2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

Semantic Image Fuzzing of Al Perception Systems

Trey Woodlief
University of Virginia
Charlottesville, Virginia, USA
adw8dm@virginia.edu

ABSTRACT

Perception systems enable autonomous systems to interpret raw sen-
sor readings of the physical world. Testing of perception systems
aims to reveal misinterpretations that could cause system failures.
Current testing methods, however, are inadequate. The cost of hu-
man interpretation and annotation of real-world input data is high,
so manual test suites tend to be small. The simulation-reality gap
reduces the validity of test results based on simulated worlds. And
methods for synthesizing test inputs do not provide corresponding
expected interpretations. To address these limitations, we devel-
oped semSensFuzz, a new approach to fuzz testing of perception
systems based on semantic mutation of test cases that pair real-
world sensor readings with their ground-truth interpretations. We
implemented our approach to assess its feasibility and potential
to improve software testing for perception systems. We used it
to generate 150,000 semantically mutated image inputs for five
state-of-the-art perception systems. We found that it synthesized
tests with novel and subjectively realistic image inputs, and that it
discovered inputs that revealed significant inconsistencies between
the specified and computed interpretations. We also found that it
produced such test cases at a cost that was very low compared to
that of manual semantic annotation of real-world images.

CCS CONCEPTS

« Software and its engineering — Software testing and de-
bugging; - Computing methodologies — Perception; Vision for
robotics; « Computer systems organization — Embedded and
cyber-physical systems.

KEYWORDS
semantic fuzzing, autonomous systems, perception

ACM Reference Format:

Trey Woodlief, Sebastian Elbaum, and Kevin Sullivan. 2022. Semantic Im-
age Fuzzing of Al Perception Systems. In 44th International Conference on
Software Engineering (ICSE °22), May 21-29, 2022, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3510003.3510212

1 INTRODUCTION

The perception-implementing layers of software in autonomous
systems (ASs) are responsible for mapping raw sensor inputs to
semantic interpretations that can inform decisions and actions in the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9221-1/22/05.

https://doi.org/10.1145/3510003.3510212

Sebastian Elbaum
University of Virginia
Charlottesville, Virginia, USA
selbaum@virginia.edu

1958

Kevin Sullivan
University of Virginia
Charlottesville, Virginia, USA
sullivan@virginia.edu

World Sensor Reading Percep Interp. Action

Ac O @ @

Figure 1: Autonomous System Perception Pipeline

physical world. Figure 1 illustrates a simplified AS pipeline where
the world is sensed through a camera. The resulting image is then
processed by Percep to generate an interpretation that the AS will
use to inform navigation and other control decisions.

Faulty perception systems can misinterpret the physical world,
leading to dangerous, even deadly, actions. For example, Tesla has
recently admitted that its ASs sometimes misinterpret parked cars,
and the US National Highway Traffic Safety Administration has
now opened an investigation into almost a dozen instances where
a Tesla vehicle has crashed into a parked emergency vehicle with
its lights flashing. Those mishaps have resulted in at least one
fatality and multiple serious injuries [3, 35]. Other examples include
miscalculating the existence or location of a vehicle, or failing to
detect people in the planned trajectory of a vehicle [1, 12, 18, 36].

Such mishaps point to fundamental shortcomings in current
methods of testing AS perception software. A key problem is that
these machine-learned components tend to be trained using data
from normal driving, with few if any opportunities to learn from
rare but safety-critical events. When such events do occur, percep-
tion systems must accurately interpret the physical world.

The rarity of safety-critical but infrequent events then entails
that real-world test driving will never be adequate from a test-
ing perspective. A study by the RAND Corporation found that
autonomous vehicles would have to drive hundreds of millions of
miles to demonstrate reliability, and that doing so would take exist-
ing fleets tens or hundreds of years [16]. Along similar lines, Waymo
Corporation safety validation methods convey opportunities to
scale up testing using simulation, but ultimately conclude that re-
liance on real-world road driving for validation is required [21].
Augmentation of data captured in the real world has emerged as
a potentially viable alternative to reduce the need for real-world
driving [10, 26, 30, 37]. However, these techniques operate at the
pixel-level, missing an opportunity to truly explore images that are
semantically interesting in challenging the perception pipeline.

What this work proposes is an approach to testing percep-
tion systems using sensor-reading/expected-interpretation
test case pairs derived from real-world AS perception test
cases (for which we already have ground truth interpreta-
tions), by mutating both sensor readings (e.g. images) and
their expected interpretations in a coordinated manner. Our
long-term aim is to generate test cases that focus on rare, safety-
critical inputs that include, for example, vehicles that are crashed,
crossing into oncoming traffic, overturned, etc.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

World Sensor Reading Annotate Interp.

Trey Woodlief, Sebastian Elbaum, and Kevin Sullivan

Ac o & - HQ

(a) Run the sensor in the
real world with human annotations

Model Simulate Reading & Interp.

QA ®

(b) Use simulation to create new test cases

LR

(c) Low-level Mutation of previous tests

Original Mutate Novel Original Mutate Conformity Novel
. L) semantics (p ®

® pizels \d
2N N A\ 26

; -~y ;
. f(semantics) .

(d) Semantic Mutation of previous tests
(our approach semSensFuzz)

Figure 2: Overview of test case generation approaches for perception layers of autonomous systems

This paper takes the first step towards our long-term vision by
proposing and evaluating an approach for non-guided test gener-
ation that can, for example, incorporate vehicles and people into
images. The approach leverages prior test cases as raw materials,
mutating existing test inputs to automatically produce realistic and
novel synthetic sensor data, and deriving interpretations by also
mutating their existing interpretations. Testing with our approach
then involves comparing these predicted outputs with the actual
interpretation outputs produced by a given system under test (SUT).

Our contributions are as follows:

(1) semSensFuzz, a new concept in testing of perception soft-
ware for safety-critical autonomous systems, based on se-
mantic mutations applied to (sensor reading, ground-truth
interpretation) test case pairs.

(2) semImFuzz,a demonstration system targeting camera-based
autonomous vehicle perception.

(3) Experiments using our approach to test five state-of-the-art
perception systems, with results showing that our approach
can produce realistic inputs and overall test case pairs that
reveal problematical perception errors in these systems.

2 MOTIVATION AND RELATED WORK

Basic definitions. A test case, t = (r, interp) for the perception
system Percep of an AS is a set of input sensor readings, r, paired
with a valid output interpretation, interp, for r. Figure 3a shows
an example of a single sensor reading r for an autonomous vehicle
perception system and below it, Figure 3f shows the corresponding
ground-truth interpretation interp. The system’s performance is
then judged based on an oracle that compares Percep(r) and interp.

Conformity. ASs operate in the physical world and thus a sen-
sor reading r used in a test case ¢ must conform to the constraints
of the real world. If r could have been acquired from (and is thus
sufficiently realistic with respect to) some configuration of the real
world, w, we say that r conforms with w. This notion is important
as a failing ¢ with nonconforming r is likely a false-positive—a
failure that would not occur in the real world.

Figure 2 outlines three common existing procedures to generate
a suite of t and our approach semSensFuzz, which we now explore.

2.1 Testing in the Real World

One common procedure, outlined in Figure 2a, is to operate the
AS in the physical world while recording the sensor readings. This
procedure is advantageous in that it can generate a large data set

reflecting typical operating conditions. However, it is limited in
that producing specific desired conditions (e.g., have a car suddenly
turn in front of our fast moving vehicle) in the real world can be
impractical, dangerous, and expensive [21]. Crafting the ground-
truth interpretation also incurs great expense, requiring a human to
manually annotate the sensor readings. In prior studies, producing
high-quality annotations of camera images for a driving benchmark
required on average over 90 minutes of human effort per image [7].

2.2 Testing in Simulation

Another common procedure, shown in Figure 2b, uses a model of
the world embedded in a simulator to replace operating in the real
world. Using the simulator’s model of the world to automatically
produce sensor readings and ground-truth interpretations enables
constructing arbitrary simulated worlds at a lower cost [27, 31, 38].
However, this approach suffers from the simulation-reality fidelity
gap as w # wgim [15]. This can diminish the value of the tests as
the results may be simulation-specific [40], which is why they are
often revalidated in the physical world [21]. That is, these tests may
not conform to any configuration of the real world.

2.3 Generating Tests with Low-level Mutations

A third procedure mutates collected sensor readings to produce
(r,interp) and is illustrated in Figure 2c. Naive techniques follow
in the vein of standard data augmentation techniques, performing
global mutations such as affine transforms or adding noise [10,
26, 42]. For example, Figure 3b and its interpretation in Figure 3g
show horizontally mirroring the image and its interpretation, while
Figures 3c and 3h show the use of a mask that obscures parts of the
image. More advanced strategies such as adding weather, shown
in Figures 3d and 3i, are domain-specific but still globally applied
across all pixels [30, 37, 42]. Mutation-based procedures can quickly
generate many tests that, if the mutations are designed carefully,
can also be conforming. That is much less likely, for example, for
the box additions in 3c than for the fog addition in 3d. Furthermore,
to automatically provide an oracle, this kind of procedure tends to
not semantically affect the image. For example, adding fog should
not affect the entities identified in the image—the interpretation of
Figure 3i is the same as the original in Figure 3f. Additionally, recent
work has examined ways to use mutation strategies to generate
adversarial changes to the scene that do not change the semantics
but are likely to cause changes in the AS’s perception [2, 17, 43].
When these mutations do affect the image semantically, like in 3c,

1959

Semantic Image Fuzzing of Al Perception Systems

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

(a) Original Image (b) Affine Edit

(f) Original interp (g) Affine Edit Interp.

(c) Coarse Edits

(h) Coarse Edits Interp.

(d) Global Edits (Weather) (e) Our Edits (Car Added)

(i) Global Edits Interp. (j) Our Interp. (Car Added)

Figure 3: Overview of image mutation techniques (best viewed on a screen)

the interpretation of those changes is unknown as shown in 3h
where several people are cut off.

2.4 Generating Tests with Semantic Mutations

In this work we envision a more sophisticated kind of mutation that
incorporates world semantics and is cognizant of what the readings
mean (i.e., what the pixels in an image actually represent in the
world). Such a mutation could, for example, add a car driving on the
street as shown in Figure 3e with a corresponding interpretation in
Figure 3j. We believe and later show how such semantic mutations
have the potential to create test cases that are conforming but do
not occur in existing test suites due to their uncommon occurrences
in the physical world.

Figure 2d shows how our proposed approach, semSensFuzz, dif-
fers from prior mutation techniques in the semantic nature of
the mutations. Performing these mutations requires that mu-
tated sensor readings continue to conform to the constraints
of the real world, leading to several challenges. On the interpreta-
tion side, we must craft domain-specific rules to validate potential
mutations and determine what types of mutations are likely to
yield perception failures, e.g. adding a pedestrian to a roadway.
Furthermore, we must increase conformity likelihood by crafting
preconditions based on the sensor modality. For example, for cam-
era images, this may include not just that an entity is in a viable
position, but also that the perspective, lighting, and shadows are
conforming. Sensor reading mutations must be associated with
interpretation mutations that will serve as an oracle. Section 3
describes how the approach tackles these challenges.

3 APPROACH

We describe our approach for using semantic mutations to test AS
perception systems regardless of sensor modality. We formalize the
problem definition, present the general approach, and instantiate
the approach for camera-based perception systems for autonomous
vehicles.

3.1 Problem definition

A semantic mutation, § = (Jy, Sinterp). transforms a test case,
t = (r, interp), where r conforms with some configuration of the
world, w, into anew test case, t’ = §(t) = (6 (r), Sinterp (interp)) =
(r’,interp’), where r’ also conforms with some world configura-
tion, w’, and interp’ is a valid interpretation of r’. For example, a

mutation, §%49€4" may add a car to an image while mutating its

interpretation to indicate that a car is now there.

We say that Percep passes a mutated test case §(t), if and only
if Percep(8y(r)) = Sinterp(interp), highlighting the symmetry of
the mutation functions. Figure 4 illustrates this process. In practice,
one might need to (and in our experiments we do) use approximate
equality: Percep(8y(r)) — Sinterp (interp) < € for a suitably small
€. At a conceptual level, our approach thus constitutes a form of
metamorphic testing [32] where existing test cases are converted
into new ones in which the correct outputs for transformed inputs
are deduced using knowledge of properties of the physical world.

r or r’
t Annotationl J Percep t'
. (sinterp . ’ ? ’
interp ————— > interp’ = Percep(r’)

Figure 4: Semantic Mutation of Tests for Perception Systems

3.2 Semantic Mutations with semSensFuzz

A key insight driving semSensFuzz is that prior captured data sets
can be leveraged as a source of initial test cases and of resources to
design semantic mutations that are more likely to result in conform-
ing tests. That insight guides the scope of mutations considered in
any given domain, including means to ensure reasonable confor-
mity of mutated inputs with possible real worlds.

First, we scope the space of all mutations A based on the entities
that appear in the interps of the available tests. For example, if the
interpretations mark cars and people, we only allow mutations that
add, remove, or change cars and people. We argue that since those
are the criteria by which existing tests are judged, it is sensible to
focus just on those to try to find unexpected Percep behaviors.

Second, we associate a set of preconditions Prec with each mu-
tation J, specified in terms of the interp that defines whether §
is applicable to a given t. If Prec(interp) is not satisfied, then ¢ is
not applicable to that test. For example, for a mutation that adds
a car to an image, Prec may be the existence of a road in interp;
for changing the color of a car, Prec would be the existence of at
least one car in interp. The idea is to leverage an existing interpre-
tation to determine mutation applicability. This is a key distinction

1960

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

compared to other strategies that allows for our semantic muta-
tions while respecting conformity. Instead of crafting mutations for
sensor inputs and propagating the mutation to the interpretation
without respect for changing semantics, we craft our mutations for
the interpretation and then propagate to the sensor domain.
Third, we enable the parameterization of §, to employ real sensor
data to increase the likelihood of conformity. For example, when
adding a car to t; = (rj, interp;), if there exists a t; = (rj, interp;)
that contains a car constrained by a similar context as per their
interps, then §394Car could put the car from rj into r;. In the case
of images, we use the entity pose, perspective, lighting, and adja-
cent entities in the interpretation to define the context. Note that
context is sensor modality and domain dependent, and that the
richness of the resource set will affect the diversity of generated
test cases. Additionally, we explore the integration of discriminators
to determine conformity. We discuss this further in Section 4.4.4.
All of the mechanisms in our approach make a conscious trade
off between conformity and a smaller space of available mutations.

3.3 Semantic Mutation of Images by semImFuzz

To further explore our approach, we now focus on the perception
system of an autonomous vehicle that contains a single front-facing
camera for sensing, and we concretize semSensFuzz to this specific
sensor modality. We refer to this specific application as semImFuzz.
As illustrated in Figure 3, for these systems the sensor input consists
of a single camera image and the output consists of an interpretation
of the world in the form of a per-pixel semantic annotation.

semImFuzz requires a data set of real-world camera data to build
its resource set to serve as the basis of its mutations. Camera based
perception systems are widely studied, with several available bench-
marks [5, 7, 11] consisting of thousands of test cases of image and
interpretation pairs. Each benchmark targets a different level of
precision which affects the strength of the resource set.

We now explore the space of semantic mutations, A, for the
domain of camera systems for autonomous vehicles. We first define
the semantic entity types that can appear in images, e.g. car, bicyclist,
etc. Each such entity has a state, e.g., orientation, color, position,
lighting, etc. Finally we define a set of semantic actions: e.g., add
entity, remove entity, change entity state. The space of mutations,
A, is then the set of actions, each parameterized by an entity and a
state, e.g. add (action) a car (entity) at location [(state).

In practice, semantically mutating images can be difficult due
to the conformity requirement. For example, adding a car to a lo-
cation in an image requires verifying that a car can exist in that
location: e.g., the car cannot intersect another car. Removing an
entity requires generating conforming image data with a known
interpretation for the vacated space, a process known as semantic
inpainting [20, 39]. Changing the pose of an entity requires render-
ing the entity in a conforming manner from a different perspective
than it appeared in the original test case.

4 IMPLEMENTATION FOR THE
AUTONOMOUS VEHICLE DOMAIN

To study the applicability of semSensFuzz, we created an extensible
pipeline in Python for fuzzing perception systems of autonomous

1961

Trey Woodlief, Sebastian Elbaum, and Kevin Sullivan

vehicles with a single front-facing camera, semImFuzz, that imple-
ments three mutations: changing the color of cars, adding cars, and
adding pedestrians!. We begin with the system architecture and
then discuss detailed implementations for the chosen mutations.

4.1 semImFuzz Architecture

Figure 5 outlines semImFuzz’s components and flow. Given a mu-
tation 8, semImFuzz selects a test case ¢t and queries the resource
set for viable resources to perform §. It then selects a resource and
checks whether mutating using ¢, §, and the selected resource will
generate a conforming test. If so, it applies the mutation to generate
t’, otherwise it selects another resource and repeats.

semImFuzz requires a prior data set as a basis for mutation.
In the autonomous vehicle domain, there are several such data
sets, including KITTI [11], nuScenes [5], and Cityscapes [7]. Each
provides (r, interp) test cases where r is a camera image and interp
is a per-pixel annotation that provides a ground-truth interpretation
based on the categories provided in the data set. As a preprocessing
step, semImFuzz parses the prior test set to build a resource set of
available data, e.g. a list of all cars and their poses.

Each data set has a different list of tracked categories with differ-
ing levels of precision and design choices for how to treat certain
entities. For example, nuScenes has 7 labels for humans differentiat-
ing between, e.g. adults and children, while Cityscapes has 2 labels
that distinguish between a pedestrian and a person riding a bike or
motorcycle. We developed semImFuzz using the Cityscapes data
set due to its popularity in related literature, the wide number of
perception systems that have been developed to target the data set,
and the availability of open sourced tools to evaluate performance.
We note, however, that the design choices and available data in a
data set influence the richness and precision of semImFuzz’s re-
source set and thus the mutations available. For example, when
we aim to develop a mutation for adding a vehicle that has been
involved in a crash to a test case, under the theory that a deformed
vehicle would be more difficult to perceive, the data set’s lack of
this label will prevent semImFuzz from leveraging such a mutation.

We implemented each mutation using Numpy [13] along with
OpenCV for Python [4] and Pillow [6], two common image process-
ing libraries for Python. We created the framework in a modular
fashion to easily incorporate additional mutations or data sets.

For our first implementation of semImFuzz, we chose to explore
two mutations: changing the colors of entities within the scene and
adding entities to the scene. We chose these mutations for initial
study of semImFuzz due to our ability to perform those mutations
using available image manipulation techniques. Although these
mutations are relatively simple, we conjecture that if the simple
mutations yield interesting test cases, then this will encourage
further research to enable more advanced techniques which can
then be incorporated. We describe the implementation details of
each mutation in the following sections.

4.2 Changing Object Color
The simplest mutation we implemented changes the color of a single

entity in the test case and was designed with the goal of changing

!Code and high-level algorithm descriptions are available at https://github.com/less-
lab-uva/perception_fuzzing

Semantic Image Fuzzing of Al Perception Systems

- -
e — =
Parameters | |\ -—
Prior Resource Set

Data Set

Initial Test Case ¢

Selection

Resources

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Viable Resources Mutated Test Case ¢~

Conformity
Check

Y

Yes

(a) Original Car (b) Mutated Car
Figure 6: Applying color change mutation
(best viewed on a screen)

the color of vehicles to mirror the physical parallel of repainting a
vehicle. In the context of the SUTs we are examining, the color of
the vehicle should not change the target perception category, and
so interp’ = interp. Thus, we examine how to produce r’ from r.

4.2.1 Implementation. For this mutation, the test selection step
chooses a test case containing a car as the base test ¢ for mutation,
and needs no additional resources. To affect the color change, we
manipulate the color in the HSL color space, which separates the
components into hue, saturation, and lightness in a way that is
similar to human perception of color [14]. At the most basic level,
this mutation performs a hue shift on the entity, changing it to a
different color. However, this leads to two concerns. First, if we
only want to change the color of the vehicle’s paint, how do we
prevent changing the color of the vehicle’s windows? In this color
model, high lightness corresponds to white and low to black. This
means that since most windows appear dark in images, they will
be unaffected by a hue shift. This leads to the second issue: altering
the color of white vehicles. To facilitate this, semImFuzz checks
for high lightness pixels and decreases the lightness and increases
the saturation so that the hue shift applied to the entire vehicle
produces another color. Specifically, if the average lightness of the
vehicle is over 100, then all pixels with a lightness value over 100
have their lightness decreased by a random amount between 20
and 50. Then, to prevent the colors from appearing faded, pixels
with a lightness over 100 and a saturation less than 50 have their
saturation increased. Figure 6 showcases an example application of
this mutation changing the car’s color from red to blue. As shown
in Figure 6, the change object color mutation can render results
that appear very realistic.

4.2.2 Potential for False Positives. As with all mutations, this oper-
ation must ensure that »’ conforms to some world w’. In general,
since r conformed to some world w, then there exists a w” with the

1962

(a) Original Car

(b) Mutated Car

Figure 7: Nonconforming color change mutation
(best viewed on a screen)

vehicle painted the new color. However, the color shift can inadver-
tently affect other parts of the vehicle and may lead to false positive
test cases in which there is no such w’. The very observant reader
may have identified in Figure 6 that not only does the car body
appear repainted blue but so do the brake lights. In the physical
world, it is possible for a car to have blue brake lights; however,
this is likely not plausible due to regulations governing the color
of the brake light. More advanced versions of this mutation could
consider refinements in this area. Another issue, shown in Figure 7,
occurs when there is high glare on the vehicle, causing pixelated
distortions and thus not conforming with any world w’.

4.3 Adding an Entity

Adding entities to scenes is one of the advances of semImFuzz. The
goal of this mutation is to add an entity to a scene in a way that may
impact the perception system such as adding a vehicle or pedestrian.
Adding an entity to the sensor input produces a corresponding
addition in the interpretation, and allows us to examine the SUT’s
performance at the semantic level.

4.3.1 Implementation. For this mutation, the test selection step
chooses any test containing a road as the base test ¢ for mutation.
The resource query step selects all potential entities of the specified
class, e.g. all cars, and filters out those that are occluded by other
entities. To increase the likelihood that adding the entity affects the
SUT, vehicles must have a bounding rectangle that is at least 100
pixels on its longest side, or 50 pixels for pedestrians. semImFuzz
then randomly selects an entity and checks if adding that entity
to ¢t would result in a conforming test by checking for compatible
perspective, semantics, and lighting between the entity and . These
are nontrivial conformity checks, as we explore below.

The resource set provides a collection of images with the pixel
boundaries giving the location and outline of isolated entities. When

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

(a) Source Image

(b) Base Image (r)

82/

ot
(c) Isolated Entity in (d) Mutated Image with
Resources Car Added ()

Figure 8: Applying add car mutation
(best viewed on a screen)

adding the entity, the mutation takes the isolated portion of the
image and overlays it at the same pixel coordinates on the base image.
Figure 8 demonstrates this process.

Maintaining a consistent perspective is one key to conformity.
If done improperly, the added entity will appear out of proportion
and misaligned with other image features. To this end, we add
the constraint that the entity must be placed at the same relative
physical coordinates to the camera in the new test case as it was in
the source test case. If we want to add a car with pose p relative to
the camera from ; to test case t to generate t’, the resulting ¢" will
consist of t with the car from ts added at pose p relative to the its
camera. Retaining the same pose increases the likelihood that the
added car will appear in the correct perspective in t’.

However, adding the entity at the same pixel coordinates does
not guarantee that the entity is added at the same physical co-
ordinates relative to the camera. The relationship between pixel
coordinates and physical coordinates depends on the characteris-
tics of the camera, the vanishing point of the scene, and the size
of the object. We assume that the entire resource set consists of
images taken with cameras that have consistent characteristics.
Additionally, since the entity is always added so that it occupies
the same region of pixels, it has the same size. Thus, if the source
and destination images have the same vanishing point, they will
be compatible because adding at the same pixel coordinates will
result in the same physical coordinates relative to the camera. How-
ever, finding pixel-perfect matches on the vanishing point between
images is extremely unlikely due to potential number of scenes. In-
stead, we divide the images into quadrants and consider two images
to be compatible if their vanishing points are in the same quadrant.
Increasing the precision when matching vanishing points increases
the likelihood that the perspective will be adequately maintained,
but at the cost of allowing fewer possible mutations and more ex-
pense in searching for compatible images during mutation. We
utilize an implementation [41] of an algorithm that uses the in-
tersection of Hough lines to determine which region of the image
likely contains the vanishing point [22]. If the image that the entity
is sourced from and ¢ and do not have compatible vanishing points,
it fails the conformity check.

The new location of the entity must be physically feasible in
order to conform to a world w’. To validate this, semImFuzz checks
if the lower left corner of the entity’s bounding box is on the road.

Trey Woodlief, Sebastian Elbaum, and Kevin Sullivan

Lighting also plays an important role in the conformity of a
mutated image, especially the brightness. For example, a car from
an image with bright sunlight cannot be added in the shade. To
address this, semImFuzz takes the region of pixels in the base image
that the entity would be placed over and the pixels of the entity
and converts them to the HSV (hue, saturation, value) color space.
In HSV, the value corresponds to the brightness of the pixels. To
ensure that the lighting conditions are similar, if the entity does
not have a median value within 5 units (~ 2%) of the median value
of the base image target area, then it fails the conformity check.

Once semImFuzz chooses a base image and entity to add, the
images are combined into a new test image. Similarly, the interpre-
tation of the base image is edited to include the proper classification
of the entity at its position. This is shown in Figures 3e and 3j, where
the car has been added both in the image and the interpretation.

4.3.2 Potential for False Positives. The previous techniques im-
prove the likelihood to generate images with conforming perspec-
tive and brightness, but as seen in Figure 9 there are several condi-
tions that can lead to false positives.

While semImFuzz takes steps to increase the likelihood of match-
ing consistent perspectives, this does not always happen. Figure
9a shows an example of a car that has been added to an image
with a perspective mismatch, causing the added car to appear much
smaller than it should compared to the entities around it. Another
issue related to entity placement is overlap. Figure 9b shows an
instance where a car has been added on top of a person walking
their dog. At first it seems that this could have been avoided by
checking for overlapping pixels. However, this would overly con-
strain the mutation and prevent many interesting test cases because
pixel-level occlusion does not imply that the entities overlap in the
physical world. Determining overlap involves reasoning about the
physical sizes of entities and their distance from the camera, which
future work could explore.

Another consideration is consistent lighting. In most autonomous
vehicle driving scenes, the position of the Sun along with any occlu-
sions like cloud cover determine entity brightness and reflections.
For the image to conform to a configuration of the real world, these
effects must be consistent with a single lighting configuration. For
example, adding a car with a bright reflection to a cloudy image will
result in a nonconforming image as shown in Figure 9c. Further, in
most lighting conditions all entities in a scene will cast a shadow.
Determining the characteristics of the shadows requires a detailed
model of the scene with information about the physical location of
all entities and light sources. This level of data is not present in the
resource set derived from Cityscapes, and so semImFuzz does not
attempt to add a shadow when adding an entity. This can lead to
nonconforming images, as shown in Figure 9d.

4.4 Challenges and Vision for Other Mutations

Currently, semImFuzz provides only the aforementioned mutations
related to entity recoloring and addition and thus lacks mutations in
two key areas: entity repositioning and removal. We now examine
where the state-of-the-art in computer graphics and vision is limited
to support such advanced mutations, and we comment on our
preliminary prototypes and results.

1963

Semantic Image Fuzzing of Al Perception Systems

(c) Inconsistent lighting

(d) Missing shadow

Figure 9: Nonconforming add car mutations
(best viewed on a screen)

Rendering a realistic image of a scene from a specific perspective,
is a widely studied area of computer graphics, encompassing all
manner of image synthesis. However, the goal of our mutations is to
render a realistic image of a scene using real-world data. To do so we
need a technique to convert a scene into a rendered image that: (1)
is sufficiently novel from prior data, (2) has a known interpretation
and (3) conforms to a world w. We find that although state-of-the-
art techniques have made strides in all of these areas, there is no
technique that meets all three criteria.

4.4.1 Repositioning Entities. Recent machine learning research at-
tempts to render novel scene compositions distinct from that of
sampled data. Originally used to render the same entity from a
different perspective [23], the current state-of-the-art can remove
or slightly reposition entities in the scene [28]. While this approach
can render very realistic and conforming images with known in-
terpretation using prior data, it is limited in how “far away” from
the original scene it can operate. Entities can only be removed if
they did not occupy that space in a different video frame and repo-
sitioning is limited to a few meters and degrees different than the
original scene. While this area is promising, it currently does allow
for sufficient variation from prior data to use in semImFuzz.

4.4.2 Removing Entities. Another relevant thread of graphics re-
search is the problem of inpainting, the task of filling in regions of
an image such that the new image is conforming [20, 39]. For exam-
ple, removing a car from the scene can be achieved by inpainting
over the region of the car with empty road. Although inpainting
has potential to produce conforming images for use in mutation,
in practice such tools satisfy neither our interpretation nor confor-
mity requirements. The interpretation of the inpainted region is not
known and although the system is trained on real data, its ability
to produce conforming images decreases as the inpainted region
grows. We developed a prototype using [39] to perform a mutation
to remove a car from an image. Figure 10 shows an example output
of using inpainting to remove a car from an image taken from the
nuScenes [5] data set. As shown in Figure 10b, although the car
itself is no longer visible, the region exhibits several nonconforming
distortions and lighting effects which hint at the prior existence of
the car. Advancements in inpainting to make the procedure more
robust would greatly expand the space of feasible mutations.

ICSE 22, May 21-29, 2022, Pittsburgh, PA, USA

(a) Original Car

(b) Car Inpainted

Figure 10: Inpainting to Remove Entities
(best viewed on a screen)

4.4.3 Direct Image Synthesis. Direct image synthesis systems work
as the inverse to the perception system of an AS, taking in an
annotated interpretation of an image and rendering a camera im-
age that is consistent with that interpretation [29]. This would
remove the need to perform mutations on the sensor inputs, allow-
ing semImFuzz to mutate the interpretation directly and use direct
image synthesis to create a matching sensor reading. This process
can richly combine data to produce novel scenes, but current im-
plementations still do not satisfy the interpretation and conformity
requirements. While interpretation is considered during synthesis,
some regions are left unconstrained and are delegated to inpainting,
suffering from the shortcomings outlined above.

4.4.4 Discriminators for Conformity Checking. In prior sections,
we describe the possibilities for false positives arising from noncon-
forming test cases. Machine learning discriminators present a way
to identify such nonconforming tests [25]. These discriminators are
a form of binary classifier that seek to determine if an input belongs
to a distribution, so they could preemptively reject mutations that
are nonconforming with the real world defined by a training set.
We explored this approach, training a binary classifier based on a
CNN using over 48,000 images taken from both the Cityscapes data
set and those generated by semImFuzz. The discriminator learned
to differentiate between the classes, but could not differentiate
conforming versus nonconforming images. In part, the problem is
that the generated images contain conforming and nonconforming
images, but checking 24,000 of them was prohibitively expensive.
More generally, a broader challenge is that discriminators tend to
require much larger data sets even for much smaller images. We
suspect that the discriminator requires much more training data to
target a resolution suitable for ASs, which is not feasible due to the
cost to obtain real-world data. Future research in this direction has
the potential to reduce the false positive rate of semImFuzz.

5 DISCUSSION OF TRADE-OFFS

semSensFuzz provides a framework for testing AS perception sys-
tems distinct from the prior approaches described in Section 2. We
note here that these prior approaches are not suitable for direct com-
parison due to the differing goals and intended outputs. Simulation,
low-level mutation, and semSensFuzz provide different trade-offs
in their ability to generate novel outputs, cost to generate tests, and
conformity of outputs. We now discuss those trade-offs.

In terms of ability to generate novel inputs, simulation provides
the highest level of utility, allowing for practically unlimited en-
vironment generation. At the other end, low-level mutation tech-
niques provide a narrow range of possible test cases based on prior
data and the global mutation strategies employed, being limited

1964

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

in the novelty of the mutated data compared to the original data.
semSensFuzz builds from the low-level mutation strategy in terms
of utility, providing new dimensions for the novelty of the mutated
data. Although still limited by the availability of prior data, the
richer semantic mutation strategies allow for the generation of
more meaningful novel test cases that contain a substantive and
human-understandable semantic change.

Although simulation provides the highest level of utility for
generating novel inputs, its efficiency is more nuanced. Simulated
environments may be re-used between testing different systems,
but building a new environment comes at a high cost in terms of
time and expertise required. Once an environment is in place for
testing, adapting the environment can be achieved at a lower cost.
For example, given an existing scenario, the simulator CARLA [8]
provides an automated way to vary weather conditions. For both
low-level mutation and semSensFuzz, there is an initial cost to col-
lect the baseline data to mutate; however, readily available data
sets [5, 7, 11] can ameliorate these costs to the end-user. Using
available data, the low-level mutation strategies are likely the most
efficient in producing new test cases. Given the additional machin-
ery that semSensFuzz uses to leverage multiple facets of the prior
data while also performing conformity checks, the computational
cost is likely significantly higher than the low-level approaches.

As discussed in Section 2, one of the key limitations of simulation
testing is the simulation-reality fidelity gap that can diminish the
applicability of the tests and require revalidation in the physical
world as they may not be conforming with any real world [15,
21, 40]. The mutation-based strategies are designed to avoid this
limitation by using real-world data as the baseline and ensuring
that the mutations preserve the conformity of the original data. We
note that semSensFuzz specifically identifies this need to preserve
conformity as a fundamental part of the framework.

ASs are complex systems that require a varied complement of
testing techniques. The validation process for any AS should include
multiple types of testing. semSensFuzz provides a valuable addition
to the validation toolbox by providing semantic mutations absent
in the low-level mutation strategies, while maintaining conformity
to ensure it avoids the pitfall of the simulation-reality gap.

6 EVALUATION

We have developed semImFuzz, a test generation tool that can
efficiently identify performance inconsistencies in AS perception
systems using semantic mutations. To evaluate the potential of our
approach, semImFuzz, in these dimensions we seek to answer the
following research questions:

RQ1. How effective is our technique in uncovering inconsisten-
cies defined at different levels of severity?

RQ2. How efficient is our technique in terms of the time taken
to generate the mutation and to detect the inconsistencies?

RQ3. Which mutations are the most effective?

6.1 SUTs

To assess semImFuzz, we evaluate it on five highly competitive
perception systems submitted to the Cityscapes benchmark for the
“Pixel-Level Semantic Labeling Task” [7]. These SUTs were the five
highest performing SUTs for which code and pre-trained models

1965

Trey Woodlief, Sebastian Elbaum, and Kevin Sullivan

Table 1: Cityscapes benchmark scores for SUTs evaluated

Rank Year | SUT IoU
Overall | With Code

5 1 2020 | NVIDIA SemSeg [34]° | 85.4

17 3 2021 | EfficientPS [24]° 84.2

23 6 2020 | DecoupleSegNet [19]* | 83.7

26 7 2018 | SDCNet [44]° 83.5

29 9 2019 | HRNetV2+OCR [33]° | 833

were publicly available. Each project was forked from the original
repository, edited if necessary to provide a consistent output format,
and packaged to run in a Docker container for replicability. Table 1
lists SUTs ranked by their performance (overall and among the ones
with code) on the original Cityscapes dataset as per the default IToU
Class metric. Intuitively, this is the percentage of correctly labeled
pixels, with a minimum score of 0 and a maximum of 100. Pixels that
do not belong to a class are marked as “do not care” (like the hood
of the ego vehicle) meaning that they are excluded from scoring
regardless of the SUT assigned label.

6.2 Tests Generated

We used the Cityscapes data set as the basis for our testing, serving
as the original test suite and basis for building the resource set.
We pruned test cases that are too difficult for the SUTs to prevent
mutating test cases where the mutation will not be the focus of the
test; if the SUT struggles with the image as a whole, the mutation
will not provide any additional utility. To perform this filter, we
ran the highest performing SUT on the baseline, as determined by
its ranking on the Cityscapes leaderboard [7], on the original test
cases in the data set to establish the baseline performance of each
test case. Any test case on which the best SUT performs below the
threshold is removed from consideration. For our testing, we set this
minimum score parameter at 95% resulting in the removal 42 of the
total 3,475 images in the data set. semImFuzz then performs a one-
time preprocessing analysis of the remaining test cases, as described
in Section 4, to build the resource set by finding all available entities
across the test cases to include in future mutations.

For evaluation, we ran each SUT on 150,000 tests generated by
semImFuzz comprised of 50,000 “Add Car” mutations, 50,000 “Add
Person” mutations, and 50,000 “Change Car Color” mutations.

6.3 Metrics

An effective mutation, one that finds a potential SUT failure mode,
renders a conforming image that causes the SUT to perform poorly.
To capture that notion we rely on the Cityscapes benchmark eval-
uation tool (eval) which scores each SUT’s performance based on
the percentage of correctly classified pixels. We evaluate the per-
formance of the mutation strategies by calculating the percentage
point (p.p.) difference between the SUT’s score on the original im-
age and its score on the mutated image. Any drop in the SUT’s

2https://github.com/NVIDIA/semantic-segmentation/tree/7726b14
3https://github.com/less-lab-uva/EfficientPS
“https://github.com/less-lab-uva/DecoupleSegNets
Shttps://github.com/less-lab-uva/semantic- segmentation/tree/sdcnet
Chttps://github.com/less-lab-uva/HRNet-Semantic-Segmentation

Semantic Image Fuzzing of Al Perception Systems

Inconsistencies found per SUT
1209 inconsistencies found from 883 mutations
443

NVIDIA SemSeg
EfficientPS
DecoupleSegNet
SDCNet
HRNetV2+0CR

190186

102 4

10! 4

Number of Inconsistencies Found

100 4

[1.0, 5.0) [5.0, 10.0) [10.0, 100]
Moderate Significant Extreme
Percentace point drop in % pixels correct

Figure 11: Inconsistencies found per SUT

score on the mutated image compared to the original image was
induced directly by the mutation itself, allowing us to gauge the
strength of the mutations to find inconsistencies.

More formally, for a given SUT Percep, test case (r, interp), and
corresponding mutation (r’, interp’), the drop is given by

drop = eval(Percep(r), interp) — eval(Percep(r’), interp’)

The larger the value, the more error the mutation induced in the
SUT. We judge drops of less than 1 p.p. to be in the noise as most
tests result in SUTs misclassifying a few pixels around the edges
of objects, leading to small drops compared to the baseline. We
select 1 p.p. as the cut off to reduce the likelihood that we deem an
inconsistency noteworthy when it is not, and as a filter to main-
tain the feasibility to complete the manual reviews we conduct for
evaluation. We categorize drops between 1 and 5 p.p. as moderate
inconsistencies, between 5 and 10 as significant, and those greater
than 10 as extreme inconsistencies. For additional context, the hood
of the car visible at the bottom of all images in the Cityscapes data
set (see Fig. 3), occupies roughly 4.3% of the image; a drop of more
than 5 p.p. means an area larger than the hood was misclassified.
We note that there is no additional filtering at this step based on
how well the SUT performed on the original test case. For example,
if the SUT scored only 85% on the original test and then scored 78%
on the mutated test, then this would result in a drop of 7 p.p. and
be classified as a significant inconsistency. Future work may exam-
ine using specific performance thresholds instead of performance
drops, specifically as this technique applies to testing a single SUT.
However, by measuring deterioration of performance, we are able
to use this metric to compare across the various SUTs even though
they show different levels of absolute performance.

We also measure the time to perform each mutation and the time
to run the SUTs to assess efficiency.

6.4 Results

6.4.1 RQ 1 Results: Finding Inconsistencies. Figure 11 shows the
counts of inconsistencies found in each category per SUT; note
the log scale on the y-axis. We first remark that semImFuzz found

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Extreme
23.3 p.p. Drop

Moderate
1.37 p.p. Drop

Significant
5.25 p.p. Drop

(a) Orig. Percep 1

(b) Orig. Percep 2 (c) Orig. Percep 3

(d) Mutation 1 (e) Mutation 2 (f) Mutation 3

(g) Percep 1 (h) Percep 2 (i) Percep 3
Figure 12: Visualizing SUT Inconsistencies across Severities

(best viewed on a screen)

1210 SUT inconsistencies resulting from 884 mutations and that
each SUT had over 100 inconsistencies. Further, each of the SUTs
exhibited at least one significant inconsistency and 3 of the 5 SUTs
combined to exhibit a total of 20 extreme inconsistencies.

The distribution of inconsistencies among the SUTs is unex-
pected. NVIDIA SemSeg [34] and EfficientPS [24], the two highest
scoring on the Cityscapes benchmark, had the highest number of
inconsistencies in all three categories with 211 and 477 respec-
tively. EfficientPS revealed more than three times the number of
inconsistencies of the SUT with the fewest inconsistencies.

For contextualizing the magnitude of the inconsistencies, Figure
12 shows three mutations produced by semImFuzz and their inter-
pretations by the EfficientPS SUT before and after the mutation. The
leftmost column shows a moderate inconsistency; an added person
occludes a bus, causing EfficientPS to then classify the bus as a train.
The middle column shows a significant inconsistency; an added car
occludes a train, causing EfficientPS to correctly identify only part
of the train, labeling the rest as “do not care”. The rightmost column
shows an extreme inconsistency; an added car occludes a truck,
causing EfficientPS to misclassify the truck, labelling portions as
“do not care” and the rest as building.

We also assess effectiveness of semImFuzz in terms of incon-
sistencies found over time. Figure 13 shows the number of sig-
nificant and extreme inconsistencies found versus the number of
mutated tests executed. While semImFuzz generated 150,000 tests,
the graph shows the average of 10 permutations to control for pa-
rameter selection randomness. Figure 13 shows that the number of
inconsistencies found continues to increase even at 150,000 tests,
indicating that fuzzing has not saturated. Again we note that the
two strongest SUTs on the benchmark yield significant and extreme
inconsistencies at a much higher rate than the other SUTs. Further
analysis of the specific SUTs is needed to understand the factors in-
volved in this performance, but these data suggest that the highest
performing SUTs may be more brittle under certain conditions.

Since semImFuzz uses random test and resource selection, we
computed the number of duplicate tests generated as an indication
of saturation. Only 1228 (0.82%) of the 150,000 tests were duplicates,

1966

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

EfficientPs
—— HRNetV2+OCR

—— NVIDIA SemSeg
—— SDCNet

—— DecoupleSegNet

Inconsistencies found over time

35 A -
—— 5.0 percentage point

—-- 10.0 percentage point
30 p ge p!

25

204

15

10 4

Number of Inconsistencies Found

T T T T T T T T
0 20000 40000 60000 80000 100000 120000 140000
Number of Tests Executed

Figure 13: Inconsistencies found over time

Table 2: False Positive Rate for Inconsistencies Found

SUT False Positive Rate
[15) | [5,10) | [10,100]
NVIDIA SemSeg [34] 11% 67% 50%
EfficientPS [24] 3% | 47% 53%
DecoupleSegNet [19] || 38% 75% —
SDCNet [44] 2% | 0% 0%
HRNetV2+OCR [33] 28% 67% —

suggesting that fuzzing was not near saturation. This further high-
lights the ability of our approach to generate orders of magnitude
more data than the original test suite which contained 3,433 tests
suitable for mutation rendering a more than 40-fold increase.

We have shown that semImFuzz can generate test cases that
induce inconsistencies in the SUTs. However, one potential issue is
the presence of test cases that are nonconforming, which leads to
false inconsistencies. As highlighted in Section 4, there are several
factors that can result in a nonconforming test case, and determin-
ing conformity is subjective. Still, to gain a better grasp on the rate
of false positives we manually inspect all the generated test cases
that led to 5+ p.p. drop, and sample 10% of the test cases that led
to a drop between 1 and 5 p.p.. The process entailed each author
examining each image and classifying them as either a true positive
or false positive. If any of the three authors deemed an image a
false positive, it was conservatively recorded as such.

To further convey the quality of our assessment, Figure 14 show-
cases 5 true positive and 5 false positive test cases that induced
inconsistencies in our study. The false positive rates are shown in
Table 2. The high false positive rate reflects the challenging applica-
tion domain to achieve conformity. Still, this high rate is mitigated
by the number of instances on which it applies. Generating 150,000
test cases produces a few hundred tests with inconsistencies of
interest which developers can examine to understand performance
or select future testing directions. In this examination, determining
if an image is nonconforming takes a few seconds of time, meaning
encountering a false positive incurs a relatively low cost. Further-
more, the number of inconsistencies found per SUT is small and
can be prioritized by the drop measure.

Trey Woodlief, Sebastian Elbaum, and Kevin Sullivan

6.4.2 RQ2 Results: Efficiency. We consider efficiency by comparing
the time for semImFuzz to mutate a test with the time for the SUTs
to run a test. Table 3 shows the average time to generate each type
of mutation (2nd row) compared to the average time to run each
SUT on those tests (3rd-7th row) in milliseconds, with standard
deviation in parentheses. For each table cell, we generated 100 tests
10 times, and averaged the times across these trials.

The color change mutation was the fastest, taking less than 20%
the time of the add mutations. This is because the conformity check
for the color change mutation always passes, so it spends less time
selecting viable resources. The add car mutation was slightly faster
than the add person mutation. This is likely because it is easier to
satisfy the conformity constraints—it is more likely for a randomly
sampled car to appear on the road than a randomly sampled per-
son, meaning fewer samples are needed to find a suitable car. As
expected, we found that for each SUT the time it takes to execute
the test is not different based on the mutation. While the fastest
SUT, HRNetV2+OCR [33], takes about as much time to execute
a test as semImFuzz does to generate a test, we note that three
of the SUTs take more than double that time, and one, NVIDIA
SemSeg [34], takes more than 5 times as long. Further, once a set of
mutations have been generated, they can be used in the future to
test additional revisions of the SUT at no additional cost to prepare.

Table 3: Average time to generate and execute a test in mil-
liseconds, with the standard deviation in parenthesis.

Activity Add Add Color
Car Person Car
Test Generation [593(19.9) [642 (42.7) | 105 (3.06)]
NVIDIA SemSeg [34] || 3421 (29.5) | 3418 (22.9) | 3404 (31.5)
EfficientPS [24] 837 (7.22) | 837 (5.88) | 837 (7.41)
DecoupleSegNet [19] || 1426 (2.24) | 1425 (2.60) | 1423 (2.48)
SDCNet [44] 1328 (3.09) | 1328 (2.81) | 1327 (8.33)
HRNetV2+OCR [33] || 600 (5.89) | 605 (4.23) | 605 (2.89)

6.4.3 RQ 3 Results: Mutation Types. In this section we examine
more carefully the results per mutation type. Figure 15 shows the
inconsistencies found for each SUT based on the mutation type; note
the log scale on the y-axis. The add car mutation induced the most
inconsistencies (877), followed by the add person mutation (280),
and then the mutation to change the car color (53). These results
reflect what we may expect; adding a car affects a large portion of
the image, leading to a higher likelihood of the mutation yielding
an inconsistency. However, even though recoloring a car affects
the same number of pixels as adding that car to another image,
we find that the SUTs are robust against changing the color of the
car. This suggests that editing large regions of the image, even in a
conforming manner, is insufficient. This further supports our notion
that high level semantic mutations such as adding a car are required
to exercise these perception systems and find inconsistencies.

6.5 Threats to Validity

The external validity of our findings for semImFuzz are affected
by our choice of data set and SUTs. We selected Cityscapes for its

1967

Semantic Image Fuzzing of Al Perception Systems

Ny,

(f) False Positive 1
(Overlapping)

(g) False Positive 2
(Lighting)

(h) False Positive 3
(Incorrect Coloring)

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

T

(i) False Positive 4
(Perspective & Overlap)

(j) False Positive 5
(Incomplete Entity)

Figure 14: Sample of True and False Positives (best viewed on a screen)

Inconsistencies Found per Mutation

I NVIDIA SemSeq
EfficientPs
DecoupleSegNet
SDCNet
HRNetV2+0CR

102

Number of Inconsistencies Found

10! 4

Add Car Add Person Car Color

Mutation Type

Figure 15: Inconsistencies by mutation type

popularity as a benchmark of perception systems, and for SUTs we
selected the top five that made their source available for reuse in the
Cityscapes competition. Extending the scope to data sets such as
nuScenes [5], KITTI [11], and Waymo [9] would help generalize the
findings. More broadly, the proposed approach is more general than
semImFuzz, being applicable to other sensor data such as the com-
monplace LIDAR (light detection and ranging) for remote sensing.
This level of generalization remains to be tested empirically.

The internal validity of our findings may be affected by several
factors. Top among them is the implementation of the mutations,
which is complex, and includes external components and many
parameters. In spite of our validation efforts, they could have faults.
We share the code to mitigate that threat. Also, by restricting the
initial tests to those on which the SUTs did well we helped isolate
the effect of the mutations. However, this constraint may have
left out opportunities to make tests that render poor results even
worse. We also attempted to control for the randomness of several
nondeterministic components through repeated executions.

In terms of construct validity, although we have quantitatively
shown that semImFuzz can generate many test cases that yield
inconsistencies, our examination of false positives for conformity
exhibits inherent bias. We share the code to reproduce the test
suite to mitigate this threat. Further, the inconsistencies we found
in terms of the percentage point drop may not extend to cause

failures in real ASs. While Section 6.4 showcases several serious
inconsistencies, further study is needed to understand if and how
these inconsistencies would affect the entire AS.

7 CONCLUSION AND FUTURE WORK

We introduced a novel approach that automatically generates test-
cases with sensor reading and ground-truth interpretation pairs for
AS perception systems. The approach leverages domain-specific
semantics and prior test cases based on real-world sensor data to
generate mutated sensor readings that still conform to the physical
world. Our experimental prototype for images showed that low-
cost and high-level semantic mutations such as adding a car can
uncover inconsistencies in state-of-the-art perception systems.
semSensFuzz and our implementation semImFuzz set several
directions for future work. Following standard software fuzzing,
we will examine how to use SUT performance to guide mutation
type and parameter selection to more quickly find inconsistencies.
We will also investigate how to expand to other sensor modalities
and aggregate readings from multiple sensors to more holistically
test AS perception systems. This work also encourages several
directions of research in computer graphics, advances in which
would likely translate quickly into improvements in semImFuzz.
Testing AS perception systems requires examining rare, safety-
critical scenarios which cannot be obtained practically from the
real world. We will develop more advanced mutations that incor-
porate these elements, such as cars driving in the wrong direction,
damaged cars, or people sitting on cars. Although the current imple-
mentation has the opportunity to generate some of these elements,
e.g. a car driving the wrong direction, making such mutations an
explicit design goal will require the integration of richer data sets
and the development of more sophisticated mechanisms to check
conformity. The ability to systematically generate these scenarios
will further bolster the utility of our approach by generating con-
forming sensor readings of events that are impractical to otherwise
obtain and have exhibited problems for real-world deployed ASs.

ACKNOWLEDGEMENTS

This work was supported in part by funds provided by NSF#1924777
and NSF#1909414. Trey Woodlief was supported by a University
of Virginia SEAS Fellowship. We are thankful to David Luebke
of NVIDIA for his help in understanding the state-of-the-art in
computer graphics and vision.

1968

ICSE ’22, May 21-29, 2022, Pittsburgh, PA, USA

REFERENCES

[1] 2019. Uber in fatal crash had safety flaws say US investigators. BBC (Nov 2019).

[10

(11

[12

(13

(18

[19

[20

[21

(22

]

]

]

]

]

https://www.bbc.com/news/business-50312340

Adith Boloor, Xin He, Christopher Gill, Yevgeniy Vorobeychik, and Xuan Zhang.
2019. Simple physical adversarial examples against end-to-end autonomous
driving models. In 2019 IEEE International Conference on Embedded Software and
Systems (ICESS). IEEE, 1-7.

Neal E Boudette and Niraj Chokshi. 2021. U.S. Will Investigate Tesla’s Autopilot
System Over Crashes With Emergency Vehicles. New York Times (Aug 2021).
https://www.nytimes.com/2021/08/16/business/tesla-autopilot-nhtsa.html

G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Li-
ong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom.
2019. nuScenes: A multimodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027 (2019).

Alex Clark. 2015. Pillow (PIL Fork) Documentation.
readthedocs.org/media/pdf/pillow/latest/pillow.pdf
Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 2016.
The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An open urban driving simulator. In Conference on robot
learning. PMLR, 1-16.

Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao,
Sabeek Pradhan, Yuning Chai, Ben Sapp, Charles Qi, Yin Zhou, Zoey Yang, Au-
rélien Chouard, Pei Sun, Jiquan Ngiam, Vijay Vasudevan, Alexander McCauley,
Jonathon Shlens, and Dragomir Anguelov. 2021. Large Scale Interactive Motion
Forecasting for Autonomous Driving: The Waymo Open Motion Dataset. arXiv
preprint arXiv:2104.10133 (2021).

Xiang Gao, Ripon K Saha, Mukul R Prasad, and Abhik Roychoudhury. 2020. Fuzz
testing based data augmentation to improve robustness of deep neural networks.
In 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE).
IEEE, 1147-1158.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. 2013. Vision
meets Robotics: The KITTI Dataset. International Journal of Robotics Research
(I7RR) (2013).

Isobel Asher Hamilton. 2019. Tesla is being sued again for a deadly Autopilot
crash. Insider (Aug 2019). https://www.businessinsider.com/tesla-sued-family-
jeremy-beren-banner-autopilot-crash-2019-8

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357-362. https:
//doi.org/10.1038/s41586-020-2649-2

Noor A Ibraheem, Mokhtar M Hasan, Rafiqul Z Khan, and Pramod K Mishra. 2012.
Understanding color models: a review. ARPN Journal of science and technology 2,
3 (2012), 265-275.

Nick Jakobi, Phil Husbands, and Inman Harvey. 1995. Noise and the reality
gap: The use of simulation in evolutionary robotics. In European Conference on
Artificial Life. Springer, 704-720.

Nidhi Kalra and Susan M. Paddock. 2016. Driving to Safety: How Many Miles of
Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? RAND
Corporation, Santa Monica, CA. https://doi.org/10.7249/RR1478

Zelun Kong, Junfeng Guo, Ang Li, and Cong Liu. 2020. Physgan: Generating
physical-world-resilient adversarial examples for autonomous driving. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
14254-14263.

Tom Krisher. 2018. Feds: Tesla accelerated, didn’t brake ahead of fatal crash. AP
News (Jun 2018). https://apnews.com/article/north-america-us-news-mi-state-
wire-ca- state- wire-transportation-8c833b3e5d9c49cf97a10974126daad9
Xiangtai Li, Xia Li, Li Zhang, Cheng Guangliang, Jianping Shi, Zhouchen Lin,
Yunhai Tong, and Shaohua Tan. 2020. Improving Semantic Segmentation via
Decoupled Body and Edge Supervision. In ECCV.

Liang Liao, Jing Xiao, Zheng Wang, Chia-Wen Lin, and Shin’ichi Satoh. 2020.
Guidance and evaluation: Semantic-aware image inpainting for mixed scenes. In
European Conference on Computer Vision. Springer, 683-700.

Waymo LLC. 2020. Waymo’s Safety Methodologies and Safety Readiness
Determinations. Technical Report. 30 pages. https://storage.googleapis.com/sdc-
prod/v1/safety-report/Waymo- Safety-Methodologies-and-Readiness-
Determinations.pdf

Andrea Matessi and Luca Lombardi. 1999. Vanishing point detection in the
hough transform space. In European Conference on Parallel Processing. Springer,

https://buildmedia.

1969

[23

[24

[25

[26

[27

[28

[29

[30

[31

[32

[33]

&
=)

[35

[36

[37

[38

[39

[40]

[41

[42

[43

[44]

Trey Woodlief, Sebastian Elbaum, and Kevin Sullivan

987-994.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. Nerf: Representing scenes as neural radiance
fields for view synthesis. In European conference on computer vision. Springer,
405-421.

Rohit Mohan and Abhinav Valada. 2020. EfficientPS: Efficient Panoptic Segmen-
tation. International Journal of Computer Vision 129 (2020), 1551 — 1579.

Huy H Nguyen, T Ngoc-Dung Tieu, Hoang-Quoc Nguyen-Son, Vincent Nozick,
Junichi Yamagishi, and Isao Echizen. 2018. Modular convolutional neural network
for discriminating between computer-generated images and photographic images.
In Proceedings of the 13th international conference on availability, reliability and
security. 1-10.

Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019.
Tensorfuzz: Debugging neural networks with coverage-guided fuzzing. In Inter-
national Conference on Machine Learning. PMLR, 4901-4911.

Matthew O’Kelly, Aman Sinha, Hongseok Namkoong, Russ Tedrake, and John C
Duchi. 2018. Scalable end-to-end autonomous vehicle testing via rare-event
simulation. Advances in neural information processing systems 31 (2018).

Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. 2021.
Neural scene graphs for dynamic scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2856-2865.

Xiaojuan Qi, Qifeng Chen, Jiaya Jia, and Vladlen Koltun. 2018. Semi-parametric
image synthesis. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 8808-8816.

Christos Sakaridis, Dengxin Dai, and Luc Van Gool. 2018. Semantic foggy scene
understanding with synthetic data. International Journal of Computer Vision 126,
9 (2018), 973-992.

Hans-Peter Schoner. 2018. Simulation in development and testing of autonomous
vehicles. In 18. Internationales Stuttgarter Symposium. Springer, 1083-1095.
Sergio Segura, Gordon Fraser, Ana B Sanchez, and Antonio Ruiz-Cortés. 2016. A
survey on metamorphic testing. IEEE Transactions on software engineering 42, 9
(2016), 805-824.

Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. 2019. Deep High-Resolution
Representation Learning for Human Pose Estimation. In CVPR.

Andrew Tao, Karan Sapra, and Bryan Catanzaro. 2020. Hierarchical multi-scale
attention for semantic segmentation. arXiv preprint arXiv:2005.10821 (2020).
Brad Templeton. 2019. NTSB Report On Tesla Autopilot Accident
Shows What'’s Inside And It's Not Pretty For FSD. Forbes (Sep 2019).
https://www.forbes.com/sites/bradtempleton/2019/09/06/ntsb-report-
on-tesla-autopilot-accident-shows-whats-inside-and-its-not-pretty-for-
fsd/?sh=6270d8234dc5

Brad Templeton. 2020. Tesla In Taiwan Crashes Directly Into Over-
turned Truck, Ignores Pedestrian, With Autopilot On. Forbes (Jun 2020).
https://www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-taiwan-
crashes-directly-into-overturned- truck-ignores-pedestrian- with-autopilot-
on/?sh=20a7458{58e5

Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th international conference on software engineering. 303-314.

Christopher Steven Timperley, Afsoon Afzal, Deborah S Katz, Jam Marcos Her-
nandez, and Claire Le Goues. 2018. Crashing simulated planes is cheap: Can
simulation detect robotics bugs early?. In 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST). IEEE, 331-342.

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. 2018.
Generative image inpainting with contextual attention. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 5505-5514.

Juan Cristébal Zagal and Javier Ruiz-Del-Solar. 2007. Combining simulation and
reality in evolutionary robotics. Journal of Intelligent and Robotic Systems 50, 1
(2007), 19-39.

Sebastian Zanlongo, Matthew Turk, and Sanjay Parajuli. 2019. vanishing-point-
detection. https://github.com/SZanlongo/vanishing-point-detection.

Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. DeepRoad: GAN-based metamorphic testing and input validation
framework for autonomous driving systems. In 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 132-142.

Husheng Zhou, Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Bei Yu, Lingming
Zhang, and Cong Liu. 2020. Deepbillboard: Systematic physical-world testing of
autonomous driving systems. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). IEEE, 347-358.

Yi Zhu, Karan Sapra, Fitsum A Reda, Kevin J Shih, Shawn Newsam, Andrew
Tao, and Bryan Catanzaro. 2019. Improving semantic segmentation via video
propagation and label relaxation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 8856-8865.

