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ABSTRACT

Predicting dense depth accurately is essential for 3D scene under-
standing applications such as autonomous driving and robotics.
However, the depth obtained from commercially available LIDAR
and Time-of-Flight sensors is very sparse. With RGB color guidance,
modern convolutional neural network (CNN) based approaches can
recover the missing depth information. However, there could be
scenarios such as low-light environments where it might be diffi-
cult to get an associated RGB image with the sparse depth. In this
work, we propose a Generative Adversarial Network (GAN) that
can accurately predict the dense depth using only sparse samples
without any RGB inputs. Generally, the sparsity in the depth sam-
ples is uniformly distributed and cannot guarantee capturing all
intricate details. In this study, we also explore different variants of
sparse sampling strategies from uniform to feature based directed
sampling. We find that feature based intelligent sampling enjoys
better compression ratio without sacrificing intricate details, saving
data communication bandwidth. Compared to uniform sampling,
depending on how aggressively the directed sampling is done, we
observe about 3% to 25% reduction in size. We can easily reduce the
size by 8% with directed sampling without sacrificing the recon-
struction accuracy. Although such directed sampling strategies are
not readily available with commercially viable depth sensors, we
believe that our study paves the way for future intelligent sensing
and sampling strategies. To further investigate data reduction and
reconstruction accuracy trade-offs we deploy our GAN to gener-
ate higher resolution dense depth from 4Xx smaller sparse samples.
With slight decrease in accuracy, our GAN is able to recover the
depth successfully which shows great promise in edge Internet of
Things (IoT) applications where we have very tight constraint on
data transmission bandwidth. Our source code along with examples
is available at: https://github.com/kocchop/depth-completion-gan
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1 INTRODUCTION

Sensing range accurately is critical for real-time mapping and
surveillance tasks such as simultaneous localization and mapping
(SLAM), autonomous and semi-autonomous guidance for vehicles,
path planning for space crafts and similar robotic applications. Ac-
curate and dense depth measurements is also extremely useful for
object avoidance, detection, 3D modeling and reconstruction tasks.
Mainstream range detection sensors include LiDAR scanners, time
of flight (ToF) sensors and RGBD cameras. Amongst these, LIDAR
sensors provide accurate depth information for longest range and
hence are the most convenient for outdoor environments. However,
these sensors suffer from some inherent limitations such as low
frequency and sparse samples. Standard LiDAR sensors operate
at 5-15 Hz and only provide 32 or 64 scanlines across the whole
image [9]. This type of sampling results in heavily sparse depth
images whereas most of the applications require dense and accurate
depth information. Hence, predicting dense and accurate range is
an active area of research.

Generative Adversarial Networks (GAN) are seen to perform ex-
ceptionally well in single image super resolution i.e. constructing
accurate and detailed images from low resolution images [16, 25].
With enough training data, GANs can learn to generate samples
adhering to the parent distribution. Consequently, they have been a
popular choice for tackling problems requiring generating images.
Convolutional neural networks (CNNs) on the other hand can pro-
duce state-of-the-art sparse to dense depth completion results but



Poster Session 6

they require additional RGB data [19, 22]. In this work, we aim to
produce accurate dense depth images only from sparse examples
without any RGB information. Consequently, in this study, we lever-
age a GAN to predict dense depth without any RGB guidance or
prior and show that they can produce competitive results compared
to the state-of-the-art CNNs with a smaller memory footprint and
lower latency. We also deploy a soft visual attention mechanism
and introduce normal loss as perceptual loss indicated in [25].

While high resolution and more detailed data generally gives better
accuracy, it also pushes the limits of communication bandwidth.
With better connectivity and recent advancement in Internet of
Things (IoT), we are generating more data than ever. More than
300 million photos get uploaded to Facebook everyday and on aver-
age, 300 hours of video are uploaded on YouTube every minute [7].
Storage and transmission of these multimedia contents requires
huge amount disk space and network bandwidth. Therefore, data
compression techniques which can save storage memory and trans-
mission bandwidth without affecting the quality are becoming more
and more significant than ever. The basics of image compression
lies in reducing data redundancy and saving only what is needed. A
uniformly sampled image contains most randomness thus provid-
ing less room for compression. On the contrary, a directed sampling
strategy can readily help data compression by reducing the random-
ness. Moreover, having more data in complicated region contributes
towards higher reconstruction accuracy. In this work we show how
directed depth samples can help improving the compression ratio
without impacting the quality. To summarize, in this paper, our key
contributions are as follows:

(1) We propose a Generative Adversarial Network (GAN) as a
depth reconstruction framework which provides competitive
predictions only from sparse depth samples compared to
what state-of-art CNNs achieve using both RGB image and
sparse depth samples. Our proposed architecture utilizes less
storage both during training and inference.

(2) We explore different sampling strategies other than uni-
form sampling and show compression benefits. The sam-
pling strategies mainly consist of feature based sampling
where features are extracted using SURF [1].

(3) Our proposed GAN can also be used to generate super res-
olution depth images from much smaller sparse samples,
further increasing storage benefits.

2 RELATED WORKS
2.1 Depth Completion

The depth completion technique aims at constructing the 3D image
by filling the holes in the existing 3D frame. Traditional approaches
like dedicated kernel development to construct the missing pieces
of the depth image [6] are very scene-specific and are difficult
to generalize. A relatively newer CNN-based approach tends to
outperform classic approaches and also shows good generaliza-
tion characteristics. Many state of the art deep neural networks
like [10, 18, 19, 22, 23, 26] leverage both sparse depth data and
RGB images to predict depths. Sparse-to-Dense [19] suggested an
encoder-decoder architecture for dense depth prediction. Later, they
extended it by proposing a self-supervised depth completion mech-
anism that does not require ground truth labels [18]. FusionNet [23]
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uses two separate branches for global and local feature extraction
with RGB guidance in order to predict depth. The two branches
also predict separate confidence maps that are used in fusing two
predictions in order to generate the final depth. In this study, we
refer to FusionNet as "Sparse Depth". Hu et al. [10], highlights the
importance of the balanced fusion of the color and depth to gain
the performance boost in dense depth map generation task. It also
introduces the idea of a geometric convolution layer that performs
a fusion of different modalities leading to better accuracy. Xiong
et al. [26] proposed a graph convolution model which tries to ex-
ploit the neighborhood relationship of 3D points by the usage of
dynamic construction of local neighborhood instead of traditional
square kernels. One key aspect worth mentioning is that most of
these CNN based approaches require multiple training stages. For
example, DeepLiDAR [22] first trains a network to generate surface
normals from sparse depth data. Another pipeline is separately
trained to produce depth images only from RGB data. Finally, these
two pipelines are fused and trained end to end to generate the final
depth image. On the contrary, our proposed GAN is essentially a
single architecture trained in an end to end fashion from the very
beginning. More importantly, while other approaches use RGB guid-
ance for the depth completion task, our model uses depth images
alone to accomplish the same.

2.2 Sampling Strategy

Depth maps can be generated either by directly measuring dis-
tance with sensors such as laser scanners (LiDAR), time-of-flight
cameras and ultra wide band radars, or from inferring distance
from RGB images. There are two main approaches for inferring
distance from images. The classical approach is using parallax, i.e.
displacement of objects between images. Modern approaches are
able to infer distance from a single image using deep learning al-
gorithms [10, 19]. In contrast, depth sensing devices can directly
obtain depth measurements with sensor readings; the advantage
of these technologies is the accuracy they provide when compared
to RGB image systems. Junming et al. [27] proposed a cost effec-
tive solution by fusing the image coming from LiDAR and stereo
matching algorithm to produce high quality depth map.

Recently the application of 3D imaging systems has increased sig-
nificantly because of the advancement it gives in many day-to-day
jobs. In order to balance between speed, power consumption, and
image resolution, imaging hardware tends to work in sparse depth
and uses the depth completion technique to convert from sparse to
dense. Different sampling strategies have been explored to reduce
the number of depth sample points. Most relevant to our work is
Alexander et al. [2] who used Poisson-disc [3] sampling technique
by adding a learnt four layer visual attention network. In contrast
to their approach, which is consistent with furthest point sampling
approach, our technique densely samples point around features
extracted by a light weight feature extractor. Hence, our approach is
beneficial for compressibility of the sampled data which is the focus
of our evaluation. Prior work has not investigated compression.

2.3 Attention Mechanism

Convolution on higher resolution image is a compute expensive
operation and lately has received a lot of attention in deep learn-
ing literature. In order to expedite the convergence, many recent
works [8, 17] used attention map to direct the focus of the network
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Figure 1: Our overall GAN Architecture. (a) shows the structure of the hourglass attention module, (b) shows a Dense Residual
Block configuration consisting of convolution layers followed by LeakyReLU as showed in (d) except for the last one. (c)
illustrates the structure of a RRDB block consisting of 3 Dense blocks. Finally, (e) gives the overview of the whole architecture.

towards certain regions and increase the performance of convolu-
tion operator. The most common structure of an attention module
is an encoder-decoder structure. The encoder extracts richer con-
text from the input and the decoder eventually learns where to pay
attention. In addition to that, attention mechanisms are seen to
improve the prediction accuracy. In this study, we also introduce a
soft attention module for similar purposes.

3 METHOD

In this section, we briefly describe the problem statement leading
towards the GAN architecture. We also describe the most popular
image compression algorithms and investigate how randomness in
data affects their compression ratio.

3.1 Problem Statement

The basic setting of a GAN consists of two networks naming the
generator and the discriminator. The generator learns to create
samples identical to an input distribution and the discriminator
learns to distinguish between real and generated fake data. Eventu-
ally, the training reaches convergence when the generator becomes
successful in fooling the discriminator. In our problem setting, the
input data distribution is the sparse depth image, I* and we aim to
predict the dense depth, IPN from it. The ultimate goal is to train
a generator function, G which can produce dense depth samples
from the sparse inputs. Generally, the generator, G is a multi-layer
perceptron network, in our case a CNN Gy, having the parame-
ters 0. We assume the generator loss function is defined as LC.
Then for training samples, I57,n = 1,.., N with corresponding
I,?N, n=1,.., N, we aim to solve:

N
j . G SP\ DN
0 = argrgln N ZL (GQG (In ),In ) (1)
¢ n=1
It is to be noted that the loss function L€ is a weighted combina-
tion of different loss components which include the discriminator
loss. The other loss components focus on definitive characteristics

5530

of the desired dense depth image. The details regarding the loss
function is explained in detail below.

3.1.1 Adversarial Loss. The discriminator, Df,i";x is also a CNN based
architecture with parameters 0p. Following [25], we use a Rela-
tivistic average Discriminator (RaD) explained in [14], denoted as
DRA_ The sole purpose of the discriminator is to identify gener-
ated fake samples and the generator tries to fool it making it a
two player min-max game. While the standard discriminator esti-
mates the probability of its input being real or fake, the relativistic
discriminator operates on two images, one is the generated one
IPN = G, (15P) and another is real I°N It tries to predict the
probability of the real one, I°N being relatively more realistic than
the generated [PN . This leads us to the discriminator loss defined
as:

lD

Ra = -Epn [log (DRa (IDN, fDN))] -

Eipn [log (1 — DRa (fDN, IDN))]
Similarly, we get the adversarial loss for the generator in a sym-
metrical form:

IS = —Ejpn [log (1-DFa (IDN,fDN))] -

Ejpx [Iog (DRa (I”DN)IDN))]
where, E;pn [-] denotes the average taken out for all the real
samples inside the mini-batch.

(2)

®)

3.1.2  Normal Loss. In addition to the adversarial loss, we also use
normal loss as the perceptual loss for the generator network. In
ESRGAN [25], the authors used a pretrained VGG backbone to
calculate a perceptual loss on the generated data. This approach
is not suitable in our case since we are not dealing with RGB data.
On the other hand, the calculation of image normals from a depth
map is quite straightforward making it the most meaningful inter-
mediate depth representation. Hence, we leverage the mismatch
between generated and real depth image normals and use that as
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Figure 2: Qualitative comparison among the state-of-the-art depth completion architectures. The sparse input has been uni-
formly sampled in this case. Our GAN has visibly produced much better results compared to others.

the perceptual component inside generator loss. If VPN, VPN are
the corresponding gradient vectors of ground truth IV and the
prediction fDN, then the normal loss over n = 1,..., N samples can
be presented as:

YA
Lormal = - Z 1- W 4)
1 13

i=1

where, () denotes the dot product of the gradient vectors and ||-|
denotes the norm of the corresponding vectors. For depth images,
normal loss is exceptionally helpful to capture finer and intricate
details. That is why, we use it as a perceptual loss for the generator.

3.1.3  Pixel Loss. It is the most straightforward pixel to pixel loss,
also known as [1 loss and defined as:

L = Egsel|Gag (I°F) = IPM]11 ©)
Finally, we get the total generator loss as:
LG = lnormal +o l}?a + ﬁ * 1 (6)

The « and f are the scaling factors in order to balance different
loss components. By tweaking these two hyperparameters we can

particular favor certain kind of features while training the network.

However, in general training settings, these two are kept at constant
values.

3.2 Network Architecture

In this section, we briefly describe the basic components of the
proposed network architecture.
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3.2.1 Dense Residual Blocks: The core building block of our GAN
architecture is a densely connected residual block [11]. Dense net-
works can effectively differentiate between already preserved infor-
mation in the network and the newly added information improving
the overall collective knowledge. For larger networks with many
layers, the dense layer eases the information and gradient flow.

3.2.2 Hourglass Attention Mechanism: The hourglass network en-
ables capturing attributes of image at different scale allowing the
model to gain more insight on the context by increasing the number
of features used for training as compare to the other networks. The
hourglass is constructed by performing convolution and max pool
operation in each layer along with down sampling of images so that
extracting features is less compute expensive. After reaching the
lowest granularity, the network begins to upsample the images and
consolidates all the features extracted so far [21]. The difference in
our implementation is that we use the dense residual blocks as op-
posed to normal convolutional blocks inside the hourglass structure.

3.2.3  Residual in Residual Dense Blocks (RRDB):. Residual in Resid-
ual Dense Blocks (RRDB) [25] helps boost the performance by
increasing the number of connection and is proven to perform well
in reconstructing finer details. In our study, we aim to generate
dense depth from non-uniform sparse samples which is why we
use the RRDB as the basic block of our generator architecture.

3.3 Image Compression

Depth images or depth maps express distance information about the
pixels in the image with respect to the viewpoint of the image taken.
Nowadays, depth images are used in a wide array of applications
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Figure 3: (a) Original image, (b) image with SURF fea-
tures highlighted, and (c)-(f) sampled images with varying
weights = 1, 2, 4, and 8 respectively.

from medical imaging, augmented reality, photography to robotics.
In augmented reality, for example, depth information is leveraged
to create more immersive experiences because it enables occlusion
and collision of virtual objects. In robotics, depth imaging is used
for navigation and localization.

Due to storage or bandwidth restrictions, such applications might
need to reduce the size of data they receive, store and generate. In
order to satisfy these constraints without compromising the effec-
tiveness, these applications employ compression algorithms. Image
compression algorithms are concerned with the minimization of
bits needed to represent an image [12], as to minimize bandwidth
and storage usage. In general, compression techniques like the ones
used in image formats such as PNG, TIFF, and JPEG take advan-
tage of redundancy, irrelevancy, predictability and the statistical
distribution of the data [13]. Take PNG for example. When convert-
ing to this format, encoders leverage DEFLATE compression [24],
which reduces redundancy of data by searching duplicate symbols
and replacing them with pointers. And finally, the symbols get re-
placed by new ones depending on their statistical frequency [5, 28].
Also, as part of the conversion process, PNG encoders apply some
kind [24] of filtering before compression so as to make the data
more compressible. In particular, delta filtering reduces the number
of symbols in an image by expressing them as the difference of
neighboring pixels. This makes an image more compressible since
a scheme like DEFLATE will eliminate duplicate data and it will
decrease the number of symbols needed to represent an image.

An important characteristic of data that is highly compressible is
that it should have a lower entropy. In other words, its predictability
and regularity should be high. The more random a sample of data is,
the less compressible it is. In this work we exploit this concept by
demonstrating that if instead of uniformly, i.e. randomly sampling
data, we direct our sampling to certain areas of the image, then we
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Table 1: Comparison of reconstruction accuracy

Architecture | RMSE | MAE [ iRMSE | iMAE
Sparse-to-Dense [19] | 0.02 0.01 0.42 0.03
Sparse Depth [23] 0.12 | 0.03 | 36.24 0.15
PENet [10] 0.02 | 0.004 | 199 | 0.03
GAN-based 0.17 | 0.016 | 0.86 | 0.01

Table 2: Model size, data volume and latency Comparison

Architecture Model Data Volume | Inference
Size (MB) | Train/Infer | Time (fps)
Sparse-to-Dense [19] 299 1x/1x 40
Sparse Depth [23] 30 1X/1% 7.14
PENet [10] 504 1%/1x 26.32
GAN-based 116.5 0.6 X /0.4% 17.24

can reduce the size of the image without sacrificing reconstruction
accuracy.

4 EXPERIMENTAL SETUP

Dataset Generation: For our experiments, we choose 2D rendered
images of a subset of models from the ShapeNet dataset [4]. Our
training set comprises of 128K randomly chosen samples and the
validation set contains 1.2K samples which are distinct from the
training ones. Each of these samples has their associated RGB im-
age and 16-bit dense depth maps. In order to get sparse samples,
we sub-sample the dense depth image. While sampling the dense
depth maps, we leverage several sampling schema described in
Section 4.1.

Training Details: Following a similar training strategy as [25], we
train the generator model with only the pixel or /1 loss for about
250 iterations. After that, we start incorporating other two loss
functions as well. The first initialization step helps to avoid local
optima and also it prevents from sending extreme false examples
to the discriminator. For the generator, we deploy 17 RRDB blocks
for the depth completion task. In the depth super-resolution exper-
iment, 23 RRDB blocks are used.

As an optimizer, we use Adam [15] for both the generator and
discriminator model with f; = 0.9 and S = 0.999. As for the loss
co-efficients, we set the adversarial loss factor, « = 5e¢ — 3 and the
pixel loss factor, § = 1e — 2. The total training framework is im-
plemented in PyTorch. For training, 4 Tesla V100 GPUs are used
where it takes roughly four days to finish 11 epochs.

4.1 Sampling Strategies

Here we explore the regime of non-uniform sampling. As men-
tioned in Section 3.3, non-uniform sampling reduces the random-
ness resulting in lower entropy. Hence, non-uniform sampling helps
improve the data compression. Moreover, uniform sampling does
not always guarantee capturing all the details. On the other hand,
if we could do some sort of non-uniform sampling allocating more
sampling for important parts of the scene, we supposedly should
have a better detailed view. In order to find out the interest points
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inside an image, we leverage classic feature extraction techniques
like SURF [1]. Depending on detected features, we deploy several
non-uniform sampling strategies such as:

(1) Uniform Sampling: Here we uniformly sample the images
targeting for a fixed percentage of the valid pixels in each
image. We assign a weight mask for every valid pixel and
for uniform, the weight is set to w=1.

(2) Weighted Sampling: Next we assign different weights for

different pixels. The points inside SURF detected feature are

associated with a higher weight value compared to other
points. Finally, weighted sampling is performed to select
the desired number of pixels. For weighted sampling, we

experimented with w=2,4,8 etc. A weighted point inside a

SURF detected feature with w=2 means that the point has

twice the chance of being selected compared to others.

Hybrid sampling: In case of hybrid sampling, first we se-

lect a small portion of the points uniformly and then the

remaining portion is sampled by weighted sampling as men-
tioned above.

®3)

An important point to note here is that for all these sampling
strategies, the point volume is kept constant.

5 RESULTS

In this section, we discuss the results. We perform both qualitative
and quantitative comparison of our proposed GAN with contem-
porary depth completion works. For quantitative comparison, we
choose the following evaluation metrics: 1) root mean square error
(RMSE), 2) mean absolute error (MAE), 3) root mean square of the
inverse depth (IRMSE) and 4) mean absolute error of the inverse
depth (iMAE). Since no prior works used the sub-sampled sparse
images from ShapeNet, we train the baselines ourselves on the
rendered ShapeNet dataset and report the best results.

5.1 Depth Reconstruction Accuracy

In this experiment, we compare predictions from our GAN with
other state-of-the-art methods. For this study, we choose the valida-
tion set with uniformly sampled images. Fig. 2 shows the qualitative
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Table 3: Reconstruction accuracy for different sampling
strategies across different frameworks

Sampling | Sparse to | Sparse | PENet | GAN | Size (%)
Strategy Dense | Depth | [10] | based | Reduction
[19] [23]
w=1 0.02 0.12 0.02 0.17 0.00
w=2 0.02 0.12 0.02 0.18 3.39
w=4 0.02 0.12 0.02 0.18 5.30
w=8 0.02 0.12 0.03 0.23 10.78
hybrid 0.02 0.12 0.02 0.18 6.55

results for the methods discussed. Visibly, our method generates
sharper images very close to the ground truth compared to oth-
ers. Table 1 shows the performance of our method compared to
other state-of-the-art depth completion techniques quantitatively.
Although, our network’s prediction accuracy is not the best, it
produces competitive results. The reason for the decrease in perfor-
mance is because our GAN generates the outputs from the sparse
depth only without any input from the RGB.

5.2 Training and Inference Storage Benefits

Our GAN generator model occupies less memory footprint com-
pared to most other state-of-the-art models discussed here as showed
in Table 2. More importantly, for training and testing it uses 40%
and 60% less data respectively. This reduction in data volume has
been possible as our GAN does not use RGB data. In terms of in-
ference latency, our generator model has competitive throughput
compared to others. By leveraging quantization and pruning based
model compression techniques, we can further reduce the model
size and inference complexity.

5.3 Compression Ratio for Directed Sampling

To validate the compression benefits of weighted sampling, we
sampled a set of 128 depth images. For every image we included
25% of the points that belonged to the object in the image, i.e. not
including the background. To decide which points to pick from this
25%, we crafted a function that assigned to every pixel a weight,
w. The weight reflected the probability of it being taken, a higher
weight means a higher probability of being taken. To choose which
pixels would have a varying weight, we used a feature extraction
algorithm; in our experiment we used SURF. We followed this pro-
cedure for w = 1,2, 4, 8, 16, 128, 1024, 8192 and saved the images in
PNG, TIFF and JPEG-2000. Figure 3 shows a sample object with high
resolution, with features highlighted and sampled with different
weights.

Our experimental results show that as the weight increased, the
compression ratio of the images increased as well. Figure 4 shows
the results for the three compression formats. In PNG for example,
images with w = 1 had a mean size of 9.08 KB while an image with
w = 8192 had a mean size of 6.60 KB. This means that compared
to uniform sampling, i.e. w = 1, this set of images had a decrease
of 25% in size. In general, our experiments show that images that
had directed sampling applied had a higher compression ratio than
images with uniform sampling.
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Figure 5: Reconstructed depth for directed sampled sparse

inputs. With the increase of weights in directed sampling,
we obtain better image compression ratio.

Table 4: Reconstruction accuracy for depth super resolution

Sampling | RMSE | MAE | iRMSE | iMAE | Size (%)
Strategy Reduction
w=1 022 | 0.06 | 1342.67 | 0.90 90.60
w=2 0.28 0.04 6.15 0.04 90.68
w=4 0.31 0.06 2.58 0.05 90.87

hybrid 0.24 0.07 | 3731.81 14 90.82

5.4 Reconstruction Accuracy for different
Non-uniform Sampling Strategies

We have discussed the compression benefits for directed sampling
in the above as opposed to the uniform sampling. Here, we present
the the effect of different sampling strategies on the prediction accu-
racy. In Table 3, we report the RMSE metric for different strategies
mentioned in Section 4.1 across all the frameworks in consideration.
Fig. 2 shows the reconstruction quality. Although the directed sam-
ples are generated with RGB guidance in this case, the RGB is not
sent to the GAN, thus saving the transmission bandwidth. Table 3
shows a slight accuracy degradation for higher weights. However,
with feature based directed sampling strategies, we obtain better
compression ratio which is extremely useful for edge cases with
limited network bandwidth.

5.5 Depth Super Resolution

We further investigate more intensive image compression schema
where along with completing sparse depth maps, the spatial image
resolution is also enhanced using our proposed GAN. In order to
conduct this experiment, we first spatially downscale the image
by 4x and then generate the sparse samples from that. We include
two PixelShuffle upsampling layers at the end to generate the high
resolution depth maps following similar approach as in [25]. Table 4
shows the reconstruction accuracy and compression benefits. The
compression ratio is calculated with respect to high resolution
sparse depth image. Such kind of aggressive compression could be
useful for extremely stringent bandwidth requirements.
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Figure 6: Qualitative study of reconstructed depth map on
the NYU-depth-v2 [20] dataset. Our GAN-based approach
generates sharper and less noisy image.

Table 5: Quantitative analysis on NYU-Depth-v2 dataset

Architecture | RMSE | MAE | iRMSE | iMAE
Sparse-to-Dense [19] | 0.067 | 0.04 | 149.83 8.9
GAN-based 0.059 0.03 | 3505.91 | 12.02

5.6 Results on NYU-Depth-v2 Dateset:

For further validation, we evaluate our GAN-based approach on
popular NYU-Depth-v2 [20] dataset. The NYU-Depth-v2 dataset
consists of depth maps provided in real values with associated
RGB images collected from 464 different indoor scenes. We use the
official split as training (around 48K samples) and testing data (654
samples). The depth images were first down-sampled to half and
then center-cropped to the size of 304x228 following [19]. Since,
we use a separate sampling strategy, we cannot use the accuracy
numbers directly from other studies. To alleviate the situation, we
train Spare-to-Dense [19] from scratch on our version of sampled
NYU-Depth-v2 dataset. We repeat the same for our GAN-based
approach and measure the metrics. Table 5 shows the quantitative
comparison on reconstruction accuracy. Although our approach
suffers in iRMSE and iMAEFE metrics, it outperforms other work
in RMSE and MAE metrics. It must be noted that we only use
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Table 6: Effect of Hourglass Attention and Normal Loss

Generator | RMSE | MAE | iRMSE | iMAE
W/0O HA 0.17 | 0.04 | 29.98 | 0.09
W/O NL 0.2 0.03 1.5 0.04

WithHA + NL | 0.17 0.016 0.86 0.01
HA = Hourglass Attention; NL = Normal Loss

sparse inputs whereas the other work uses RGB information as well.
Qualitatively, the generated dense depth maps look comparatively
sharper and less noisy. This experiment confirms the efficacy of
our proposed GAN across other datasets as well.

6 ABLATION STUDY

In this section, we perform an ablation study of the proposed net-
work architecture. We introduced an hourglass attention module
in our generator architecture and also included the normal loss in
the generator loss function. We would sequentially remove these
components one by one and see what it does to the overall recon-
struction accuracy both qualitatively and quantitatively in order to
determine their efficacy.

6.1 Hourglass Attention Module

First, we remove the hourglass attention module from the generator
pipeline keeping all other parts unchanged and train the network
from scratch in a similar fashion as the baseline. The reconstruction
accuracy of the network with and without the hourglass attention
module is provided in Table 6. Clearly, the error increases, especially,
in case of the inverse error metrics. While RMSE and MAE metrics
provide a measure of how well the model is performing in farthest
depth prediction, the inverse error metrics measure the accuracy
of the nearest depth points. Unlike many other depth completion
datasets, ShapeNet gives relative depth which is normalized for
training and we use these normalized values in order to calculate all
the metrics. Hence, a significant portion consists of fractions which
is why the inverse error metrics play a significant role representing
the overall performance. The hourglass attention module certainly
improves the overall quality remarkably.

6.2 Normal Loss

One of our key loss functions while training the generator, is the
normal loss given in 4 which serves the purpose of the perceptual
loss mentioned in [25]. In order to prove its efficacy, we retrain the
generator network from scratch removing the normal loss and only
using the pixel loss and adversarial loss. The quantitative compari-
son on reconstruction accuracy after training with and without the
normal loss is showed in Table 6. We observe a remarkable degra-
dation in RMSE compared to others while the generator is trained
without the normal loss. Fig. 7 shows the results qualitatively. We
investigate the reason and observe that without the normal loss
the edges of the objects are little distorted while using normal loss
results in a smooth edge. Since the edges are mostly located at
the farthest points, intuitively without the normal loss, it should
degrade RMSE the most. While other methods use RGB guidance
and are capable of inferring edge information from that, our GAN-
based approach achieves the same by incorporating the normal loss
during training.
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Figure 7: Qualitative comparison in between the recon-
structed depth outputs from training with and without nor-
mal loss. Clearly, with normal loss, the model generates
much better quality depth maps.

7 CONCLUSION

In this work, we presented a Generative Adversarial Network that
can recover the dense depth from sparse samples without any RGB
inputs. We also explore different variants of sparse sampling strate-
gies from uniform to feature-based directed sampling. We find
that feature-based intelligent sampling guarantees better detail
providing better compression with less communication bandwidth
requirement. Compared to uniform sampling, depending on how
aggressively the directed sampling is done, we observe about 3% to
25% reduction in size. With directed sampling, we can reduce the
size by 8% without sacrificing the reconstruction accuracy. In sum-
mary, our approach provides a holistic view of reducing the data
volume from both the sampling and data transmission perspectives
considering multiple metrics such as RMSE, training and inference
data volume
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