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ABSTRACT

Hurricanes are one of the most catastrophic natural forces with

potential to inflict severe damages to properties and loss of human

lives from high winds and inland flooding. Accurate long-term

forecasting of the trajectory and intensity of advancing hurricanes

is therefore crucial to provide timely warnings for civilians and

emergency responders to mitigate costly damages and their life-

threatening impact. In this paper, we present a novel online learning

framework called JOHAN that simultaneously predicts the trajec-

tory and intensity of a hurricane based on outputs produced by

an ensemble of dynamic (physical) hurricane models. In addition,

JOHAN is designed to generate accurate forecasts of the ordinal-

valued hurricane intensity categories to ensure that their severity

level can be reliably communicated to the public. The framework

also employs exponentially-weighted quantile loss functions to bias

the algorithm towards improving its prediction accuracy for high

category hurricanes approaching landfall. Experimental results

using real-world hurricane data demonstrated the superiority of

JOHAN compared to several state-of-the-art learning approaches.
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1 INTRODUCTION

Hurricanes are tropical cyclones with maximum sustained wind

speed (or intensity) of at least 64 knots or higher. The categorization

of hurricane intensities in terms of their 1-minute maximum sus-

tained wind speed, also known as the Saffir-Simpson scale, is shown
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in Table 1. High-intensity hurricanes, such as those of categories

3 or higher, have accounted for nearly 85% of hurricane-related

damages according to the U.S. National Hurricane Center (NHC).

For example, hurricane Harvey caused an estimated $125 billion of

property damages and 107 confirmed deaths in 2017 [3, 21] while

hurricane Florence caused $24.2 billion in damages and 54 deaths in

2018 [20, 23]. Due to its potential catastrophic impact, accurate long-

term prediction of its path and intensity is critical to alert civilian

population threatened by the imminent approach of a hurricane.

Storm

category

Sustained

Winds (kt)
Types of Damage Due to Hurricane Winds

- <33 Tropical depression

- 34-63 Tropical storm

1 64-82 Very dangerous winds will produce some damage

2 83-95 Extremely dangerous winds will cause extensive damage

3 96-112 Devastating damage will occur

4 113-136 Catastrophic damage will occur

5 ≥ 137 Catastrophic damage will occur

Table 1: Categorization of tropical cyclone intensity based

on the Saffir-Simpson hurricane wind scale (SSHWS)[24]

Despite its importance, hurricane prediction is a notoriously

hard problem due to the complex physical mechanisms governing

the dynamics of a tropical cyclone, which include factors such as sea

surface temperature and vertical wind shear. To address this issue,

numerous physics-based models [14] have been developed over the

years to provide forecast guidance on the trajectory and intensity of

impending hurricanes. These models would generate their forecasts

by solving the mathematical equations governing the physics of

the atmosphere and ocean coupling. Despite the advances in these

models for trajectory prediction, little improvements have been

achieved for intensity prediction.

In recent years, there have been growing interests in applying

machine learning techniques to improve the performance of hurri-

cane prediction tasks [1, 17, 18, 25]. However, many of the existing

works were developed for forecasting hurricane trajectories only,

with very few of them designed to predict intensities or both. Fur-

thermore, accurate forecasting of its ordinal category is often more

important than the wind speed itself when communicating the

severity of an impending hurricane to the public. Indeed, a pre-

diction error of 60 mph may seem trifle for a category 0 tropical

storm but is significant if a category 5 hurricane at 160mph was

incorrectly predicted as a category 2 storm at 100mph. Furthermore,

as shown in Table 2, current methods were mostly limited to short-

range predictions (24 hours or less) using historical observations as

predictors. These methods are also mostly trained in a batch learn-

ing mode, and thus, are incapable of modeling the non-stationary

nature of hurricane trajectories and their intensities.
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Figure 1: Heat map showing the relationship between hurri-

cane intensity and its distance to nearest U.S. coastline. Neg-

ative distance indicate that the hurricane hasmade landfall.

To overcome these limitations, this paper presents a novel on-

line learning framework called JOHAN (Joint Online Hurricane

TrAjectory and INtensity Prediction) for long-term forecasting (up

to 48 hours) of hurricane trajectory and intensity. By using an on-

line learning approach, our model can be efficiently updated to fit

new observations while adapting to concept drifts present in the

non-stationary data. JOHAN employs outputs from an ensemble of

dynamical (physical) models such as U.S. Navy Global Environmen-

tal Model (NAVGEM) [15] and Hurricane Weather Research and

Forecasting system (HWRF) [14] to generate its forecasts. These

dynamical models are designed to simulate future atmospheric con-

ditions from the current conditions. However, the skills of these

ensemble members (i.e., dynamical models) may vary from one

hurricane to another. By training the model in an online fashion,

our framework will be able to take into account the varying skills

of the ensemble members over time.

There are several reasons for developing an algorithm that can

predict the hurricane trajectory and intensity jointly. First, previous

studies have shown the importance of using trajectory information

for intensity prediction [8, 9]. As an illustration, Figure 1 shows

the relationship between hurricane intensity and its distance to the

nearest U.S. coastline using 6-hourly hurricane data between 1851

to 2020 from NHC. The plot suggests that hurricanes with higher

intensities are more likely to be distributed at shorter distances to

the coastline. This phenomenon has been observed in other recent

studies [26]. For example, Wang and Toumi have noted that the

distance at which the tropical cyclone hits its peak intensity has

grown closer to the coastline, decreasing at a rate of 30km per

decade. This suggests the utility of using location information from

the trajectory to help improve the prediction accuracy for high

category hurricanes. Furthermore, the plot also shows that most

of the hurricanes lose their intensity after landfall, which is not

surprising as their energy dissipates rapidly on land, causing a

sharp drop in its intensity.

Finally, it is worth noting that not all predictions are equal in

importance. Accurate prediction of high category hurricanes with

potential for landfall is more critical than lower category hurricanes

whose projected path is heading away from the coastline. This is

because hurricanes approaching landfall have potential to cause

more damaging impacts to civilian population from storm surges,

high winds, inland flooding, etc. Unfortunately, high category hur-

ricanes also tend to occur less frequently than the lower category

ones, which leads to a class imbalance problem. To overcome these

challenges, JOHAN uses an exponentially-weighted quantile loss

function to bias its algorithm towards predicting more accurately

high intensity hurricanes that are approaching landfall.

2 RELATEDWORKS

Due to the complexity of modeling the dynamics of tropical cy-

clones, there have been growing interests in developing machine

learning and deep learning techniques for the hurricane predic-

tion problem. Table 2 reviews some of the existing works, which

can be categorized in terms of the input features used, learning

approaches, target variable to be predicted, and the forecast horizon

(i.e., maximum lead time of the forecast).

First, existing methods typically use the historical trajectory data,

climate/meteorological data, or outputs from physical models as

input features for their prediction models. While historical data are

more suitable for short-range (nowcasting) predictions [17], their

performance tend to be poor since they do not capture the current

and future environmental conditions that affect the hurricane’s path

and intensity. Methods utilizing meteorological data are usually

based on deep learning techniques, such as generalized advesarial

networks (GAN) [22] and convolutional LSTM (ConvLSTM) [16].

While these works are promising, their prediction errors are still

relatively large since the models are typically trained using coarse-

scale images (e.g., 0.5◦ × 0.5◦). Methods that use physical model

outputs tend to generate more reliable long-term forecasts since the

dynamical models consider the current environmental conditions

when simulating their future forecast scenarios [11, 25].

Second, most of the existing works focused on the trajectory

prediction task only even though intensity forecasting is the more

challenging problem. Although the regression and deep learning

methods can be applied to hurricane intensity forecasting problem,

they are not designed for predicting ordinal-valued categories, un-

like the approach proposed in this paper. Third, current methods

mostly employ a batch learning approach to train their models.

This may not be feasible nor effective in an operational forecast

environment, when a new hurricane is continuously tracked and

the model needs to be periodically updated (say every 3 to 6 hours)

to reflect the new trajectory and intensity information.

Finally, recent works have focused on using deep learning and

online learning approaches for hurricane trajectory prediction prob-

lems. For deep learning, [17] used sparse RNN with a flexible topol-

ogy to generate hurricane trajectory predictions. [12] proposed

a Long Short-Term Memory (LSTM) network to predict typhoon

tracks using historical observation data from 1949 to 2011 while [1]

employed RNN over a grid system to handle the non-linearity of

hurricane trajectory forecasting. For online learning, [25] presented

a multi-lead time forecasting framework for hurricane trajectory

prediction. They showed that ensemble forecasting using outputs

from physical models significantly outperform batch methods such

as LSTM trained on historical trajectory data.
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Reference Method Input Features Prediction Task
Lead Time

(Forecast horizon)

Learning

Mode

DeMaria et al. 2005 Linear regression Historical data Intensity Multi-step (72 hrs) Batch

Moradi Kordmahalleh et al. 2016 RNN Historical data Trajectory Multi-step (12 hrs) Batch

Cox et al. 2018 Association rule Historical data Trajectory Multi-step Batch

Mudigonda et al. 2017 ConvLSTM Atmospheric data Trajectory Multi-step Batch

Gao et al. 2018 LSTM Historical data Trajectory Multi-step (72 hrs) Batch

Alemany et al. 2019 RNN Historical data Trajectory Multi-step (120 hrs) Batch

Rüttgers et al. 2019 GAN Atmospheric image Trajectory Single step (6 hrs) Batch

Kim et al. 2019 ConvLSTM Climate data Trajectory Multi-step (15 hrs) Batch

Eslami et al. 2019 CNN Physical model outputs Trajectory & intensity Multi-step Batch

Wang et al. 2020 Online linear Physical model outputs Trajectory Multi-step (48 hrs) Online

Giffard-Roisin et al. 2020 Neural network Historical data and atmospheric image Trajectory Multi-step (24 hrs) Batch

Table 2: Literature review of recent works on tropical cyclone prediction.

3 PROBLEM STATEMENT

Our goal is to design an online learning framework for joint predic-

tion of hurricane trajectory and its intensity (both ordinal category

and continuous values). At first glance, knowing the category of a

hurricane does not appear to add any new information about the

hurricane intensity since the former is derived from latter value

(see Table 1). Nevertheless, the information is indeed useful as it is

possible for the predicted category error to be small even though

the error in predicting the maximum sustained wind speed is large.

For example, given a category 5 hurricane with maximum sustained

wind speed of 140 knots. A model that predicts its intensity to be

100 knots will have a lower error than one that predicts its inten-

sity to be 200 knots; yet, the former has a larger category error

(since 100 knots is a category 3 hurricane) compared to the latter,

which still predicts the correct category. Furthermore, a category 2

hurricane at 95 knots predicted as 115 knots has a lower intensity

prediction error compared to one predicted as 60 knots even though

the former has a larger error since the category 2 cyclone is incor-

rectly predicted as a major category 4 storm rather than category

1, which is closer to it. Thus, leveraging both ordinal category and

real-valued intensity information can help improve the prediction

framework.

Consider a set of hurricanes, {ℎ1, ℎ2, . . . , ℎ𝐶 }, ordered by their

start times. Assuming there are 𝑛𝑖 data points (time steps) associ-

ated with hurricaneℎ𝑖 , then𝑁 =

∑𝐶
𝑖=1 𝑛𝑖 is the total number of time

steps in the hurricane dataset. Let X = {X1,X2, . . . ,X𝑁 } be the set

of trajectory forecasts generated by an ensemble of dynamical mod-

els, where eachX𝑡 corresponds to the hurricane trajectory forecasts

generated at time step 𝑡 . Similarly, the intensity forecasts generated

by the ensemble members can be denoted as X̃ = {X̃1, X̃2, . . . , X̃𝑁 }.

Let 𝑛̃𝑖 be the accumulated number of data points from hurricane ℎ1
to ℎ𝑖 , i.e. 𝑛̃𝑖 =

∑𝑖
𝑗=1 𝑛 𝑗 . Thus, {(X

𝑗 , X̃𝑗 ) | 𝑛̃𝑖−1 < 𝑗 ≤ 𝑛̃𝑖 } is the set

of trajectory and intensity data points associated with hurricane

ℎ𝑖 . Assume 𝑇 is the forecast horizon, i.e., maximum lead-time of

the forecasting task. For each time step 𝑡 , let X𝑡 ∈ R2×𝑚𝑡×𝑇 be

the hurricane trajectory forecasts (latitude and longitude), where

𝑚𝑡 is the number of ensemble member (dynamic model) forecasts

available at time step 𝑡 . The ensemble member trajectory forecasts

for lead time 𝜏 at time 𝑡 is denoted as X𝑡,𝜏 ∈ R2×𝑚𝑡 , with the

corresponding ground truth location y𝑡,𝜏 ∈ R2. Let Y1,Y2, . . . ,Y𝑁

be the ground truth locations for all lead times at each time step

𝑡 , where Y𝑡 ∈ R2×𝑇 . Similarly, let X̃𝑡 ∈ R𝑇×𝑚̃𝑡 be the hurricane

intensity forecasts at time step 𝑡 , where 𝑚̃𝑡 is the number of en-

semble member forecasts available at time step 𝑡 . The ensemble

member forecasts for lead time 𝜏 at time 𝑡 is denoted as x̃𝑡,𝜏 ∈ R𝑚̃𝑡 ,

with the corresponding ground truth intensity value 𝑦𝑡,𝜏 ∈ R. Let

ỹ1, ỹ2, . . . , ỹ𝑁 be the true intensity values for 𝑁 time steps, where

each ỹ𝑡 = [𝑦𝑡,1 𝑦𝑡,2 · · ·𝑦𝑡,𝑇 ]𝑇 is a vector of intensity values for all

lead times at time step 𝑡 . Furthermore, let 𝑦𝑡,𝜏 and ŷ𝑡 be the corre-

sponding intensity categories associated with the real-valued inten-

sities in𝑦𝑡,𝜏 and ỹ𝑡 , respectively. The transformation fromhurricane

intensity values to their corresponding intensity categories is based

on an ordered list of boundary values −∞ < 𝑏1 < · · · < 𝑏5 < ∞.

Specifically, the predicted intensity value 𝑧𝑡,𝜏 is assigned to category

𝑦𝑡,𝜏 if 𝑏𝑦̂𝑡,𝜏 < 𝑧𝑡,𝜏 ≤ 𝑏𝑦̂𝑡,𝜏+1.

4 METHODOLOGY

At each time step 𝑡 , we use the set of ensemble member forecasts for

trajectory X𝑡,𝜏 ∈ R2×𝑚𝑡 and intensity x̃𝑡,𝜏 ∈ R𝑚̃𝑡 to generate the

trajectory and intensity predictions for lead time 𝜏 . The real-valued

trajectory prediction z𝑡,𝜏 ∈ R2 and intensity prediction 𝑧𝑡,𝜏 ∈ R are

computed by linear predictors as follows:

z𝑡,𝜏 = 𝑓 𝑡,𝜏 (X𝑡,𝜏 ) = X𝑡,𝜏w𝑡,𝜏

𝑧𝑡,𝜏 = 𝑓 𝑡,𝜏 (x̃𝑡,𝜏 ) = x̃𝑡,𝜏 w̃𝑡,𝜏
(1)

where w𝑡,𝜏 ∈ R𝑚𝑡 , w̃𝑡,𝜏 ∈ R𝑚̃𝑡 are the learned weight vectors

associated with ensemble member forecasts for the trajectory and

intensity models, respectively. The weight vectors are updated

simultaneously in an online fashion whenever new observation

data becomes available. One major challenge in using the ensemble

member forecasts is that a significant proportion of the ensemble

members may not generate any forecasts at a given time step 𝑡 ,

which is why the number of ensemble members,𝑚𝑡 , varies from

one hurricane to another. This is known as the varying feature

length problem [25], which can be addressed using the weight

re-normalization technique described in [25].

4.1 Proposed JOHAN Framework

The novelty of JOHAN is its ability to jointly predict the hurricane

trajectory and intensity. The framework consists of a pair of weight

updating components for hurricane trajectory and intensity predic-

tion. Both components employ an exponentially-weighted quantile
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loss to improve their prediction performance for close-to-land hur-

ricanes and high category hurricanes.

To learn the tasks jointly, our framework is trained to minimize

the following objective function in an online learning fashion:

L = L𝑡𝑟𝑎 (Θ, 𝜉) + L𝑖𝑛𝑡 (Θ̃, 𝜉)

s.t. 𝜉𝑡,𝜏 =

{
𝑔(𝑦𝑡,𝜏 ), if 𝑦𝑡,𝜏 is available

𝑔(𝑧𝑡,𝜏 ), otherwise

𝜉𝑡,𝜏 =

{
𝑔(y𝑡,𝜏 ), if y𝑡,𝜏 is available

𝑔(z𝑡,𝜏 ), otherwise

(2)

where L𝑡𝑟𝑎 corresponds to the loss function for trajectory predic-

tion while L𝑖𝑛𝑡 is the loss for intensity forecasting. Θ and Θ̃ are

the model parameters associated with the hurricane trajectory and

intensity prediction tasks, respectively. The quantile parameters

𝜉 and 𝜉 are needed to bias the model towards predicting more ac-

curately hurricanes that are close to the coastline or those with

high categories. Unlike traditional quantile loss, 𝜉 and 𝜉 are not

user-specified hyperparameters but are automatically updated in

an online fashion. Specifically, the quantile loss terms are updated

to reflect the significant threat of a hurricane using the functions

𝑔(·) and 𝑔(·). Recall that y𝑡,𝜏 is the true hurricane location and 𝑦𝑡,𝜏

is the true intensity at time 𝑡 for lead time 𝜏 . However, since y𝑡,𝜏

and 𝑦𝑡,𝜏 may not available during model update, we use the model

predictions z𝑡,𝜏 and 𝑧𝑡,𝜏 to approximate them when calculating the

quantile parameters. Details of the quantile functions are given in

Section 4.1.3. The objective function can be solved using standard

quadratic programming solvers.

4.1.1 L𝑡𝑟𝑎 with Distance Quantile Regression. As hurricanes can

cause severe damages in civilian populated areas, it is imperative to

accurately identify hurricanes that are approaching landfall. There-

fore, we would like to bias the model towards learning hurricanes

with potential to strike the land. This can be done by encourag-

ing hurricane forecasts that are more likely to make landfall. The

possibility of hurricane landfall can be measured by the distance

between its current location to the nearest coastline. Specifically,

we introduce a distance loss decomposition to evaluate the model

performance by taking into account its predicted distance to the

coastline. For every ground truth location y, we can find its corre-

sponding projected point p to the nearest coastline. A unit normal

vector to the coastline can be calculated as n =

p−y
∥p−y∥

. Given a

predicted location z, its distance loss is defined as d = z − y. The

distance loss vector d can be decomposed into a parallel, d∥ = d · n,

and a perpendicular component, d⊥ = d− d∥ , as shown in Figure 2.

With the definition of distance loss decomposition, the square loss
1

2
∥z − y∥2

2
can be expressed equivalently as follows

L𝑡𝑟𝑎 =

1

2

(
𝜁 2 + 𝜁 ∗

2
+ (z − y)2⊥

)
s.t. (z − y)∥ = 𝜁 − 𝜁 ∗,

𝜁 ≥ 0, 𝜁 ∗ ≥ 0

(3)

In order to encourage predictions with shorter distances to the

coastline, Eqn. (3) can be further extended to accommodate the

quantile loss in Eqn. (4). Note that Eqn. (4) is equivalent to Eqn. (3)

by setting the quantile parameter 𝜉 to 0.5.

Figure 2: Decomposition of the distance loss vector. The

green circle is the true location and the red star is its pro-

jected nearest coastline. The unit vector n points in the di-

rection towards the land. The blue circle is the predicted lo-

cation. The vector directed from the green circle to the blue

circle is the distance loss vector d, which can be decomposed

into a parallel d∥ and a perpendicular component d⊥.

L𝑡𝑟𝑎 = (1 − 𝜉)𝜁 2 + 𝜉𝜁 ∗
2
+
1

2
(z − y)2⊥

s.t. (z − y)∥ = 𝜁 − 𝜁 ∗,

𝜁 ≥ 0, 𝜁 ∗ ≥ 0

(4)

We assume that the weight vectors w𝑡,𝜏 in Eqn. (1) can be de-

composed into the following factors:

w𝑡,𝜏
= u𝑡 + v𝑡,𝜏

s.t. 1𝑇𝑚𝑡
u𝑡 = 1, 1𝑇𝑚𝑡

v𝑡,𝜏 = 0
(5)

where u𝑡 is the shared weight vectors for all lead times while v𝑡,𝜏

is adjustment to the weight vectors associated with the different

lead times 𝜏 . For brevity, we denote W𝑡
= [w𝑡,1,w𝑡,2, · · · ,w𝑡,𝑇 ] as

the weight matrix for all 𝑇 lead times at time step 𝑡 . To extend the

preceding formulation to an online multi-lead time forecasting set-

ting, the weight matrixW𝑡 is updated by minimizing the following

objective function at each time step 𝑡 :

L𝑡𝑟𝑎 =

𝑇∑
𝜏=1

𝛿𝑡,𝜏𝛾𝜏
(
(1 − 𝜉)𝜁 𝑡,𝜏

2
+ 𝜉𝜁 ∗𝑡,𝜏

2
+
1

2
(z𝑡,𝜏 − y𝑡,𝜏 )2⊥

)

+
𝜔

2

𝑇−1∑
𝜏=1



w𝑡,𝜏+1 −w𝑡,𝜏


2 + 𝜇

2



u𝑡 − u𝑡−1

2

+
𝜈

2

𝑇∑
𝜏=1



v𝑡,𝜏 − v𝑡−1,𝜏 

2 + 𝜂

2

𝑇∑
𝜏=1



v𝑡,𝜏 

2
s.t. ∀ 𝑡, 𝜏 : 1𝑇𝑚𝑡

u𝑡 = 1, 1𝑇𝑚𝑡
v𝑡,𝜏 = 0,

(z𝑡,𝜏 − y𝑡,𝜏 )∥ = 𝜁 𝑡,𝜏 − 𝜁 ∗𝑡,𝜏 ,

𝜁 𝑡,𝜏 ≥ 0, 𝜁 ∗𝑡,𝜏 ≥ 0

(6)
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where 𝛿𝑡,𝜏 is an indicator function whose value is 1 if X𝑡,𝜏 and y𝑡,𝜏

values are both available; otherwise its value is 0. In the objective

function, the first term represents the forecast errors for all the

lead times. The quantile parameter 𝜉 determines the importance of

making location predictions with shorter distance to coastlines. The

hyperparameter 𝛾 determines the relative importance of making

accurate predictions at different lead times. The second term en-

sures that the estimated model parameters would vary smoothly at

different lead times, thus preserving the temporal autocorrelation

of the predicted intensities. The third and fourth terms guarantee

that the shared weight vector u𝑡 and lead time adjustment weight

vectors v𝑡,𝜏 are close to their values at previous time step. The last

term penalizes large values in the lead time adjustment weight

vectors. 𝜔, 𝜇, 𝜈, 𝜂 are hyperparameters that determine the relative

importance of each term in the objective function. If 𝜉 ≈ 1, then

the parallel distance loss will be ignored if (z𝑡,𝜏 − y𝑡,𝜏 )∥ > 0. This

means that optimizingL𝑡𝑟𝑎 will lead to models that are more biased

toward predicting closer distance to the coastline.

4.1.2 L𝑖𝑛𝑡 with Quantile Ordinal Regression. Our goal is to also

generate accurate long range predictions of hurricane real-valued

intensity and category. Here, we use the 𝜖-insensitive loss to mea-

sure the intensity prediction error. Compared to mean square loss,

the 𝜖-insensitive loss is more robust as it provides a margin of

tolerance 𝜖 [2, 10] when learning the regression function.

𝜖 − insensitive loss: L𝑖𝑛𝑡 = 𝜁 + 𝜁 ∗

s.t. 𝑧 − 𝑦 ≤ 𝜖 + 𝜁

𝑧 − 𝑦 ≥ −𝜖 − 𝜁 ∗

𝜁 ≥ 0, 𝜁 ∗ ≥ 0

(7)

Second, in order to communicate the severity of an impending

hurricane to the public, accurate prediction of its category is just as

important as the wind speed itself. As noted in Section 3, intensity

prediction alone is insufficient because it ignores the effect of its

prediction error on the predicted category. Therefore, we intro-

duce an ordinal loss to ensure the model is focused more on data

points located near the boundary between two ordinal categories.

Analogous to the loss function defined for support vector ordinal

regression [5], the ordinal loss function is defined as follows:

Ordinal loss: L𝑖𝑛𝑡 = 𝜁 + 𝜁 ∗

s.t. 𝑧 − 𝑏𝑦̂+1 ≤ −1 + 𝜁

𝑧 − 𝑏𝑦̂ ≥ 1 − 𝜁 ∗

𝜁 ≥ 0, 𝜁 ∗ ≥ 0

(8)

Our intensity prediction loss can be measured by combining

Eqns. (7) and (8). In addition, to penalize models that incorrectly

predict high category hurricanes, the formulation can be extended

to accommodate the quantile loss as (1 − 𝜉)𝜁 + 𝜉𝜁 ∗.

L𝑖𝑛𝑡 = (1 − 𝜉)𝜁 + 𝜉𝜁 ∗

s.t. 𝑧 − 𝑏𝑦̂+1 ≤ −1 + 𝜁

𝑧 − 𝑏𝑦̂ ≥ 1 − 𝜁 ∗

𝑧 − 𝑦 ≤ 𝜖 + 𝜁

𝑧 − 𝑦 ≥ −𝜖 − 𝜁 ∗

𝜁 ≥ 0, 𝜁 ∗ ≥ 0

(9)

Similar to the trajectory model, we assume that the intensity

weight vector w̃𝑡,𝜏 can be decomposed into the following factors:

w̃𝑡,𝜏
= ũ𝑡 + ṽ𝑡,𝜏

s.t. 1𝑇𝑚̃𝑡
ũ𝑡 = 1, 1𝑇𝑚̃𝑡

ṽ𝑡,𝜏 = 0
(10)

where ũ𝑡 is the shared weight vectors for all lead times while ṽ𝑡,𝜏

is adjustment to the weight vectors associated with the different

lead times 𝜏 . For brevity, we denote W̃𝑡
= [w̃𝑡,1, w̃𝑡,2, · · · , w̃𝑡,𝑇 ] as

the weight matrix for all 𝑇 lead times at time step 𝑡 .

Putting it together, the weight matrix W̃𝑡 for intensity prediction

is trained to minimize the following objection function:

L𝑖𝑛𝑡 =
1

2

𝑇∑
𝜏=1

𝛿𝑡,𝜏𝛾𝜏
(
(1 − 𝜉)𝜁 𝑡,𝜏 + 𝜉𝜁 ∗𝑡,𝜏

)

+
𝜔̃

2

𝑇−1∑
𝜏=1



w̃𝑡,𝜏+1 − w̃𝑡,𝜏


2 + 𝜇̃

2



ũ𝑡 − ũ𝑡−1

2

+
𝜈

2

𝑇∑
𝜏=1



ṽ𝑡,𝜏 − ṽ𝑡−1,𝜏 

2 + 𝜂
2

𝑇∑
𝜏=1



ṽ𝑡,𝜏 

2
s.t. ∀ 𝑡, 𝜏 : 1𝑇𝑚̃𝑡

ũ𝑡 = 1, 1𝑇𝑚̃𝑡
ṽ𝑡,𝜏 = 0,

𝑧𝑡,𝜏 − 𝑏𝑦̂𝑡,𝜏+1 ≤ −1 + 𝜁
𝑡,𝜏

𝑧𝑡,𝜏 − 𝑏𝑦̂𝑡,𝜏 ≥ 1 − 𝜁 ∗𝑡,𝜏

𝑧𝑡,𝜏 − 𝑦𝑡,𝜏 ≤ 𝜖 + 𝜁 𝑡,𝜏

𝑧𝑡,𝜏 − 𝑦𝑡,𝜏 ≥ −𝜖 − 𝜁 ∗𝑡,𝜏

𝜁 𝑡,𝜏 ≥ 0, 𝜁 ∗𝑡,𝜏 ≥ 0

(11)

where 𝛿𝑡,𝜏 is an indicator function whose value is 1 if x̃𝑡,𝜏 and 𝑦𝑡,𝜏

values are both available; otherwise its value is 0. In the objective

function, the first term represents the forecast errors for all the lead

times. The hyperparameter 𝜉 determines the importance of making

accurate predictions for high category hurricanes. The meanings

of other terms in the objective function are similar to Equation (6).

4.1.3 Quantile Parameter Update. As described in the previous

section, the quantile parameters are updated in an online fashion. In

general, we want the quantile parameter for trajectory prediction to

be large if the hurricane category is high; and the quantile parameter

for intensity prediction to be large if the hurricane location is close

to coastline. In our framework, we use a sigmoid function 𝜎 (𝑥) =

1/(1 + 𝑒−𝑥 ) to determine the quantile parameters.

For L𝑡𝑟𝑎 , the parameter 𝜉𝑡,𝜏 is calculated from the function 𝑔(x)

given in Eqn. (2) as follows:

𝑔(x) =

{
0.5, for 𝑥 < 𝜃

𝜎 ( [𝑥 − 𝜃 ]/𝑐), otherwise
(12)

where x is the ground truth or predicted intensity with current

weight vector, 𝜃 is a hyperparameter that decides when the quantile

loss is not needed, and 𝑐 is a scaling factor. When the hurricane

intensity is low, 𝑔(x) = 0.5, and thus, the first loss term in L𝑡𝑟𝑎
reduces to the squared loss function. For high intensity hurricanes,

𝑔(x) ≈ 1. In this case, the framework gives higher weights for

models that predict locations with shorter distance to the coastline.
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For L𝑖𝑛𝑡 , the parameter 𝜉𝑡,𝜏 is calculated from the function 𝑔(·)

defined in Eqn. (2) as follows:

𝑔(x) =

{
0.5, for 𝑑𝑐𝑜𝑎𝑠𝑡 (x) > 𝜃

𝜎 ( [𝜃 − 𝑑𝑐𝑜𝑎𝑠𝑡 (x)]/𝑐), otherwise
(13)

where x is either the ground truth or predicted location for the

current weight vector,𝑑𝑐𝑜𝑎𝑠𝑡 (·) is a function that computes distance

to the nearest coastline, 𝜃 is a hyperparameter that determines when

the quantile loss is not needed, and 𝑐 is the scaling factor. When the

hurricane is far from the coastline, we have 𝑔(x) = 0.5. The first

loss term of L𝑖𝑛𝑡 is thus reduced to an ℓ1-loss. When the hurricane

is very close the land, 𝑔(x) ≈ 1. In this case, the framework assigns

higher weights to models that predict higher intensities.

Error propagation is a challenge for multi-lead time forecast-

ing. It is insufficient to update W𝑡 and W̃𝑡 from W𝑡−1 and W̃𝑡−1

alone as the previous weights are outdated without using the new

observation. To address this problem, we apply the backtracking

and restart strategy described in [25]. The overall framework with

backtracking and restart strategy is illustrated in Figure 3. The pseu-

docode for the proposed framework is described in Algorithm 1. At

each time step 𝑡 , the newly available ground truth value can be de-

termined as {y𝑡−𝑇,𝑇 , y𝑡−𝑇+1,𝑇−1, . . . , y𝑡−1,1} for trajectory forecasts

and {𝑦𝑡−𝑇,𝑇 , 𝑦𝑡−𝑇+1,𝑇−1, . . . , 𝑦𝑡−1,1} for intensity forecasts. There-

fore, to make all the previous learned weight vectors up to date,

we updated the weight vectors from time step 𝑡 − 𝑇 until 𝑡 − 1

with quantile parameters generated by Eqn. (12) and (13). Then, the

multi-lead time predictions for both trajectory and intensity can be

produced given the ensemble of model outputs and updated model

weight vectors.

5 EXPERIMENTS

We performed experiments using real-world hurricane trajectory

and intensity data from various sources. The ground truth hurri-

cane trajectory and intensity data along with the official forecasts

are obtained from the National Hurricane Center (NHC) website1,

while the ensemble member forecasts are obtained from the Hurri-

cane Forecast Model Output website at University of Wisconsin-

Milwaukee2. We collected 6-hourly hurricane trajectory and inten-

sity data from the year 2012 to 2020, which contains 336 tropical

cyclones. Each tropical cyclone has an average length of 21.9 time

steps (data points), which gives a total of 7364 data points. There are

27 trajectory forecast models and 21 intensity forecast models used

in our experiments, which are a subset of the models used by NHC

in the preparation of their official forecasts. The data from 2012 to

2017 (208 tropical cyclones) are used for training and validation,

while those from 2018 to 2020 (128 tropical cyclones) are used for

testing.

5.1 Baseline and Evaluation Metrics

We compared JOHAN against the following baseline methods:

(1) Ensemble mean: This method computes the mean value

over all ensemble members for each given lead time.

1https://www.nhc.noaa.gov
2http://derecho.math.uwm.edu/models

Input: Θ, Θ̃, 𝜉, 𝜉

Output: Model parameters w, w̃ and forecasts z, 𝑧

Initialize: w = 1𝑚/𝑚, w̃ = 1𝑚/𝑚;

for t = 1,2, . . . , N do

if 𝑡 is the first time step of a trajectory then
Extract u𝑡 from w, ũ𝑡 from w̃

Normalize:

u𝑡 ← u𝑡/|u𝑡 |, v𝑡,𝜏 ← 0, ũ𝑡 ← ũ𝑡/|ũ𝑡 |, ṽ𝑡,𝜏 ← 0
end

Observe y𝑡 , ỹ𝑡

/* Backtracking and restart step */

for 𝑡 ′ = 𝑡 −𝑇, 𝑡 −𝑇 + 1, . . . , 𝑡 − 1 do
Trajectory predictions

z𝑡
′,𝜏

= 𝑓 𝑡
′,𝜏 (X𝑡,𝜏 ) = X𝑡 ′,𝜏w𝑡 ′,𝜏

Intensity predictions 𝑧𝑡
′,𝜏

= 𝑓 𝑡,𝜏 (x̃𝑡
′,𝜏 ) = x̃𝑡

′,𝜏 w̃𝑡 ′,𝜏

Calculate 𝜉𝑡,𝜏 and 𝜉𝑡,𝜏 using Eq. 12 and 13

Update u𝑡
′+1, v𝑡

′+1,𝜏 by minimizing L𝑡𝑟𝑎
Update ũ𝑡

′+1, ṽ𝑡
′+1,𝜏 by minimizing L𝑖𝑛𝑡

end

/* Prediction step */

for 𝜏 = 1, 2, · · · ,𝑇 do
Compute w𝑡,𝜏 and w̃𝑡,𝜏 for all lead times

Trajectory predictions z𝑡,𝜏 = 𝑓 𝑡,𝜏 (X𝑡,𝜏 ) = X𝑡,𝜏w𝑡,𝜏

Intensity predictions 𝑧𝑡,𝜏 = 𝑓 𝑡,𝜏 (x̃𝑡,𝜏 ) = x̃𝑡,𝜏 w̃𝑡,𝜏

end

if 𝑡 is the last time step of a trajectory then
Substitute u𝑡 back into the full vector w

Substitute ũ𝑡 back into the full vector w̃
end

end
Algorithm 1: Proposed JOHAN Framework

(2) Persistence: This method assumes that the intensity and

moving speed of the hurricane at the next time step is the

same as current time step.

(3) Passive-Aggressive(PA) [7]: This is a well-known online

regression algorithm.

(4) ORION [27]: This is an online multi-task learning algorithm

for ensemble forecasting.

(5) OMuLeT [25]: This is a recently developed online learning

algorithm for ensemble forecasting.

(6) NHC: This corresponds to the official forecasts generated

by NHC, which is the gold standard.

For a fair comparison, the baselinemethods (PA, ORION, OMuLeT,

and JOHAN) also apply the backtracking and restart strategy to

update their weights. Hyperparameters of the methods were tuned

by minimizing the following mean distance error (MDE) for trajec-

tory forecasts and macro-averaged mean absolute error (MAE) for

intensity forecasts on the validation set.

MDE =

1

𝑁

∑
𝑡,𝜏

[
𝑑𝑖𝑠

(
z𝑡,𝜏 , y𝑡,𝜏

) ]
(14)

macro-MAE =

1

6

5∑
𝑖=0

©­«
1

𝑁𝑖

∑
𝑦̂𝑡,𝜏=𝑖

��𝑧𝑡,𝜏 − 𝑦𝑡,𝜏 ��ª®¬
(15)
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Backtracking and restart
Time tTime t-T

𝑾௧ି்𝑾෪௧ି்
𝑿௧ି், 𝒀௧ି்𝒙෥௧ି், 𝑦෤௧ି்

Weight 
Update 𝑿௧ି்ାଵ, 𝒀௧ି௧ାଵ𝒙෥௧ି்ାଵ, 𝑦෤௧ି்ାଵ

𝑾௧ି்ାଵ𝑾෪௧ି்ାଵ
Weight 
Update

𝑾௧𝑾෪௧

𝑾௧ିଵ𝑾෪௧ିଵ
𝑿௧ିଵ, 𝒀௧ିଵ𝒙෥௧ିଵ, 𝑦෤௧ିଵ

Weight 
Update

…

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑿௧𝒙෥௧
𝒁௧𝒁෩௧

𝑾௧ 𝑚𝑖𝑛𝐿௧௥௔𝑚𝑖𝑛𝐿௧௥௔ 𝑾௧ାଵ
𝑿௧, 𝒀௧𝒙෥௧, 𝑦෤௧
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𝑃𝑟𝑒𝑑௜௡௧𝑃𝑟𝑒𝑑௜௡௧𝒛௧

𝒁෩௧
Weight
Update

Figure 3: Proposed JOHAN framework.

Figure 4: Distance to coastline for hurricanes from year 2012

to 2017 at different time before landfall.

where 𝑁 is total number of trajectory forecasts in the validation set

and 𝑁𝑖 is the number of data points of category i in the validation

set. We use MDE on the trajectory test data to evaluate the location

prediction error, and MAE on the intensity test data to evaluate

the error in both real- and ordinal-valued predictions. We also use

F1-score to evaluate accuracy of the ordinal category predictions.

For JOHAN framework, the hyperparameters Θ and Θ̃ are tuned

with the fixed quantile parameters 𝜉 = 𝜉 = 0.5. The threshold 𝜃 for

the function 𝑔(·) is set to 34 knots (kt), which is the lower bound for

intensity of a tropical storm. As there are very few time steps with

intensity more than 64 kt, the hyperparameter 𝑐 is calculated by

solving 𝑔(x) = 𝜎 ( [𝑥 − 𝜃 ]/𝑐) = 0.9 with 𝑥 = 64 kt. For the function

𝑔(·), Figure 4 shows the distance to coastline for landfall hurricanes

at different hours before landfall. The threshold 𝜃 is set to 300

nautical miles (n mi) where the hurricanes are unlikely to strike

the land in 48 hours. The hyperparameter 𝑐 is calculated by solving

𝑔(x) = 𝜎 ( [𝜃 − 𝑑𝑐𝑜𝑎𝑠𝑡 (x)]/𝑐) = 0.9 with 𝑥 = 200 n mi which is the

distance from the coastline for hurricanes that might reach landfall

after 24 hours. The source code and data used in our experiments

are available at https://github.com/cqwangding/JOHAN.

5.2 Experimental Results

Table 3 summarizes the trajectory and intensity forecast errors of

JOHAN and other baseline methods with lead times from 12 hours

to 48 hours. For trajectory prediction, there are several interesting

conclusions that can be drawn. First, the performance of ensemble

mean is comparable to the NHC official forecast, which validates

the advantage of using an ensemble of physical model outputs as

predictors. Second, persistence performs much worse than other

baselines. This is reasonable since persistence assumes that the mov-

ing speed of hurricane is unchanged. Third, OMuLeT and JOHAN

generate comparable results and both outperform other baselines,

including the official forecasts from NHC. This is not surprising as

both methods employ similar strategies to update their trajectory

prediction models. However, as will be shown below, OMuLeT is

inferior to JOHAN in terms of its trajectory prediction error for

hurricanes within 200 n mi from the coastline.

For intensity forecasts, the performance of ensemble mean is

significantly worse than NHC as shown in Table 3. This is not sur-

prising as intensity forecasting is still a very challenging problem

for the dynamical and statistical models in the ensemble. Second,

both persistence and PA perform poorly, much more so than other

methods. Fourth, JOHAN generally has significantly better perfor-

mance especially at longer lead times with results comparable to

the official forecasts of NHC. This is impressive considering the

fact that the ensemble members used in JOHAN is only a subset of

the models used by NHC to generate their official forecasts.

JOHAN is designed to maximally identify threatening hurricanes

with potential to strike landfall. Table 4 summarizes the trajectory

and intensity forecast errors for hurricanes within 200 n mi to

coastline with an intensity of at least 64 kt for different prediction

methods at varying lead times (from 12 to 48 hours). The relative

performance of all the baseline methods is similar to Table 3. The

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1683



Trajectory error (in n mi) Intensity error (in kt)

Method 12 24 36 48 12 24 36 48

Ensemble Mean 23.30 36.34 50.22 65.03 6.742 8.692 9.899 11.036

Persistance 34.84 88.89 155.87 229.63 7.717 13.797 18.246 22.102

PA 23.30 36.34 50.23 64.80 6.547 10.563 13.294 15.268

ORION 23.37 36.36 50.21 65.00 5.792 7.941 9.388 10.551

OMuLeT 22.20 34.94 48.07 62.10 5.632 7.923 9.285 10.513

JOHAN 22.25 35.01 48.13 62.08 5.732 7.700 8.948 10.026

NHC 24.59 38.49 52.17 65.74 5.019 7.730 8.959 10.140

Table 3: Trajectory and intensity forecast errors for different

methods at varying lead times from 12 to 48 hours.

Trajectory error (in n mi) Intensity error (in kt)

Method 12 24 36 48 12 24 36 48

Ensemble Mean 15.80 28.47 41.21 52.09 13.274 17.325 20.246 20.382

Persistance 34.28 87.62 159.38 228.91 13.121 22.547 29.194 32.762

PA 15.81 28.48 41.22 51.98 8.765 16.042 24.275 24.656

ORION 16.02 28.61 41.29 52.15 8.483 13.171 16.806 17.555

OMuLeT 15.33 28.28 39.65 49.67 9.064 14.435 17.562 18.317

JOHAN 15.28 28.15 39.28 49.06 8.963 13.367 16.270 16.554

NHC 16.69 29.47 42.83 54.07 7.962 13.585 16.097 17.587

Table 4: Trajectory and intensity forecast errors for hurri-

canes within 200 n mi to coastline with intensity at least 64

kt for different methods at varying lead times from 12 to 48

hours.

F1-score

Category macro-F1 0 1 2 3 4 5

Ensemble Mean 0.390 0.917 0.449 0.309 0.305 0.168 0.190

Persistence 0.396 0.859 0.327 0.247 0.234 0.330 0.378

PA 0.415 0.902 0.437 0.310 0.274 0.339 0.226

ORION 0.491 0.922 0.530 0.377 0.349 0.418 0.350

OMuLeT 0.494 0.923 0.502 0.367 0.386 0.380 0.404

JOHAN 0.499 0.922 0.499 0.357 0.385 0.380 0.450

NHC 0.540 0.924 0.554 0.411 0.390 0.462 0.502

Table 5: Comparison of F1-score, precision and recall for

various hurricane intensity forecastingmethods at different

categories.

trajectory prediction of JOHAN outperforms all other baselines

for near land hurricanes. This suggests that JOHAN is capable of

utilizing the relationship between high intensity hurricanes and

distance to the coastline to improve its prediction. For intensity

predictions, JOHAN still maintains the best predictive performance

at longer lead times.

In addition, we also evaluated the hurricane category prediction

for the different methods by computing their F1-scores. The results

are shown in Table 5. First, ensemble mean performs poorly for high

category predictions, which is not surprising as the different ensem-

ble members are not equally skillful. Second, the overall macro-F1

performance of persistence is similar to ensemble mean and much

worse than other baselines. Third, PA is better than ensemble mean

but still worse than both ORION and OMuLeT. The macro-F1 score

of JOHAN is slightly higher than ORION and OMuLeT, though

JOHAN has better performance for the higher categories. Table 6

summarizes the F1-scores for hurricanes within 200 n mi from the

coastline, which clearly demonstrates the superiority of JOHAN

compared to other baselines for high category hurricanes.

5.3 Ablation Study

A key aspect of JOHAN is its ability to update the quantile parame-

ter in an online fashion. To investigate the advantages of utilizing

a varying quantile parameter, we consider two variations of our

F1-score

Category macro-F1 0 1 2 3 4 5

Ensemble Mean 0.378 0.919 0.414 0.234 0.318 0.188 0.195

Persistance 0.394 0.854 0.309 0.182 0.236 0.389 0.392

PA 0.454 0.899 0.412 0.281 0.298 0.395 0.436

ORION 0.505 0.927 0.509 0.330 0.375 0.431 0.459

OMuLeT 0.493 0.923 0.465 0.290 0.402 0.435 0.445

JOHAN 0.496 0.923 0.462 0.274 0.402 0.447 0.467

NHC 0.516 0.920 0.511 0.328 0.362 0.442 0.534

Table 6: Comparison of F1-score, precision and recall for

hurricanes within 200 n mi to coastline with various hur-

ricane intensity forecasting methods at different categories.

framework. JOHAN-NQ removes the quantile loss for the first term

in Eqn. (6) and (11) and reduced them to squared loss and ℓ1-loss.

JOHAN-Q uses a fixed quantile parameter for all its weight updates.

Table 7 summarizes the trajectory and intensity forecast errors

for the two variations of JOHAN framework while Table 8 summa-

rizes their corresponding forecast errors for near land high intensity

hurricanes. It is clear that increasing the fixed quantile parameters

would lead to better performance for near land, high intensity hur-

ricanes (Table 8) but at the expense of decreasing overall prediction

accuracy (Table 7). JOHAN, with its varying quantile parameters,

manages to maintain consistently accurate predictions in both sce-

narios.

Trajectory (n mi) Intensity (kt)

Method 12 24 36 48 12 24 36 48

JOHAN 22.25 35.01 48.13 62.08 5.732 7.700 8.948 10.026

JOHAN-NQ 22.20 34.94 48.07 62.10 5.700 7.654 8.880 9.840

JOHAN-Q(𝜉=0.6) 22.21 34.94 48.08 62.07 5.696 7.647 8.877 9.872

JOHAN-Q(𝜉=0.7) 22.23 34.94 48.07 62.06 5.704 7.659 8.897 9.939

JOHAN-Q(𝜉=0.8) 22.27 34.96 48.08 62.09 5.722 7.704 8.964 10.064

JOHAN-Q(𝜉=0.9) 22.33 35.01 48.11 62.14 5.749 7.781 9.073 10.248

Table 7: Trajectory and intensity forecast errors for different

variations of JOHAN.

Trajectory (n mi) Intensity (kt)

Method 12 24 36 48 12 24 36 48

JOHAN 15.28 28.15 39.28 49.06 8.963 13.367 16.270 16.554

JOHAN-NQ 15.33 28.28 39.65 49.67 9.176 13.642 16.791 16.854

JOHAN-Q(𝜉=0.6) 15.30 28.23 39.53 49.50 9.047 13.488 16.537 16.743

JOHAN-Q(𝜉=0.7) 15.28 28.18 39.43 49.33 8.985 13.398 16.346 16.630

JOHAN-Q(𝜉=0.8) 15.27 28.15 39.35 49.16 8.950 13.362 16.256 16.606

JOHAN-Q(𝜉=0.9) 15.27 28.14 39.29 49.00 8.986 13.412 16.256 16.671

Table 8: Trajectory and intensity forecast errors for hurri-

canes within 200 n mi to coastline and at least 64 kt using

different variations of JOHAN.

5.4 Comparison of Model Weights

The time-varying model weights generated by JOHAN are shown

in Figure 5 for trajectory and intensity forecasts, respectively. De-

spite the shared information between the trajectory and intensity

components of the framework, it is clear that the best models for

trajectory prediction are not exactly the same as the best models

for intensity prediction. This result agrees with previous findings

in [11]. For example, AVNO was found to be one of the best models

for trajectory prediction but its weight for intensity prediction is

close to 0. Compared to trajectory forecasting, hurricane intensity

forecasting is still a very challenging problem [4].
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(a) Trajectory model weights

(b) Intensity model weights

Figure 5: Trajectory and intensity model weights in JOHAN

changes over time.

6 CONCLUSION

This paper presents a novel framework called JOHAN for predicting

long-range hurricane trajectory and intensity simultaneously. The

framework employs a novel time-varying quantile loss function to

improve its accuracy in predicting high category hurricanes with

the potential for near landfall. Experimental results confirmed the

efficacy of JOHAN, especially in terms of accurately predicting near

landfall, high category hurricanes.
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