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Abstract
The energy and latency demands of critical workload execution,

such as object detection, in embedded systems vary based on the

physical system state and other external factors. Many recent mo-

bile and autonomous System-on-Chips (SoC) embed a diverse range

of accelerators with unique power and performance characteris-

tics. The execution flow of the critical workloads can be adjusted

to span into multiple accelerators so that the trade-off between

performance and energy fits to the dynamically changing physical

factors.

In this study, we propose running neural network (NN) infer-

ence on multiple accelerators of an SoC. Our goal is to enable an

energy-performance trade-off by distributing layers in a NN be-

tween a performance- and a power-efficient accelerator. We first

provide an empirical modeling methodology to characterize exe-

cution and inter-layer transition times. We then find an optimal

layers-to-accelerator mapping by representing the trade-off as a

linear programming optimization constraint. We evaluate our ap-

proach on the NVIDIA Xavier AGX SoC with commonly used NN

models. We use the Z3 SMT solver to find schedules for different

energy consumption targets, with up to 98% prediction accuracy.

1 Introduction
Computing devices are becoming highly heterogeneous with

the increased utilization of domain specific accelerators (DSAs),

each of which is optimized to perform a specific type of operation.

This trend is fueled by the need of running applications that span

a diverse set of computations for emerging fields such as artifi-

cial intelligence, machine learning, and autonomous systems. The

latest generation of SoCs Ðsuch as NVIDIA’s Xavier and Orin ar-

chitectures, Apple’s M1 and A15 Bionic chips, and Qualcomm’s

Snapdragon 8 SoCsÐ have dramatically increased the degree of

architectural heterogeneity within the same die. In such systems,

dozens of DSAs with diverse instruction set architectures (ISAs)
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work together to accelerate operations (i.e., kernels or tasks in an

application) that belong to emerging application domains.

In diversely heterogeneous SoCs, an operation (OP) can often be

accelerated via different DSAs with varying performance, energy,

and latency characteristics. For example, a convolution OP can

be set to run on the CPU, GPU, deep learning accelerator (DLA)

and programmable vision accelerator (PVA). The DSA that would

provide the near-optimal execution time and/or energy efficiency

for an OP depends both on the DSA capabilities, and on the prop-

erties of the operation, such as matrix size and filter dimensions.

Depending on the dynamic requirements of the system (e.g., high

throughput, low energy), runtime parameters of an OP (e.g., number

of objects, image size), and availability of DSAs, the programmer (or

the system scheduler) may choose to map different OPs to different

DSAs throughout the execution of an application.

An emerging architectural feature of such heterogeneous SoCs is

a shared system memory that all DSAs and CPU can directly access

and utilize. While this design choice is primarily motivated by the

goal of reducing chip area and production costs, it also helps in

eliminating additional data transfer overhead between the host

and the device [4]. Having shared memory directly accessible by

every DSA in the system enables assigning OPs in a workload to

the DSAs more flexibly. This flexibility also enables collaborative

execution in shared-memory heterogeneous system architectures

(SM-HSA), where OPs in a workload can be executed on different

DSAs [8] to exploit the varying benefits (i.e., energy, throughput,

latency, etc.) that different types of DSAs can optimally provideÐ

e.g., a convolution operation can be accelerated by a GPU for high

performance, or by a DLA for better energy efficiency. In such

SM-HSAs, near-optimal utilization of the system resources heavily

relies on carefully assigning the OPs to the available DSAs based on

the target performance and power goals of a given scenario [15].

Collaborative execution of popular workloads, such as neural

network (NN) inference, on different types of DSAs is a relatively

new and unexplored scheme which has the potential to provide

unique benefits for budgeted execution scenarios. To demonstrate

the feasibility of collaborative execution for achieving different

performance and energy goals on a heterogeneous platform, we

conduct an exploratory experiment, which is shown in Fig. 1. In this

experiment, we map the layers of the VGG-19 [21] network to the
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Table 1: The notations used in this section.

Notation Explanation

𝐿𝑖 𝑖th layer in a given layer set 𝐿, 0 ≤ 𝑖 ≤ len(𝐿)

𝑃 𝑗 𝑗 th processor in a given processor set 𝑃 , 0 ≤ 𝑖 ≤

len(𝑃 )

𝑇𝑅𝑖 Boolean variable set if a transition occurrs after 𝐿𝑖 ,

0 ≤ 𝑖 < 𝑙𝑒𝑛 (𝐿)

𝜏 (𝑖, 𝑗,𝑂𝑈𝑇 ) Output transition cost inflicted on 𝑃𝑖 as the layer 𝐿𝑖
transitions to 𝑃 𝑗 .

𝜏 (𝑖, 𝑗, 𝐼𝑁 ) Input transition cost inflicted on 𝑃 𝑗 as the later 𝐿𝑖
transitions from 𝑃𝑖 .

𝑒 (𝑖, 𝑗) Energy consumption of layer 𝐿𝑖 on processor 𝑃 𝑗

𝑡 (𝑖, 𝑗) Execution time of layer 𝐿𝑖 on processor 𝑃 𝑗

𝐸𝐶𝑇 Energy consumption target

S(𝐿𝑖 ) Scheduling set of layers, 0 < i < len(L)

𝑇 (𝐿, 𝑃, 𝑆,𝑇𝑅) Total time to execute a given layer set L, processor P,

and schedule S

𝐸 (𝐿, 𝑃, 𝑆,𝑇𝑅) Energy consumption by a given set of layer L, proces-

sor P, and schedule S

𝑈 (𝐿𝑖) The sub-unit executing the layer

𝛾 (𝐿𝑖 , 𝑠 (𝐿𝑖 )) Amount of time 𝐿𝑖 saves by pipelining in its input

NumTransitions Maximum amount of transitions allowed by user

profiler IProfiler, using an API call on TensorRT, to obtain execution

time and energy consumption on GPU and DLA.

We analyze the execution behavior of the DSAs for different OPs

by considering layer types and OP complexities, and measure the

NN’s resource utilization layer-by-layer. In Fig. 4(a-b), we measure

execution time and energy consumption of different layers on VGG-

19 by using GPU and DLA separately. The left vertical axis shows

the execution time, whereas the right vertical axis represents the

energy consumption. Depending on the data size, convolution OPs

on GPU are 3x to 4.5x faster than on DLA, whereas pooling OPs on

GPU are 3x to 7x faster than on DLA. For the energy comparison,

convolution OPs on GPU consumes 1.1x to 1.8x more energy than

on DLA, whereas the ratio for pooling on GPU over DLA varies

from 0.6x to 1.15x.

4 Multi-accelerator Scheduling via

Constraint-based Optimization

This section details how we build our cost functions and encode

scheduling as a constraint-based optimization problem. First, we

formulate the total execution time using empirical values found for

transition and layer-wise execution times as shown in Section 3.

Then, we assemble a constraint-based optimization problem that

minimizes total execution time for a given ECT.

Table 1 lists the components needed to formulate our optimiza-

tion problem. Layer set 𝐿 is a NN-specific parameter which includes

all layers 𝐿𝑖 in the network with their sizes and activation functions.

Processor set 𝑃 represents all available processors and DSAs on

the architecture. 𝜏 (𝑖, 𝑗,𝑂𝑈𝑇 ) is used to denote the 𝑂𝑈𝑇 transition

overhead inflicted on 𝑃𝑖 as the transient data belonging to recently

executed layer are flushed back to the system memory. In this case,

𝑃 𝑗 is the target DSA of the transition. Similarly, 𝜏 (𝑖, 𝑗, 𝐼𝑁 ) repre-

sents the 𝐼𝑁 transition overhead inflicted on 𝑃 𝑗 due to the cold

cache misses caused by the initial memory instructions executed

by 𝑃 𝑗 .

Since each layer can be mapped to a different processor, the final

layer-to-processor schedule for a neural network is represented by:

𝑆 (𝐿𝑖 ) = 𝑃 𝑗 𝑤ℎ𝑒𝑟𝑒 0 < 𝑖 < 𝑚 & 0 < 𝑗 < 𝑛 (1)

Since breaking fused operations and pipelined operations will

cost extra time overhead, we consider another feature in ourmetholodogy,

𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 (𝐿𝑖 , 𝑆 (𝐿𝑖 )) in Eq. 2. If the schedule does not prevent any

OP from being pipelined, there will be no effect on the time and

energy parameters. However, if the sub-unit used by the previous

layer is not the same sub-unit on the current layer for the same

DSA, it can severely affect execution time and energy results.

𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 (𝐿𝑖 , 𝑆 (𝐿𝑖 )) =

{

0 if𝑈 (𝐿𝑖 ) = 𝑈 (𝐿𝑖 − 1)

𝛾 (𝐿𝑖 , 𝑠 (𝐿𝑖 )) if𝑈 (𝐿𝑖 ) ≠ 𝑈 (𝐿𝑖 − 1)
(2)

After obtaining the related time parameters, the total execution

time for a neural network 𝑇 (𝐿, 𝑃, 𝑆 (𝐿 → 𝑃,𝑇𝑅) can be calculated

via four different parameters, as shown in Eq. 3. Each layer 𝐿𝑖 has

a characteristic execution time on processor 𝑃 𝑗 , presented with a

scheduling parameter 𝑠 (𝐿𝑖 ). The transition cost𝜏 (𝐿𝑖 , 𝑠 (𝐿𝑖 ),𝑂𝑈𝑇 |𝐼𝑁 ),

is added to the total execution only if the result of layer 𝐿𝑖 tran-

sitions to a new processor, represented by 𝑇𝑅𝑖 . Total energy con-

sumption in Eq. (6) also has a closely similar pattern with the total

execution time since the energy consumption is calculated by the

same variables. We use 𝑇𝑅𝑖 boolean variable to indicate whether

any transition occurs in Eq. (4) and to limit the number of transitions

in Eq. (5).

𝑇 (𝐿, 𝑃, 𝑆 (𝐿 → 𝑃),𝑇𝑅) =

𝑙𝑒𝑛 (𝐿)
∑︁

𝑖=0

(𝑡 (𝐿𝑖 , 𝑠 (𝐿𝑖 )) +

(𝑇𝑅𝑖 × 𝜏 (𝐿𝑖 , 𝑠 (𝐿𝑖 ),𝑂𝑈𝑇 )) + (𝑇𝑅𝑖 × 𝜏 (𝐿𝑖+1, 𝑠 (𝐿𝑖+1), 𝐼𝑁 )) +

(𝑇𝑅𝑖 × 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 (𝐿𝑖 , 𝑆 (𝐿𝑖 ))))

(3)

𝑇𝑅𝑖 =

{

1 if 𝑆 (𝑖) ≠ 𝑆 (𝑖 + 1)

0 if 𝑆 (𝑖) = 𝑆 (𝑖 + 1)
(4)

𝑁𝑢𝑚𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 =

𝑙𝑒𝑛 (𝐿)
∑︁

𝑖=0

𝑇𝑅𝑖 (5)

𝐸 (𝐿, 𝑃, 𝑆 (𝐿 → 𝑃),𝑇𝑅) =

𝑙𝑒𝑛 (𝐿)
∑︁

𝑖=0

𝑒 (𝐿𝑖 , 𝑠 (𝐿𝑖 )) +

(𝑇𝑅𝑖 × 𝑒 (𝐿𝑖 , 𝑠 (𝐿𝑖 ),𝑂𝑈𝑇 )) + (𝑇𝑅𝑖 × 𝑒 (𝐿𝑖+1, 𝑠 (𝐿𝑖+1), 𝐼𝑁 ))

(6)

Our objective function is to minimize the execution time of a NN

inference for a given set of layers and processors, with each possible

mapping of layers to the processors, and an energy constraint 𝐸𝐶𝑇 .

Thus, we define our objective function and the primary constraint

as follows:

min 𝑇 (𝐿, 𝑃, 𝑆 (𝐿 → 𝑃))

s.t. 𝐸 (𝐿, 𝑃, 𝑆 (𝐿 → 𝑃)) < 𝐸𝐶𝑇
(7)

5 Evaluation
The constraints described in Section 4 can be handled with an

off-the-shelf constraint solver. We solve the objective function and

its dependencies shown in Section 4 with the Z3 SMT solver, which

efficiently determines satisfiability of logical/numeric constraints.
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Table 2: The number of inter-DSA transitions that near-optimal

schedules include when NumTransitions variable is set to 3.

Model 1 Transition 2 Transitions 3 Transitions

GoogleNet 19 3 0

VGG-19 16 4 2

VGG-16 18 4 0

Alexnet 10 2 0

ResNet50 8 4 0

ResNet18 9 3 0

the pipeline parallelism idea by maximizing utilization. However,

none of the aforementioned works takes energy into account.

Narayanan et al. [17] propose round-robin scheduling for a

target-latency deadline for DL workloads. Shamsa et al. [20] pri-

oritize resource management over goals by considering dynamic

changes. PCCS [26] presents an empirical model that formulates

shared memory contention between multiple DSAs. However, these

studies do not consider energy as a target or metric.

Pipelining in NN inference [24] is applied by distributing layers

between CPU and GPU in order to maximize throughput of the

system and synchronous data via cache-coherent interconnects.

Kang et al. [11] optimize a single DL application’s response time

via the dynamic voltage and frequency scaling (DVFS) technique by

finding the Pareto-optimal scheduling. Jeong et al. [10] offer a par-

allelization methodology for NN inference workloads to maximize

throughput by leveraging TensorRT’s GPU and DLA. However,

none of these works considers using multiple accelerators for DL

tasks to find a trade-off between energy and latency.

A similar idea to AxoNN is presented by MEPHESTO [15], which

first characterizes the workloads on different DSAs, then models

an energy-performance trade-off by collocating kernels and consid-

ering the memory contention on heterogeneous shared memory

systems. However, this study does not take either the dependencies

between OPs or the transition costs into account, and is therefore

not suitable for NN inference. Barik et al. [1] propose a mapping

algorithm between CPU and GPU by characterizing the power con-

sumption of data-parallel specific workloads. Tzilis et al. [23] pro-

pose an online profiling model for estimating power consumption

and performance under DVFS configuration for a given application.

The aforementioned works do not consider challenges of executing

DL applications on multiple DSAs.

To the best of our knowledge, our work is the first to apply layer-wise

mapping on heterogeneous accelerators by considering both latency

and energy.

7 Conclusion

This study presentsAxoNN , a multi-accelerator execution scheme

for heterogeneous SoCs.We explore the factors affecting the energy-

aware scheduling of NN workloads onto DSAs. We analyze the

transition costs between DSAs in a shared-memory system and

characterize the execution time and energy consumption of dif-

ferent NN workloads. We build a scheduling model to find the

minimum execution time for different energy targets. We test our

methodology with 6 different networks, and test our results with

the Z3 SMT Solver, obtaining up to 98% prediction accuracy.
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