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Abstract

Video-language models (VLMs), large models pre-trained on numerous but noisy1

video-text pairs from the internet, have revolutionized activity recognition through2

their remarkable generalization and open-vocabulary capabilities. While complex3

human activities are often hierarchical and compositional, most existing tasks4

for evaluating VLMs focus only on high-level video understanding, making it5

difficult to accurately assess and interpret the ability of VLMs to understand6

complex and fine-grained human activities. Inspired by the recently proposed7

MOMA framework, we define activity graphs as a single universal representation8

of human activities that encompasses video understanding at the activity, sub-9

activity, and atomic action level. We redefine activity parsing as the overarching10

task of activity graph generation, requiring understanding human activities across11

all three levels. To facilitate the evaluation of models on activity parsing, we12

introduce MOMA-LRG (Multi-Object Multi-Actor Language-Refined Graphs),13

a large dataset of complex human activities with activity graph annotations that14

can be readily transformed into natural language sentences. Lastly, we present a15

model-agnostic and lightweight approach to adapting and evaluating VLMs by16

incorporating structured knowledge from activity graphs into VLMs, addressing17

the individual limitations of language and graphical models. We demonstrate a18

strong performance on activity parsing and few-shot video classification, and our19

framework is intended to foster future research in the joint modeling of videos,20

graphs, and language.21

1 Introduction22

Computer vision is currently undergoing a paradigm shift from models trained on crowd-labeled23

data [1, 2] to large-scale base models [3, 4, 5, 6, 7] trained on noisy but readily accessible image-text24

pairs. Video understanding is no exception, with the rise of Video-Language Models (VLMs) [8, 9, 10,25

11, 12, 13, 14] that have shown remarkable generalization capabilities on videos from new domains.26

When compared to fixed-set video classification [2, 15, 16], VLMs are able to learn and represent a27

wider variety of concepts and demonstrate superior low-shot abilities on many downstream tasks due28

to the flexibility and open-vocabulary nature of language. Besides, while annotating videos remains29

one of the most laborious processes in computer vision, VLMs utilize widely and freely available30

video-text pairs [9, 8, 13, 17] facilitating larger and more diverse pre-training at a lower cost.31
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Despite improved generalization and scalability, the application of VLMs to human activity recogni-32

tion faces a number of challenges. The first challenge is adapting existing VLMs for fine-grained,33

actor-centric activity recognition. Essential computer vision applications in healthcare, surveil-34

lance, and robotics are often characterized by complex human activities involving many concurrent35

events between actors and objects. On the other hand, existing VLMs are typically trained on noisy,36

coarse-grained internet data and evaluated on downstream tasks that are focused on high-level video37

understanding [18, 10, 12]. It is unclear how VLMs can be effectively adapted to and accurately38

evaluated for recognizing fine-grained activities. The second challenge is the lack of a single over-39

arching task for evaluating VLMs on activity recognition. Human activities are often hierarchical40

and compositional [19, 20, 21], requiring explicit modeling and evaluation at multiple levels of41

granularity. Existing downstream tasks used for VLM evaluation, such as activity classification [18],42

activity segmentation [10, 12], video-text retrieval [13, 12, 8] and VideoQA [10, 13], only provide an43

incomplete assessment of VLM performance on activity recognition. Lastly, the black-box nature of44

VLMs makes their predictions difficult to interpret. This hinders the application of VLMs to many45

risk-averse domains [22, 23, 24], where it is necessary to interpret VLM predictions in a structured46

and symbolic manner.47

To address the aforementioned challenges, this paper first aims to standardize an overarching repre-48

sentation of human activities across varying levels of granularity and provide a unified task for VLMs49

by generating this representation. Inspired by the recently proposed MOMA [20] framework, we50

introduce activity graphs as dynamic graphs that encompass activities, sub-activities, and atomic51

actions in a video. Specifically, an activity graph is a representation that simultaneously (1) pro-52

vides a class label on the activity level, (2) provides a dynamic sub-activity label that contains all53

temporal boundaries and categories of sub-activities, and (3) captures fine-grained atomic actions in54

multi-object multi-actor settings with spatial localization and tracking of all entities and temporal55

localization of all predicates. Further, we introduce activity parsing as the overarching task of56

predicting the activity graph from a video, thereby achieving multi-level activity recognition via57

activity graph generation.58

Next, we introduce the MOMA-LRG dataset, a novel activity recognition dataset that leverages both59

the descriptive capacity of activity graphs and the expressivity of natural language. MOMA-LRG60

involves videos with Multiple Objects and Multiple Actors (MOMA) and is designed to enable61

models to understand a broad set of human activities. To enable few-shot activity recognition with62

language, MOMA-LRG provides Language-Refined Graph annotations in a format that enables an63

easy conversion from the structured graph representation into natural language sentences.64

Lastly, we introduce GraphVLM as our framework for evaluating VLMs on activity parsing,65

consisting of an activity parsing model and a transfer learning paradigm. We first propose an66

architecture for activity parsing that can be readily adapted for VLMs, featuring a video stream, a67

text stream, and video tokenizers shared across all three levels of activity. Although fine-tuning is a68

widely used transfer learning technique, it requires a fixed architecture and clip sampling approach. In69

GraphVLM, we propose a transfer learning approach based on knowledge distillation, which enables70

the adaptation of VLMs in a flexible and lightweight manner.71

2 Related work72

Activity recognition. Activity recognition tasks a model to identify events performed by human73

agents. The dominant task has been activity classification on benchmarks such as [2, 15, 16], but other74

datasets add richer information to their annotations such as spatio-temporal scene graphs [19, 21].75

3D CNNs that jointly model space and time [25, 26, 27] have been popular for activity recognition76

historically, but recently transformers-based methods have achieved comparable or superior results77

[28, 29, 30, 31, 32]. Action localization datasets like ActivityNet [15], THUMOS’14 [33], and78

FineGym [34] label the temporal boundaries and the action class of each action that happens within79

the video. The methods utilized here tend to propose temporal boundaries and then classify them80

[35, 36, 37, 38, 39], while others attempt to jointly model both [40, 41]. Other datasets [42, 43]81
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additionally add a spatial dimension which attempts to localize actions in both space and time,82

where methods include long-term feature banks [44], relation-modeling [45, 46] and pretrained83

video modules and object detection architectures [43]. MOMA-LRG encompasses and extends these84

existing video datasets by labeling actions, the sub-activities that compose them, and providing rich85

scene graph annotations to describe the interactions between entities in a crowded scene.86

Video and language models. Several works pre-train large-scale models jointly on video and87

language data for a variety of downstream video-language tasks, such as video captioning, VQA,88

and video-text retrieval [47, 18, 12, 10, 14, 13]. Pre-training these models often either relies on a89

combination of masked-language-modeling (MLM) and masked-frame-modeling (MFM) [18, 10, 14]90

or contrastive learning [47, 9, 12, 13]. These VLMs have shown promising zero-shot results for91

activity recognition tasks such as activity classification [18], action segmentation [12], and action92

step localization [12, 10]. These methods show powerful zero-shot capabilities for high-level video93

understanding, however, they lack explicit knowledge about fine-grained interactions between actors94

and objects.95

Fine-tuning large pre-trained models. Finetuning pre-trained large language models for downstream96

tasks has recently become the most popular learning method in NLP [48, 49]. Methods for efficiently97

fine-tuning these large language models, such as using adapter modules [50] and prompting [51, 49],98

use only a small number of learnable parameters while keeping most of the pre-trained model frozen.99

As a result, these methods are less computationally expensive than full fine-tuning of the entire100

model, which is the traditional fine-tuning method used in computer vision [52, 53]. There has been101

recent work adopting these efficient fine-tuning techniques for vision-language models. [54] and [55]102

both propose adapter module methods and demonstrate comparable performance to full fine-tuning.103

On the prompt-tuning side, Zhou et al. [56] develops prompt-tuning techniques for vision-language104

models for zero-shot image classification, Yao et al. [57] uses prompt-tuning for grounding referring105

expressions in images, and Ju et al. [58] uses image-level tokens and textual prompt tuning for106

few-shot action recognition.107

Low-shot activity recognition. Low-shot activity recognition, which recognizes activities that108

were either scarce or missing from the training set, reduces the reliance on obtaining expensive109

labels for crowded scenes. Zero-shot action recognition tries to predict unseen classes, where110

approaches either project visual features into a semantic embedding space [59, 60, 61, 62, 63],111

an intermediate embedding space learned from textual and visual data [64, 65, 66], or a visual112

embedding space that is synthesized by incorporating semantic information [67, 68]. Few-shot113

learning tends to be based on metric-learning that learn similarities to the scarce in-domain training114

examples [69, 70, 71, 72, 73, 74]. Other recent methods utilized self-supervised and contrastive or115

meta-learning approaches [75, 76] with a high degree of success. More recently, visual-language116

models have shown strong results on zero-shot recognition [18, 4, 12].117

Visual grounding and scene graphs. Visual grounding merges visual and language understanding118

by attempting to localize an object in an image space given a text query. Some datasets associate119

nouns with bounding boxes in the video [77, 78], while others introduce scene graph annotations120

that describe the relationships between entities in the image [79]. Yu et al. [80] and Chen et al. [81]121

demonstrate that using hierarchical text-generated scene graphs allows for better representation of122

fine-grained semantics than using raw text alone. Other work has proposed the use of an action graph123

to generate novel videos [82, 83], defining an object-centric graph with objects as nodes and edges as124

actions with temporal annotations. Wang et al. [84] models videos as space-time region graphs that125

capture long range dependencies and spatial-temporal relations between objects.126

3 Activity Graphs and the MOMA-LRG Dataset127

MOMA-LRG improves and extends MOMA [20] by providing the new abstraction of the activity128

graph as the single universal representation of human activities that encompasses video understanding129

at the activity, sub-activity and atomic action levels. Thus, our new formulation for the task of130

activity parsing as activity graph generation allows for a single overarching task for hierarchical131
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Table 1: A comparison of MOMA-LRG with related video datasets. A dash signifies that the
annotation does not exist in the dataset, and n/a indicates that the paper did not report a specific
number.

Atomic action
Activity Sub-activity Actor Object Unary predicate Binary predicate

Dataset Hours Levels Classes Instances Classes Instances Classes Instances Classes Instances Classes Instances Classes Instances

AVA [42] 107.5 2 - - - - 1 424K - - 14 424K 66 651K
AVA-Kinetics [85] 638.9 2 - - - - 1 310K - - 13 633K 47 ∼ 800K
Action Genome [19] 82 2 157 10K - - - - 35 0.4M - - 25 1.7M
FineGym [34] 708 3 10 4.9K 530 32.7K - - - - - - - -
Home Action Genome [21] 25.4 3 75 1.75K 453 24.6K 1 24.6K 86 n/a - - 29 583K
MultiSports [43] 18.6 2 66 37.7K - - 1 902K - - - - - -
Something V2 [16] 121 1 - - - - - - a few thousand 30K - - 174 318K
DALY [86] 31 1 10 3.6K - - n/a n/a n/a n/a - - - -
MEVA [87] 9.3K 1 37 n/a - - n/a n/a n/a n/a - - -
TITAN [88] 3 1 - - - - 3 395K 2 249K 16 935K 28 426K
MOMA [20] 66 3 17 373 67 2364 20 80K 120 80K 52 12K 23 119K

MOMA-LRG 148 3 20 1.4K 91 15.8K 26 740K 126 396K 13 704K 52 1.4M

video understanding. The MOMA-LRG dataset also enables the training of few-shot video-language132

models by encapsulating high-level and fine-grained semantics within activity videos.133

3.1 Activity Graphs134

The key abstraction of MOMA-LRG is the activity graph, an all-encompassing and human-135

interpretable representation of human activities that captures temporal changes and compositionality.136

An activity graph is a dynamic graph G = [G1, G2, . . . , Gt] represented as an ordered list of timed137

events, such as the addition or deletion of nodes and edges over time. Each Gi ∈ G can be rep-138

resented as the pair (Vi, Ei), where Vi is a set of entities and their attributes and the set of edges139

Ei = {(v1i, ri, v2i), . . .} encapsulates the relationships between the source and target entities. An140

activity graph has two levels of labels: (1) an activity label which stays constant for the entire graph;141

(2) a dynamic subactivity label that changes when subactivities begin and end. Each unique activity142

instance is associated with a unique activity graph. Unlike the dynamic scene graphs from [19],143

activity graphs in MOMA-LRG are activity-centric and contain information relevant only to the144

activity. The activity graph includes three levels of hierarchy:145

Activity. An activity is an event where several human (actors) and non-human (objects) entities146

interact to complete a multi-step task. Parsing the activity returns an activity class label associated147

with the activity graph.148

Sub-activity. A sub-activity is a step that makes up part of a larger activity and are (1) temporally149

localized within an activity and (2) mutually exclusive between activities. For example, the sub-150

activity the adult is comforting the child is unique to the activity of babysitting. Sub-151

activities are represented with two labels: 1) a temporal boundary indicating the start and end time152

relative to the activity video; 2) a semantic label which represents the class of the sub-activity. Parsing153

the activity produces the dynamic sub-activity label that contains the temporal boundaries and class154

of all sub-activities.155

Atomic action. An atomic action describes how entities interact within a sub-activity video, which156

involves understanding entities and their predicates. Atomic actions are entity-centric, i.e. entities157

involved in an atomic action are spatially and temporally localized. Entity labels are entity-centric158

to disambiguate which entities are involved in a given atomic action. Atomic actions are activity159

and sub-activity agnostic—that is, a given atomic action class can be involved in many different160

sub-activity and activity instances. The predicates are atomic, such that they are generic across161

all activities. Predicates like running, walking or bending are general and can be involved in162

multiple sub-activity and activity instances. At this level, activity parsing evaluates the ability of the163

model to predict: (1) all relationships present in the global context, similar to scene graph generation164

and relationship retrieval and (2) all the predicates specific entity is involved across time, similar to165

spatio-temporal atomic action detection in [42].166

Atomic actions consist of two components: entities and predicates. An entity is defined to be either a167

human actor or an object that is present in the scene and relevant to the action being performed. In a168
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Figure 1: An example of the results for the activity parsing task. For the activity level, the model
predicts the activity class haircut for the video input. For the subactivity level, the temporally
localized sub-activity predictions are displayed on the bottom, with the corresponding sub-activity
classes on the legend placed on the left. For the atomic action level, the model has localized and
tracked all entities (actors and objects) and predicted their interactions as displayed in the graph
visualization on the right. Note: this graphic is a live animation that can be viewed in an Adobe
Acrobat PDF viewer.

video frame, we annotate each entity with a bounding box, class label, and instance ID. Throughout169

the video instance, an entity is therefore represented as a spatio-temporal tube with a corresponding170

semantic label. A predicate to describe an interaction that occurs with at least one entity. There are171

two different types of predicates: a unary predicate defined on a specific entity is called an attribute,172

whereas a predicate defined on two or more entities is called a higher-order relationship. Unlike173

other scene graph datasets [79, 19], relationships in MOMA-LRG can involve two or more actors.174

To do this, we provide hyperedge annotations where higher-order interactions involving multiple175

entities are grouped into a single edge (e.g. multiple actors beneath an object). Note that multi-node176

edges can easily be converted to a set of binary edges if needed.177

Intuition and advantages. The activity graph is a single universal representation of human activities,178

consisting of three levels of hierarchy ranging from coarse to fine-grained: activity, sub-activity,179

and atomic action. This is inspired by the fact that complex human activities in real-world settings180

are usually hierarchical and compositional across space and time. In particular, complex human181

activities typically involve a number of achievable steps (activity → sub-activity). It is also essential182

to understand the roles of actors, the affordances of objects, and the relationships between these183

components in order to recognize fine-grained activities (sub-activity → atomic action). In contrast,184

many existing activity recognition benchmarks and tasks [2, 15, 89] only focus on a specific level of185

granularity.186

3.2 The MOMA-LRG Dataset187

Dataset statistics. MOMA-LRG provides annotations on 1,412 activity instances from 20 different188

unique activity classes and 15,842 sub-activity instances from 92 unique classes. We provide 634,194189

image-level actor instances and 104,594 video-level actor instances from 27 unique classes, as well190

as 349,244 image-level object instances and 47,523 video-level object instances from 269 unique191

classes. On the atomic action level, there are 1,037,319 higher order relationships from 52 classes192

and 704,230 attribute instances from 13 classes. Overall, there are 161,265 image-level atomic action193

instances and 15,842 video-level atomic action instances.194
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Language-Refined Graphs. One of MOMA-LRG’s distinguishing features is that it enables few-shot195

capabilities. To do this, we provide graphical annotations that are easily compatible with natural196

language through two conventions. First, predicate classes are of the form [src] [predicate]197

[trg], where src is the source entity and trg the target entity. This enables easy conversion198

to natural language given graphical annotations. For example, given an outgoing predicate edge199

with class [src] talking to [trg] from the entity cashier onto the entity customer, we can200

produce the sentence the cashier is talking to a customer. Second, all of our annotations201

are in the present continuous tense, e.g. the player is throwing a frisbee, which resembles202

a live narration in a fashion similar to existing video-language datasets (e.g. YouCook2 [90],203

HowTo100M [9], etc.) created from instructional YouTube videos.204

Comparison with existing datasets. Compared to existing datasets, there are several key advantages205

that the MOMA-LRG dataset provides. First, MOMA-LRG grounds all associated entities. In206

contexts with more than one entity, it is necessary to disambiguate which entities are involved in a207

particular interaction. Existing ego-centric datasets [16, 34] dodge this issue since at most interaction208

is involved in a scene. Second, we classify each actor’s role. Typical datasets [34, 43] involve one209

type of actor and hence do not label the person’s role [42, 19, 21]. In a diverse set of scenes, the role210

of the actor becomes more important in understanding actions since it can provide an important signal211

in parsing a human activity [91]. Third, the MOMA-LRG dataset differentiates between static and212

dynamic predicates. For example, the dynamic predicate sitting down is a dynamic movement213

where an actor transitions from the standing static predicate to the sitting static predicate. We214

argue that observing state transitions is important for the model to learn, encouraging it to learn215

perceptual causality [92]. For a more detailed comparison, refer to Table 1.216

Comparison with MOMA [20]. First of all, MOMA-LRG introduces a new dataset and a new217

abstraction of human activity. MOMA-LRG contains an order of magnitude more annotations, along218

with longer videos from a greater variety of scenes. In addition, MOMA-LRG the introduction of219

activity graphs as the overarching graphical representation across all three levels of hierarchy, as220

opposed to only the atomic level. Secondly, MOMA-LRG is directly motivated by the rise and221

limitations of VLMs. While VLMs have demonstrated remarkable generalization on videos from222

new domains and improved scalability through training on free video-language pairs, there is a lack223

of a single overarching task for evaluating VLMs on complex activity recognition. MOMA-LRG224

introduces a new annotation schema that can be easily converted from natural language to graphical225

annotations to enable few-shot learning, and a new framework (GraphVLM) to evaluate VLMs on226

activity parsing.227

Ethics. Prior research [93] shows that Youtube videos exhibit geographic bias. To mitigate potential228

ethical issues associated with the dataset, we have adopted the following protocols: (1) The videos are229

sourced from YouTube, where each video has been cross-verified by multiple annotators to ensure that230

it does not contain offensive material. (2) Instead of providing the raw videos, we provide YouTube231

IDs and a script for downloading them. Note that this is a standard practice for many video datasets232

collected from the Internet, such as ActivityNet [15] and Kinetics [2]. (3) Since we only provide233

YouTube IDs, only publicly available videos are available for download, and video owners may234

disable accessibility at any time. (4) Our group will verify any image data released for demonstration235

purposes, and in order to minimize the risk of personally identifiable information being compromised,236

we blur faces whenever possible.237

4 Activity Parsing and the GraphVLM Model238

In this section, we introduce a method for performing activity parsing and provide a transfer learning239

framework to adapt Video-Language Models (VLMs) to activity parsing.240
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Figure 2: The GraphVLM model: We utilize two different tokenizers for entities and contexts, and a
task specific head for each level of the MOMA hierarchy.

4.1 Activity Parsing241

We define activity parsing as the task of generating an activity graph as defined in Section 3.1.242

Specifically, given a video as input, an activity parsing model (1) returns an activity class label, (2)243

temporally localizes and classifies all sub-activities, as well as (3) localizes each entity in the scene.244

Following this, it will need to detect all predicates: i.e. all unary predicates (i.e., attributes) involving245

a single entity and all binary predicates (i.e. relationships) which are between pairs of distinct entities.246

Refer to Figure 1 for an example of the end results of activity parsing.247

4.2 GraphVLM: Video Stream248

Our video stream module consists of two tokenizers and an encoder for each level of the activity249

hierarchy.250

Tokenization. The first tokenizer is the context tokenizer, which consists of a clip sampler and a251

clip feature extractor. The clip sampler takes a video as input and samples non-overlapping short252

video clips. It has two parameters: the number of sampled frames T and temporal stride τc, meaning253

that each sampled clip consists of T × τc total frames. For our clip feature extractor, we evaluate on254

a Swin-B [29], MViT-B [94], and SlowFast-R50 [25] pre-trained on Kinetics-400 [2]. The second255

tokenizer is the entity tokenizer, which consists of a frame sampler and an entity detector. The role of256

the frame sampler is to uniformly sample frames across the whole video, parameterized by τe, where257

τe is the temporal stride (i.e. we sample one frame every τe frames). After frame sampling, we detect258

entities at the frame-level and generate bounding boxes as well as ROI features associated with each259

entity, which we call the entity token. These two tokens are used to generate an entity-context token260

by applying the bounding boxes extracted from entity tokenization to the context tokens through261

ROIAlign.262

Entity detection. To detect entities and extract entity tokens for activity parsing, we use a Faster-263

RCNN [89] object detector with a ResNet-101 [95] FPN [96] backbone pre-trained on ImageNet [1].264

We use maskrcnn-benchmark 1 for our implementation. For our activity parsing experiment, we treat265

all human role classes as a single class to facilitate downstream predicate classification. Separately,266

we also experiment with object detection using the role classes in our dataset. We use Detectron2267
2 for actor role detection, and use pre-trained weights from COCO keypoints[97], with the same268

architecture described above. We show results for entity detection in Table 4.269

Activity encoding. The video encoder for activity videos sparsely samples Na context tokens270

produced by the context tokenizer and performs a mean pool to get the activity feature. This encoding271

works both with and without a text stream: using the features, we can train an action classifier272

1github.com/facebookresearch/maskrcnn-benchmark
2github.com/facebookresearch/detectron2

7



using a cross-entropy loss exclusively on the features or train jointly with the text stream utilizing a273

contrastive loss.274

Sub-activity encoding. The video encoder for sub-activity videos densely samples Ns context tokens275

which are used to run either temporal action detection or segmentation. For temporal action detection,276

we input the context tokens into a G-tad [35] model and train a model to predict temporal boundaries277

using a cross entropy loss. For temporal action segmentation, the encoding is flexible to work with278

and without the text stream: we can train a classifier with cross-entropy loss using only the features279

and classify each token as belonging to a sub-activity class or a background class and also train jointly280

with a text stream using a contrastive loss.281

Atomic action encoding. Atomic action encoding consists of two parts: per-frame scene graph282

generation and spatio-temporal atomic action detection. For scene graph generation, relationships283

are grounded over all entities in the scene, whereas spatio-temporal atomic action detection is actor-284

centric and only considers a single actor at a time. We use entity tokens (i.e. object labels, bounding285

boxes, and ROI features) as input for scene graph detection. We train a RelDN [98] model for286

scene graph detection using Microsoft’s Scene Graph Benchmark 3 for our implementation. We287

evaluate our model on the tasks of predicate classification, scene graph classification, and scene graph288

detection without graphical constraints as in Xu et al. [99], since the MOMA-LRG dataset often289

contains multiple relationships for a given source and target entity. Results are shown in Table 4. For290

spatio-temporal action detection, the entity-context token of an actor object is taken as input, and the291

model outputs frame-level predicate labels for the actor in a multi-label classification setting. In our292

implementation, we train a single layer classifier with a sigmoid activation function, though we note293

that our framework is compatible with using the generated natural language predicate sentences as294

supervision via contrastive learning. We show results in Table 4.295

4.3 GraphVLM: Text Stream296

In order to effectively leverage the natural language capabilities of VLMs, we convert all levels of the297

MOMA-LRG activity graph hierarchy to natural language via our graph-to-language module.298

Graph-to-language module. At the activity level, each class name is a noun, thus it can be299

represented by its class name or via prompting (e.g. by prepending "A video of [CLS_NAME]"). At300

the sub-activity level, class names are descriptions of the sub-activities in the present continuous tense301

(narration-style). At the atomic action level, we tag all predicates with [src], and [trg] templates302

to allow for easy conversion into a full grammatically correct sentences in present continuous form.303

For example, the predicate touching is represented as [src] touching [trg]. So, given the304

entities [src]=person and [trg]=table, the sentence is A person is touching the table.305

Text encoding. After converting the associated activity graph level to language, we use a pre-trained306

language model to encode the text. When evaluating existing VLMs (e.g. VideoCLIP [12], FiT [8])307

using our framework, we use their respective text encoders. For our model agnostic use-case, we use308

bert-base-uncased [7].309

4.4 GraphVLM: Few-shot and Transfer Learning310

MOMA-LRG includes a few-shot split, which splits the MOMA dataset into non-overlapping activity311

and sub-activity classes. The few-shot training set contains 10 activity classes and 45 sub-activity312

classes, the validation set contains 5 activity classes and 24 sub-acitivity classes, and the test set313

contains 5 activity classes and 22 sub-activity classes. For our baseline methods, we report results314

using two meta-learning classifiers, OTAM [100] and CMN [101]. To evaluate the performance315

of video-language models in the few shot setting, we perform out of the box classification for316

a VideoCLIP [12] and a Frozen-In-Time [8] video-language model on activity and sub-activity317

classification on the meta-test set. We use class names as text (either activity or sub-activity) and raw318

videos as input. To compute the class label for a video input, we find the text embedding that is closest319

3github.com/microsoft/scene_graph_benchmark
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Table 2: Temporal action detection. AP
is reported at thresholds 0.1, 0.3, and 0.5
for different backbones.

Temporal Detection
Backbones Pre-train AP@0.1 AP@0.3 AP@0.5

MVIT-B K-400+LVIS 17.906 9.369 5.107
SlowFast-R50 K-400+LVIS 21.797 11.782 4.904
Swin-B K-400+LVIS 22.102 10.853 4.860

Table 3: Video classification. Results are reported for
activity and sub-activity classification with different
video backbones.

Activity Sub-activity

Model T × τ Pre-train acc@1 acc@5 acc@1 acc@5

MVIT-B 16× 4 Kinetics-400 0.7731 0.9468 0.6032 0.9473
16× 4 None 0.5140 0.8010 0.4375 0.7500

SlowFast-R50 8× 8 Kinetics-400 0.7569 0.9375 0.5625 0.9226
8× 8 None 0.4375 0.7500 0.3739 0.7731

Swin-B 4× 3 Kinetics-400 0.8576 0.9688 0.6450 0.9781
4× 3 None 0.5282 0.8415 0.3817 0.7868

GCN 30× 1 None 0.7837 0.9539 0.3829 0.8276
GCN (oracle bbox) 30× 1 None 0.9502 0.9964 0.563 0.9706

in dot product similarity to the video embedding as in Xu et al. [12]. We visualize the performance320

of this method on the regular MOMA-LRG test set in Figure 3. For k-shot video classification, we321

sample k videos per class and average the representation to obtain a prototype video. We compute a322

weighted average between the text embedding and the video prototype and classify using the same323

method as in the zero-shot setting. A more detailed explanation and ablation study of our method can324

be found in the Appendix.325

In addition to our framework for evaluating VLMs without training, we also propose a method for326

using VLMs for activity parsing in a more flexible manner than full fine-tuning. We use knowledge327

distillation to incorporate visual and linguistic knowledge from VLMs into the activity parsing328

framework. This is considerably more flexible than full fine-tuning since it is model-agnostic. In329

this method, we can use a different backbone network than that used by the VLMs, and can sample330

clips differently so long as the clips from the student and the teacher model are centered at the same331

frame. We report results using our framework and investigating the effect of incorporating linguistic332

information for spatio-temporal atomic action detection in Table 4. Details for our approach are333

explained in the Appendix.334

5 Activity Parsing Evaluation335

In this section, we evaluate our dataset on methods across two different tasks. First, we evaluate336

model performance on the activity parsing task which leverages the hierarchy of our dataset. Next,337

we examine our method on activity parsing in the few-shot setting.338

We evaluate each level of activity parsing using the following metrics.339

Activity: Activity performance is measured by the top 1 accuracy (acc@1) and top 5 accuracy340

(acc@5) for video-level activity classification.341

Sub-activity: Sub-activity performance is measured by two metrics. First, we report the sub-activity342

acc@1 and acc@5 (where the pre-segmented sub-activity video is used as input). Second, we evaluate343

temporal detection using mAP at thresholds 0.1, 0.3, and 0.5 and report the average mAP following344

[33].345

Atomic action: We report atomic action performance using several metrics. First, we evaluate entity346

detection using standard average prevision (AP) metrics. To evaluate scene graph generation, we347

follow work in [79, 19, 99] and perform the following tasks: predicate classification (PredCls), which348

takes ground truth bounding boxes and object categories as input and returns predicate labels, scene349

graph classification (SGCls) which only takes in ground truth bounding boxes as input and predicts350

object categories and predicate labels, and scene graph detection (SGDet) which simply takes in an351

input image and predicts bounding box locations, object categories, and predicate labels.352

6 Conclusion353

We introduce the MOMA-LRG dataset, a large activity recognition dataset of complex human354

activities that enables evaluation and fine-tuning of large, generalizable video-language models.355
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Table 4: Scene graph, entity, and sub-activity detection results from the methods described in Section
4.2. Our results show that sub-activity detection and entity detection are challenging in the MOMA-
LRG dataset. The entity detection results pose challenges for scene graph detection, as is evidenced
by the relatively higher scores for SGCls and PredCls, where ground truth bounding boxes and class
labels are known.

Scene Graph Detection

Recall@20 Recall@50 Recall@100

PredCls 58.2243 62.4389 64.0983
SGCls 44.3065 48.3825 50.2992
SGDet 37.6275 43.8594 47.9960

Entity Detection

AP AP50 AP75 APs APm APl

Actor role 38.3567 58.1256 41.2369 7.8053 19.4897 40.0392
Entity 15.2896 29.3032 14.0742 4.3134 10.1288 17.1472

Temporal Detection

Video only Video + text stream

MViT-B 0.2130 0.2353
SlowFast-R50 0.1975 0.2023

Figure 3: A confusion matrix for zero-shot classification of Video-
CLIP [12] on the standard MOMA-LRG sub-activity test set. The
sub-activities are ordered to be adjacent to other sub-activities within
the same activity. As is indicated by the green squares and the results
in Table 5, there is a significant degree of within-activity confusion
for zero-shot video language models.

Table 5: Low-shot video classfication. We evaluate both VideoCLIP [12] and Frozen-in-Time [8]
within our few-shot framework for activity and sub-activity classification. We note that although the
video-language models we tested performed well for high-level activity classification, they performed
significantly worse for the more granular task of sub-activity classification.

Activity Sub-activity

Model 0-shot 1-shot 5-shot 0-shot 1-shot 5-shot

OTAM [100] - 80.71 92.07 - 57.14 72.59
CMN [101] - 73.57 86.30 - 52.30 66.60
VideoCLIP [12] 75.90 84.40 84.80 30.80 32.70 32.70
Frozen [8] 90.80 92.30 92.50 19.10 26.50 26.30

We define activity parsing as the overarching task of activity graph generation, requiring video356

understanding at multiple levels of granularity. We demonstrate the capacity of MOMA-LRG to train357

video-language models by introducing a model-agnostic and lightweight approach for adaptation,358

and we evaluate VLMs by demonstrating strong few-shot classification performance. We hope that359

MOMA-LRG will enable further research into generalizable activity recognition models that are360

trained with multiple input modalities or generating language descriptions for videos.361

10



References362

[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-363

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern364

recognition, pages 248–255. Ieee, 2009.365

[2] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-366

narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and367

Andrew Zisserman. The kinetics human action video dataset, 2017.368

[3] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von369

Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the370

opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.371

[4] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini372

Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and373

Ilya Sutskever. Learning transferable visual models from natural language supervision. In374

ICML, 2021.375

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-376

wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language377

models are few-shot learners. Advances in neural information processing systems, 33:1877–378

1901, 2020.379

[6] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark380

Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on381

Machine Learning, pages 8821–8831. PMLR, 2021.382

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of383

deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,384

2018.385

[8] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time: A joint video386

and image encoder for end-to-end retrieval. In Proceedings of the IEEE/CVF International387

Conference on Computer Vision, pages 1728–1738, 2021.388

[9] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and389

Josef Sivic. HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million390

Narrated Video Clips. In ICCV, 2019.391

[10] Hu Xu, Gargi Ghosh, Po-Yao Huang, Prahal Arora, Masoumeh Aminzadeh, Christoph Fe-392

ichtenhofer, Florian Metze, and Luke Zettlemoyer. Vlm: Task-agnostic video-language393

model pre-training for video understanding. In Findings of the Association for Computational394

Linguistics: ACL-IJCNLP 2021, pages 4227–4239, 2021.395

[11] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for396

bridging video and language. In Proceedings of the IEEE conference on computer vision and397

pattern recognition, pages 5288–5296, 2016.398

[12] Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko, Armen Aghajanyan, Florian Metze,399

Luke Zettlemoyer, and Christoph Feichtenhofer. Videoclip: Contrastive pre-training for zero-400

shot video-text understanding. In Proceedings of the 2021 Conference on Empirical Methods401

in Natural Language Processing, pages 6787–6800, 2021.402

[13] Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu, Jae Sung Park, Jize Cao, Ali Farhadi,403

and Yejin Choi. Merlot: Multimodal neural script knowledge models. Advances in Neural404

Information Processing Systems, 34, 2021.405

11



[14] Linjie Li, Yen-Chun Chen, Yu Cheng, Zhe Gan, Licheng Yu, and Jingjing Liu. Hero: Hi-406

erarchical encoder for video+ language omni-representation pre-training. arXiv preprint407

arXiv:2005.00200, 2020.408

[15] Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and Juan Carlos Niebles. Activitynet:409

A large-scale video benchmark for human activity understanding. In Proceedings of the IEEE410

Conference on Computer Vision and Pattern Recognition, pages 961–970, 2015.411

[16] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne412

Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,413

et al. The" something something" video database for learning and evaluating visual common414

sense. In Proceedings of the IEEE international conference on computer vision, pages 5842–415

5850, 2017.416

[17] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew417

Zisserman. End-to-End Learning of Visual Representations from Uncurated Instructional418

Videos. In CVPR, 2020.419

[18] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid. Videobert: A420

joint model for video and language representation learning. In Proceedings of the IEEE/CVF421

International Conference on Computer Vision (ICCV), October 2019.422

[19] Jingwei Ji, Ranjay Krishna, Li Fei-Fei, and Juan Carlos Niebles. Action genome: Actions as423

compositions of spatio-temporal scene graphs. In Proceedings of the IEEE/CVF Conference424

on Computer Vision and Pattern Recognition, pages 10236–10247, 2020.425

[20] Zelun Luo, Wanze Xie, Siddharth Kapoor, Yiyun Liang, Michael Cooper, Juan Carlos Niebles,426

Ehsan Adeli, and Fei-Fei Li. Moma: Multi-object multi-actor activity parsing. Advances in427

Neural Information Processing Systems, 34, 2021.428

[21] Nishant Rai, Haofeng Chen, Jingwei Ji, Rishi Desai, Kazuki Kozuka, Shun Ishizaka, Ehsan429

Adeli, and Juan Carlos Niebles. Home action genome: Cooperative compositional action430

understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern431

Recognition, pages 11184–11193, 2021.432

[22] Sungjin Park, Seongsu Bae, Jiho Kim, Tackeun Kim, and Edward Choi. Graph-text multi-433

modal pre-training for medical representation learning. In Conference on Health, Inference,434

and Learning, pages 261–281. PMLR, 2022.435

[23] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. Translating structured english436

to robot controllers. Advanced Robotics, 22(12):1343–1359, 2008.437

[24] Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli, Eric Klavins, and George J438

Pappas. Symbolic planning and control of robot motion [grand challenges of robotics]. IEEE439

Robotics & Automation Magazine, 14(1):61–70, 2007.440

[25] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for441

video recognition. In Proceedings of the IEEE/CVF international conference on computer442

vision, pages 6202–6211, 2019.443

[26] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the444

kinetics dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern445

Recognition, pages 6299–6308, 2017.446

[27] Christoph Feichtenhofer. X3d: Expanding architectures for efficient video recognition. In447

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages448

203–213, 2020.449

12



[28] Yanyi Zhang, Xinyu Li, Chunhui Liu, Bing Shuai, Yi Zhu, Biagio Brattoli, Hao Chen, Ivan450

Marsic, and Joseph Tighe. Vidtr: Video transformer without convolutions. In Proceedings of451

the IEEE/CVF International Conference on Computer Vision, pages 13577–13587, 2021.452

[29] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin453

transformer. arXiv preprint arXiv:2106.13230, 2021.454

[30] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia455

Schmid. Vivit: A video vision transformer. In Proceedings of the IEEE/CVF International456

Conference on Computer Vision, pages 6836–6846, 2021.457

[31] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for458

video understanding. arXiv preprint arXiv:2102.05095, 2(3):4, 2021.459

[32] Roei Herzig, Elad Ben-Avraham, Karttikeya Mangalam, Amir Bar, Gal Chechik, Anna460

Rohrbach, Trevor Darrell, and Amir Globerson. Object-region video transformers. ArXiv,461

abs/2110.06915, 2021.462

[33] Haroon Idrees, Amir R Zamir, Yu-Gang Jiang, Alex Gorban, Ivan Laptev, Rahul Sukthankar,463

and Mubarak Shah. The thumos challenge on action recognition for videos “in the wild”.464

Computer Vision and Image Understanding, 155:1–23, 2017.465

[34] Dian Shao, Yue Zhao, Bo Dai, and Dahua Lin. Finegym: A hierarchical video dataset for466

fine-grained action understanding. In Proceedings of the IEEE/CVF conference on computer467

vision and pattern recognition, pages 2616–2625, 2020.468

[35] Mengmeng Xu, Chen Zhao, David S Rojas, Ali Thabet, and Bernard Ghanem. G-tad: Sub-469

graph localization for temporal action detection. In Proceedings of the IEEE/CVF Conference470

on Computer Vision and Pattern Recognition, pages 10156–10165, 2020.471

[36] Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei Wen. Bmn: Boundary-matching network472

for temporal action proposal generation. In Proceedings of the IEEE/CVF International473

Conference on Computer Vision, pages 3889–3898, 2019.474

[37] Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal action localization in untrimmed475

videos via multi-stage cnns. In Proceedings of the IEEE conference on computer vision and476

pattern recognition, pages 1049–1058, 2016.477

[38] Yuanjun Xiong, Yue Zhao, Limin Wang, Dahua Lin, and Xiaoou Tang. A pursuit of temporal478

accuracy in general activity detection. arXiv preprint arXiv:1703.02716, 2017.479

[39] Jiyang Gao, Zhenheng Yang, Kan Chen, Chen Sun, and Ram Nevatia. Turn tap: Temporal unit480

regression network for temporal action proposals. In Proceedings of the IEEE international481

conference on computer vision, pages 3628–3636, 2017.482

[40] Humam Alwassel, Fabian Caba Heilbron, and Bernard Ghanem. Action search: Spotting483

actions in videos and its application to temporal action localization. In Proceedings of the484

European Conference on Computer Vision (ECCV), pages 251–266, 2018.485

[41] Shyamal Buch, Victor Escorcia, Bernard Ghanem, Li Fei-Fei, and Juan Carlos Niebles. End-486

to-end, single-stream temporal action detection in untrimmed videos. In Procedings of the487

British Machine Vision Conference 2017. British Machine Vision Association, 2019.488

[42] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Caroline Pantofaru, Yeqing Li, Sud-489

heendra Vijayanarasimhan, George Toderici, Susanna Ricco, Rahul Sukthankar, et al. Ava: A490

video dataset of spatio-temporally localized atomic visual actions. In Proceedings of the IEEE491

Conference on Computer Vision and Pattern Recognition, pages 6047–6056, 2018.492

13



[43] Yixuan Li, Lei Chen, Runyu He, Zhenzhi Wang, Gangshan Wu, and Limin Wang. Multisports:493

A multi-person video dataset of spatio-temporally localized sports actions. In Proceedings of494

the IEEE/CVF International Conference on Computer Vision, pages 13536–13545, 2021.495

[44] Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaiming He, Philipp Krahenbuhl, and496

Ross Girshick. Long-term feature banks for detailed video understanding. In Proceedings of497

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.498

[45] Yutong Feng, Jianwen Jiang, Ziyuan Huang, Zhiwu Qing, Xiang Wang, Shiwei Zhang,499

Mingqian Tang, and Yue Gao. Relation modeling in spatio-temporal action localization.500

arXiv preprint arXiv:2106.08061, 2021.501

[46] Junting Pan, Siyu Chen, Zheng Shou, Jing Shao, and Hongsheng Li. Actor-context-actor502

relation network for spatio-temporal action localization. 2021 IEEE/CVF Conference on503

Computer Vision and Pattern Recognition (CVPR), pages 464–474, 2021.504

[47] Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and505

Boqing Gong. Vatt: Transformers for multimodal self-supervised learning from raw video,506

audio and text. In Advances in Neural Information Processing Systems, 2021.507

[48] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. To-508

wards a unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366,509

2021.510

[49] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.511

Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language512

processing. arXiv preprint arXiv:2107.13586, 2021.513

[50] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe,514

Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning515

for nlp. In ICML, 2019.516

[51] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.517

In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics518

and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long519

Papers), pages 4582–4597, 2021.520

[52] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern521

analysis and machine intelligence, 40(12):2935–2947, 2017.522

[53] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A523

closer look at few-shot classification. In International Conference on Learning Representations,524

2018.525

[54] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Vl-adapter: Parameter-efficient transfer learning526

for vision-and-language tasks. arXiv preprint arXiv:2112.06825, 2021.527

[55] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng528

Li, and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. arXiv529

preprint arXiv:2110.04544, 2021.530

[56] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for531

vision-language models. arXiv preprint arXiv:2109.01134, 2021.532

[57] Yuan Yao, Ao Zhang, Zhengyan Zhang, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun.533

Cpt: Colorful prompt tuning for pre-trained vision-language models. arXiv preprint534

arXiv:2109.11797, 2021.535

[58] Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, and Weidi Xie. Prompting visual-language536

models for efficient video understanding. arXiv preprint arXiv:2112.04478, 2021.537

14



[59] Jingen Liu, Benjamin Kuipers, and Silvio Savarese. Recognizing human actions by attributes.538

In CVPR 2011, pages 3337–3344. IEEE, 2011.539

[60] Yanwei Fu, Timothy M Hospedales, Tao Xiang, and Shaogang Gong. Attribute learning for540

understanding unstructured social activity. In European Conference on Computer Vision, pages541

530–543. Springer, 2012.542

[61] Biagio Brattoli, Joseph Tighe, Fedor Zhdanov, Pietro Perona, and Krzysztof Chalupka. Re-543

thinking zero-shot video classification: End-to-end training for realistic applications. In544

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages545

4613–4623, 2020.546

[62] Mina Bishay, Georgios Zoumpourlis, and Ioannis Patras. Tarn: Temporal attentive relation547

network for few-shot and zero-shot action recognition. arXiv preprint arXiv:1907.09021,548

2019.549

[63] Ioannis Alexiou, Tao Xiang, and Shaogang Gong. Exploring synonyms as context in zero-shot550

action recognition. In 2016 IEEE International Conference on Image Processing (ICIP), pages551

4190–4194. IEEE, 2016.552

[64] AJ Piergiovanni and Michael S Ryoo. Learning shared multimodal embeddings with unpaired553

data. CoRR, 2018.554

[65] Bowen Zhang, Hexiang Hu, and Fei Sha. Cross-modal and hierarchical modeling of video and555

text. In Proceedings of the European Conference on Computer Vision (ECCV), pages 374–390,556

2018.557

[66] Pallabi Ghosh, Nirat Saini, Larry S Davis, and Abhinav Shrivastava. All about knowledge558

graphs for actions. arXiv preprint arXiv:2008.12432, 2020.559

[67] Devraj Mandal, Sanath Narayan, Sai Kumar Dwivedi, Vikram Gupta, Shuaib Ahmed, Fa-560

had Shahbaz Khan, and Ling Shao. Out-of-distribution detection for generalized zero-shot561

action recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and562

Pattern Recognition, pages 9985–9993, 2019.563

[68] Valter Estevam, Helio Pedrini, and David Menotti. Zero-shot action recognition in videos: A564

survey. Neurocomputing, 439:159–175, 2021.565

[69] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-shot learning via embedding566

adaptation with set-to-set functions. In Proceedings of the IEEE/CVF Conference on Computer567

Vision and Pattern Recognition, pages 8808–8817, 2020.568

[70] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. Deepemd: Few-shot image classifi-569

cation with differentiable earth mover’s distance and structured classifiers. In Proceedings of570

the IEEE/CVF conference on computer vision and pattern recognition, pages 12203–12213,571

2020.572

[71] Kaidi Cao, Jingwei Ji, Zhangjie Cao, Chien-Yi Chang, and Juan Carlos Niebles. Few-shot573

video classification via temporal alignment. In Proceedings of the IEEE/CVF Conference on574

Computer Vision and Pattern Recognition, pages 10618–10627, 2020.575

[72] Linchao Zhu and Yi Yang. Label independent memory for semi-supervised few-shot video576

classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(1):273–577

285, 2022.578

[73] Chris Careaga, Brian Hutchinson, Nathan Hodas, and Lawrence Phillips. Metric-based few-579

shot learning for video action recognition. arXiv preprint arXiv:1909.09602, 2019.580

[74] Zhenxi Zhu, Limin Wang, Sheng Guo, and Gangshan Wu. A closer look at few-shot video581

classification: A new baseline and benchmark. arXiv preprint arXiv:2110.12358, 2021.582

15



[75] Xiatian Zhu, Antoine Toisoul, Juan-Manuel Perez-Rua, Li Zhang, Brais Martinez, and Tao583

Xiang. Few-shot action recognition with prototype-centered attentive learning. arXiv preprint584

arXiv:2101.08085, 2021.585

[76] Hongguang Zhang, Li Zhang, Xiaojuan Qi, Hongdong Li, Philip HS Torr, and Piotr Koniusz.586

Few-shot action recognition with permutation-invariant attention. In European Conference on587

Computer Vision, pages 525–542. Springer, 2020.588

[77] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. Dense-589

captioning events in videos. In Proceedings of the IEEE international conference on computer590

vision, pages 706–715, 2017.591

[78] Luowei Zhou, Yannis Kalantidis, Xinlei Chen, Jason J Corso, and Marcus Rohrbach. Grounded592

video description. In Proceedings of the IEEE/CVF Conference on Computer Vision and593

Pattern Recognition, pages 6578–6587, 2019.594

[79] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie595

Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting596

language and vision using crowdsourced dense image annotations. International journal of597

computer vision, 123(1):32–73, 2017.598

[80] Fei Yu, Jiji Tang, Weichong Yin, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. Ernie-vil:599

Knowledge enhanced vision-language representations through scene graphs. In Proceedings600

of the AAAI Conference on Artificial Intelligence, volume 35, pages 3208–3216, 2021.601

[81] Shizhe Chen, Yida Zhao, Qin Jin, and Qi Wu. Fine-grained video-text retrieval with hierarchical602

graph reasoning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern603

Recognition, pages 10638–10647, 2020.604

[82] Amir Bar, Roei Herzig, Xiaolong Wang, Anna Rohrbach, Gal Chechik, Trevor Darrell,605

and Amir Globerson. Compositional video synthesis with action graphs. arXiv preprint606

arXiv:2006.15327, 2020.607

[83] Roei Herzig, Elad Levi, Huijuan Xu, Hang Gao, Eli Brosh, Xiaolong Wang, Amir Globerson,608

and Trevor Darrell. Spatio-temporal action graph networks. In Proceedings of the IEEE/CVF609

International Conference on Computer Vision Workshops, pages 0–0, 2019.610

[84] Xiaolong Wang and Abhinav Gupta. Videos as space-time region graphs. In Proceedings of611

the European conference on computer vision (ECCV), pages 399–417, 2018.612

[85] Ang Li, Meghana Thotakuri, David A. Ross, João Carreira, Alexander Vostrikov, and Andrew613

Zisserman. The ava-kinetics localized human actions video dataset. CoRR, abs/2005.00214,614

2020.615

[86] Philippe Weinzaepfel, Xavier Martin, and Cordelia Schmid. Human action localization with616

sparse spatial supervision. arXiv preprint arXiv:1605.05197, 2016.617

[87] Kellie Corona, Katie Osterdahl, Roderic Collins, and Anthony Hoogs. Meva: A large-scale618

multiview, multimodal video dataset for activity detection. In Proceedings of the IEEE/CVF619

Winter Conference on Applications of Computer Vision (WACV), pages 1060–1068, January620

2021.621

[88] Srikanth Malla, Behzad Dariush, and Chiho Choi. TITAN: future forecast using action priors.622

CoRR, abs/2003.13886, 2020.623

[89] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time624

object detection with region proposal networks. Advances in neural information processing625

systems, 28, 2015.626

16



[90] Luowei Zhou, Chenliang Xu, and Jason J Corso. Towards automatic learning of procedures627

from web instructional videos. In Thirty-Second AAAI Conference on Artificial Intelligence,628

2018.629

[91] Vignesh Ramanathan, Bangpeng Yao, and Li Fei-Fei. Social role discovery in human events.630

2013 IEEE Conference on Computer Vision and Pattern Recognition, pages 2475–2482, 2013.631

[92] Amy Fire and Song-Chun Zhu. Learning perceptual causality from video. ACM Transactions632

on Intelligent Systems and Technology (TIST), 7(2):1–22, 2015.633

[93] Anders Brodersen, Salvatore Scellato, and Mirjam Wattenhofer. Youtube around the world:634

geographic popularity of videos. In Proceedings of the 21st international conference on World635

Wide Web, pages 241–250, 2012.636

[94] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and637

Christoph Feichtenhofer. Multiscale vision transformers. In Proceedings of the IEEE/CVF638

International Conference on Computer Vision, pages 6824–6835, 2021.639

[95] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image640

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,641

pages 770–778, 2016.642

[96] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Be-643

longie. Feature pyramid networks for object detection. In Proceedings of the IEEE conference644

on computer vision and pattern recognition, pages 2117–2125, 2017.645

[97] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,646

Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In647

European conference on computer vision, pages 740–755. Springer, 2014.648

[98] Ji Zhang, Kevin J Shih, Ahmed Elgammal, Andrew Tao, and Bryan Catanzaro. Graphical649

contrastive losses for scene graph parsing. In Proceedings of the IEEE/CVF Conference on650

Computer Vision and Pattern Recognition, pages 11535–11543, 2019.651

[99] Danfei Xu, Yuke Zhu, Christopher Bongsoo Choy, and Li Fei-Fei. Scene graph generation by652

iterative message passing. 2017 IEEE Conference on Computer Vision and Pattern Recognition653

(CVPR), pages 3097–3106, 2017.654

[100] Kaidi Cao, Jingwei Ji, Zhangjie Cao, Chien-Yi Chang, and Juan Carlos Niebles. Few-shot655

video classification via temporal alignment. In Proceedings of the IEEE/CVF Conference on656

Computer Vision and Pattern Recognition, pages 10618–10627, 2020.657

[101] Linchao Zhu and Yi Yang. Compound memory networks for few-shot video classification. In658

Proceedings of the European Conference on Computer Vision (ECCV), pages 751–766, 2018.659

17



Checklist660

1. For all authors...661

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s662

contributions and scope? [Yes]663

(b) Did you describe the limitations of your work? [Yes]664

(c) Did you discuss any potential negative societal impacts of your work? [Yes]665

(d) Have you read the ethics review guidelines and ensured that your paper conforms to666

them? [Yes]667

2. If you are including theoretical results...668

(a) Did you state the full set of assumptions of all theoretical results? [N/A]669

(b) Did you include complete proofs of all theoretical results? [N/A]670

3. If you ran experiments...671

(a) Did you include the code, data, and instructions needed to reproduce the main experi-672

mental results (either in the supplemental material or as a URL)? [Yes]673

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they674

were chosen)? [Yes]675

(c) Did you report error bars (e.g., with respect to the random seed after running experi-676

ments multiple times)? [N/A]677

(d) Did you include the total amount of compute and the type of resources used (e.g., type678

of GPUs, internal cluster, or cloud provider)? [Yes]679

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...680

(a) If your work uses existing assets, did you cite the creators? [Yes]681

(b) Did you mention the license of the assets? [Yes]682

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]683

684

(d) Did you discuss whether and how consent was obtained from people whose data you’re685

using/curating? [Yes]686

(e) Did you discuss whether the data you are using/curating contains personally identifiable687

information or offensive content? [Yes]688

5. If you used crowdsourcing or conducted research with human subjects...689

(a) Did you include the full text of instructions given to participants and screenshots, if690

applicable? [N/A]691

(b) Did you describe any potential participant risks, with links to Institutional Review692

Board (IRB) approvals, if applicable? [N/A]693

(c) Did you include the estimated hourly wage paid to participants and the total amount694

spent on participant compensation? [N/A]695

18


	Introduction
	Related work
	Activity Graphs and the MOMA-LRG Dataset
	Activity Graphs
	The MOMA-LRG Dataset

	Activity Parsing and the GraphVLM Model
	Activity Parsing
	GraphVLM: Video Stream
	GraphVLM: Text Stream
	GraphVLM: Few-shot and Transfer Learning

	Activity Parsing Evaluation
	Conclusion

