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ABSTRACT

Hurricanes are one of the most catastrophic natural forces with
potential to inflict severe damages to properties and loss of human
lives from high winds and inland flooding. Accurate long-term
forecasting of the trajectory and intensity of advancing hurricanes
is therefore crucial to provide timely warnings for civilians and
emergency responders to mitigate costly damages and their life-
threatening impact. In this paper, we present a novel online learning
framework called JOHAN that simultaneously predicts the trajec-
tory and intensity of a hurricane based on outputs produced by
an ensemble of dynamic (physical) hurricane models. In addition,
JOHAN is designed to generate accurate forecasts of the ordinal-
valued hurricane intensity categories to ensure that their severity
level can be reliably communicated to the public. The framework
also employs exponentially-weighted quantile loss functions to bias
the algorithm towards improving its prediction accuracy for high
category hurricanes approaching landfall. Experimental results
using real-world hurricane data demonstrated the superiority of
JOHAN compared to several state-of-the-art learning approaches.
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1 INTRODUCTION

Hurricanes are tropical cyclones with maximum sustained wind
speed (or intensity) of at least 64 knots or higher. The categorization
of hurricane intensities in terms of their 1-minute maximum sus-
tained wind speed, also known as the Saffir-Simpson scale, is shown
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in Table 1. High-intensity hurricanes, such as those of categories
3 or higher, have accounted for nearly 85% of hurricane-related
damages according to the U.S. National Hurricane Center (NHC).
For example, hurricane Harvey caused an estimated $125 billion of
property damages and 107 confirmed deaths in 2017 [3, 21] while
hurricane Florence caused $24.2 billion in damages and 54 deaths in
2018 [20, 23]. Due to its potential catastrophic impact, accurate long-
term prediction of its path and intensity is critical to alert civilian
population threatened by the imminent approach of a hurricane.

c:tteogt:;y \;L;;t;:}:) Types of Damage Due to Hurricane Winds
- <33 Tropical depression
- 34-63 Tropical storm
1 64-82 Very dangerous winds will produce some damage
2 83-95 Extremely dangerous winds will cause extensive damage
3 96-112 Devastating damage will occur
4 113-136 Catastrophic damage will occur
5 > 137 Catastrophic damage will occur

Table 1: Categorization of tropical cyclone intensity based
on the Saffir-Simpson hurricane wind scale (SSHWS)[24]

Despite its importance, hurricane prediction is a notoriously
hard problem due to the complex physical mechanisms governing
the dynamics of a tropical cyclone, which include factors such as sea
surface temperature and vertical wind shear. To address this issue,
numerous physics-based models [14] have been developed over the
years to provide forecast guidance on the trajectory and intensity of
impending hurricanes. These models would generate their forecasts
by solving the mathematical equations governing the physics of
the atmosphere and ocean coupling. Despite the advances in these
models for trajectory prediction, little improvements have been
achieved for intensity prediction.

In recent years, there have been growing interests in applying
machine learning techniques to improve the performance of hurri-
cane prediction tasks [1, 17, 18, 25]. However, many of the existing
works were developed for forecasting hurricane trajectories only,
with very few of them designed to predict intensities or both. Fur-
thermore, accurate forecasting of its ordinal category is often more
important than the wind speed itself when communicating the
severity of an impending hurricane to the public. Indeed, a pre-
diction error of 60 mph may seem trifle for a category 0 tropical
storm but is significant if a category 5 hurricane at 160mph was
incorrectly predicted as a category 2 storm at 100mph. Furthermore,
as shown in Table 2, current methods were mostly limited to short-
range predictions (24 hours or less) using historical observations as
predictors. These methods are also mostly trained in a batch learn-
ing mode, and thus, are incapable of modeling the non-stationary
nature of hurricane trajectories and their intensities.
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Figure 1: Heat map showing the relationship between hurri-
cane intensity and its distance to nearest U.S. coastline. Neg-
ative distance indicate that the hurricane has made landfall.

To overcome these limitations, this paper presents a novel on-
line learning framework called JOHAN (Joint Online Hurricane
TrAjectory and INtensity Prediction) for lo_ng—term forecasting (up
to 48 hours) of hurricane trajectory and intensity. By using an on-
line learning approach, our model can be efficiently updated to fit
new observations while adapting to concept drifts present in the
non-stationary data. JOHAN employs outputs from an ensemble of
dynamical (physical) models such as U.S. Navy Global Environmen-
tal Model (NAVGEM) [15] and Hurricane Weather Research and
Forecasting system (HWRF) [14] to generate its forecasts. These
dynamical models are designed to simulate future atmospheric con-
ditions from the current conditions. However, the skills of these
ensemble members (i.e., dynamical models) may vary from one
hurricane to another. By training the model in an online fashion,
our framework will be able to take into account the varying skills
of the ensemble members over time.

There are several reasons for developing an algorithm that can
predict the hurricane trajectory and intensity jointly. First, previous
studies have shown the importance of using trajectory information
for intensity prediction [8, 9]. As an illustration, Figure 1 shows
the relationship between hurricane intensity and its distance to the
nearest U.S. coastline using 6-hourly hurricane data between 1851
to 2020 from NHC. The plot suggests that hurricanes with higher
intensities are more likely to be distributed at shorter distances to
the coastline. This phenomenon has been observed in other recent
studies [26]. For example, Wang and Toumi have noted that the
distance at which the tropical cyclone hits its peak intensity has
grown closer to the coastline, decreasing at a rate of 30km per
decade. This suggests the utility of using location information from
the trajectory to help improve the prediction accuracy for high
category hurricanes. Furthermore, the plot also shows that most
of the hurricanes lose their intensity after landfall, which is not
surprising as their energy dissipates rapidly on land, causing a
sharp drop in its intensity.

Finally, it is worth noting that not all predictions are equal in
importance. Accurate prediction of high category hurricanes with
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potential for landfall is more critical than lower category hurricanes
whose projected path is heading away from the coastline. This is
because hurricanes approaching landfall have potential to cause
more damaging impacts to civilian population from storm surges,
high winds, inland flooding, etc. Unfortunately, high category hur-
ricanes also tend to occur less frequently than the lower category
ones, which leads to a class imbalance problem. To overcome these
challenges, JOHAN uses an exponentially-weighted quantile loss
function to bias its algorithm towards predicting more accurately
high intensity hurricanes that are approaching landfall.

2 RELATED WORKS

Due to the complexity of modeling the dynamics of tropical cy-
clones, there have been growing interests in developing machine
learning and deep learning techniques for the hurricane predic-
tion problem. Table 2 reviews some of the existing works, which
can be categorized in terms of the input features used, learning
approaches, target variable to be predicted, and the forecast horizon
(i.e., maximum lead time of the forecast).

First, existing methods typically use the historical trajectory data,
climate/meteorological data, or outputs from physical models as
input features for their prediction models. While historical data are
more suitable for short-range (nowcasting) predictions [17], their
performance tend to be poor since they do not capture the current
and future environmental conditions that affect the hurricane’s path
and intensity. Methods utilizing meteorological data are usually
based on deep learning techniques, such as generalized advesarial
networks (GAN) [22] and convolutional LSTM (ConvLSTM) [16].
While these works are promising, their prediction errors are still
relatively large since the models are typically trained using coarse-
scale images (e.g., 0.5° X 0.5°). Methods that use physical model
outputs tend to generate more reliable long-term forecasts since the
dynamical models consider the current environmental conditions
when simulating their future forecast scenarios [11, 25].

Second, most of the existing works focused on the trajectory
prediction task only even though intensity forecasting is the more
challenging problem. Although the regression and deep learning
methods can be applied to hurricane intensity forecasting problem,
they are not designed for predicting ordinal-valued categories, un-
like the approach proposed in this paper. Third, current methods
mostly employ a batch learning approach to train their models.
This may not be feasible nor effective in an operational forecast
environment, when a new hurricane is continuously tracked and
the model needs to be periodically updated (say every 3 to 6 hours)
to reflect the new trajectory and intensity information.

Finally, recent works have focused on using deep learning and
online learning approaches for hurricane trajectory prediction prob-
lems. For deep learning, [17] used sparse RNN with a flexible topol-
ogy to generate hurricane trajectory predictions. [12] proposed
a Long Short-Term Memory (LSTM) network to predict typhoon
tracks using historical observation data from 1949 to 2011 while [1]
employed RNN over a grid system to handle the non-linearity of
hurricane trajectory forecasting. For online learning, [25] presented
a multi-lead time forecasting framework for hurricane trajectory
prediction. They showed that ensemble forecasting using outputs
from physical models significantly outperform batch methods such
as LSTM trained on historical trajectory data.
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Reference Method Input Features Prediction Task (Forlelzz(:til:)rrlfzon) Lelr\:/i[rorg:g
DeMaria et al. 2005 Linear regression Historical data Intensity Multi-step (72 hrs) Batch
Moradi Kordmahalleh et al. 2016 RNN Historical data Trajectory Multi-step (12 hrs) Batch
Cox et al. 2018 Association rule Historical data Trajectory Multi-step Batch
Mudigonda et al. 2017 ConvLSTM Atmospheric data Trajectory Multi-step Batch
Gao et al. 2018 LSTM Historical data Trajectory Multi-step (72 hrs) Batch
Alemany et al. 2019 RNN Historical data Trajectory Multi-step (120 hrs) Batch
Ruttgers et al. 2019 GAN Atmospheric image Trajectory Single step (6 hrs) Batch
Kim et al. 2019 ConvLSTM Climate data Trajectory Multi-step (15 hrs) Batch
Eslami et al. 2019 CNN Physical model outputs Trajectory & intensity Multi-step Batch
Wang et al. 2020 Online linear Physical model outputs Trajectory Multi-step (48 hrs) Online
Giffard-Roisin et al. 2020 Neural network | Historical data and atmospheric image Trajectory Multi-step (24 hrs) Batch

Table 2: Literature review of recent works on tropical cyclone prediction.

3 PROBLEM STATEMENT

Our goal is to design an online learning framework for joint predic-
tion of hurricane trajectory and its intensity (both ordinal category
and continuous values). At first glance, knowing the category of a
hurricane does not appear to add any new information about the
hurricane intensity since the former is derived from latter value
(see Table 1). Nevertheless, the information is indeed useful as it is
possible for the predicted category error to be small even though
the error in predicting the maximum sustained wind speed is large.
For example, given a category 5 hurricane with maximum sustained
wind speed of 140 knots. A model that predicts its intensity to be
100 knots will have a lower error than one that predicts its inten-
sity to be 200 knots; yet, the former has a larger category error
(since 100 knots is a category 3 hurricane) compared to the latter,
which still predicts the correct category. Furthermore, a category 2
hurricane at 95 knots predicted as 115 knots has a lower intensity
prediction error compared to one predicted as 60 knots even though
the former has a larger error since the category 2 cyclone is incor-
rectly predicted as a major category 4 storm rather than category
1, which is closer to it. Thus, leveraging both ordinal category and
real-valued intensity information can help improve the prediction
framework.

Consider a set of hurricanes, {hy, h, . .., hc}, ordered by their
start times. Assuming there are n; data points (time steps) associ-
ated with hurricane h;, then N = Z,-C=1 n; is the total number of time
steps in the hurricane dataset. Let X = {/\’1, X2 ... ,XN} be the set
of trajectory forecasts generated by an ensemble of dynamical mod-
els, where each X? corresponds to the hurricane trajectory forecasts
generated at time step ¢. Similarly, the intensity forecasts generated
by the ensemble members can be denoted as X = {Xl, X2, ..., XN}.
Let 71; be the accumulated number of data points from hurricane hq
to h;, ie. fi; = Z§~=1 nj. Thus, {(X/,X/) | ii_1 < j < fi;} is the set
of trajectory and intensity data points associated with hurricane
h;. Assume T is the forecast horizon, i.e., maximum lead-time of
the forecasting task. For each time step ¢, let X! € R>™XT pe
the hurricane trajectory forecasts (latitude and longitude), where
my is the number of ensemble member (dynamic model) forecasts
available at time step t. The ensemble member trajectory forecasts
for lead time 7 at time ¢ is denoted as X»7 € R®™ with the
corresponding ground truth location y*? € R%. Let Y', Y%, ..., YN
be the ground truth locations for all lead times at each time step
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t, where Y! € R?*T. Similarly, let X! € RT¥M: he the hurricane
intensity forecasts at time step t, where 1, is the number of en-
semble member forecasts available at time step t. The ensemble
member forecasts for lead time 7 at time ¢ is denoted as X7 € R ,
with the corresponding ground truth intensity value %7 € R. Let
¥4, %% ..., 7N be the true intensity values for N time steps, where
each §* = [§51 g2 - - §5T]T is a vector of intensity values for all
lead times at time step t. Furthermore, let %7 and §* be the corre-
sponding intensity categories associated with the real-valued inten-
sities in 7 and §*, respectively. The transformation from hurricane
intensity values to their corresponding intensity categories is based
on an ordered list of boundary values —co < b1 < --- < bs < 0.
Specifically, the predicted intensity value z"7 is assigned to category

yt’f if bgt,‘r <zhT < bgt,r_,_l.

4 METHODOLOGY

At each time step ¢, we use the set of ensemble member forecasts for
trajectory X57 € R¥™ and intensity %7 € R™ to generate the
trajectory and intensity predictions for lead time 7. The real-valued
trajectory prediction z5>7 € R? and intensity prediction 257 € R are
computed by linear predictors as follows:

Zt,r — ft,'r(xt,r) — Xt,rwt,r

ft’f — ft’f(it’r) — it,f“'}l‘,‘[ (1)
where wh?T € R™ whH7 e R™ are the learned weight vectors
associated with ensemble member forecasts for the trajectory and
intensity models, respectively. The weight vectors are updated
simultaneously in an online fashion whenever new observation
data becomes available. One major challenge in using the ensemble
member forecasts is that a significant proportion of the ensemble
members may not generate any forecasts at a given time step ¢,
which is why the number of ensemble members, m;, varies from
one hurricane to another. This is known as the varying feature
length problem [25], which can be addressed using the weight
re-normalization technique described in [25].

4.1 Proposed JOHAN Framework

The novelty of JOHAN is its ability to jointly predict the hurricane
trajectory and intensity. The framework consists of a pair of weight
updating components for hurricane trajectory and intensity predic-
tion. Both components employ an exponentially-weighted quantile
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loss to improve their prediction performance for close-to-land hur-
ricanes and high category hurricanes.

To learn the tasks jointly, our framework is trained to minimize
the following objective function in an online learning fashion:

L= Lya(0,8)+ Lint(é, g)
{g(z}”), if §57 is available

g(z%7), otherwise

é:l‘,f —

s.t.

@

Fir = G(y"7),if y7 is available
"~ 14(2%7), otherwise

where L, corresponds to the loss function for trajectory predic-
tion while L;y; is the loss for intensity forecasting. ® and O are
the model parameters associated with the hurricane trajectory and
intensity prediction tasks, respectively. The quantile parameters
&and 5 are needed to bias the model towards predicting more ac-
curately hurricanes that are close to the coastline or those with
high categories. Unlike traditional quantile loss, £ and 5 are not
user-specified hyperparameters but are automatically updated in
an online fashion. Specifically, the quantile loss terms are updated
to reflect the significant threat of a hurricane using the functions
g(+) and (). Recall that y*7 is the true hurricane location and §%*
is the true intensity at time ¢ for lead time 7. However, since y*?
and 77 may not available during model update, we use the model
predictions z5*7 and 77 to approximate them when calculating the
quantile parameters. Details of the quantile functions are given in
Section 4.1.3. The objective function can be solved using standard
quadratic programming solvers.

4.1.1  Ltrq with Distance Quantile Regression. As hurricanes can
cause severe damages in civilian populated areas, it is imperative to
accurately identify hurricanes that are approaching landfall. There-
fore, we would like to bias the model towards learning hurricanes
with potential to strike the land. This can be done by encourag-
ing hurricane forecasts that are more likely to make landfall. The
possibility of hurricane landfall can be measured by the distance
between its current location to the nearest coastline. Specifically,
we introduce a distance loss decomposition to evaluate the model
performance by taking into account its predicted distance to the
coastline. For every ground truth location y, we can find its corre-
sponding projected point p to the nearest coastline. A unit normal
vector to the coastline can be calculated as n = ﬁ. Given a
predicted location z, its distance loss is defined as d = z — y. The
distance loss vector d can be decomposed into a parallel, d; = d - n,
and a perpendicular component, d; = d —d |, as shown in Figure 2.
With the definition of distance loss decomposition, the square loss
%Hz - y||§ can be expressed equivalently as follows

Lira = %(§2+§*2+(Z_Y)i)
(z-y)=¢-0,
(>20{">0

®)

s.t.

In order to encourage predictions with shorter distances to the
coastline, Eqn. (3) can be further extended to accommodate the
quantile loss in Eqn. (4). Note that Eqn. (4) is equivalent to Eqn. (3)
by setting the quantile parameter & to 0.5.
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Figure 2: Decomposition of the distance loss vector. The
green circle is the true location and the red star is its pro-
jected nearest coastline. The unit vector n points in the di-
rection towards the land. The blue circle is the predicted lo-
cation. The vector directed from the green circle to the blue
circle is the distance loss vector d, which can be decomposed
into a parallel d| and a perpendicular component d, .

Lira= (197 +&%+ (v}
st. (z=y)=¢-0", (4)
(20,{">20

We assume that the weight vectors w7 in Eqn. (1) can be de-
composed into the following factors:

Wt,‘r — ut +Vt’T

©)

st. 1l uf=1, 1] viT =0

where u! is the shared weight vectors for all lead times while v*7
is adjustment to the weight vectors associated with the different
lead times 7. For brevity, we denote wi = [wt’l, wh2 ... ,wt’T] as
the weight matrix for all T lead times at time step ¢. To extend the
preceding formulation to an online multi-lead time forecasting set-
ting, the weight matrix W7 is updated by minimizing the following

objective function at each time step ¢:

T
Lira= ) 8"7Y" ((1 O gt G -yt
=1
w O 1T+l )2, Bt 1-12
e Wy N
7=1
v 4 t,T t-1,7|2 n L t,7)|2 (6)
e IS e LY ]
=1 =1
st. Ver: 1l uf =110 v'7 =0,
(Zt‘r _yt,z')H — g[,r _ g*t,r’
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where 67 is an indicator function whose value is 1 if X7 and y*7
values are both available; otherwise its value is 0. In the objective
function, the first term represents the forecast errors for all the
lead times. The quantile parameter ¢ determines the importance of
making location predictions with shorter distance to coastlines. The
hyperparameter y determines the relative importance of making
accurate predictions at different lead times. The second term en-
sures that the estimated model parameters would vary smoothly at
different lead times, thus preserving the temporal autocorrelation
of the predicted intensities. The third and fourth terms guarantee
that the shared weight vector u’ and lead time adjustment weight
vectors vi>7 are close to their values at previous time step. The last
term penalizes large values in the lead time adjustment weight
vectors. w, i, v, 1j are hyperparameters that determine the relative
importance of each term in the objective function. If ¢ ~ 1, then
the parallel distance loss will be ignored if (z°7 — y**) > 0. This
means that optimizing L, will lead to models that are more biased
toward predicting closer distance to the coastline.

4.1.2  Lin: with Quantile Ordinal Regression. Our goal is to also
generate accurate long range predictions of hurricane real-valued
intensity and category. Here, we use the e-insensitive loss to mea-
sure the intensity prediction error. Compared to mean square loss,
the e-insensitive loss is more robust as it provides a margin of
tolerance € [2, 10] when learning the regression function.

{+&

z-y<e+{

€ — insensitive loss: Lin; =

s.t.
)

z-y=2-e-{"
(>20">0

Second, in order to communicate the severity of an impending
hurricane to the public, accurate prediction of its category is just as
important as the wind speed itself. As noted in Section 3, intensity
prediction alone is insufficient because it ignores the effect of its
prediction error on the predicted category. Therefore, we intro-
duce an ordinal loss to ensure the model is focused more on data
points located near the boundary between two ordinal categories.
Analogous to the loss function defined for support vector ordinal
regression [5], the ordinal loss function is defined as follows:

Ordinal loss: Lips = {+{*
st z=by < -1+
Z—ngl—g*
{20">0

®

Our intensity prediction loss can be measured by combining
Eqns. (7) and (8). In addition, to penalize models that incorrectly
predict high category hurricanes, the formulation can be extended
to accommodate the quantile loss as (1 — &) + £*.

Line= (1-H{+ET
st z=bgy < -1+4¢
z—by > 1-*

z-y<e+{ ©)
z-y=—-e-{"
(>20">0
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Similar to the trajectory model, we assume that the intensity

weight vector W% can be decomposed into the following factors:

~ I,

W t {,l‘,‘[

=+

(10)

st. 1,8 =117 ¥ =0
where ! is the shared weight vectors for all lead times while v*%
is adjustment to the weight vectors associated with the different
lead times 7. For brevity, we denote Wi = [vNV[’l, wh2 ... ,\ilt’T] as
the weight matrix for all T lead times at time step ¢.
Putting it together, the weight matrix W for intensity prediction
is trained to minimize the following objection function:

T
1 ~ ~ -
Lim= ; §hrym (- Hiete + &)
P! .
n @ |‘S]t,r+1 _ ‘x,t,T“Z + B Hﬁt _ ﬁt—1”2
2 =1 2
v o ctr wt-1r)2 7 S ~ 7|2
N e IO
= =1 (11)
st. Vtr: erh,ﬁt =1, 1%\7“ =0,
Et’r - bgt,1+1 < -1+ gvt,r

~t,T *1,T
z bl bgt,r >1- g
Zt,r _ gt,r < €+€«t,‘r
Et’T _ gt,'r > —e— g*t,r

T2 0,0 20

where 5%7 is an indicator function whose value is 1 if X7 and i
values are both available; otherwise its value is 0. In the objective
function, the first term represents the forecast errors for all the lead
times. The hyperparameter 5 determines the importance of making
accurate predictions for high category hurricanes. The meanings
of other terms in the objective function are similar to Equation (6).

4.1.3 Quantile Parameter Update. As described in the previous
section, the quantile parameters are updated in an online fashion. In
general, we want the quantile parameter for trajectory prediction to
be large if the hurricane category is high; and the quantile parameter
for intensity prediction to be large if the hurricane location is close
to coastline. In our framework, we use a sigmoid function o (x) =
1/(1 + e™) to determine the quantile parameters.

For L4, the parameter £57 is calculated from the function g(x)
given in Eqn. (2) as follows:

0.5,
960 = {a([x - 61/0),

where x is the ground truth or predicted intensity with current
weight vector, 0 is a hyperparameter that decides when the quantile
loss is not needed, and c is a scaling factor. When the hurricane
intensity is low, g(x) = 0.5, and thus, the first loss term in L4
reduces to the squared loss function. For high intensity hurricanes,
g(x) ~ 1. In this case, the framework gives higher weights for
models that predict locations with shorter distance to the coastline.

f
orx <0 (12)

otherwise
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For Lins, the parameter £57 is calculated from the function §(-)
defined in Eqn. (2) as follows:

. 0.5, for deogst (x) > 0
g(x) =

5 . . (13)
([0 = dcoast (x)]/¢), otherwise

where x is either the ground truth or predicted location for the
current weight vector, dcogs: (+) is a function that computes distance
to the nearest coastline, § is a hyperparameter that determines when
the quantile loss is not needed, and ¢ is the scaling factor. When the
hurricane is far from the coastline, we have g(x) = 0.5. The first
loss term of .Ljy; is thus reduced to an #;-loss. When the hurricane
is very close the land, g(x) ~ 1. In this case, the framework assigns
higher weights to models that predict higher intensities.

Error propagation is a challenge for multi-lead time forecast-
ing. It is insufficient to update W! and W from W*~! and W*~!
alone as the previous weights are outdated without using the new
observation. To address this problem, we apply the backtracking
and restart strategy described in [25]. The overall framework with
backtracking and restart strategy is illustrated in Figure 3. The pseu-
docode for the proposed framework is described in Algorithm 1. At
each time step t, the newly available ground truth value can be de-
termined as {y? =TT, yf~T+LT-1  yt=L1} for trajectory forecasts
and {7~ 0T, gt~ T+LT-1  §'=L1} for intensity forecasts. There-
fore, to make all the previous learned weight vectors up to date,
we updated the weight vectors from time step t — T until t — 1
with quantile parameters generated by Eqn. (12) and (13). Then, the
multi-lead time predictions for both trajectory and intensity can be
produced given the ensemble of model outputs and updated model
weight vectors.

5 EXPERIMENTS

We performed experiments using real-world hurricane trajectory
and intensity data from various sources. The ground truth hurri-
cane trajectory and intensity data along with the official forecasts
are obtained from the National Hurricane Center (NHC) website!,
while the ensemble member forecasts are obtained from the Hurri-
cane Forecast Model Output website at University of Wisconsin-
Milwaukee?. We collected 6-hourly hurricane trajectory and inten-
sity data from the year 2012 to 2020, which contains 336 tropical
cyclones. Each tropical cyclone has an average length of 21.9 time
steps (data points), which gives a total of 7364 data points. There are
27 trajectory forecast models and 21 intensity forecast models used
in our experiments, which are a subset of the models used by NHC
in the preparation of their official forecasts. The data from 2012 to
2017 (208 tropical cyclones) are used for training and validation,
while those from 2018 to 2020 (128 tropical cyclones) are used for
testing.

5.1 Baseline and Evaluation Metrics
We compared JOHAN against the following baseline methods:

(1) Ensemble mean: This method computes the mean value
over all ensemble members for each given lead time.

!https://www.nhc.noaa.gov
Zhttp://derecho.math.uwm.edu/models
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Input: ©, (:), I ¥
Output: Model parameters w, w and forecasts z, Z
Initialize: w = 1,,/m, W = 1,,,/m;
fort=12...,Ndo
if t is the first time step of a trajectory then

Extract uf from w, 0! from w

Normalize:

L ut/|ut|,v

t,T ST

u Vit «— 0
end
Observe y', §*
/* Backtracking and restart step */
fort'=t-T,t-T+1,...,t—1do

Trajectory predictions

2T = f‘t',T(Xt,T) = Xt Twt'sT

Intensity predictions T = f”(f('/’r) =zt TwtT

Calculate £57 and gt’f using Eq. 12 and 13

Update u? *!, v!"+17 by minimizing Ltrq

— 0,0t — af/|af|,

Update ! *!, ¥!'+17 by minimizing Lins
end
/* Prediction step */
forr=12---,Tdo
Compute w7 and W7 for all lead times
Trajectory predictions z»7 = f5-7(X07) = XHTwh?
Intensity predictions 257 = f£7(&57) = XL TwWhT
end
if t is the last time step of a trajectory then
Substitute u’ back into the full vector w

Substitute @ back into the full vector &
end

end
Algorithm 1: Proposed JOHAN Framework

(2) Persistence: This method assumes that the intensity and
moving speed of the hurricane at the next time step is the
same as current time step.

(3) Passive-Aggressive(PA) [7]: This is a well-known online
regression algorithm.

(4) ORION [27]: This is an online multi-task learning algorithm
for ensemble forecasting.

(5) OMulLeT [25]: This is a recently developed online learning
algorithm for ensemble forecasting.

(6) NHC: This corresponds to the official forecasts generated
by NHC, which is the gold standard.

For a fair comparison, the baseline methods (PA, ORION, OMuLeT,
and JOHAN) also apply the backtracking and restart strategy to
update their weights. Hyperparameters of the methods were tuned
by minimizing the following mean distance error (MDE) for trajec-
tory forecasts and macro-averaged mean absolute error (MAE) for
intensity forecasts on the validation set.

MDE = % > [dis (27, y")] (14)
t,T
1|1
_ — . 6,7 _ ALT
macro-MAE 6 24\ N; ; z 7 | (15)
yhT=i
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Figure 4: Distance to coastline for hurricanes from year 2012
to 2017 at different time before landfall.

where N is total number of trajectory forecasts in the validation set
and N; is the number of data points of category i in the validation
set. We use MDE on the trajectory test data to evaluate the location
prediction error, and MAE on the intensity test data to evaluate
the error in both real- and ordinal-valued predictions. We also use
F1-score to evaluate accuracy of the ordinal category predictions.

For JOHAN framework, the hyperparameters © and © are tuned
with the fixed quantile parameters ¢ = 5‘; = 0.5. The threshold 6 for
the function g(+) is set to 34 knots (kt), which is the lower bound for
intensity of a tropical storm. As there are very few time steps with
intensity more than 64 kt, the hyperparameter c is calculated by
solving g(x) = o([x — 8] /c) = 0.9 with x = 64 kt. For the function
g(+), Figure 4 shows the distance to coastline for landfall hurricanes
at different hours before landfall. The threshold 6 is set to 300
nautical miles (n mi) where the hurricanes are unlikely to strike
the land in 48 hours. The hyperparameter ¢ is calculated by solving
§(x) = 0([0 = deoast (x)]/€) = 0.9 with x = 200 n mi which is the
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Time t

Weight
Update

t
Weight
Update

Proposed JOHAN framework.

distance from the coastline for hurricanes that might reach landfall
after 24 hours. The source code and data used in our experiments
are available at https://github.com/cqwangding/JOHAN.

5.2 Experimental Results

Table 3 summarizes the trajectory and intensity forecast errors of
JOHAN and other baseline methods with lead times from 12 hours
to 48 hours. For trajectory prediction, there are several interesting
conclusions that can be drawn. First, the performance of ensemble
mean is comparable to the NHC official forecast, which validates
the advantage of using an ensemble of physical model outputs as
predictors. Second, persistence performs much worse than other
baselines. This is reasonable since persistence assumes that the mov-
ing speed of hurricane is unchanged. Third, OMuLeT and JOHAN
generate comparable results and both outperform other baselines,
including the official forecasts from NHC. This is not surprising as
both methods employ similar strategies to update their trajectory
prediction models. However, as will be shown below, OMulLeT is
inferior to JOHAN in terms of its trajectory prediction error for
hurricanes within 200 n mi from the coastline.

For intensity forecasts, the performance of ensemble mean is
significantly worse than NHC as shown in Table 3. This is not sur-
prising as intensity forecasting is still a very challenging problem
for the dynamical and statistical models in the ensemble. Second,
both persistence and PA perform poorly, much more so than other
methods. Fourth, JOHAN generally has significantly better perfor-
mance especially at longer lead times with results comparable to
the official forecasts of NHC. This is impressive considering the
fact that the ensemble members used in JOHAN is only a subset of
the models used by NHC to generate their official forecasts.

JOHAN is designed to maximally identify threatening hurricanes
with potential to strike landfall. Table 4 summarizes the trajectory
and intensity forecast errors for hurricanes within 200 n mi to
coastline with an intensity of at least 64 kt for different prediction
methods at varying lead times (from 12 to 48 hours). The relative
performance of all the baseline methods is similar to Table 3. The
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Trajectory error (in n mi) Intensity error (in kt) F1-score
Method 12 24 36 43 12 24 36 48 Category macro-F1 0 1 2 3 1 5
Ensemble Mean || 2330 | 3634 | 50.22 | 65.03 | 6.742 | 8.692 | 9.899 | 11.036 Ensemble Mean 0378 0919 | 0414 | 0234 | 0318 | 0.188 | 0.195
Persistance 34.84 | 88.89 | 155.87 | 229.63 | 7.717 | 13.797 | 18.246 | 22.102 Persistance 0394 0854 | 0309 | 0182 | 0236 | 0389 | 0392
PA 2330 | 36.34 | 50.23 | 64.80 | 6.547 | 10.563 | 13.294 | 15.268 PA 0.454 0399 0412 T 0231 10208 1 0395 | 0436
ORION 23.37 | 36.36 | 50.21 | 65.00 | 5792 | 7.941 | 9.388 | 10.551

OMuLeT 22.20 | 34.94 | 48.07 | 62.10 | 5.632 | 7.923 | 9.285 | 10.513 ORION 0.505 | 0.927 | 0.509 | 0.330 | 0.375 | 0.431 | 0459
JOHAN 22.25 | 3501 | 48.13 | 62.08 | 5.732 | 7.700 | 8.948 | 10.026 OMuLeT 0493 0.923 | 0.465 | 0.290 | 0.402 | 0.435 | 0.445

\ NHC [ 24.59 | 38.49 | 52.17 | 65.74 [ 5.019 [ 7.730 [ 8.959 [ 10.140 | JOHAN 0.496 0923 | 0462 | 0.274 | 0402 | 0.447 | 0.467
\ NHC [ o516 [ 0920 [ 0511 | 0328 | 0.362 [ 0.442 | 0534 |

Table 3: Trajectory and intensity forecast errors for different
methods at varying lead times from 12 to 48 hours.

Trajectory error (in n mi) Intensity error (in kt)
Method 12 24 36 48 12 24 36 48
Ensemble Mean 15.80 | 28.47 | 41.21 52.09 | 13.274 | 17.325 | 20.246 | 20.382
Persistance 34.28 | 87.62 | 159.38 | 228.91 | 13.121 | 22.547 | 29.194 | 32.762
PA 1581 | 28.48 | 41.22 51.98 8.765 16.042 | 24.275 | 24.656
ORION 16.02 | 28.61 | 41.29 52.15 | 8.483 | 13.171 | 16.806 | 17.555
OMuLeT 1533 | 28.28 | 39.65 49.67 9.064 | 14.435 | 17.562 | 18.317
JOHAN 15.28 | 28.15 | 39.28 | 49.06 | 8.963 | 13.367 | 16.270 | 16.554
\ NHC [ 16.69 | 29.47 | 42.83 | 54.07 | 7.962 | 13.585 | 16.097 | 17.587 |

Table 4: Trajectory and intensity forecast errors for hurri-
canes within 200 n mi to coastline with intensity at least 64
kt for different methods at varying lead times from 12 to 48
hours.

Table 6: Comparison of F1-score, precision and recall for
hurricanes within 200 n mi to coastline with various hur-
ricane intensity forecasting methods at different categories.

framework. JOHAN-NQ removes the quantile loss for the first term
in Eqn. (6) and (11) and reduced them to squared loss and #;-loss.
JOHAN-Q uses a fixed quantile parameter for all its weight updates.

Table 7 summarizes the trajectory and intensity forecast errors
for the two variations of JOHAN framework while Table 8 summa-
rizes their corresponding forecast errors for near land high intensity
hurricanes. It is clear that increasing the fixed quantile parameters
would lead to better performance for near land, high intensity hur-
ricanes (Table 8) but at the expense of decreasing overall prediction
accuracy (Table 7). JOHAN, with its varying quantile parameters,

F1-score
Category macro-F1 | 0 1 2 3 4 5 manages to maintain consistently accurate predictions in both sce-
Ensemble Mean || 0390 | 0.917 | 0.449 | 0309 | 0.305 | 0.168 | 0.190 narios.
Persistence 0396 | 0.859 | 0327 | 0.247 | 0.234 | 0.330 | 0.378
PA 0415 | 0.902 | 0.437 | 0.310 | 0.274 | 0.339 | 0.226 Trajectory (n mi) Tntensity (kD)

ORION 0491 | 0922 | 0.530 | 0.377 | 0.349 | 0.418 | 0.350 Method 2T 22 T 36 | 48 7T 22 T 36 e

OMuLeT 0494 | 0.923 | 0502 | 0367 | 0.386 | 0.380 | 0.404 JOHAN 22.25 | 35.01 | 48.13 | 6208 || 5.732 | 7.700 | 8.948 | 10.026

JOHAN 0.499 | 0.922 | 0499 | 0.357 | 0.385 | 0.380 | 0.450 JOHAN-NQ 22.20 | 34.94 | 48.07 | 62.10 || 5.700 | 7.654 | 8.880 | 9.840
\ NHC [[ 0540 [ 0924 [ 0.554 [ 0411 | 0390 [ 0.462 | 0502 | JOHAN-Q(£=0.6) || 22.21 | 34.94 | 48.08 | 62.07 || 5.696 | 7.647 | 8.877 | 9.872
Table 5: Comparison of Fl-score, precision and recall for JOHAN-Q(£=0.7) || 22.23 | 34.94 | 48.07 | 62.06 || 5.704 | 7.659 | 8.897 | 9.939

cous hurri . ity f . h S JOHAN-Q(£=0.8) || 22.27 | 34.96 | 48.08 | 62.09 || 5.722 | 7.704 | 8.964 | 10.064
various hurricane intensity forecasting methods at different JOHAN-Q(£=0.9) || 22.33 | 35.01 | 48.11 | 62.14 || 5.749 | 7.781 | 9.073 | 10.248

categories.

trajectory prediction of JOHAN outperforms all other baselines
for near land hurricanes. This suggests that JOHAN is capable of
utilizing the relationship between high intensity hurricanes and
distance to the coastline to improve its prediction. For intensity
predictions, JOHAN still maintains the best predictive performance
at longer lead times.

In addition, we also evaluated the hurricane category prediction
for the different methods by computing their F1-scores. The results
are shown in Table 5. First, ensemble mean performs poorly for high
category predictions, which is not surprising as the different ensem-
ble members are not equally skillful. Second, the overall macro-F1
performance of persistence is similar to ensemble mean and much
worse than other baselines. Third, PA is better than ensemble mean
but still worse than both ORION and OMuLeT. The macro-F1 score
of JOHAN is slightly higher than ORION and OMuLeT, though
JOHAN has better performance for the higher categories. Table 6
summarizes the F1-scores for hurricanes within 200 n mi from the
coastline, which clearly demonstrates the superiority of JOHAN
compared to other baselines for high category hurricanes.

5.3 Ablation Study

A key aspect of JOHAN is its ability to update the quantile parame-
ter in an online fashion. To investigate the advantages of utilizing
a varying quantile parameter, we consider two variations of our

1684

Table 7: Trajectory and intensity forecast errors for different
variations of JOHAN.

Trajectory (n mi) Intensity (kt)

Method 12 24 36 48 12 24 36 48
JOHAN 15.28 | 28.15 | 39.28 | 49.06 | 8.963 | 13.367 | 16.270 | 16.554
JOHAN-NQ 15.33 | 28.28 | 39.65 | 49.67 | 9.176 | 13.642 | 16.791 | 16.854
JOHAN-Q(£=0.6) 15.30 | 28.23 | 39.53 | 49.50 | 9.047 | 13.488 | 16.537 | 16.743
JOHAN-Q(£=0.7) 15.28 | 28.18 | 39.43 | 49.33 | 8.985 | 13.398 | 16.346 | 16.630
JOHAN-Q(£=0.8) 15.27 | 28.15 | 39.35 | 49.16 | 8.950 | 13.362 | 16.256 | 16.606
JOHAN-Q(£=0.9) 15.27 | 28.14 | 39.29 | 49.00 | 8.986 | 13.412 | 16.256 | 16.671

Table 8: Trajectory and intensity forecast errors for hurri-
canes within 200 n mi to coastline and at least 64 kt using
different variations of JOHAN.

5.4 Comparison of Model Weights

The time-varying model weights generated by JOHAN are shown
in Figure 5 for trajectory and intensity forecasts, respectively. De-
spite the shared information between the trajectory and intensity
components of the framework, it is clear that the best models for
trajectory prediction are not exactly the same as the best models
for intensity prediction. This result agrees with previous findings
in [11]. For example, AVNO was found to be one of the best models
for trajectory prediction but its weight for intensity prediction is
close to 0. Compared to trajectory forecasting, hurricane intensity
forecasting is still a very challenging problem [4].
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Figure 5: Trajectory and intensity model weights in JOHAN
changes over time.

6 CONCLUSION

This paper presents a novel framework called JOHAN for predicting
long-range hurricane trajectory and intensity simultaneously. The
framework employs a novel time-varying quantile loss function to
improve its accuracy in predicting high category hurricanes with
the potential for near landfall. Experimental results confirmed the
efficacy of JOHAN, especially in terms of accurately predicting near
landfall, high category hurricanes.
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