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Stochastic Micromechanical Damage Model for
Porous Materials under Uniaxial Tension
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Abstract: Despite the ubiquity of porous materials, their mechanical behaviors (e.g., fracture) remain only partially understood. Here, we

propose a novel analytical stochastic micromechanical damage model to describe the fracture of porous materials subjected to uniaxial
tension. This analytical model relies on parallel elastic and plastic elements to describe the nonlinear stress—strain curve of porous phases.
We then develop a stochastic damage model to describe the propagation of randomly scattered voids or microflaws. This model allows us to

identify the key influential features that govern the failure of porous materials. Finally, we demonstrate the accuracy of our model by val-
idating its outcomes by a series of peridynamic simulations. DOI: 10.1061/(ASCE)MT.1943-5533.0004146. © 2022 American Society of

Civil Engineers.
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Introduction

Porous materials are a class of materials with low density, unique
pore structures, relatively high specific strength, and excellent ther-
mal properties (Zhang et al. 2020). Typical porous materials used in
engineering fields are rocks, concretes, ceramics, and so on (Chen
et al. 2019; Fakhimi and Alavi Gharahbagh 2011; Falliano et al.
2018; Nikonam et al. 2020). Without a doubt, the most widely used
porous material in infrastructure is concrete (Huang et al. 2017;
Tikalsky et al. 2004; Yang et al. 2014; Yue-Dong and Jian 2011).
Indeed, concrete exhibits a good balance between weight and
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strength and can both be cast in place or precast (Mydin and
Wang 2012; Hamad 2014; Amran et al. 2015). Many current inves-
tigations of porous materials have focused on elucidating the
unique mechanical properties affected by attributes of porosity,
such as pore size and connectivity (Hilal et al. 2015; Nguyen
et al. 2018). Advanced apparatus like optical microscopy, mercury
intrusion porosimetry (MIP), scanning electron microscopy (SEM),
and X-ray computerized tomography (X-CT) are commonly used
to probe the features of the pore structure, such as pore size dis-
tributions, adsorption and desorption isotherms, and pore connec-
tivity (Chung et al. 2017; Hou et al. 2019; Nguyen et al. 2017).
Data collected from these tests have enabled a better understanding
of how the pore structure affects properties critical for design, such
as the compressive strength (Nambiar and Ramamurthy 2007;
Yu et al. 2011; Wei et al. 2013; Hilal et al. 2015; Hou et al. 2019).
In general, the relationships between porosity and compressive
strength, elastic modulus, or stiffness are known for concrete and
cementitious materials (Amran et al. 2015; Hoover and Ulm 2015;
Kearsley and Wainwright 2001; Liu 1997; Nikonam et al. 2020;
Sadowski and Samborski 2003). However, these properties do
not fully describe the mechanical behavior of porous materials
(e.g., as captured by their stress—strain curve). In particular, porous
materials tend to be very weak in tension. Therefore, it is important
to understand and predict the whole stress—strain response of
porous materials under tensile stress. Traditionally, the direct ten-
sile strength of porous materials is very difficult to measure due to
complications with load eccentricity and nonuniform stress or
strain fields and stress concentrations, leading to a failure mode
that is different than a uniform stress field reaching maximum
threshold strength (van Mier and van Vliet 2002). Rather, the ten-
sile stress is usually calculated from the so-called Brazilian split
cylinder tests or single-edged notched fracture specimens with a
preexisting deep notch (Tang et al. 2018; Zhao et al. 2020).

In porous materials, the location and size of microcracks and
voids—formed both during the casting process and as a conse-
quence of damage initiation and propagation during their
lifetime—is highly random (Zhang and Jivkov 2014). This makes
it difficult to create samples with tailored or designed void struc-
tures that are necessary for rigorous experimental analyses. This
makes numerical simulation an effective and practical alternative.
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Numerical simulations describing the mechanical behavior of
porous materials have attracted great interest over the last decades.
Many popular models are based on the finite-element method
(FEM) (Chung et al. 2017; Kuna et al. 2020; Mugahed Amran et al.
2016), extended finite-element method (XFEM) (Ferretti et al.
2015; Kozlowski et al. 2016; Rezanezhad et al. 2019), or discrete
element method (DEM) (Fakhimi and Alavi Gharahbagh 2011;
Nguyen et al. 2017, 2019). In the FEM, the mechanics of fracture
is mainly captured by smeared crack approaches, nonlocal models
coupled with isotropic or anisotropic damage models, local tenso-
rial formulations of smeared cracking, microplane models, and so
on. For these methods, an additional preprocessing technique is re-
quired at the discontinuous part (Huang et al. 2015; Liu et al. 2020;
Wang et al. 2016). When modeling fracture in XFEM, a crack
is introduced within the mesh without refinement, and an external
criterion is needed to predict crack growth (Unger et al. 2007).
However, the complex enrichment functions needed to use XFEM
demand significant computational expense and complicate imple-
mentation. With the assumption that discrete elements interact by
means of contact forces, DEM provides a powerful tool for fracture
simulation at the meso scale. However, characterizing the param-
eters that define interactions among various phases in a hetero-
geneous material demands some significant efforts (Yaghoobi et al.
2017). Here, as an alternative route, we adopt peridynamics.
Peridynamics is a nonlocal theory of the mechanics of solid defor-
mations. It was originated by Silling (2000) to mathematically
describe the mechanics of continuous and discontinuous media.
This is achieved by replacing the partial spatial derivatives in the
governing equations with integral formulations. In peridynamics,
the material domain is discretized into points with a finite volume.
Each materials point x interacts with the other points x’ that are
located within a specific region, which is often assumed to be a
sphere centered around x with a radius (; this radius is known
as the “horizon” and is typically three times the particle size. This
makes it possible to model damage in materials without the need
for complex numerical treatments at discontinuities and crack
tips (Behzadinasab and Foster 2020; Chen et al. 2019; Kilic et al.
2009). Therefore, peridynamics is a convenient and promising tool
to simulate the complete fracture process of porous materials, such
as foamed concrete (Yaghoobi et al. 2017), ceramics (Bazazzadeh
et al. 2020; Mitts et al. 2020), porous rocks (Rabczuk and Ren
2017; Zhou et al. 2020), and so on.

Although numerical simulations offer a powerful tool to predict
the stress—strain curves of porous phases upon uniaxial tension,
their “black-box” nature makes it challenging to identify the key
physics governing the failure of porous phases. In parallel to
numerical simulations, only a few analytical theoretical models
describing the failure of porous materials have been proposed.
Recently, two main approaches have been widely adopted for
the modeling of porous materials: (1) the continuum damage model
(CDM); and (2) micromechanical models. On the one hand, based
on irreversible thermodynamics, the CDM provides a powerful
method for constructing constitutive models. Many endeavors have
helped to improve the CDM framework to elucidate the mechanism
of damage and failure (Faria et al. 1998; He et al. 2015; Ju 1989;
Wu et al. 2006). Although the CDM offers a sound theoretical
framework, damage cannot be expressed theoretically therein. It
must be expressed using empirically calibrated functions, in which
several parameters without clear physical meaning are required to
be determined (Li and Ren 2009). On the other hand, microme-
chanical models are physically well grounded and take into account
the evolution and propagation of random microflaws in the solids
by introducing the parallel jointed microelement and damage
coupling (Li and Ren 2009). Micromechanical models can also
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capture stochastic damage evolution (Li and Guo 2020) and pro-
vide deep insight into the physics behind the fracture process of
porous materials.

This paper aims to provide a novel stochastic micromechanical
damage model describing the behavior of porous materials under
uniaxial tension. The model system consists of a brittle matrix filled
with randomly scattered voids. To assess the effects of porosity
and void structure, we adopted peridynamic simulations to com-
pute the entire stress—strain response under uniaxial tension. The
peridynamic simulations were then used to inform and validate
a micromechanical model that embedded a stochastic damage
model—which aimed to analytically describe the mechanical re-
sponse of porous phases. The present model not only properly de-
scribes the nonlinear mechanical response of porous materials but
also captures the effect of the heterogeneous structure of porous
material. The overall harmony between theoretical and numerical
results supports the ability of our new model to offer a realistic
description of the failure of porous materials.

Method

Peridynamic Theory

In peridynamics, the material domain is discretized into particles
within a finite volume. A particle located at position X interacts
with its surrounding particles x’ within an area of influence called
a horizon. For convenience, the horizon is assumed to be a sphere
centered on x with a radius (. The relative position between two
interacting particles is defined as a bond £ = x’ — x. The relative
displacement between two particles is defined as n = u(x’, 1) —
u(x, t), where u is the displacement vector field. When the stretch-
ing 1 exceeds a critical value, the bond between two particles
breaks down, which means the interaction between these particles
ceases to exist. This breaking is irreversible.

The peridynamic equation of motion at particle x and time 7 is
given by

p(x)ij(x,t):/C[T(X,t)<x’—x>—T(x’,t)(x—x’)]de/+b(x,t)

(1)

where p = local density; b(x,7) = external body force density;
dV,, = infinitesimal volume around x’; and T = force vector
state that describes the interaction force between points, which de-
pends on the constitutive model used in the simulation. For ordi-
nary state-based peridynamics models, the constitutive model can
be expressed as

£+
C>—— 0
Ty letul# @
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where C = scalar state, which is determined by the elastic param-
eters of the material.

In this paper, we adopt the state-based linear peridynamic solid
(LPS) constitutive model (Silling et al. 2007). This model assumes
that the force is proportional to the deformation following a linear
elastic response until the fracture point is reached. The state-based
LPS constitutive model uses as inputs arbitrary bulk and shear
moduli values, which, in turn, dictate the value of Poisson’s ratio.
The scalar state is given by

3K0 158
C =20 0x + —2 wed (3)
m m
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where K and S = bulk and shear moduli respectively; m = weight
volume; 6 = dilatation, w = influence function; and e = deviatoric
part of the extension scalar state e.

The propagation of cracks in peridynamics is described by the
breaking of bonds, characterized by a critical bond stretching dis-
tance, S,, which is dependent on the constitutive model. For a
three-dimensional linear elastic model, S, is expressed as

_ Gy
'$_¢M4GWK—®K @

where G, = fracture energy of the material.

Stochastic Micromechanical Damage Model

Here, we model the mechanical behavior of porous phases under
uniaxial tension as a series of individual elements jointed in parallel
[Fig. 1(a)]. The elements are linked with rigid bars on the ends so
that they undergo uniform deformations during the loading process.
This is typically referred to as a “bundle” model (Li and Ren 2009).
If there are many elements in series and in parallel, this is referred
to as a “bundle and chain” model (Li and Ren 2009). A pair of
spring and damper in parallel is referred to as a Kelvin—Voigt
element, whereas a spring and damper in series is referred to as
a Maxwell element. The model has two scales: (1) meso scale;
and (2) macro or structural scale. An individual element represents

trtid LTt

k=E,

&,=f1E ey €

(b)

Fig. 1. Idealized model describing the mechanics of porous materials
subjected to uniaxial tension: (a) parallel element model, wherein the
mechanical behavior of the material is described in terms of spring and
damper in parallel and in series; and (b) stress—strain relationship as-
sociated with an individual element.
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the meso-scale homogenized properties of the material, whereas the
element system describes the macroscopic response. Therefore,
complex macromaterial behaviors can be obtained based on the
parallel system, wherein the individual element is endowed with
simple material properties.

Fig. 1(b) shows the stress—strain relationship of a microelement
expressed by Eq. (5)

{ E.e,whene <e¢,, wheree, = f/E; 5)

fH+aE(e—¢,)/(a+1) whene > ¢,

The elastic response of materials is represented by a purely elas-
tic spring element with the modulus of E. The strain that initiates
the inelastic fracture behavior is randomly generated. The spring
element is in series with a parallel combination of a spring (with
a modulus «E;) and damper (with a threshold f) to capture the
plastic response. Even though, at the particle level, the peridynamic
simulation relies on a purely linear—elastic constitutive model, the
simulated system may still exhibit some level of plasticity at the
macro scale, for example, via crack deflection, branching, or arrest-
ing. To phenomenally describe the resulting stress—strain relation-
ship, we introduced the so called “damping element.” This element
prevents the parallel spring from stretching until a threshold force f
is reached. The fracture strain is assumed to be identical in the two
springs that belong to the same bundle, to prevent the infinite plas-
tic flow in this model.

In this micromechanical model, the propagation of cracks inside
porous material was simulated by the sequential fracture of indi-
vidual elements throughout the entire loading process (Fig. 2).
Assuming that the total number of individual elements is N, the
spatial coordinate of the ith element is i/ N, and the random fracture
strain of ith element is ; (i = 1,2, ... N).

During the tension test, the external load was supported by
the undamaged part of the material. The equation of the stress—
strain relationship of the porous material can then be expressed
as [50, 51]

o= [l -d(e)]E(e)e (6)

where d(e) = damage; and E(¢) = strain-dependent modulus of the
macroscopic system (i.e., including porosity effects). The classic
definition of damage (Rabotnov 1969) is

d=1-A,/A (7)
where A = cross-sectional area; and A, = undamaged area.

Accordingly, the damage in the micromechanical model can be
expressed as

Y H(e=A) (8a)

where H(x) = Heaviside function

0 x<0
Huw:{ < (85)

I x=20

When N approaches infinity, one gets
1
d(e) = / H(e — Ax))dx 9)
0

where x = spatial coordinate of the element (i.e., ith element);
and A(x) = fracture strain at x, A(x) = A,. Therefore, the equation
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Fig. 2. Schematic of the stress—strain response yielded by the present micromechanical damage model for different numbers of elements.

of the stress—strain relationship of the porous material can be
expressed as

1
a:/ H(A(x) —
0

As mentioned previously, A(x) is a random value. Let us as-
sume that A(x) is a homogenous random field with the first-order
density functions

E(e)edx = [1 —d(e)]E(e)e (10)

f(Asx) = f(A) (11)

Setting p(x) = H(e — A(x)), (x) follows the (0, 1) distribu-
tion, that is

Plp(x) = 1] = Pl(e = A(x)) > 0] = / Cf(A)A = F(e) (12)

Plp(x) =0] =1 - F(e) (13)
As such, the expected value of damage can be expressed as
= E[p(x)] = F(e) (14)

where E[p(x)] = expectation operator. Accordingly, Eq. (10) can be
reformulated as

o =E[o] = (1 —p)E(e)e (15)

In this paper, the randomness of the damage evolution in porous
materials is assumed to follow a lognormal distribution, which is
commonly adopted in the context of porous rocks, concrete-like
material, ceramics, and other porous materials (Arson and Pereira
2013; Kandarpa et al. 1996; Li and Ren 2009; Lu et al. 2013; Maiti
et al. 2005; Ozaki et al. 2018; Silling et al. 2007). Following
In A(x) ~N(X, &%), one gets

p=F(E) = ¢ FM&_ A] = ¢(a) (16)

where ¢(«) = cumulative distribution function of a standard normal
distribution.
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Model Development and Validation

Numerical Model Development for Porous Materials

The target porous material system was modeled as a composite
system with a distinct set of unit cells. Within the simulation re-
gion, the cells were assigned to be a solid or void, wherein the
number of void cells was constrained by the desired final poros-
ity. All models had a size of 26 x 26 unit cells. Herein, we simu-
lated single-edge notched tension specimens with an initial notch
with length equal to 5 unit cells (a relative depth of 19%, see
Fig. 3). Previous studies have shown that peridynamic frame-
works can properly describe the fracture behavior of composite
systems when the grid spacing is smaller than a tenth of the in-
clusion diameter (Agwai et al. 2011; Yaghoobi et al. 2017). In
this study, the unit cell was fixed to 10 grid spacing, and a lattice
spacing of 15 nm was found to yield a convergence in the com-
puted stress—strain curve. The size of a pore cell (150 nm) was
close to the typical size of capillary pores in cement pastes (Dong
et al. 2017). A system size of 26 x 26 pixels (i.e., 260 x 260 lat-
tice points) was adopted for computational efficiency purposes.
Although the size of the representative element volume would
be expected to increase upon increasing porosity, here, the
representative volume element was kept constant to ensure a
meaningful comparison between samples featuring varying
porosities. The thickness of the whole system was fixed at
10 lattice spacing, which is large enough for the elastic response
of the system to convergence. The horizon was fixed as three
times the grid spacing. The solid matrix was considered brittle,
and the mechanical properties of cement paste phase were
used, that is, Young’s modulus £ = 25 GPa (Constantinides and
Ulm 2004; Yaghoobi et al. 2017; Youssef et al. 2018), fracture
energy Gy= 1.75 J/m? (Bauchy et al. 2015), and Poisson’s ratio
v=0.2.

Simulation of Uniaxial Tensile Test

A uniaxial tensile test was conducted by subjecting the simulated
sample to a constant displacement rate (velocity) to the top and
bottom boundaries of the model. A boundary thickness of three grid
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Fig. 3. Schematic of the porous material model used herein: (a) white
and black pixels denote void cells (pores) and solid cell (matrix), re-
spectively. The numbers of pixels are marked in the x-direction and
y-direction. The arrows denote the direction of the imposed tension.
The line indicates the position of the initial notch that is used to induce
a stress concentration; and (b) schematic illustrating the discretization
of each unit cell into 10 x 10 particles.
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spacings—which was large enough to account for all interactions
between boundary and inner part—was selected to avoid any spu-
rious effect arising from nonlocal interactions close to the free
surface (Madenci and Oterkus 2014). The integration timestep
was decided based on a von Neumann stability analysis to guaran-
tee the stability of the simulation (Silling and Askari 2005). We
adopted the open-source Peridigm package to run all the simula-
tions (Tang et al. 2018).

The effect of the strain rate on the fracture behavior of pure
brittle materials needed to be assessed. Fig. 4 shows the com-
puted stress—strain curve and fracture energy for the model with no
voids. The fracture energy is calculated by integrating the stress—

strain curve
Gr=c / o.dl,

where ¢ depends on the area of the notch and on the direction of
crack propagation. In the simulation model shown in Fig. 3, ¢ was
calculated as ¢ =26/(26-5) = 1.24, where 26 and 5 are the
lengths of the system and notch, respectively (in units of number
of unit cells). The values o, and [, are the stress and displacement in
the loading direction (z-axis), respectively.

As expected, we observe from Fig. 4(a) that the stress linearly
increased with strain until the fracture point was reached. The
elastic regime remained unaffected by the strain rate. However,
when the strain rate exceeded 2 x 10° s~!, the model started to
show some ductility after the fracture point was reached, thereby
resulting in an increase in the fracture energy [Fig. 4(b)]. A sim-
ilar phenomenon was also reported by Tang et al. (2018) in the
study of phase-separated glasses. This can be explained by an
inertia effect; that is, when the strain rate increases, the inertia
around the crack tip grows and leads to crack branching or a
“zig-zag” crack path (Tang et al. 2018). Similarly, the fracture
energy converges when the strain rate becomes equal to or lower
than 10° s~!. Because the simulation model is relatively small,
the inertia effect can be neglected in this range of strain rate. The
same convergence can also be observed in models exhibiting dif-
ferent porosities. Accordingly, a strain rate of 10° s~' was
adopted in this study to balance computational efficiency and
accuracy.

(17)
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Fig. 4. Simulation results obtained for the model without voids: (a) computed stress—strain curve for varying strain rates; and (b) associated fracture

energy [calculated from Eq. (17)] as a function of the strain rate.
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Table 1. Parameters adopted herein for the numerical simulations

Young’s Fracture

Density modulus Poisson’s energy

Case Porosity (kg/m3) (GPa) ratio  (J/m?)
Rezanezhad et al. (2019) — 2,700  70.6 0.25 38.5
Fakhimi and Alavi 16.5% 2,500 0.09 0.20 11.6

Gharahbagh (2011)

Validation of the Peridynamics Method

Peridynamics has been widely adopted to explore the fracture
mechanisms of porous materials (Chen et al. 2019; Katiyar et al.
2020; Li and Guo 2020; Yaghoobi et al. 2017). Yaghoobi et al.
(2017) studied the fracture behavior of foamed concrete under uni-
axial tension using peridynamics. The results matched well with
FEM simulations results while demanding much less computa-
tional cost. Chen et al. (2019) explored the dynamic properties and
elastic moduli of porous glasses using a peridynamics model and
obtained a good match with experimental results. To further verify
the reliability and applicability of the peridynamics method in sim-
ulating uniaxial mechanical behavior, the results of Rezanezhad
et al. (2019) and Fakhimi and Alavi Gharahbagh (2011) are herein
used as references. Rezanezhad et al. (2019) investigated the effects
of pore and crack locations during crack propagation using XFEM.
The properties of materials used in the models are given in Table 1,
and the configuration of the model is shown in Fig. 5(a). The same
model was rebuilt in Peridigm with lattice spacing of 0.5 mm. The
comparison of the results from XFEM and peridynamics is shown
in Figs. 5(b and c). It can be concluded that, for a model with one
pore, the displacement—force curve computed from peridynamics
matches well with that offered by XFEM. Similarly, for a model
with two pores, the peridynamic model can properly describe the
propagation and deflection of cracks. Fakhimi and Alavi Gharah-
bagh (2011) investigated the effect of pore size and pore distribu-
tion on the mechanical behavior of sandstone with a porosity of
16.5%. In this study, a two-dimensional DEM method and two-
dimensional model were involved to get the stress—strain response
of porous rock under uniaxial tension. The properties of materials
used in the models are given as Table 1, and the same model was
here rebuilt in Peridigm with a lattice spacing of 0.5 mm. The com-
parison of the results from DEM and peridynamics is shown in
Fig. 6. It can be concluded that, for a complicated system with rel-
atively high porosity, the peridynamics method can properly de-
scribe the stress—strain response of the model.

Results and Discussion

Numerical Results

Having established the ability of the peridynamic simulation to
offer a realistic description of the failure of porous phases, we
now explore the effect of porosity. To this end, a series of models
exhibiting porosity ranging from 3% to 30% with 3% increments
was simulated. Even though the porosity range is a lower-bound
range for calcium-silicate—hydrate (C—S—H) gel, we aim to derive
more generic insights into the relationship between porosity and
mechanical behavior of porous solids. For each value of porosity,
100 samples with randomly scattered voids were generated. This
led to 1,000 samples in total. For convenience of later discussion,
Fig. 7 defines some terms used herein to describe and interpret the
stress—strain curve. Fig. 8 shows part of the stress—strain curve of
different porosity groups. As expected, the modulus and peak stress
decreased with increasing porosity. An increase in the ultimate
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Fig. 5. Comparison of the peridynamic method with XFEM reference
results: (a) schematic illustrating the size and position of a pore with
respect to an initial crack; (b) displacement—force curve computed by
peridynamics for the one-pore model shown in the inset. The results
are compared with those obtained by XFEM simulations for the same
system (Rezanezhad et al. 2019); and (c) predicted crack propagation
path obtained by peridynamics for a two-pore model. The results are
compared with reference XFEM simulations for the same system
(Rezanezhad et al. 2019).

strain was also observed as porosity increased. This arises from
both the fact that (1) cracks are locally attracted toward the soft re-
gions formed by densely distributed voids, thereby inducing strong
crack deflections that postpone the ductile stage of the model, and

J. Mater. Civ. Eng.

J. Mater. Civ. Eng., 2022, 34(4): 04022018



Downloaded from ascelibrary.org by UCLA Digital Coll Svcs on 09/30/22. Copyright ASCE. For personal use only; all rights reserved.

12 Il L Il L Il L
—— DEM, Fakhimi and Alavi Gharahbagh (2011)
—— Peridynamics method
10 -
Porosity=16.5%
O OOO
© 8- O O r
o Pore —0 o g
= o 209 |2
s 64 ® 0 s L
O
_é { Matrix—> Oogmm
D 4] o9l |
] e
2 L
0 T T T
0.0000 0.0002 0.0004 0.0006 0.0008

Strain

Fig. 6. Stress—strain curve computed by peridynamics for the porous
phase shown in the inset. The results are compared with those obtained
by DEM simulations for the same system (Fakhimi and Alavi
Gharahbagh 2011).

90 1 1 1 1 1 1 1 1
s 601 ! 3
o |
= i
I B . i
o ! !
) i i
30 / ! L
0 T T L T T = T T T
0.000 0.003 0.006 0.009 0.012 0.015

Strain

Fig. 7. Schematic illustrating the typical features of a stress—strain
curve that are used herein to describe the mechanical response of a
porous phase subjected to uniaxial tension.

(2) microcracks tend to nucleate in high-porosity regions due to
local stress concentrations around a pore. Because mechanical
behavior tends to become more ductile upon increasing porosity,
models with different porosities were here divided into two groups
for further analysis: (1) a low-porosity group, which contained
models with porosity from 3% to 15%; and (2) a high-porosity
group, which contained models with porosity from 18% to 30%.
In these two cases, the obtained stress—strain curves tended to
show (1) fairly brittle behavior; and (2) a more obvious yielding
regime, respectively.

Some significant heterogeneity was observed in each porosity
group. For illustration purposes, a statistical analysis of the data
is shown in Fig. 9. The data shown in the Fig. 9 were obtained
from the analysis of 100 samples in each group—a number of sam-
ples that is large enough to ensure a convergence of the statistical
distribution [Fig. 9(f)]. The max values of modulus and yield stress
in each group were linearly fitted [see insert in Figs. 9(a and d)]. In
general, the modulus, peak stress, yield strain, and yield stress de-
creased with the increase of porosity at all percentile values. In
groups of low porosity, such as 3%-9%, the scatter in the modulus
was generally less than 10%, whereas the scatter grew noticeably
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with the increase of porosity [Fig. 9(a)]. As for peak stress, a rel-
atively small variance in percentile 25%—75% was observed in
samples of two extreme porosities, 3%, and 30%, where a larger
variance was observed in other porosity groups [Fig. 9(b)]. In high-
porosity groups, the yield strain and stress of a majority of samples
both varied in a small range of less than 10% despite porosity
[Figs. 9(c and d)], and the fracture energy reached a maximum at
9% porosity [see Fig. 9(e); for sample consisting of pure matrix, the
fracture energy was 1.75 J/m?]. From a practical point of view, the
desired porosity of 9%—12% seems to be the optimal range for bal-
ancing material weight and mechanical behavior.

Stochastic Micromechanical Damage Model for
Low-Porosity Samples

As shown in Fig. 8, the computed stress—strain curves exhibit some
level of nonlinearity, which tends to increase upon increasing
porosity. This arises from the fact that increasing stochastic combi-
nations of voids tend to promote ductile events. In this paper, to
describe and predict the stress—strain response of porous materials
under tension, a stochastic micromechanical damage model was
adopted.

Because the simulation results obtained for low porosities
(3%—15%) show a nearly perfect elastic response before the peak
stress is reached, it is reasonable to assume f = oco. This means that
the ensemble that captures the plastic response would perform as a
rigid loading bar, where only the elastic response is captured in a
microelement. The corresponding constitutive equation of the low
porosity group then becomes

o = Elo] = (1 - wE(e)e (18)

The mean stress—strain curve in each porosity group was chosen
to calibrate the parameters of this model. The modulus was directly
computed from the initial slope of the mean stress—strain curves,
and the values of the damage variables were determined by fitting
the numerical data. Table 2 summarizes the determined parameters
(A and 6) in the distribution function of damage. As shown in
Fig. 10, the fitted curves were in good agreement with the numeri-
cal results. We obtained a coefficient of determination R? greater
than 0.983, which indicates that the proposed method was indeed
able to capture the average stress—strain response of samples be-
longing to the low-porosity group.

Stochastic Micromechanical Damage Model for
High-Porosity Samples

For higher porosities (18%-30%), the prepeak plastic response was
captured by a plastic element with yield threshold f and stiffness
oF. The randomly generated fracture strain was assumed to be
identical in the two springs—so there was no infinite plastic flow
because the spring with modulus E, broke first (details will be dis-
cussed later). Building on Eq. (18), the stress—strain relationship in
high porosity samples can be readily obtained as

(I_H)Esg o<f
T\ -neEe ) oz
a+1 H s -

Similarly, as in the section “Stochastic Micromechanical
Damage Model for Low-Porosity Samples,” we focus on the mean
stress—strain curve in each porosity group for further examination.
Values of the damage variables were determined by fitting the
micromechanics model to the numerical data. The modulus was
directly computed from the initial slope in the mean curves
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Fig. 8. Stress—strain curves obtained from peridynamic simulations for different representative porosity groups. For each case, the mean curve is
shown: (a) porosity = 3%; (b) porosity = 12%; (c) porosity = 21%; and (d) porosity = 30%.

(in the elastic range), and f and « were obtained from the mean
curves at the yielding stage. Table 3 summarizes the obtained
parameters. As shown in Fig. 11, the fitted curves were in good
agreement with the numerical results. We obtained a coefficient
of determination R? value greater than 0.983, which indicates that
the proposed method can match the stress—strain response of sam-
ples belonging to the high-porosity group.

As mentioned previously, in micromechanical models, a spring
with modulus E; will break first to prevent any infinite plastic flow.
This statement is axiomatic when v > 1, whereas if a<1, the state-
ment is also valid in this study. To demonstrate this, when the
porosity is 27% and « = 0.75, the critical stress o, under which
the two springs reach the same strain can be calculated as
O¢ _ Oc — f

E; aE;

(20)

This gives o, = 139.6 MPa—which means that the spring with
modulus «F breaks first only when the stress exceeds 139.6 MPa.
However, this does not happen for such a high porosity because
the peak stress is only 52.3 MPa. Similarly, for a porosity of 30%,
the critical stress is 56.2 MPa, which is also higher than the peak
stress obtained in numerical results for samples with a porosity
of 30%.

Influence of the Void Structure on the Model

As shown in Fig. 8, the porous samples showed significant variance
in their stress—strain responses, wherein the level of variability in-
creased upon increasing porosity. This phenomenon is attributed to
the void structure, which is usually characterized by the shape,
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type, and size of the pores (Amran et al. 2015; Chung et al. 2017;
Hilal et al. 2015; Nambiar and Ramamurthy 2007; Yu et al. 2011).
For low porosities, the average elastic modulus is nearly constant
(i.e., not affected by the pore structure), due to the limited number
of voids. However, under higher porosities, such as 21%-30%, the
void structure exhibits a significant influence on the elastic modu-
lus, yield stress, and fracture energy. Based on this observation, it is
crucial to investigate the influence of the void structure on those
mechanical properties. In the following section, we propose some
parameters to quantify some relevant features of the void structure.
We conducted a sensitivity analysis to quantify the influence of
those features on the mechanical properties.

Sensitivity Analysis

We first focused on the connectivity of the voids. The voids exhib-
ited three types of contact between each other, which are shown in
Fig. 12: (1) “merged voids,” wherein two or more void cells share a
common edge; (2) “border voids,” wherein cells share a common
vertex; and (3) “insular voids,” wherein a given cell is fully isolated
from the others.

For simplicity, the parameters characterizing the void structure
were chosen as (1) the average circularity of the voids (Sy4q),
(2) the volume of the merged voids (V4q4), and (3) the maximum
volume of a single merged void (M,q). Circularity is used to
evaluate how closely the shape of an object approaches that of a
perfect circle and is defined as the ratio of the surface area of a
given void to the surface area of the circle with the same perimeter.
A circularity value that is close to zero means the void shape is
more irregular and easily leads to a higher local stress concentra-
tion. To determine how the different factors of void structure affect
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Fig. 9. Box plots illustrating the (a) Young’s modulus; (b) peak stress; (c) yield strain; (d) yield stress; (e) fracture energy computed by peridynamics
as a function of porosity; and (f) box plot of Young’s modulus values for a porosity of 12% based on the statistical analysis of a group of 50, 80, 100,

and 150 samples.

Table 2. Parameters used in the present analytical model to describe the
stress—strain curve of low-porosity samples

the mechanical index, we conducted a sensitivity analysis based on
orthogonal experiments. Such a combined method has been widely

Porosity (%) E, (GPa) A ) R? used as an effective way to explore and rank the key factors among
3 247 —4.9069 0.02675 0.997 different variables when data are limited (Chen et al. 2016; Sun
6 22.5 —4.8047 0.02266 0.988 et al. 2014).

9 20.8 —4.7483 0.02573 0.983 The range method is commonly used in sensitivity analyses
12 18.4 —4.6918 0.02752 0.992 (Frey and Patil 2002). The influence of a parameter is evaluated
15 15.8 —4.6516 0.03501 0.998

by R;, based on Eq. (21)
© ASCE 04022018-9 J. Mater. Civ. Eng.
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Fig. 10. Stress—strain curves predicted by the present analytical model for different average porosity (for low-porosity samples). The results are
compared the average stress—strain curves obtained from the peridynamic simulations: (a) porosity = 3%; (b) porosity = 6%; (c) porosity = 9%;

(d) porosity = 12%; and (e) porosity = 15%.

Table 3. Parameters used in the present analytical model to describe the
stress—strain curve of high-porosity samples

Porosity (%) E, (GPa) f (MPa) « A B R?

18 14.2 653 4 —4.6329 0.04806 0.999
21 12.3 542 2 —4.6097 0.05607 0.999
24 10.8 455 1 —4.6283 0.05073 0.993
27 8.4 349 075 —4.5818 0.07504 0.984
30 7.8 28.1 05 —4.6176 0.08502 0.983
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Rj:max[kjl,ka, ---]—min[kjl,ka, } (21)

where kj; = sum of test results of certain influence factor under the
same level j; among different test samples. Larger R; values denote
more influential parameters.

An orthogonal experiment table (Table 4) was designed to
comprehensively estimate the influence. Three influential factors
were considered: void shape (S,4q), void type (V,q), and
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Fig. 11. Stress—strain curves predicted by the present analytical model for different average porosity (for high-porosity samples). The results are
compared the average stress—strain curves obtained from the peridynamic simulations: (a) porosity = 18%; (b) porosity = 21%; (c) porosity = 24%;

(d) porosity = 27%; and (e) porosity = 30%.

void size (M ,.;4). Because the values of these influence factors in
different porosity groups are inevitably different, V4 and M4
were normalized according to the total number of void cells in
each group. For simply comparing the samples among different
porosity groups, each influence factor was divided into three lev-
els labeled as A, B, and C—wherein, in this order, levels A, B,
and C indicated that the variation of certain influence factors had a
growing negative impact on the mechanical behavior of the
porous materials. Specifically, 1,000 samples in different porosity
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groups were analyzed. Each A, B, and C level consisted of 20% of
the data to prevent errors caused by outliers. For instance, in test
sample 6, the S, value was selected from the 40% to 60% per-
centile of data in descending arrangement of value, V4 was se-
lected from the 0% to 20% percentile of data in descending
arrangement of value, and M,y was selected from the 80% to
100% percentile of data in descending arrangement of value.
The data in the bracket of Table 4 indicate associated average val-
ues (if more than one sample met the requirements).
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Fig. 12. Schematic illustrating the three types of voids that are defined
herein based on their connectivity.

Table 4. Orthogonal experimental factors design and calculation

Normalized
Test fracture Normalized
sample Svoid Void M oiq energy modulus
1 A0.609) A(0.812)  A(0.097) 0.696 0.873
2 A(0.605) B(0.861) B(0.161) 0.374 0.790
3 A(0.605) C(0.925) (C(0.320) 0.465 0.780
4 B(0.581) A(0.789) B(0.145) 0.533 0.766
5 B(0.583) B(0.869) C(0.287) 0.459 0.781
6 B(0.588) C(0.917) A(0.078) 0.619 0.886
7 C(0.554) A(0.818) C(0.288) 0.388 0.674
8 C(0.556) B(0.872)  A(0.100) 0.668 0.816
9 C(0.555) C(0.906) B(0.151) 0.532 0.725
Table 5. Results of the range analysis
Factor Svoid Void M4
Fracture energy
K, 1.535 1.617 1.983
Kp 1.611 1.501 1.439
K¢ 1.588 1.616 1.312
R; 0.076 0.116 0.155
Modulus
Ky 2.443 2.313 2.575
Ky 2433 2.387 2.281
K¢ 2215 2.391 2.235
R 0.228 0.078 0.155

Fig. 9(c) indicates that, in most samples, the yield strain only
slightly fluctuated around its mean value. Here, for convenience,
the yield strain is represented by its mean value, whereas the vari-
ance of the yield stress can be described by the variance of modu-
lus. The mechanical properties fracture energy and modulus are
presented in the range analysis.

Table 5 shows the results of the range analysis. The value of R;
reflects the proportional relation of the three parameters. As a re-
sult, the weight coefficients of Sy, Vyoid» and M ;¢ for modulus
were W(Syoia):W(Vyoia):W(M,piq) = 0.49: —0.17: —0.34, respec-
tively, whereas the weight coefficients against S,uq, Vyeid» and
M4 for fracture energy were 0.22:—0.33: —0.45, respectively.
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The weight coefficients against V4 and M ;4 were negative be-
cause increasing the merged-type void and maximum void size has
a negative influence on the modulus and fracture energy of porous
materials. Accordingly, the influence of the internal structure on the
modulus and fracture energy can be simply considered based on the
following equation:

E* = ngEB° (22a)
G; = ncG}g-C (22b)
Stoid = Svo; Vieia = Veor
ne=1+fg {%B—Qd(d ’ W(Sonid) + (i/Tﬂuj ’ W(Vonid)
voi voi
* - MBC’d
+ VOI]ch m W(Mfoid)] (226)
void
=1 ijoid — Sngid W SG ioid — Vngid W VG
e = +fG SBc ( void) + VBc ( void)
void void
* MBC~ .
+ H ’ W(Msoid)} (224)
void

where 7 = modified factor that considers the influence of the inter-
nal structure; the superscripts * and Bc = targeted sample and base-
line cases, respectively; the superscripts £ and G = modulus and
fracture energy; and fr and f; = impact of void structure on the
modulus and fracture energy, respectively. The modified factor is a
sum of the different percentages of the influence parameters ob-
tained by multiplying their corresponding weight coefficients.

Based on the previous knowledge, the prediction of the stress—
strain curves associated with heterogeneous samples is established
in the two following sections, that is, for low-porosity and high-
porosity groups.

Low-Porosity Samples

As shown in Fig. 8(a), for samples with low porosity (3%, 6%,

and 9%), the void structure has a significant influence on frac-

ture energy, whereas the modulus is largely unaffected. This is
consistent with classical fracture mechanics relationships (Freund

1990). Combining Eqs. (17) and (18) yields G, = c/ads =

¢[(1 — p)E(e)de, which yields G, oc > (1 — 1). Recalling that

1 denotes the expectation of damage, and the damage of porous

materials is assumed to follow a lognormal distribution In(e)~

N(\,6%), the fracture energy G, can be described by a function

of X and é. Accordingly, the stress—strain curve in the low-porosity

groups can be described by the distribution variables A and ¢ and
modulus E. The procedure of prediction is summarized as:

1. In a given porosity group, calculate the void structure parame-
ters of Syoigs Vvoia and Mg for all samples,

2. Take one sample as a baseline, so that the modulus E; of the
sample and individual modulus of samples in this porosity
group are known. Fit the stress—strain curve with the method
described in the section “Stochastic Micromechanical Damage
Model for Low-Porosity Samples” to obtain the distribution var-
iables A and 6, and then find the relationship between fracture
energy and the given variables A and 6, denoted by

G, = f(1+0)\ (1 +6)8) (23)

3. Consider the fracture energy of the baseline sample as unit 1 and
calculate the fracture energy of heterogeneous samples by
Egs. (22b) and (22d), and
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Fig. 13. Stress—strain curves for samples showing the same porosity of
9% but different void structures. The curve associated with sample 9-0
is fitted by present damage model with the parameters £, = 20.3 GPa,
A = —4.57, and 6 = 0.02. In turn, the curves associated with samples
9-1, 9-2, and 9-3 are predicted using Eq. (22).
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Fig. 14. Normalized fracture energy G,, as a function of . When \ =
—4.57 and § = 0.02, the data can be described by G, = 8.0107¢*> —
4.47326 + 0.9992.

4. Substitute the fracture energy into Eq. (23). The corresponding
value of A and ¢ can be obtained so that the stress—strain curve of
each sample can be predicted.

As an example, consider the group of 9% porosity. Three
samples with different fracture energy values are denoted as 9-1,
9-2, and 9-3 in descending value (Fig. 13). Adopting the method
in the section “Stochastic Micromechanical Damage Model for
Low-Porosity Samples,” the sample with the biggest fracture en-
ergy in the porosity group 9% (denoted as 9-0) can be fitted as
shown in Fig. 13. The modulus is directly computed from the fitted
equation shown in Fig. 9(a). The relationship between the normal-
ized fracture energy G,, with the distribution variables A and 6 as
—4.57 and 0.02, and 6 is shown in Fig. 14. This relationship can
be perfectly described by a quadratic polynomial. Table 6 shows
the value of void structure parameters in each sample. The mini-
mum fracture energy is 50% of the maximum [Fig. 9(e)], so the
impact value is fs = 0.5. For 9-1, the fracture energy can be cal-
culated as in Eq. (24). Accordingly, the corresponding ¢ can be
obtained (Table 6)
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Table 6. Void structure parameters for the 9% group of porosity

Normalized
fracture
Sample Sy Vyoid M i energy, G, 0 R?
9-0 0.667 0.300  0.0667 1.000 0 0.999
9-1 0.625 0.283 0.0833 0.947 0.0118 0.999
9-2 0.689 0.417 0.1000 0.827 0.0415 0.999
9-3 0.681 0.433 0.1167 0.759 0.0625 0.999
6 1 1 1 1 1
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Fig. 15. Comparison between the fracture energy predicted by the pre-
sent analytical model and simulated values (obtained by peridynamics)
for the low-density group. The line (y = x) is indicative of a perfect
agreement.
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As shown in Fig. 13, the predicted results show good agreement
with simulation data. To further validate the proposed method, a
comparison of the fracture energy predicted by the present analyti-
cal model with simulation results of heterogeneous samples with
porosities of 3%, 6%, and 9% is shown in Fig. 15. We observe that
the proposed method gives satisfactory results in capturing the
mechanical response (R*> = 0.859).

High-Porosity Samples

As shown in Figs. 8(c and d), for samples with high porosity (24%,
27%, and 30%), the void structure has a significant influence on
fracture energy Gy, modulus Ej, and yield stress f. By assuming
the yield strain €, to be represented by a mean value in a certain
group, the variance of stress is commensurate with that of the
modulus.

For samples with high porosity, the stress—strain curve can be
described by the distribution of the variables A and ¢, E|, and in-
dices of the yield stage o and f. The procedure of prediction is
summarized as:

1. In a porosity group, calculate the void structure parameters of

Svoids Vvoia and M ,;q for all samples,
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Fig. 16. Stress—strain curves for samples showing the same porosity
of 27% but different void structure. The curve associated with sample
27-0 is fitted by the present damage model with the parameters E, =
10.8 GPa, f = 41.5 MPa, A = —4.54, 6 = 0.04, and o = 3. In turn,
the curves associated with samples 27-1, 27-2, and 27-3 are predicted
using Eq. (22).

2. Take one sample as a baseline so that E; and f are known.
Fit the stress—strain curve with the method in the section
“Stochastic Micromechanical Damage Model for High-Porosity
Samples” to obtain A, 6, and «. Then, find the relationship be-
tween fracture energy and the given variables based on

Gy = h((1+ )X (1 +0)6, ngEg, nef mga) — (25)

where 7 = modified factor that considers the influence of

the internal structure on the modulus, which can be calculated

by Eq. (22¢),

3. Considering the fracture energy of the baseline sample as unit 1,
using Eqs. (22a)—(22d) to calculate the fracture energy and
modulus of the samples, and

4. The values of A, § and « can be obtained from Eq. (25), so the
stress—strain curve can be predicted.

Taking the group of 27% porosity as an example, three different
curves with different modulus values are denoted as 27-1, 27-2, and
27-3 in descending value (Fig. 16). Adopting the method in the
section “Stochastic Micromechanical Damage Model for High-
Porosity Samples,” the sample with the biggest modulus (denoted
as 27-0) can be fitted as shown in Fig. 16. The modulus E; and
yield stress f are computed from the fitting equations shown in
Figs. 9(a and d), respectively. The relationship between the normal-
ized fracture energy G,, with the distribution variables A, 6, and «
—4.54, 0.04, and 3, and the fitting variables 0 and 7y are shown in
Fig. 17. The relationship between distribution variables and fracture
energy can be perfectly described by a binary quadratic function.

In the group of density 27%, the impact values for fracture en-
ergy fg and modulus fr are 0.8 and 0.65. Accordingly, using
Eqgs. (22a)-(22d), the stress—strain curve of 27-1, 27-2, and 27-3
can be obtained. As shown in Fig. 16 and Table 7, overall, the pro-
posed method properly captured the mechanical response of the
samples (R> > 0.968). To further validate the proposed method, a
comparison of the predicted fracture energy and modulus with sim-
ulation results of heterogeneous samples with porosities 24%, 27%,
and 30% is shown in Fig. 18. We find that the proposed method
yields satisfactory results.

As shown in Figs. 13 and 16, the predicted results tend to show
good agreement with the simulations in the case of lower porosities.
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Fig. 17. Normalized fracture energy G, as a function of the parameters
0 and . When E; = 10.8 GPa, f = 41.5 MPa, A = —4.54, 6 = 0.04,
and o =3, the data can be described by G, =1—7.878120+
1.07876m; + 21.365196% + 0.0680577%.

Table 7. Void structure parameters for the 27% group of porosity

Normalized
fracture

Samp]e Svoid Vvoid Mvnid energy, Gn 0 e R?

27-0 0.606 0.872 0.122 1.000 0 0 0.999
27-1 0.642 0.822 0.183 0.699 0.014 —0.699 0.996
27-2 0.606  0.925 0.200 0.577 0.028 —0.577 0.992
27-3 0.593 0.872 0.244 0.414 0.064 —0.414  0.968

In the case of higher porosities, the model tends to deviate from the
results of the peridynamic simulations in the postpeak range. The
prediction is based on the internal void structure and weight coef-
ficients before loading. The void structure evolves in the inelastic
range, but the coefficients are not updated to account for this. This
is more obvious in the group featuring relatively high porosity be-
cause more destructed soft regions tend to form. This will, in turn,
cause significant deflection of cracks and result in larger fracture
strain after peak stress, whereas those effects cannot be considered
in the stochastic damage model.

Conclusions

We proposed a stochastic micromechanical damage model to de-
scribe the stress—strain response of porous phases subjected to uni-
axial tensile loading. The void structure model was used to predict
the heterogeneity of samples with the same porosity. Several con-
clusions can be drawn from this study:

1. Peridynamics offers a powerful tool to simulate the mechanical
response of porous materials,

2. The proposed micromechanical model properly captures the
stress—strain response of porous materials under uniaxial tension
while accounting for the heterogeneity of the mechanical
response,

3. The proposed model offers a good prediction of the average
stress—strain curves of porous phases over various ranges of
porosity. For heterogeneous samples, the predicted results show
good agreement with simulation data in model in the case of
low-porosity samples. However, some differences are observed
in the case of high-porosity samples. This phenomenon is
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Fig. 18. Comparison between the (a) fracture energy; and (b) Young’s modulus predicted by the present analytical model and simulated values
(obtained by peridynamics) for the high-density group. The line (y = x) is indicative of perfect agreement.

attributed to a size effect or the fact that the model does not
explicitly consider the deflection of cracks, and

4. A sensitivity analysis shows that, at fixed porosity, the maxi-
mum pore volume exhibits the strongest influence on fracture
energy, whereas the degree of pore circularity has the strongest
influence on modulus.
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