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Abstract—Modern data center applications are user fac-
ing/latency critical. Qur work analyzes the characteristics of
such applications i.e., high idleness, unpredictable CPU usage,
and high sensitivity to CPU performance. In spite of such exe-
cution characteristics, datacenter operators disable sleep states
to optimize performance. Deep-sleep states hurt performance
mainly due to: a) high wake-latency and b) cache warm-up after
exiting deep-sleep. To address these challenges, we quantify three
necessary characteristics required to realize deep-sleep states in
datacenter applications: a) low wake-latency, b) low resident
power, and c) selective retention of cache-state. Using these
observations, we show how emerging technological advances can
be leveraged to improve the energy efficiency of latency-critical
datacenter workloads.

Index Terms—Non-volatile Memory, Sleep States, Datacenter

I. INTRODUCTION

The growth of cloud and internet services has induced a
paradigm shift in the nature of applications executing in dat-
acenter servers. Application footprints are now dominated by
sub-millisecond latency-critical/user facing workloads rather
than traditional, long running batch jobs. Google claims this
as the "era of the killer microsecond” [1] as the technology
stack in existing datacenters is not well suited to serve requests
demanding sub-millisecond service times.

The primary performance metric that characterizes the exe-
cution efficiency of user facing workloads is tail latency, rather
than average request latency. Most applications utilize a metric
like 99t percentile tail latency, i.e., the service time of the
99*" slowest request out of every 100 in a small window
of execution time (typically one second). Due to such strict
Quality of Service (QoS) targets, datacenter servers are kept
lightly loaded with utilization between 10% to 50% [2], [3].
As a result, the energy efficiency of servers take a huge
hit injecting long periods of idleness in between subsequent
requests.
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To study the idleness existing in between requests in data-
center workloads, we created an experimental setup executing
memcached a popular key value store application in a server
for high load(500k qps) and low load scenarios(10k qps).
Our experimental setup allowed us to surgically enable/disable
processor C-states in different CPU cores. The goal of this
experiment was to find out if there is idleness and the nature
of residencies in shallow and deep C-states. We studied 3
scenarios: a) enable C1 shallow sleep states only b) enable
shallow (C1&C3) sleep states only, c) enable shallow and
deep sleep states (C1&C3&C6). Figure 1 illustrates that user
facing data center workloads, as we expected, contain a lot of
idleness.

More importantly the observed idleness is short for high
load scenarios due to frequent request arrivals. For low loads,
there are enough idleness to harness deeper sleep states.As
the load increases, the static power becomes less dominant
because of the decrease in idle time.
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Fig. 1: Characterization of CPU sleep states for memcached
under low and high loads
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To improve energy efficiency, modern CPUs are designed
to support many advanced power management features such
as dynamic voltage frequency scaling (DVFS), many different
deep sleep states, and on-die voltage regulation. These tech-
niques work very well for predictable periods of short and long
idleness or in situations with forgiving latency requirements.
However, user facing data center workloads’ unique character-
istics such as high but unpredictable idleness and the desire for
low latency to the 99*" percentile while consuming low power
cannot be met adequately by modern CPUs. Specifically, deep
sleep states have low resident power but they also have high
wake latency (i.e. time taken to transition from deep sleep state
to compute state). As a result, datacenter operators disable the
deeper sleep states above Cl1, trading off energy efficiency
for meeting QoS and SLA targets. However, this sub-optimal
approach is wasteful and more importantly expensive - power
costs are a key contributor to total cost of ownership [3].

To tackle the observed gap between energy efficiency and
QoS, this work proposes three key attributes that the current
power management algorithm needs to have to improve energy
efficiency of latency critical data center workloads namely: a)
low resident deep sleep state power, b) low wake latency (fast
transition from deep sleep to compute state) and c) selective
retention of cache-state. Our extensive analyses show that
the time to warm-up the instruction cache is one of the key
contributors to degrading 99*" percentile tail latency in user
facing datacenter workloads. This work also leverages recent
advances in on-die per-core voltage regulation and shows that
wake latencies from deep sleep states on the order of 10us is
possible [4] - thereby allowing the realization of deep sleep
states with low wake latency. Furthermore, in this work, we
show how emerging technologies, such as embedded non-
volatile memories can further reduce energy consumption if
used along with the deep sleep state.

Specifically, this paper makes the following contributions:

1) We portray the inefficiencies of modern CPU power
management techniques towards exploiting idleness in
datacenters while executing user facing workloads. This
enabled us to illustrate several fundamental observations
as to why state-of-the-art CPUs cannot achieve optimal
energy consumption for user facing workloads.

2) To the best of our knowledge, our work is the first
of its kind that identifies key characteristics of CPU
sleep states that modern datacenters should posses
in order to support peak performance under optimal
power constraits.

3) Additionally, we show that leveraging the advances
present in on-die voltage regulation, retention cache
circuits can help realize a low resident power and low
wake latency deep sleep state. Furthermore, we show
how embedded non-volatile memory technology can
further improve energy efficiency if used along with the
deep sleep state.

4) Finally, we show the impact of our proposed methods
on real datacenter workloads and how they significantly
outperforms existing techniques. Leveraging these ob-
servations, we were able to draw inferences towards
handling energy dis proportionality, by enabling micro-
architectural modifications instead of existing software
based techniques.

II. BACKGROUND AND MOTIVATION
A. Modern Datacenter Workloads

Datacenters house a wide variety of applications of varying
nature. These applications are broadly classified into two
types: (1) batch applications and (2) user-facing applications.
Traditional datacenter applications were predominantly of
batch type, throughput-oriented, and not user-facing. Their
execution performance/Quality of Service (QoS) is determined
by metrics like processor Instructions per Cycle(IPC), oper-
ations per second etc. However, modern cloud-based online
data intensive applications are user facing and latency critical.
These applications serve millions of users’ requests, each of
which may require efforts spanning from several microseconds
to a few milliseconds. For such applications, QoS is predom-
inantly determined by service times for these requests.

One such important user-facing application that executes in
modern datacenters is Memcached [5] — a key value store
application. The primary metric that quantifies memcached’s
performance is 99th percentile tail latency. For a given sample
of time during which the application is executing, its 99th
percentile tail latency is defined as the time within which 99%
of the requests in that sample were able to complete execution.

B. Processor Power States Transition

Advanced power management allows modern CPUs to
achieve high performance under a power envelope. While the
specifics of power management differ, in this sub-section we
explain the fundamentals of CPU power management. A CPU
can exist in one of 3 power states - compute (CO), clock-
gated (C1), power-gated (C6). CO is the only state in which
a CPU core can run a workload. In CI1 the clock going to
a CPU core is gated to save dynamic power. Cutting off the
clocks to a core that has no work to do helps save power
and improves energy efficiency. In C6, the power to a CPU
core is cut-off, saving leakage power and hence significantly
improving energy efficiency. The algorithm running on the
power management unit (PMU) of a CPU orchestrates state
transitions from CO — > C1, CO — > C6, C6 — > CO0 etc.

Low power states like C1 or C6 are characterized by two
essential attributes - wake up latency and resident power.
Resident power of a core is the power consumed by a core
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when it is in C1. Wake latency is the time it takes for a core to
exit a low power state (like C1 or C6) and become available
to serve a request. As it may be apparent, in an ideal world,
we want a low power C state to have extremely low resident
power and wake latency. However, in the real world, bound by
the laws of physics, its very difficult to achieve low resident
power and wake latency for a given C-state. For instance, the
power-gated state C6 has a low resident power (C6 power <<
C1 power), but it takes a much longer time to charge its power
rails back to VDD, undergoing a soft reset to be available to
serve to compute (C6 wake latency >> CI wake latency).
Keeping this in mind, there have been significant advances
in power management over the last decade that continue to
lower resident power while reducing wake latency. A few
methodologies used for this purpose include utilizing on-die
voltage regulators, designing glitchless PLLs, including snoop
caches etc.

Another key metric in power management is residency time
— the time spent by a core in a particular low power state.
In an ideal world we want a core to spend as little time
possible in compute state (CO) to finish its work, transitioning
into a deep sleep state like (C6) when idle. However, the
high wake up latencies of C6 make it difficult to implement
power gating on servers executing user facing applications
that possesses sub-millisecond latency targets as shown in
Figure3. This is because requests expect CPU cores to be
readily available upon their arrival and hence, transitioning
from deep sleep states to an active state will take a huge toll
on their service times. User facing data center workloads like
memcached exhibit such behavior and hence servers hosting
such applications disallow CPU cores to transition into deep
sleep states. While this meets latency requirements - it comes
at the expense of high power consumption.
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Fig. 3: Cumulative distribution of query latency at different
C-States for memcached. Deeper C-States induce higher tail
latencies.

III. OBSERVATIONS

In this work, we strive to lay down the requirements for
a meaningful low power state that enables maximum power
savings while minimizing performance impact.

In a typical CPU, there are multiple steps involved in placing
a core in a deep sleep state, such as C6. When the core has
been idle and clock-gated for a certain length of time, the
power management algorithm determines to place the core in
the C6 state. At this time, the modified data in the private
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Fig. 5: Cumulative Distributions of query latency in mem-
cached for different wakeup latency.

caches are flushed to the shared caches. Besides flushing the
caches, the core’s architectural state, including the machine
state registers (MSRs) are copied into the shared cache or
some other persistent structure to retain state. At this point,
the core is in the C6 state [6]. When the CPU receives an
interrupt to resume processing, the core is brought out of C6
by ramping up power and restoring the core’s architectural
state. From a power standpoint, a deep sleep state such as C6
enables significantly low power consumption. However, two
factors impact performance when the core exits a deep sleep
state such as C6: a) cold caches resulting from the cache flush
before C6 entry, and b) high latency to ramp up the power on
the core and restore architecture state, i.e., wake latency. We
make three observations that enable us to define a meaningful
deep sleep that can maximize power savings while minimizing
performance impact for user-facing datacenter workloads.

A. Observation 1: Workload dependent retention of cache
state can enable significant power and performance gains

To quantify the performance impact of cold cache misses,
we study the cache miss rate (misses per kilo instruction) on
a modern data center CPU under 4 different scenarios: a) C
states disabled, b) C1 enabled, ¢) C1 and C3 enabled, and
d) C1, C3 and C6 enabled. From Figure 4, we observe that
the deeper the sleep state enabled, the greater the cache miss
rate for both the instruction and data caches. However, we
also observed that significant portion of this cold cache miss
impact can be mitigated by retaining only the Icache state for
user-facing datacenter workloads like Memcached.
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To demonstrate the impact of retaining the contents of
different caches, we studied 6 different scenarios in an in-
house simulator based on Dist-Gem5 [7]: 1) C1 is enabled
When C6 is triggered(baseline), 2) Contents of L1 I, D and
L2 caches are retained when C6 is triggered, 3) L1 I and D
cache contents alone are retained when C6 is triggered, 4) L1
Icache contents alone are retained when C6 is triggered, 5)
L1 Dcache contents alone are retained when C6 is triggered,
and 6) no cache contents are retained, when C6 is triggered
(baseline C6).

Figure 5b, shows the impact of each scenario, on average
as well as 99" percentile tail latency. It can be observed
that the 99*" percentile tail latency increases by less than
4%, as compared to enabling C1. This essentially enables
Cl-like latency characteristics, while enabling C6-like power
characteristics.

B. Observation 2: Low Wakeup latency is critical to minimize
performance impact

To study the impact of wakeup latency on performance,
the aforementioned scenarios were run with different wakeup
latencies. From Figure 5a, we can observe that, for scenarios
2, 3 and 4, the tail latency improves to a great extent and
is close to the baseline. As per Figure 5, as we retain more
private cache content, we can see latencies similar to baseline.
Generally, workload developers and system operators only
care about avoiding the SLO latency violations than average
latency. Retaining the contents of all the private caches can
increase the resident power of the deep sleep state (unless we
use NV-SRAMs), as shown in Figure 6. As can be observed,
of all the cache contents, preserving the L1 Icache provides
the maximum performance benefit for Memcached in terms of
retention power and tail latency. Thus, based on our previous
observation and Figure 6, we can conclude that retaining the
Icache contents is sufficient for user-facing workloads like
Memcached.

C. Observation 3: Low resident power in a deep-sleep state
is critical to maximizing power savings

Power consumed in the deep sleep states should be as low
as possible. As shown in Figure 7, as we transition to deeper
power states, we save more power. It is to be noted that,
the power-gating efficiency should be as high as possible to
minimize leakage power. Hence, low resident power for a deep
sleep state is key to improving energy efficiency.

Collectively, we observe that low wakeup latency and low
resident power in a deep sleep state along with cache retention
are necessary conditions to reach an energy efficient system.

IV. MECHANISM

We propose a power management state, cl’,which does a
complete power gate of the core like c6 but also adheres to
three key observations: a) low wake latency, b) low resident
power, and c) workload-dependent retention of cache state. We
evaluate the plausible energy savings if such a power manage-
ment technique were to be implemented in a modern CPU. For
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this, we first discuss the current state of art technologies which
could help us realize such a technique.

a) Wakeup-latency is largely governed by the time taken
to ramp up the voltage to the designated level. Continuous
innovations are being made to reduce entry and exit latencies
from a given sleep state. For example, Intel Haswell achieves
20x more power savings, due to reduced wakeup latency [8].
Recent advances in on-chip voltage regulators are reducing
wake latency to 10’s of ns.

b) With the inception of voltage islands [9], it has become
feasible to independently manage the power-performance of
different cores in a CPU. For instance, it is a common practice
today to power gate idle cores in a CPU, while having other
cores actively serve requests. This matters greatly because the
power-grid capacitance of the power island for one core is an
order of magnitude smaller than the power grid capacitance of
an 8-core CPU. The smaller power-grid capacitance presented
by a per-core power island reduces the load on the voltage
regulator. This allows for rapid replenishment of charge and
allows for shorter wake latency (from C6 to C1).

c¢) Caches are primarily implemented today using CMOS static
random access memories (SRAMs) or register files (RFs). A
conventional SRAM is volatile, i.e., it loses its state when
power is gated off. Power constrained modern SoCs implement
CMOS caches with retention capability; these caches can
retain state if the main power supply for a CPU core is gated
off [10]. Typically a retention RAM [4] uses an additional
always-ON power supply to retain state and operates in the
near threshold region. The advantage of the retention rail is
that it is implementable today, but it has the shortcoming that,
even when it is in retention state, the SRAM still consumes
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leakage power (though the retention RAM leakage is 50%
lower than the compute state leakage). It is noteworthy that
retention SRAMs/RFs are a suitable implementation when
sleep state residencies are of the order of us (micro-seconds).
They are not suitable when sleep state residency exceeds
10ms or seconds, as their leakage power will dominate the
total energy consumption. RAMs implemented with emerging
non-volatile memory technologies (NV-SRAM or NV-RF) can
retain state while consuming no retention power. This makes
them an ideal candidate for state retention in deep sleep states.

NV-SRAMs implemented with MRAM and RRAM typi-
cally suffer from the challenge of high write latency. The
cost to backup and restore data are also high due to static
current.However, recent work with FEFET-NVSRAMs [11]
addresses these limitations. FeFET is an emerging CMOS
transistor which has the capability to completely eliminate
static current in the NV-SRAMs since the conducting route
of drain-source is separated from the gate control signal.Since
this type of memory storage would be beneficial for our
power management system in terms of low resident power
at our proposed cl’ state , we use FeFet-NVSRAMS [11] for
retaining data. One of the major tradeoffs of using an non
volatile SRAM is the extra write energy spent for backup and
restore. Energy to backup and restore is only 58.7 aJ which
corresponds to a break even time of 33.8 us at 0.3V standby
CMOS [11]. Since, we are targeting sleep state residency
in the order of ms, we can get a positive energy gain from
FeFet-NVSRAM [11].

In Figure 8, we delineate the series of stages pertaining
to normal clock-gating state c1 and our proposed state cl’.
Given small wakeup latency, the sub-us delay added to the
total access latency will be negligible, compared to the tail
latency from Figure 5.
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V. RESULTS AND ANALYSIS

In this section, we first describe the Breal system experimen-
tal setup that we utilized to determine the impact of processor
sleep states on the tail latency of memcached and apache
web server. Following that, we illustrate our simulation

infrastructure using which we quantify the energy gains that
we obtain by using PowerPrep.

A. Evaluation Methodology

Hardware Infrastructure. Our workloads are executed on
server grade Intel Xeon CPU E5-2670 nodes. Each node
consists of 24 physical cores. We switch off hyper-threading
for all our experiments.

Performance Measurement tools. We use Intel VTune
amplifier [12] to obtain and visualize idle CPU cycles that
exist in between subsequent requests. Additionally, we utilize
perf to measure microarchitectural events (cache hits, cache
misses) happening in the server.

Workloads. We evaluate our technique on two important
real system workloads — memcached and apache web
server. Memcached is an in-memory key value store
infrastructure, and apache web server isan HTTP server
that is widely used for hosting websites.

Simulation Infrastructure. To simulate the performance
behavior of these two workloads under our proposed cache
retention and non-volatile SRAM schemes, we use a dis-
tributed cycle-accurate microarchitectural simulator called
dist-gem5 [7]. Dist-gem5 [7] simulates a distributed setup of a
gem3 client, which issues requests to a gem5 server that hosts
the applications memcached and apache web server.
Additionally, we use an in-house power model based on
MCcPAT [13] and CACTI to calculate static and runtime power
for processors containing an SRAM cache at 10nm technology.
We also utilize the same tool to obtain power values for
NVSRAM FeFET technology at 10nm.The energy measures
are obtained through the weighted sum of the duration idle,
busy and transition period with their corresponding power
consumption.

B. Experimental Results

To show the effectiveness of our scheme, we evaluate
energy gain and QoS (99th percentile tail latency). Further,
we compare the results that we have obtained with state-of-
the-art techniques DynSleep [14] and uDPM [2] respectively.
Additionally, we assume that the maximum energy that can be
saved for a given load is depicted by C6.

1) Power Savings: DynSleep [14] takes advantage of the
fact that tail latency is an order of magnitude higher that the
service time of 95th percentile request. It enters deep sleep
state during this latency slack to save power. However, there
are two major drawbacks in this technique. First, there are
very few scenarios where continuous chunks of idleness that
exceeds the residency time of C6 exists. Hence the effective
power sad by DynSleep [14] is very low. Second, this scenario
gets worse as the loads increase, reducing the amount of power
saved to a great extent.

Figure 10 illustrates this scenario. The vertical axis repre-
sents %energy saved for memcached and apache, normalized
to the energy consumption of baseline. The horizontal axis
compares % of energy saved by the techniques DynSleep,
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PowerPrep with drowsy cache and PowerPrep with NVSRAM,
across different loads for the applications memcached and
apache web server. We can see from Figure 10 that PowerPrep
outperforms DynSleep in every load scenario. PowerPrep’s en-
ergy savings are extremely significant compared to DynSleep
in high load scenarios. Also, we can see from Figure 10 that
the energy saved by PowerPrep NVSRAM is close to C6.
Hence, FeFET NVSRAM has great potential to save leakage
power.

2) Tail Latency Reduction: pDPM overcomes the short-
coming of DynSleep by utilizing fine-grained power manage-
ment schemes and relaxing SLO constraints. For that purpose,
uDPM leverages DVFS, clock-gating as well as power-gating.
Such an aggressive power management scheme takes a toll on
the 99th percentile latency, which is plotted in Figure 9. The
horizontal axis in Figure 9 evaluates yDPM and PowerPrep
under different load scenarios, while the vertical axis indicates
the 99th% tail latencies of applications memecached and
apache web server, respectively. From Figure 9, we can
observe that PowerPrep outperforms ;DPM in every execution
scenario.

VI. RELATED WORK

There has been a wide body of prior work that tries to save
power for datacenter workloads. We broadly divide them into
the following categories.

Dynamic Voltage Frequency Scaling (DVFS). Dynamically
scaling CPU voltage and frequency to save power is a widely
studied research topic. For this purpose, Adrenaline [15]
selectively pinpoints requests with long tail latencies, which
are then boosted by increasing the clock frequency at which
they operate. On the other hand, Pegasus [16] constantly
monitors workloads and the performance statistics of recent
requests within a sliding window. Using this information it
leverages a feedback controller to selectively execute queries

under lower operating frequency without violating the QoS
requirement. Rubik [17], on the other hand utilizes the queuing
delay of requests to dynamically reduce/increase voltage and
frequency to save power. Most prior works [15]-[19] only
look at voltage and frequency scaling techniques for which the
energy savings obtained are much lower than for techniques
that utilize clock gating, power gating, or otherwise deactivate
entire components.

Clock Gating and Power gating techniques. A slightly
orthogonal body of prior work utilizes fine grained power
management schemes for datacenter workloads through the
use of per-core sleep states (C-states). Dynsleep [14] reorders
requests by postponing requests with long latency slacks. This
introduces wide gaps of idleness during which shallow/deep
sleep states can be reached in order to save power. uDPM
[2], on the other hand, performs power management at a
finer granularity by utilizing both per-core sleep states and
DVFS. uDPM [2] performs statistical predictions to create
idleness in the core by postponing the requests. However,
in our experimental setup, Dynsleep [14] performed poorly
at higher loads due to the reduction of idleness of the core
and, in Figure 9 we can see that the 99% tail latency of
uDPM [2] is consistently higher than PowerPref. Thus,,DPM
[2] was not able to guarantee SLO in every scenario. These
differences highlight the importance of considering the im-
pact of nonvolatile memory technologies on datacenter power
management approaches.

VII. CONCLUSION

We address the issue of energy proportionality for latency
critical workloads in datacenters by presenting PowerPrep. In
this regard, we enumerate key requirements that should drive
sleep state transitions. Namely, a)low wakeup-latency, b) low
resident power and c) selective retention of microarchitectural
states. Using these observations, we illustrate that when such
requirements are met, we can seamlessly transition into deep
sleep states and save significant amount of datacenter energy
while guaranteeing user-defined SLOs. From our experiments,
we were able to save up to 50% of energy for widely used
latency-sensitive datacenter applications like memcached
and apache web server, without negatively impacting
QoS. We believe that the PowerPrep technique would con-
tribute towards saving significant amounts of power in under-
provisioned datacenters and would better enable them to
execute “killer microsecond workloads” without sacrificing
efficiency.
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