C-states. We studied 3

scenarios: a) enable C1 shallow sleep states only b) enable

shallow (C1&C3) sleep states only, c) enable shallow and

deep sleep states (C1&C3&C6). Figure 1 illustrates that user

facing data center workloads, as we expected, contain a lot of

idleness.

More importantly the observed idleness is short for high

load scenarios due to frequent request arrivals. For low loads,

there are enough idleness to harness deeper sleep states.As

the load increases, the static power becomes less dominant

because of the decrease in idle time.

Fig. 1: Characterization of CPU sleep states for memcached

under low and high loads
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when it is in C1. Wake latency is the time it takes for a core to

exit a low power state (like C1 or C6) and become available

to serve a request. As it may be apparent, in an ideal world,

we want a low power C state to have extremely low resident

power and wake latency. However, in the real world, bound by

the laws of physics, its very difficult to achieve low resident

power and wake latency for a given C-state. For instance, the

power-gated state C6 has a low resident power (C6 power <<

C1 power), but it takes a much longer time to charge its power

rails back to VDD, undergoing a soft reset to be available to

serve to compute (C6 wake latency >> C1 wake latency).

Keeping this in mind, there have been significant advances

in power management over the last decade that continue to

lower resident power while reducing wake latency. A few

methodologies used for this purpose include utilizing on-die

voltage regulators, designing glitchless PLLs, including snoop

caches etc.

Another key metric in power management is residency time

– the time spent by a core in a particular low power state.

In an ideal world we want a core to spend as little time

possible in compute state (C0) to finish its work, transitioning

into a deep sleep state like (C6) when idle. However, the

high wake up latencies of C6 make it difficult to implement

power gating on servers executing user facing applications

that possesses sub-millisecond latency targets as shown in

Figure3. This is because requests expect CPU cores to be

readily available upon their arrival and hence, transitioning

from deep sleep states to an active state will take a huge toll

on their service times. User facing data center workloads like

memcached exhibit such behavior and hence servers hosting

such applications disallow CPU cores to transition into deep

sleep states. While this meets latency requirements - it comes

at the expense of high power consumption.

Fig. 3: Cumulative distribution of query latency at different

C-States for memcached. Deeper C-States induce higher tail

latencies.

III. OBSERVATIONS

In this work, we strive to lay down the requirements for

a meaningful low power state that enables maximum power

savings while minimizing performance impact.

In a typical CPU, there are multiple steps involved in placing

a core in a deep sleep state, such as C6. When the core has

been idle and clock-gated for a certain length of time, the

power management algorithm determines to place the core in

the C6 state. At this time, the modified data in the private

Fig. 4: L1 Data and Instruction Cache MPKI.

Fig. 5: Cumulative Distributions of query latency in mem-

cached for different wakeup latency.

caches are flushed to the shared caches. Besides flushing the

caches, the core’s architectural state, including the machine

state registers (MSRs) are copied into the shared cache or

some other persistent structure to retain state. At this point,

the core is in the C6 state [6]. When the CPU receives an

interrupt to resume processing, the core is brought out of C6

by ramping up power and restoring the core’s architectural

state. From a power standpoint, a deep sleep state such as C6

enables significantly low power consumption. However, two

factors impact performance when the core exits a deep sleep

state such as C6: a) cold caches resulting from the cache flush

before C6 entry, and b) high latency to ramp up the power on

the core and restore architecture state, i.e., wake latency. We

make three observations that enable us to define a meaningful

deep sleep that can maximize power savings while minimizing

performance impact for user-facing datacenter workloads.

A. Observation 1: Workload dependent retention of cache

state can enable significant power and performance gains

To quantify the performance impact of cold cache misses,

we study the cache miss rate (misses per kilo instruction) on

a modern data center CPU under 4 different scenarios: a) C

states disabled, b) C1 enabled, c) C1 and C3 enabled, and

d) C1, C3 and C6 enabled. From Figure 4, we observe that

the deeper the sleep state enabled, the greater the cache miss

rate for both the instruction and data caches. However, we

also observed that significant portion of this cold cache miss

impact can be mitigated by retaining only the Icache state for

user-facing datacenter workloads like Memcached.
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To demonstrate the impact of retaining the contents of

different caches, we studied 6 different scenarios in an in-

house simulator based on Dist-Gem5 [7]: 1) C1 is enabled

When C6 is triggered(baseline), 2) Contents of L1 I, D and

L2 caches are retained when C6 is triggered, 3) L1 I and D

cache contents alone are retained when C6 is triggered, 4) L1

Icache contents alone are retained when C6 is triggered, 5)

L1 Dcache contents alone are retained when C6 is triggered,

and 6) no cache contents are retained, when C6 is triggered

(baseline C6).

Figure 5b, shows the impact of each scenario, on average

as well as 99
th percentile tail latency. It can be observed

that the 99
th percentile tail latency increases by less than

4%, as compared to enabling C1. This essentially enables

C1-like latency characteristics, while enabling C6-like power

characteristics.

B. Observation 2: Low Wakeup latency is critical to minimize

performance impact

To study the impact of wakeup latency on performance,

the aforementioned scenarios were run with different wakeup

latencies. From Figure 5a, we can observe that, for scenarios

2, 3 and 4, the tail latency improves to a great extent and

is close to the baseline. As per Figure 5, as we retain more

private cache content, we can see latencies similar to baseline.

Generally, workload developers and system operators only

care about avoiding the SLO latency violations than average

latency. Retaining the contents of all the private caches can

increase the resident power of the deep sleep state (unless we

use NV-SRAMs), as shown in Figure 6. As can be observed,

of all the cache contents, preserving the L1 Icache provides

the maximum performance benefit for Memcached in terms of

retention power and tail latency. Thus, based on our previous

observation and Figure 6, we can conclude that retaining the

Icache contents is sufficient for user-facing workloads like

Memcached.

C. Observation 3: Low resident power in a deep-sleep state

is critical to maximizing power savings

Power consumed in the deep sleep states should be as low

as possible. As shown in Figure 7, as we transition to deeper

power states, we save more power. It is to be noted that,

the power-gating efficiency should be as high as possible to

minimize leakage power. Hence, low resident power for a deep

sleep state is key to improving energy efficiency.

Collectively, we observe that low wakeup latency and low

resident power in a deep sleep state along with cache retention

are necessary conditions to reach an energy efficient system.

IV. MECHANISM

We propose a power management state, c1’,which does a

complete power gate of the core like c6 but also adheres to

three key observations: a) low wake latency, b) low resident

power, and c) workload-dependent retention of cache state. We

evaluate the plausible energy savings if such a power manage-

ment technique were to be implemented in a modern CPU. For

Fig. 6: %Energy saved in different cache retention scenarios

normalized to baseline C1.

Fig. 7: CPU power when different C-states are enabled across

loads for memcached.

this, we first discuss the current state of art technologies which

could help us realize such a technique.

a) Wakeup-latency is largely governed by the time taken

to ramp up the voltage to the designated level. Continuous

innovations are being made to reduce entry and exit latencies

from a given sleep state. For example, Intel Haswell achieves

20x more power savings, due to reduced wakeup latency [8].

Recent advances in on-chip voltage regulators are reducing

wake latency to 10’s of ns.

b) With the inception of voltage islands [9], it has become

feasible to independently manage the power-performance of

different cores in a CPU. For instance, it is a common practice

today to power gate idle cores in a CPU, while having other

cores actively serve requests. This matters greatly because the

power-grid capacitance of the power island for one core is an

order of magnitude smaller than the power grid capacitance of

an 8-core CPU. The smaller power-grid capacitance presented

by a per-core power island reduces the load on the voltage

regulator. This allows for rapid replenishment of charge and

allows for shorter wake latency (from C6 to C1).

c) Caches are primarily implemented today using CMOS static

random access memories (SRAMs) or register files (RFs). A

conventional SRAM is volatile, i.e., it loses its state when

power is gated off. Power constrained modern SoCs implement

CMOS caches with retention capability; these caches can

retain state if the main power supply for a CPU core is gated

off [10]. Typically a retention RAM [4] uses an additional

always-ON power supply to retain state and operates in the

near threshold region. The advantage of the retention rail is

that it is implementable today, but it has the shortcoming that,

even when it is in retention state, the SRAM still consumes

Authorized licensed use limited to: Penn State University. Downloaded on September 30,2022 at 17:11:20 UTC from IEEE Xplore.  Restrictions apply. 



leakage power (though the retention RAM leakage is 50%

lower than the compute state leakage). It is noteworthy that

retention SRAMs/RFs are a suitable implementation when

sleep state residencies are of the order of us (micro-seconds).

They are not suitable when sleep state residency exceeds

10ms or seconds, as their leakage power will dominate the

total energy consumption. RAMs implemented with emerging

non-volatile memory technologies (NV-SRAM or NV-RF) can

retain state while consuming no retention power. This makes

them an ideal candidate for state retention in deep sleep states.

NV-SRAMs implemented with MRAM and RRAM typi-

cally suffer from the challenge of high write latency. The

cost to backup and restore data are also high due to static

current.However, recent work with FeFET-NVSRAMs [11]

addresses these limitations. FeFET is an emerging CMOS

transistor which has the capability to completely eliminate

static current in the NV-SRAMs since the conducting route

of drain-source is separated from the gate control signal.Since

this type of memory storage would be beneficial for our

power management system in terms of low resident power

at our proposed c1’ state , we use FeFet-NVSRAMS [11] for

retaining data. One of the major tradeoffs of using an non

volatile SRAM is the extra write energy spent for backup and

restore. Energy to backup and restore is only 58.7 aJ which

corresponds to a break even time of 33.8 us at 0.3V standby

CMOS [11]. Since, we are targeting sleep state residency

in the order of ms, we can get a positive energy gain from

FeFet-NVSRAM [11].

In Figure 8, we delineate the series of stages pertaining

to normal clock-gating state c1 and our proposed state c1’.

Given small wakeup latency, the sub-us delay added to the

total access latency will be negligible, compared to the tail

latency from Figure 5.

Fig. 8: CPU behaviour in C1 and C1’.

V. RESULTS AND ANALYSIS

In this section, we first describe the ßreal system experimen-

tal setup that we utilized to determine the impact of processor

sleep states on the tail latency of memcached and apache

web server. Following that, we illustrate our simulation

infrastructure using which we quantify the energy gains that

we obtain by using PowerPrep.

A. Evaluation Methodology

Hardware Infrastructure. Our workloads are executed on

server grade Intel Xeon CPU E5-2670 nodes. Each node

consists of 24 physical cores. We switch off hyper-threading

for all our experiments.

Performance Measurement tools. We use Intel VTune

amplifier [12] to obtain and visualize idle CPU cycles that

exist in between subsequent requests. Additionally, we utilize

perf to measure microarchitectural events (cache hits, cache

misses) happening in the server.

Workloads. We evaluate our technique on two important

real system workloads – memcached and apache web

server. Memcached is an in-memory key value store

infrastructure, and apache web server is an HTTP server

that is widely used for hosting websites.

Simulation Infrastructure. To simulate the performance

behavior of these two workloads under our proposed cache

retention and non-volatile SRAM schemes, we use a dis-

tributed cycle-accurate microarchitectural simulator called

dist-gem5 [7]. Dist-gem5 [7] simulates a distributed setup of a

gem5 client, which issues requests to a gem5 server that hosts

the applications memcached and apache web server.

Additionally, we use an in-house power model based on

McPAT [13] and CACTI to calculate static and runtime power

for processors containing an SRAM cache at 10nm technology.

We also utilize the same tool to obtain power values for

NVSRAM FeFET technology at 10nm.The energy measures

are obtained through the weighted sum of the duration idle,

busy and transition period with their corresponding power

consumption.

B. Experimental Results

To show the effectiveness of our scheme, we evaluate

energy gain and QoS (99th percentile tail latency). Further,

we compare the results that we have obtained with state-of-

the-art techniques DynSleep [14] and µDPM [2] respectively.

Additionally, we assume that the maximum energy that can be

saved for a given load is depicted by C6.

1) Power Savings: DynSleep [14] takes advantage of the

fact that tail latency is an order of magnitude higher that the

service time of 95th percentile request. It enters deep sleep

state during this latency slack to save power. However, there

are two major drawbacks in this technique. First, there are

very few scenarios where continuous chunks of idleness that

exceeds the residency time of C6 exists. Hence the effective

power sad by DynSleep [14] is very low. Second, this scenario

gets worse as the loads increase, reducing the amount of power

saved to a great extent.

Figure 10 illustrates this scenario. The vertical axis repre-

sents %energy saved for memcached and apache, normalized

to the energy consumption of baseline. The horizontal axis

compares % of energy saved by the techniques DynSleep,
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Fig. 9: 99th percentile latency between PowerPerf and µDPM.

Fig. 10: Energy savings across different power management

schemes.

PowerPrep with drowsy cache and PowerPrep with NVSRAM,

across different loads for the applications memcached and

apache web server. We can see from Figure 10 that PowerPrep

outperforms DynSleep in every load scenario. PowerPrep’s en-

ergy savings are extremely significant compared to DynSleep

in high load scenarios. Also, we can see from Figure 10 that

the energy saved by PowerPrep NVSRAM is close to C6.

Hence, FeFET NVSRAM has great potential to save leakage

power.

2) Tail Latency Reduction: µDPM overcomes the short-

coming of DynSleep by utilizing fine-grained power manage-

ment schemes and relaxing SLO constraints. For that purpose,

µDPM leverages DVFS, clock-gating as well as power-gating.

Such an aggressive power management scheme takes a toll on

the 99th percentile latency, which is plotted in Figure 9. The

horizontal axis in Figure 9 evaluates µDPM and PowerPrep

under different load scenarios, while the vertical axis indicates

the 99th% tail latencies of applications memecached and

apache web server, respectively. From Figure 9, we can

observe that PowerPrep outperforms µDPM in every execution

scenario.

VI. RELATED WORK

There has been a wide body of prior work that tries to save

power for datacenter workloads. We broadly divide them into

the following categories.

Dynamic Voltage Frequency Scaling (DVFS). Dynamically

scaling CPU voltage and frequency to save power is a widely

studied research topic. For this purpose, Adrenaline [15]

selectively pinpoints requests with long tail latencies, which

are then boosted by increasing the clock frequency at which

they operate. On the other hand, Pegasus [16] constantly

monitors workloads and the performance statistics of recent

requests within a sliding window. Using this information it

leverages a feedback controller to selectively execute queries

under lower operating frequency without violating the QoS

requirement. Rubik [17], on the other hand utilizes the queuing

delay of requests to dynamically reduce/increase voltage and

frequency to save power. Most prior works [15]–[19] only

look at voltage and frequency scaling techniques for which the

energy savings obtained are much lower than for techniques

that utilize clock gating, power gating, or otherwise deactivate

entire components.

Clock Gating and Power gating techniques. A slightly

orthogonal body of prior work utilizes fine grained power

management schemes for datacenter workloads through the

use of per-core sleep states (C-states). Dynsleep [14] reorders

requests by postponing requests with long latency slacks. This

introduces wide gaps of idleness during which shallow/deep

sleep states can be reached in order to save power. µDPM

[2], on the other hand, performs power management at a

finer granularity by utilizing both per-core sleep states and

DVFS. µDPM [2] performs statistical predictions to create

idleness in the core by postponing the requests. However,

in our experimental setup, Dynsleep [14] performed poorly

at higher loads due to the reduction of idleness of the core

and, in Figure 9 we can see that the 99% tail latency of

µDPM [2] is consistently higher than PowerPref. Thus,µDPM

[2] was not able to guarantee SLO in every scenario. These

differences highlight the importance of considering the im-

pact of nonvolatile memory technologies on datacenter power

management approaches.

VII. CONCLUSION

We address the issue of energy proportionality for latency

critical workloads in datacenters by presenting PowerPrep. In

this regard, we enumerate key requirements that should drive

sleep state transitions. Namely, a)low wakeup-latency, b) low

resident power and c) selective retention of microarchitectural

states. Using these observations, we illustrate that when such

requirements are met, we can seamlessly transition into deep

sleep states and save significant amount of datacenter energy

while guaranteeing user-defined SLOs. From our experiments,

we were able to save up to 50% of energy for widely used

latency-sensitive datacenter applications like memcached

and apache web server, without negatively impacting

QoS. We believe that the PowerPrep technique would con-

tribute towards saving significant amounts of power in under-

provisioned datacenters and would better enable them to

execute “killer microsecond workloads” without sacrificing

efficiency.
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