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Abstract—Recent growth in the Internet of Things (IoT)
has been remarkable. Among the solutions to accommodate
such a growth is Cellular IoT (C-IoT), comprising a group of
technologies extended from legacy cellular infrastructures. One
of the key goals of C-IoT technologies is to extend the battery
life of UEs (User Equipment) in the network. However, this
often comes at the cost of degrading network performance. This
work attempts to identify, categorize, and analyze the available
literature on this problem. The literature is broadly categorized
into three sections: scheduling, data processing, and sleep modes.
In each of these sections, the literature is further sub categorized.
Finally, a direction for future research is identified and discussed.

I. INTRODUCTION

The Internet of Things (IoT) has seen tremendous growth
over recent years. Gartner estimates that there were approxi-
mately 5.81 billion endpoints in the IoT in 2020 (21% increase
from 2019) [1]. The applications that contribute to this growth
are incredibly diverse in nature. From utilities monitoring to
healthcare to agriculture, many such sectors account for a
massive number of IoT endpoints requiring a reliable and
efficient infrastructure to support their communication.

A variety of Low Power Wide Area Network (LPWAN)
technologies (e.g., LoRaWAN and SigFox) have been devel-
oped solely to accomplish such tasks. These protocols can
provide many benefits to an IoT network. Energy consumption
due to communication is reduced drastically, and they are
capable of accommodating ranges of over 10-15 km. However,
in order to achieve such a large coverage area, they sacrifice
data rate. For example, SigFox only achieves a data rate on
the order of a few hundred bytes per second.

To find additional solutions to accommodate IoT growth, we
look to existing cellular infrastructures, such as LTE. These
technologies have already proven they are capable of dealing
with a large amount of traffic over a wide coverage area
with a much greater data rate than LoRaWAN or SigFox.
But IoT devices cannot simply be placed in existing cellular
infrastructures. In LTE, an entire Resource Block (RB) (180
kHz bandwidth) is allocated for each transmission, so many
resources would go to waste for IoT communication, and net-
work performance would deteriorate significantly as a result.

Newer protocols, namely LTE-M and NarrowBand IoT
(NB-IoT), stem from these existing cellular infrastructures
and create the foundation of Cellular Internet of Things
(C-IoT). For instance, while LTE allocates an entire RB per
transmission, NB-IoT allows multiple users to share resources
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Fig. 1. “Cellular IoT Network Architecture” inspired from [2]

within a single RB. This in turn allows more User Equipments
(UEs) to exist in the same cell and share the same resources.
While NB-IoT does increase delay, the reduction in required
bandwidth, reduction in energy consumption, and increase
in Maximum Coupling Loss (MCL) make NB-IoT a clear
choice for delay-insensitive IoT applications. The general C-
IoT architecture is illustrated in figure 1.

C-IoT networks tend to serve geographically distributed
battery-operated sensors with a fixed energy budget. Because
of this, a great deal of research has gone into improving the
energy efficiency of these devices and in turn increasing their
battery lifetimes. Doing so has three direct consequences: The
amount of waste generated as a byproduct of the device’s
operation is reduced, maintenance of devices is decreased, and
the cost of operation is reduced. By increasing the lifetime
of batteries in the network, fewer batteries must be purchased
over time, thus decreasing the cost of maintaining the network.

However, increasing energy efficiency often results in de-
graded performance. An example of this tradeoff is evident
when comparing LTE-M with NB-IoT. While NB-IoT out-
performs LTE-M on energy efficiency, it sacrifices important
network performance metrics, such as delay and throughput.
LTE-M on the other hand performs better in terms of delay
and throughput, but is less energy efficient than NB-IoT.

In this survey, we identify, categorize, and analyze various
methods for saving energy in C-IoT networks. While there are
many surveys on C-IoT, there are none that focus solely on
energy and the energy-performance tradeoff to the best of our
knowledge. The rest of this survey is organized as follows:
Section II provides an overview of relevant C-IoT protocols.
Section III identifies similar existing surveys. Sections IV, V,
and VI discuss energy saving technologies in the areas of
scheduling, data processing, and sleep modes, respectively. In
section VII, the conclusions of the survey are discussed.

II. PRELIMINARIES

This section introduces NB-IoT and LTE-M, two novel
C-IoT protocols designed to accommodate typical IoT traffic.
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A. NB-IoT

NB-IoT was designed to provide an efficient way to inte-
grate certain IoT devices with existing LTE networks. While
LTE was the starting point for NB-IoT, it deviates from LTE in
a number of ways to provide a more efficient use of resources,
lower power consumption, and extended coverage. In LTE,
UEs are assigned whole RBs (180 kHz) for each transmission.
For UEs not utilizing the entirety of this RB, resources are
wasted. NB-IoT, by contrast, can assign multiple transmissions
in each RB, drastically reducing wasted resources for the
typical low data transmission of many IoT applications. These
resources can be assigned in 3 different modes: In an existing
LTE band, in the guard band between LTE bands, and stand-
alone in the GSM spectrum.

Uplink in NB-IoT can be either single-tone or multi-
tone. Multi-tone transmissions use Single Carrier Frequency
Division Multiplexing (SC-FDMA) with 15 kHz subcarrier
spacing. Single-tone transmissions can have either 15 kHz
subcarrier spacing with 0.5 ms slots, or 3.75 kHz subcarrier
spacing with 2 ms slots. Downlink in NB-IoT uses Orthogonal
Frequency Division Multiple Access (OFDMA) with 15 kHz
subcarrier spacing and 1 ms subframes.

NB-IoT supports several features that allow UEs to save
energy. Discontinuous Reception (DRX) allows a UE to turn
off its Radio Frequency (RF) circuitry for short periods of
time (up to a few seconds long). Once this time has expired,
the device’s RF circuitry is turned back on, and the device
monitors the radio control channel for paging information.
The periods of sleeping and paging comprise a DRX cycle.
NB-IoT utilizes extended DRX (eDRX), which is an extension
of DRX allowing the UE to experience much longer periods of
inactivity (up to hours at a time). Further, UEs also have the
option of entering Power Saving Mode (PSM). PSM allows
the device to enter a deep sleep state for up to several days
at a time. Upon waking from this deep sleep, the device
must perform a Tracking Area Update (TAU), making the
base station aware of its availability. These sleep modes are
illustrated in figure 2. Another feature introduced by NB-IoT
is coverage enhancement through repetition of messages. This
is achieved through the time diversity gained by transmitting
the same message at different points in time under different
channel conditions. This technology, while increasing cover-
age, degrades the energy efficiency of the device by forcing it
to transmit the same information multiple times.

B. LTE-M

LTE-M shares much of its philosophy with NB-IoT. LTE-M
stems from legacy LTE, making some modifications to cater
to the lower required data rates of much of the traffic that
makes up Machine Type Communication (MTC). While the
typical RF bandwidth of LTE is 20 MHz, LTE-M reduces this
bandwidth requirement down to 1.4 MHz. In this sense, LTE-
M provides a middle ground between legacy LTE and NB-IoT.
While its bandwidth is not large enough for typical human user
traffic, it is suitable for MTC at a higher data rate and lower
delay than NB-IoT is capable of.

En
er

gy
 

C
o

n
su

m
p

ti
o

n

TimeDL Reception

RRC Inactivity 

Timer

RRC Connected

eDRX Cycle

P
ag

in
g

Timer T3324

PSM

RRC Idle

…

P
a

gi
n

g

P
ag

in
g

Fig. 2. “Timing diagram of NB-IoT energy components” inspired from [3]

LTE-M offers many improvements when compared with
legacy LTE. Namely, it provides a more efficient use of
resources through the ability to allocate fewer resources per
transmission, it provides a lower cost due to a reduction in
bandwidth, and it provides a lower power consumption due to
a decrease in necessary transmission power.

III. SURVEY OF SURVEYS

Popli et al. [4] give an in depth discussion on the work-
ings of NB-IoT, with one section dedicated to the topic
of energy efficiency. In this section, the authors classify
energy efficiency techniques into five categories: sleep/wakeup
techniques, cognitive radio techniques, routing techniques,
data reduction techniques, and battery repletion techniques.
The authors further break each section down into specific
architectures/algorithms, and give a description and objective
for each architecture/algorithm.

Wu et al. [5] review base station sleep mode techniques,
and discusses the potential, feasibility, and applications of
these techniques. The authors break down the energy ef-
ficiency problem in mobile networks into five categories.
Similarly to [4], Wu identifies the categories of turning off
components selectively, optimizing energy efficiency of the
radio transmission process, and adopting renewable energy
resources. Further, Wu introduces the categories of improving
energy efficiency of hardware components and planning and
deploying heterogeneous cells.

Buzzi et al. [6] provides a categorization of energy efficient
techniques in 5G similar to that of [4] and [5], applied to
5G. Their breakdown of the problem considers four cate-
gories: Resource allocation, network planning and deployment
(including locations of Base Stations (BSs), offloading tech-
niques, and BS sleeping techniques), energy harvesting and
transfer, and hardware solutions (including energy efficiency of
hardware components and Radio Access (RA) technologies).

Abbas et al. [7] discuss energy conservation for wireless
IoT. Their taxonomy is based on radio access technologies,
i.e., Wireless Wide Area Network, Wireless Local Area Net-
work, and Wireless Personal Area Network. They explore
energy efficiency problems that exist in each technology.
This work focuses on DRX/PSM, but also discusses overload
control and energy efficient resource allocation.

Dash et al. [8] discuss and evaluates energy efficiency for
5G Wireless Sensor Networks (WSNs) and mobile ad-hoc
networks. The authors break the problem down based on the
layers of the IP stack: physical layer (e.g., energy efficient
hardware components), MAC layer (e.g., scheduling to reduce
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collisions and retransmissions), Network layer (e.g., energy
efficient routing), and Application layer (which varies greatly
from application to application).

Shahraki et al. [9] discuss clustering in WSNs. The authors
divide energy efficiency related to clustering into two broad
categories: clustering techniques (including Cluster Head (CH)
rotation, hierarchical clustering, and balancing clusters), and
a broader IoT-specific section (including application-aware
techniques and routing techniques in clustered architectures).

IV. SCHEDULING

The ways in which resources are utilized in a network is
crucial to the power consumption and thus battery lifetime of
that network. This includes the assignment of time-frequency
resources to UEs and routing in the network.

A. Uplink

In [10], the authors propose a two-stage algorithm that opti-
mizes scheduling within an NB-IoT network with a Quality of
Service (QoS) constraint. The first stage determines the type
and amount of resources each transmission will need. The
second stage will order these transmissions based on delay
constraints in order to minimize energy consumption while
still meeting deadlines. Results show that energy consumption
per UE remains the same as the number of UEs in the network
increases. This is in contrast to other competing methods,
whose energy consumption per UE increases slightly with an
increasing number of UEs.

In [11], the authors proposes a genetic algorithm for re-
source scheduling in an LTE-M network. In Time Domain
Packet Scheduling (TDPS), the available nodes in the network
are selected using the Buffer Status Report (BSR) uploaded
in the network, detailing the buffer size of each device.
In Frequency Domain Packet Scheduling (FDPS), if there
are more RBs than active nodes, a sub-optimal max-space
algorithm is employed. Otherwise, a memetic algorithm is
used, outputting the optimal set of M2M nodes. Further, post
allocation, devices are assigned an “urgency weight” which
are used to configure DRX parameters. This system was set
up and tested using Network Simulator 3 (NS3). Results show
that in general, as the number of nodes in the network increase,
so does the energy savings, significantly outperforming round
robin scheduling. However, in doing so packet loss increases.

B. Downlink

In [12], the authors proposes a scheduling algorithm to
provide software updates to all devices in an IoT network. This
algorithm optimizes the energy consumption of the distribution
of the update with the constraint of a deadline by which
the update must be in effect. Overall, this method increases
energy efficiency by 12.8% compared to a solution based on
IBM’s CPLEX. In [13], a scheduling algorithm is introduced
which reduces the energy consumption in the Downlink (DL)
direction by prioritizing the transmission of messages that
will travel longer distances and/or more hops before reaching
their destinations. Since these messages will require more

energy, the prioritization of them will reduce overall energy
consumption. The introduction of this algorithm was shown to
provide a 36% increase in energy efficiency when compared
with no scheduling optimization in place.

In [14], two similar algorithms, referred to as global and
light, are proposed, designed for the transmission of bulk
data in a LoRa-WAN based network. Slots of variable size
are assigned to the transmission of data based on that trans-
mission’s Spreading Factor (SF). The algorithm goes through
the available transmissions in the network in decreasing order
based on their SF. It will then assign each transmission to
the earliest possible slot, while still considering the required
radio duty cycle. This allows for a quicker data collection time,
while simultaneously reducing the energy consumption in the
network. Through simulation, both algorithms are compared
with LoRaWAN, which they outperform in terms of energy
efficiency by up to 250%.

C. Both Uplink and Downlink

In [15], the authors discuss Uplink (UL) and DL scheduling
in NB-IoT. They also evaluate tradeoffs in Key Performance
Indicators (KPIs) as a result of scheduling, including the
tradeoff between latency and energy consumption.

In [16], a genetic algorithm is proposed to improve the en-
ergy efficiency of routing in WSNs, which often utilize C-IoT
technologies. This algorithm uses a sleep-wake up mechanism
that selects some nodes in the network to sleep, thus reducing
their energy consumption. The algorithm then only searches
through the active nodes in the network to search for solutions.
Once one of the active nodes begins running out of power, one
of the sleeping nodes is turned into an active node. A local
search technique is also employed. With each iteration of the
algorithm, the search expands slightly, exploring neighboring
options. The algorithm stops once set constraints are met.
Simulation results show an energy efficiency improvement of
around 33% compared with competing algorithms. Further,
the developed algorithm also improves upon the number of
successful packet transmissions as well as the total delay.

In [17], the authors propose a scheduling algorithm for
WSNs based on traffic priority. The algorithm computes
this priority using the required data rate, minimum delay,
transmitting power, remaining energy, and remaining buffer
size of devices for each transmission. The base station then
allocates collision-free time slots for transmissions based on
this priority. The duty cycle of each device is also altered in
this algorithm based on the above factors. The algorithm was
simulated and compared with Energy Efficient Context Aware
Traffic Scheduling (EE-CATS) [18], which it outperforms in
terms of energy efficiency, packet drop rate, and throughput.

V. DATA PROCESSING

By altering where, when, and how calculations are per-
formed in C-IoT, energy can be saved. This can be achieved
using data reduction techniques, energy efficient circuitry for
computation, and task offloading (e.g. to the cloud).
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A. Minimizing Transmitted Data

In [19], the authors develop a delta compression coding
scheme for temporally correlated data that can increase the
energy efficiency of compression by up to 85%. This coding
scheme also increases the compression ratio and decreases
memory requirements for compression. However, delta com-
pression relies on the data being temporally correlated, there-
fore real time applications are not suitable for this method.
In [20], the authors propose an algorithm that prunes a data
structure, removing insignificant value tags within annotated
data that can be recovered later. This process takes place
between the gateway and cloud, and reduces the amount of
data to be transmitted. In doing so, transmission energy is
reduced and the message is still entirely recoverable.

B. Approximate Circuitry

In [21], the authors employ inexact arithmetic circuits to test
the tradeoff between energy efficiency and accuracy. Results
show that if data is processed in this manner, there can be
an improvement of up to 80.4% in energy efficiency, with a
tradeoff of 1.34 dB in SNR at the output. In [22], the authors
propose a scheme in which the UE decides how much energy
it dedicates to computation based on the battery percentage
of the device. Simulation results show that maximum energy
consumption of the device is reduced by 38%, and the average
energy consumption in the network is decreased by 6%.

C. Task Offloading

In 5G networks, much of the data processing can be done
through cloud computing, rather than physically in the UEs. In
[23], the authors discuss fog computing and cloud computing
in the context of 5G networks. Fog computing provides an
intermediate step in the hierarchy of computing between the
centralized cloud and the widely distributed, low cost UEs.
In introducing this, local resources can be used for some
computation instead of the potentially farther away cloud,
which increases energy efficiency in the network. In [24], the
authors propose a method of offloading computational tasks to
other, more capable nodes in the network, such as edge nodes,
distributed units, and central units. This method distributes the
computational load in a way that the computation will take
less energy overall. Experimental results show that relative to
competing algorithms, the developed algorithm saves energy
when considering a larger number of computational tasks,
increasing with an increasing number of tasks.

In [25], the author designs a task allocation algorithm for
a distributed m2m network. In this algorithm, the base station
first takes a large job and breaks it into tasks, then further
into sub-tasks. Each task will be forwarded to a group of
neighboring nodes that are combined into clusters. In this
cluster, a CH is determined by which node in the cluster
has the greatest residual energy. This CH is responsible for
forwarding these sub-tasks to other nodes in the cluster, as well
as aggregating data and transmitting it back to the base station.
A simulation was conducted in MATLAB that shows that
while devices were depleting their available energy quicker,

tasks were also being completed at a much quicker rate, thus
resulting in a net increase in terms of efficiency.

In [26], an architecture is proposed in which data processing
can be conducted within a WSN. This architecture consists of
three layers. The data clustering layer allows the sensors in the
network to aggregate data and transmit accurate data efficiently
to the cluster head. In the data compression layer, data is
compressed at the cluster head prior to transmission to the
gateway. In the data mining level, gateway nodes accomplish
tasks such as translation, filtering, and integration of data in
order to detect more complex events. This data is then sent to
users as knowledge. This architecture was simulated through
MATLAB and was found to save approximately 40% more
energy when compared to a centralized approach.

In [27], the authors propose a Delay-Based Workload Al-
location algorithm, which decides whether a task should take
place in a local edge server, a neighboring edge server, or
in the cloud. Based on the required delay for the task, the
algorithm balances the delay-energy tradeoff such that this
delay requirement is met while energy consumption is reduced.

Both task offloading and approximate circuitry are com-
bined in [28]. In the authors’ proposed algorithm, tasks can
be executed in four different manners: In End Device (ED)
exactly, in ED approximately, in Fog Node (FN) exactly, or
in FN approximately. The authors formulate this optimization
as a linear programming problem that considers the average
processing power of EDs and FNs, the transmission cost
required to offload computation from ED to FN, and an error
threshold predefined by the user. Simulation is conducted in
MATLAB, where the network lifetime was shown to have
an approximate 200% improvement relative to a comparable
algorithm. However, the developed algorithm has a greater
complexity when compared with the same comparable al-
gorithm. This complexity increases more significantly as the
numbers of end devices and tasks increase.

VI. SLEEP MODES

By allowing a device to enter periods of time where RF ac-
tivity is either reduced or stopped entirely, the device can save
energy it would usually spend monitoring networking chan-
nels. This can be accomplished through two means in UEs,
namely DRX and PSM. In [29], the authors introduce both of
these mechanisms, provide an analytical model for each, and
evaluate the performance of both mechanisms through their
implementation in NS3 using the NB-IoT protocol.

A. DRX

In [33], the DRX mechanism is evaluated through a de-
veloped cross-layer analytical model with traffic distributed
according to a Poisson process. Results show that the in-
troduction of the DRX mechanism results in a considerable
improvement (up to three times) in the energy efficiency of
the device. Further, results show that for given DRX timers,
there is a certain traffic load at which the energy efficiency
improvement of the mechanism is optimum. This illustrates
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TABLE I
COMPARISON OF ENERGY-SAVING TECHNOLOGIES

Ref. Brief Description Energy-Saving
Method Methodology Tradeoffs

[12] Scheduling over-the-air software updates with deadlines DL scheduling Heuristic algorithm Delay
[13] Scheduling prioritizing packets going far and over many hops DL scheduling Dijkstra + queuing theory NA
[10] Two-stage scheduling for energy efficiency under QoS constraints UL scheduling NA Delay + reliability
[11] Optimizes energy under QoS constraint in FDPS UL scheduling Genetic algorithm Packet loss
[16] Genetic algorithm using local search technique to calculate routes P2P scheduling Genetic algorithm NA
[17] Priority-based and collision-free scheduling algorithm UL + DL scheduling Dynamic programming Delay + throughput
[14] Algorithm for bulk data transmission in LoRa network UL + DL scheduling Dynamic programming Complexity
[24] Balances computation between end-nodes and central units Task offloading Evolutionary algorithm Complexity

[28] Algorithm deciding where and how a computation will take place Approx. circuitry +
task offloading Linear programming Complexity

[25] Tasks are broken into subtasks and distributed to network devices Task offloading Divide and Conquer NA
[26] An in-network layered data processing architecture is proposed Task offloading Hierarchical architecture Scalability
[27] Balances delay-energy tradeoff of task offloading Task offloading Queueing theory Delay
[19] Delta compression scheme for temporally correlated data Data minimization Coding theory Accuracy
[20] Insignificant data is removed from data structures at the gateway Task offloading Ontology-based algorithm NA

[22] Energy dedicated to computation is based on battery status Approx. circuitry Linear programming Computation +
communication

[30] Selects one of four sleep levels based on coverage and traffic load BS sleeping Linear programming Delay
[31] “Quick Sleeping Indicator” allows a device to skip a paging interval DRX NA NA
[32] RL is used to improve the latency-energy tradeoff in DRX DRX Machine learning Delay

the importance of choosing DRX timers according to traffic
load to achieve the best energy efficiency and delay results.

In [32], the authors propose an actor-critic algorithm to
improve the latency-energy tradeoff that exists in DRX. The
authors consider a modified DRX mechanism consisting of
four states: continuous reception, on duration of DRX cycle,
off duration of DRX cycle, and Radio Resource Control (RRC)
Idle. The algorithm learns over time through the modification
of the timers that facilitate state transitions (e.g., on duration
of DRX cycle). The authors evaluate the proposed algorithm
using MATLAB, and find that the proposed algorithm out-
performs standard eDRX in terms of energy efficiency by
approximately 300%. However, the average delay of the actor-
critic algorithm is much greater at approximately 280 ms,
compared with conventional DRX at 50 ms.

In [31], the authors discuss a “quick sleeping” mechanism
for DRX, consisting of a Quick Sleep Indicator (QSI) that is
sent to the UE after it wakes up from DRX sleep. The QSI can
be deployed in either the Physical Broadcast Channel (PBCH)
or in the Primary Synchronization Signal (PSS)/Secondary
Synchronization Signal (SSS). This message will tell the UE to
either go back to sleep, or to stay awake. Only if the UE is told
to stay awake will it continue on to decode paging information.
Compared to conventional DRX, where the UE stays awake to
decode paging information 100% of the time, this mechanism
gives a chance for the UE to go back to sleep without wasting
energy staying awake and decoding paging information. A
simulation was conducted using MATLAB, and it was found
that the introduction of the quick sleeping mechanism brought
with it a 45% reduction in energy consumption.

B. PSM

In [34], the authors use a genetic algorithm to determine the
optimal PSM timer duration. Results show that through the
optimization of the PSM timer duration, the device can save
a considerable amount of energy while still meeting latency
constraints. Further, the authors show through simulation that

beyond a certain timer threshold, increasing the PSM timer
further has little impact on the power saving factor.

In [35], the authors model PSM through a semi-Markov
process consisting of four states: PSM, idle, RA, and trans-
mitting. The developed model considers periodic UL reporting,
where the UE generates UL traffic at regular intervals. Results
are consistent with [34], showing that continuing to increase
the PSM beyond certain values will only degrade network
performance in the form of latency, while having little effect
on the power saving factor.

C. Base Station

In [30], the authors propose a framework that minimizes
power consumed by a small cell base station while main-
taining an adequate QoS for users in the cell. They do so
by scheduling each cell’s state (on, waiting, deep sleep, or
off) based on coverage areas and traffic load. In [36], the
authors evaluate and model Advanced Sleeping Mode (ASM)
in 5G networks. In ASM, there are 4 different modes of sleep,
varying in amount of time spent sleeping and in the amount
of power saved by shutting off some components.

In [37], the authors develop a joint algorithm that considers
both clustering and sleeping of BSs. The inner problem,
clustering, is solved using an optimal algorithm of polynomial
complexity. The outer problem, sleeping, is solved through
either a greedy algorithm that calculates a nearly optimal
solution, or an optimal algorithm whose search space is less
extensive than an exhaustive search, but more extensive than
the greedy algorithm. Through simulation, the authors verify
that the developed joint algorithm can achieve energy savings
of up to 80% compared with no clustering/sleeping algorithm.

VII. CONCLUSION

In this work, we presented the state of the art in energy-
saving for C-IoT technologies, and the resulting network
performance tradeoffs. The available literature was categorized
into three broad categories: scheduling, data processing, and
sleep modes. Works in each of these areas were discussed
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and analyzed. Table I summarizes each work and provides the
tradeoff resulting from decreasing energy consumption.

We recommend that future research in this area more
systematically quantifies tradeoffs between energy and per-
formance. In doing so, it will be easier to identify how each
technology will perform in different scenarios and across var-
ious energy or performance constraints. With this knowledge,
comparisons between technologies will become clearer, allow-
ing a more well informed selection of the technology based
on given requirements. Additionally, it is recommended that
more studies be conducted using real hardware components.
Currently, the majority of results are found using simulation
and mathematical models, which sacrifice reality for feasibil-
ity. If more studies are conducted using hardware, we will get
a more realistic idea of how implementing new energy-saving
technologies will impact the energy-performance tradeoff.
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