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Abstract

The energy and latency demands of critical workload execution,
such as object detection, in embedded systems vary based on the
physical system state and other external factors. Many recent mo-
bile and autonomous System-on-Chips (SoC) embed a diverse range
of accelerators with unique power and performance characteris-
tics. The execution flow of the critical workloads can be adjusted
to span into multiple accelerators so that the trade-off between
performance and energy fits to the dynamically changing physical
factors.

In this study, we propose running neural network (NN) infer-
ence on multiple accelerators of an SoC. Our goal is to enable an
energy-performance trade-off by distributing layers in a NN be-
tween a performance- and a power-efficient accelerator. We first
provide an empirical modeling methodology to characterize exe-
cution and inter-layer transition times. We then find an optimal
layers-to-accelerator mapping by representing the trade-off as a
linear programming optimization constraint. We evaluate our ap-
proach on the NVIDIA Xavier AGX SoC with commonly used NN
models. We use the Z3 SMT solver to find schedules for different
energy consumption targets, with up to 98% prediction accuracy.

1 Introduction

Computing devices are becoming highly heterogeneous with
the increased utilization of domain specific accelerators (DSAs),
each of which is optimized to perform a specific type of operation.
This trend is fueled by the need of running applications that span
a diverse set of computations for emerging fields such as artifi-
cial intelligence, machine learning, and autonomous systems. The
latest generation of SoCs —such as NVIDIA’s Xavier and Orin ar-
chitectures, Apple’s M1 and A15 Bionic chips, and Qualcomm’s
Snapdragon 8 SoCs— have dramatically increased the degree of
architectural heterogeneity within the same die. In such systems,
dozens of DSAs with diverse instruction set architectures (ISAs)
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work together to accelerate operations (i.e., kernels or tasks in an
application) that belong to emerging application domains.

In diversely heterogeneous SoCs, an operation (OP) can often be
accelerated via different DSAs with varying performance, energy,
and latency characteristics. For example, a convolution OP can
be set to run on the CPU, GPU, deep learning accelerator (DLA)
and programmable vision accelerator (PVA). The DSA that would
provide the near-optimal execution time and/or energy efficiency
for an OP depends both on the DSA capabilities, and on the prop-
erties of the operation, such as matrix size and filter dimensions.
Depending on the dynamic requirements of the system (e.g., high
throughput, low energy), runtime parameters of an OP (e.g., number
of objects, image size), and availability of DSAs, the programmer (or
the system scheduler) may choose to map different OPs to different
DSAs throughout the execution of an application.

An emerging architectural feature of such heterogeneous SoCs is
a shared system memory that all DSAs and CPU can directly access
and utilize. While this design choice is primarily motivated by the
goal of reducing chip area and production costs, it also helps in
eliminating additional data transfer overhead between the host
and the device [4]. Having shared memory directly accessible by
every DSA in the system enables assigning OPs in a workload to
the DSAs more flexibly. This flexibility also enables collaborative
execution in shared-memory heterogeneous system architectures
(SM-HSA), where OPs in a workload can be executed on different
DSAs [8] to exploit the varying benefits (i.e., energy, throughput,
latency, etc.) that different types of DSAs can optimally provide—
e.g., a convolution operation can be accelerated by a GPU for high
performance, or by a DLA for better energy efficiency. In such
SM-HSAs, near-optimal utilization of the system resources heavily
relies on carefully assigning the OPs to the available DSAs based on
the target performance and power goals of a given scenario [15].

Collaborative execution of popular workloads, such as neural
network (NN) inference, on different types of DSAs is a relatively
new and unexplored scheme which has the potential to provide
unique benefits for budgeted execution scenarios. To demonstrate
the feasibility of collaborative execution for achieving different
performance and energy goals on a heterogeneous platform, we
conduct an exploratory experiment, which is shown in Fig. 1. In this
experiment, we map the layers of the VGG-19 [21] network to the
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Figure 1: Simplified layer mappings for VGG-19 when executed with
TensorRT on Xavier AGX: Leftmost and rightmost control flow
graphs (CFG) show the traditional methods of executing the NN
on a single type of DSA. The multi-accelerator execution shown in
the middle employs a transition between DSAs in the execution flow
to produce a schedule with a trade-off between latency and energy.

GPU and the DLA of NVIDIA’s Xavier AGX SoC in three different
ways. The left-most and right-most columns in the figure show
where all layers are executed, either on the GPU or the DLA, re-
spectively. The middle column illustrates a collaborative execution
where the first n layers are run on the GPU, and the remaining m
layers on the DLA. The total execution time and energy consumed
are given under each column. Experimental results show that run-
ning all layers on the GPU results in the fastest execution time,
whereas running all layers on the DLA is the most energy-efficient.
On the other hand, the collaborative execution scheme shown in
the middle results in a trade-off between execution time and energy,
as more layers of the network are executed on the DLA.

A hybrid (i.e., GPU+DLA) execution scheme could be more feasi-
ble in real-life scenarios, when there is an energy constraint in the
system. For example, when an autonomous aerial drone is running
low on battery, scheduling of the NN layers to DSAs can be ad-
justed at the expense of a higher execution time (i.e., latency), hence
resulting in a lower images/second detected by the NN. For the
scenario given in Fig. 1, if the remaining energy budget per image
detected is less than 205 milijoules, (total energy/image needed for
GPU-only execution), but more than 139 milijoules, rather than
running the entire NN on the DLA, choosing the GPU+DLA hybrid
schedule in the middle will result in a more feasible operation. The
drone will still be able to complete its flight, but will be more respon-
sive to the surrounding objects, thanks to the lower latency (12.4 ms
per image) achieved by a GPU+DLA hybrid execution against a
DLA-only execution (22.6 ms per image).

While the most [6, 12, 14, 19, 25, 27] focus on improving the total
throughput by using multiple DSAs concurrently, only a few [1,
23] have investigated the performance-energy trade-off in limited
aspects. Besides, a limited number of studies [3, 5, 10] explore the
benefits of using different types of DSAs collaboratively for the
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same application. To the best of our knowledge, none of the existing

studies are able to address all of the following challenges altogether

for multi-DSA collaborative execution:

e Holistic modeling of multi-accelerator execution that takes both
the execution and data-transfer costs between different type of
DSAs into consideration.

e Tunable objective for power consumption which can be targeted
while finding schedules with optimal execution time.

o Generalized layer-wise characterization methodology for finding
performance and energy costs of neural network inference on
multi-DSA systems.

In this study, we propose an energy-aware multi-DSA execution
scheme for NN inference on heterogeneous SoCs. Our proposed
scheme, AxoNN, uniquely enables setting an energy consumption
target (ECT) and finds a NN-layers-to-DSA mapping that minimizes
the total execution time under a given ECT. AxoNN utilizes a novel
inter-accelerator transitional cost model to integrate the penalty
of switching between DSAs into the cost function. Our scheme
characterizes each layer in the network for each target DSA, and
explores multiple transitions between layers to find schedules that
satisfy the given ECT. We represent the scheduling problem as a
constrained-objective optimization problem.

Our paper makes the following contributions:

e We present AxoNN, a multi-accelerator execution scheme for
diversely heterogeneous SoCs, which finds schedules with near-
minimal execution time for a given ECT.

e We propose a novel, empirical model-creation technique to rep-
resent the cost of inter-DSA transitions on a shared-memory
heterogeneous SoC.

e We build cost models for estimating energy and execution times
which uniquely take transition times and hardware-pipelined
accelerator architectures into account.

o We evaluate AxoNN on the NVIDIA Xavier AGX SoC by using its
embedded GPU and DLA. Our results show that our methodol-
ogy can find near-optimal schedules with one or two inter-DSA
transitions within up to 98% and 97% time and energy prediction
accuracy, respectively, while staying under the given ECT.

2 Multi-accelerator NN Inference on Diversely
Heterogeneous SoCs

In NN inference, finding the desired trade-off requires a careful
distribution of layers onto accelerators. However, using multiple
DSAs to maximize the system’s utilization while staying under re-
source constraints, such as ECT, introduces a number of challenges
and considerations.

2.1 Challenges

Lack of flexibility in layer-to-DSA assignment: Each DSA has a
different set of restrictions in terms of their capabilities for running
different OPs. For example, even though layer activation functions
are considered as separate layers on TensorRT layer set, TensorRT
scheduler does not allow assigning activation layers and other
layers separately between DSAs. NVIDIA’s DLA has additional re-
strictions on layer parameters and batch sizes. Moreover, TensorRT
does not allow to transitions from DLA to GPU after certain (e.g.,
Eltwise) layers . Such limitations force some layers to fall back to
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Figure 2: A simplified internal block diagram for NVIDIA’s DLA.

the GPU, even though they are supposed to execute on DLA. There-
fore, the flexibility on the potential inter-DSA transition points is
restricted, and depends on the architecture of a NN, and on DSAs.

Grouping layers: Operator fusion has become a commonly ap-
plied optimization by popular frameworks, such as TensorRT [18]
and TVM [2], that minimizes the cache misses between OPs and
eliminates the duplicate OPs. Breaking potentially-fusible opera-
tions will increase execution time and, as a result, energy usage.

Profiling: Some highly-specialized accelerators —such as DLAs—
run the consecutively-assigned layers as a single black box and do
not allow internal profiling of execution times layer-by-layer. This
limitation makes empirical modeling more challenging, since it
presents an obstacle to fine-grained performance characterization.

2.2 Considerations

Inter-DSA transition overhead: On shared-memory SoCs, caches
are often private to DSAs, due to complexity of cache coherency
across diversely heterogeneous processing units. When the execu-
tion flow switches from one DSA to another on a shared memory
system, which we call as transition points, the transient data present
in private caches or buffers of DSAs needs to be written back to
the shared memory. Such additional memory read/write operations
need to be considered as transition overhead and added to the to-
tal execution time. The size of the memory pages being written
or read is the primary factor determining the magnitude of this
transition overhead. In most NN, the size of the input and output
data that each layer consumes and produces often changes after
each layer. Moreover, the internal memory hierarchy of each DSA
affects the transition overhead differently, even though the amount
of data being read or written by two DSAs is the same [10]. There-
fore, modeling the cost of inter-DSA transitions requires a careful
consideration of the data size, layer type and the DSA that the
transition originates from and/or arrives into.

Execution time characterization: While the execution time of a
specific NN layer on a given DSA primarily depends on the layer
type and the input data size, the location of the data before the
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Figure 3: Empirical models for Convolution and Pooling layers’ out-
transition times after the layers are run on GPU and DLA. X axis
indicates the tensor sizes.
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layer is also an important factor. Therefore, we model layer ex-
ecution time and inter-DSA transition time separately. The cold
cache misses issued by DSAs as they begin executing a layer after
a transition requires a warm-up period for layer-by-layer charac-
terization. Another important factor affecting the execution time
is the existence of internal hardware pipelines. As shown in Fig. 2,
NVIDIA’s DLA architecture embeds a pipeline of internal engines
for common layers, such as convolution, activation, and pooling,
in the order that these layers often appear in NNs. The data be-
tween the engines are often forwarded with direct data buses, and
separate characterization of such layers may result in incorrectly
estimated layer execution times. For example, since the pooling
layer reduces the amount of data being passed to the next layer,
measuring the execution time of the convolution and activation
layers separately from the pooling layer will result in a longer ex-
ecution time than the case where these three layers are profiled
together. Therefore, layer-characterization needs to take such HW
behavior into account for HW-pipelined DSAs.

3 Modeling Methodology
Taking into account the challenges and constraints, this section
explains the methodology we utilize to build our empirical model.

3.1 Modeling inter-DSA transition cost

For the size of data needed to perform read/write operations, the
transition overhead will increase as the size of the data increases.
The X-axes in Fig. 3.a and 3.b represent the tensor sizes, i.e., the size
of the output produced after convolution/pooling layers. The Y-axis
represents the transition cost in milliseconds if any transition is
applied after the convolution/pooling layers. For example, perform-
ing the transition operation for the convolution layer with a data
size of 3MB can result in 14x more time overhead compared to a
data size of 100KB on the DLA. Thus, it is clear that the transition
overhead decreases as the data movement decreases on both of
the devices in our experiments. Besides, DLA has a second private
buffer specifically for convolution operations, which directly af-
fects DLA’s behavior for different data sizes. Since the buffer has a
relatively more limited size, larger data necessitates data movement
from afar rather than a private buffer.

3.2 Energy and performance characterization
Based on architectural restrictions, we check whether a layer
can run on all DSAs, or can be marked as a transition layer by using
canRunOnDLA and markOutput TensorRT API calls. For example, a
ReLU activation layer cannot run by itself on the DLA, but merging
a ReLU activation layer with a convolution layer enables running
both of them on the DLA. All of these values are obtained via offline
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Figure 4: Empirical models for execution times of Convolution and
Pooling layers on GPU and DLA for different tensor sizes.
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Table 1: The notations used in this section.

Notation Explanation

L; ith layer in a given layer set L, 0 < i < len(L)

P; Jjth processor in a given processor set P, 0 < i <
len(P)

TR; Boolean variable set if a transition occurrs after L;,
0<i<len(L)

(i, j,OUT) Output transition cost inflicted on P; as the layer L;
transitions to P;.

(i, j,IN) Input transition cost inflicted on P; as the later L;
transitions from P;.

e(i,j) Energy consumption of layer L; on processor P;

t(i, ) Execution time of layer L; on processor P;

ECT Energy consumption target

S(L;) Scheduling set of layers, 0 < i < len(L)

T(L,P,S,TR) Total time to execute a given layer set L, processor P,
and schedule S

E(L,P,S,TR) | Energy consumption by a given set of layer L, proces-
sor P, and schedule S

U (Li) The sub-unit executing the layer

y(Li,s(Li)) Amount of time L; saves by pipelining in its input

NumTransitions| Maximum amount of transitions allowed by user

profiler IProfiler, using an API call on TensorRT, to obtain execution
time and energy consumption on GPU and DLA.

We analyze the execution behavior of the DSAs for different OPs
by considering layer types and OP complexities, and measure the
NN'’s resource utilization layer-by-layer. In Fig. 4(a-b), we measure
execution time and energy consumption of different layers on VGG-
19 by using GPU and DLA separately. The left vertical axis shows
the execution time, whereas the right vertical axis represents the
energy consumption. Depending on the data size, convolution OPs
on GPU are 3x to 4.5x faster than on DLA, whereas pooling OPs on
GPU are 3x to 7x faster than on DLA. For the energy comparison,
convolution OPs on GPU consumes 1.1x to 1.8x more energy than
on DLA, whereas the ratio for pooling on GPU over DLA varies
from 0.6x to 1.15x.

4 Multi-accelerator Scheduling via
Constraint-based Optimization

This section details how we build our cost functions and encode
scheduling as a constraint-based optimization problem. First, we
formulate the total execution time using empirical values found for
transition and layer-wise execution times as shown in Section 3.
Then, we assemble a constraint-based optimization problem that
minimizes total execution time for a given ECT.

Table 1 lists the components needed to formulate our optimiza-
tion problem. Layer set L is a NN-specific parameter which includes
all layers L; in the network with their sizes and activation functions.
Processor set P represents all available processors and DSAs on
the architecture. 7(i, j, OUT) is used to denote the OUT transition
overhead inflicted on P; as the transient data belonging to recently
executed layer are flushed back to the system memory. In this case,
Pj is the target DSA of the transition. Similarly, (i, j, IN) repre-
sents the IN transition overhead inflicted on P; due to the cold
cache misses caused by the initial memory instructions executed
by P;.

Ismet Dagli, Alexander Cieslewicz, Jedidiah McClurg, and Mehmet E. Belviranli

Since each layer can be mapped to a different processor, the final
layer-to-processor schedule for a neural network is represented by:

S(Li) = Pj where 0<i<m & 0<j<n (1)

Since breaking fused operations and pipelined operations will

cost extra time overhead, we consider another feature in our metholodogy,

pipeline(L;, S(L;)) in Eq. 2. If the schedule does not prevent any
OP from being pipelined, there will be no effect on the time and
energy parameters. However, if the sub-unit used by the previous
layer is not the same sub-unit on the current layer for the same
DSA, it can severely affect execution time and energy results.

pipeline(Li, S(Ly)) = {O oLy = Utk g
y(Lis(Li)) i U(L) #U(Li - 1)
After obtaining the related time parameters, the total execution
time for a neural network T(L, P, S(L — P, TR) can be calculated
via four different parameters, as shown in Eq. 3. Each layer L; has
a characteristic execution time on processor Pj, presented with a
scheduling parameter s(L;). The transition cost 7(L;, s(L;), OUT|IN),
is added to the total execution only if the result of layer L; tran-
sitions to a new processor, represented by TR;. Total energy con-
sumption in Eq. (6) also has a closely similar pattern with the total
execution time since the energy consumption is calculated by the
same variables. We use TR; boolean variable to indicate whether
any transition occurs in Eq. (4) and to limit the number of transitions
in Eq. (5).
len(L)
T(L,P,S(L — P),TR) = Z (t(Li, s(Ly)) +

i=0 3
(TR;i X t(Li, s(Li), OUT)) + (TR; X 7(Lis1,s(Li+1), IN)) + 9

(TR; x pipeline(L;, S(L;))))

1 ifS( i+1
TR, = 1 S(i) #S(i+1) @
0 ifS()=S>Gi+1)
len(L)
NumTransitions = Z TR; (5)
i=0
len(L)
E(L,P,S(L — P),TR) = e(Li,s(Li)) +
(L.P.S(L — P).TR) Z; (Lis@) + o

(TR; x e(Li,s(L;), OUT)) + (TR; X e(Li+1,8(Li+1),IN))

Our objective function is to minimize the execution time of a NN
inference for a given set of layers and processors, with each possible
mapping of layers to the processors, and an energy constraint ECT.
Thus, we define our objective function and the primary constraint
as follows:

min T(L,P,S(L — P))

7
st. E(L,P,S(L — P)) < ECT @
5 Evaluation

The constraints described in Section 4 can be handled with an
off-the-shelf constraint solver. We solve the objective function and
its dependencies shown in Section 4 with the Z3 SMT solver, which
efficiently determines satisfiability of logical/numeric constraints.
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5.1 Experimental setup

In this study, we use Nvidia’s Jetson Xavier AGX SoC since it
embeds a performance-efficient (i.e., GPU) and an energy-efficient
(i.e., DLA) DSA, together with access to the same shared DRAM
memory. The software versions utilized on our experimental plat-
form are Ubuntu OS 18.04, Cuda 10.2, TensorRT 7.1.3, CuDNN 8.0.0,
ONNX 1.6.0, and TensorFlow 2.3.1. We use the TensorRT engine
to optimize the pre-trained models collected from several neural
network models, VGG-16/19 [21], Resnet18/50 [7], Alexnet [13],
and GoogleNet[22]. The reason we focus on these networks is that
all layers in these networks can be scheduled on both the GPU and
the DLA. This allows us to flexibly explore all possible layer-to-DSA
assignments, without TensorRT engine falling back to GPUs.

5.2 Experimental Results

We design an experiment to observe the effect of transitions after
different types of layers on a NN in Eq. 2. Since we mainly utilize
two types of DSAs in our experiments (GPU and DLA), we first
assign all layers to GPU, and measure the total execution time. Then,
we repeat the experiment by applying a transition from GPU to DLA
after the each layer on the neural network architecture and measure
time on the DSAs. In order to analyze the effect of each transition,
we subtract the time for each transition point from the previous
transition experiment, and plot the results in Fig. 5. In other words,
for each L; assigned to a different device, we calculate the execution
time difference according to Equation 3. Since the layer is running
on a slower device (DLA), the difference in terms of the time is
generally higher than zero in Fig. 5. The layer-wise execution time
characterization given in Fig. 4 is inline with these results. The
transitions after pooling layers have negative values. Since the
effect of braking pipelines exceeds the slowdown of introduced by
executing the next layer on DLA, the total execution time decreases.
For this reason, applying a transition after such layers can provide
an improvement in execution time.

We evaluate the feasibility of our model given in Section 4 with
6 different NN models. We define our objective functions and the
main constraint on the Z3 solver as given in Equation 7. The main
idea here is to restrict the energy with an upper limit by minimizing
the execution time of NN inference. we provide the profiling results
of layer execution time, energy, and transition characterization as
inputs to the solver, and obtain the near-optimal schedule as output.
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Figure 5: A transition is performed on the layer at the X-axis from
GPU to DLA. As the number of layers increases on DLA, the execu-
tion time increases. Because the pipeline is broken, the transitions
after pooling layers have negative values, as explained in Section 2.1
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Figure 6: The comparison between the energy and execution times
of the schedules estimated by AxoNN versus the actual energy and
execution times measured for the corresponding actual runs. For
each network we have targeted varying ranges of ECT that is between
the energy consumption of all-DLA and all-GPU execution.

Our results are given in Fig. 6. X-axis shows the ECT constraint
which is set within a range from minimum to maximum amount of
energy spend by all-DLA and all-GPU executions, respectively. On
the left and right vertical axes, we represent energy consumption
and execution times, respectively, corresponding to each value of
ECT. The values represented by green dots correspond to the exe-
cution time estimates whereas the green lines show the measured
execution times when the schedule found by the solver for the spe-
cific ECT is executed. Similarly, the values represented by red dots
and lines are for energy consumption. Overall, our results show
that our model provides up to 97.1% accuracy on execution time
prediction, and up to 98.2% accuracy on energy consumption predic-
tion. In the worst cases, the execution time and energy prediction
accuracy falls down to 78.1% and 71.9%, respectively.

5.3 Multi-Transition and Scheduling Overhead

While each transition between DSAs costs extra time in the
schedule, the most feasible execution may still include multiple
transitions, i.e., going back and forth between DSAs. Therefore,
we run our solver by allowing more than a single transition, by
increasing the value of the NumTransitions variable (Eq. 5) to 3.
Table 2 lists the number of inter-DSA transitions that the near-
optimal schedules include. The overhead of scheduling (i.e., solver
execution time) is under 5 seconds when NumTransitions is set to
1, and under 1 minute when NumTransitions is set to 3.

6 Additional Related Work

GPipe [9] and PipeDream [16] split tasks between multi-DSAs by
utilizing pipelines and considering transition time between acceler-
ators for deep learning (DL) training. HetPipe [19] considers the
first step of heterogeneity, and sets up multi-GPU clusters to apply



DAC ’22, July 10-14, 2022, San Francisco, CA, USA

Table 2: The number of inter-DSA transitions that near-optimal
schedules include when NumTransitions variable is set to 3.

Model 1 Transition | 2 Transitions | 3 Transitions
GoogleNet 19 3 0
VGG-19 16 4 2
VGG-16 18 4 0
Alexnet 10 2 0
ResNet50 8 4 0
ResNet18 9 3 0

the pipeline parallelism idea by maximizing utilization. However,
none of the aforementioned works takes energy into account.

Narayanan et al. [17] propose round-robin scheduling for a
target-latency deadline for DL workloads. Shamsa et al. [20] pri-
oritize resource management over goals by considering dynamic
changes. PCCS [26] presents an empirical model that formulates
shared memory contention between multiple DSAs. However, these
studies do not consider energy as a target or metric.

Pipelining in NN inference [24] is applied by distributing layers
between CPU and GPU in order to maximize throughput of the
system and synchronous data via cache-coherent interconnects.
Kang et al. [11] optimize a single DL application’s response time
via the dynamic voltage and frequency scaling (DVFS) technique by
finding the Pareto-optimal scheduling. Jeong et al. [10] offer a par-
allelization methodology for NN inference workloads to maximize
throughput by leveraging TensorRT’s GPU and DLA. However,
none of these works considers using multiple accelerators for DL
tasks to find a trade-off between energy and latency.

A similar idea to AxoNN is presented by MEPHESTO [15], which
first characterizes the workloads on different DSAs, then models
an energy-performance trade-off by collocating kernels and consid-
ering the memory contention on heterogeneous shared memory
systems. However, this study does not take either the dependencies
between OPs or the transition costs into account, and is therefore
not suitable for NN inference. Barik et al. [1] propose a mapping
algorithm between CPU and GPU by characterizing the power con-
sumption of data-parallel specific workloads. Tzilis et al. [23] pro-
pose an online profiling model for estimating power consumption
and performance under DVFS configuration for a given application.
The aforementioned works do not consider challenges of executing
DL applications on multiple DSAs.

To the best of our knowledge, our work is the first to apply layer-wise
mapping on heterogeneous accelerators by considering both latency
and energy.

7 Conclusion

This study presents AxoNN, a multi-accelerator execution scheme
for heterogeneous SoCs. We explore the factors affecting the energy-
aware scheduling of NN workloads onto DSAs. We analyze the
transition costs between DSAs in a shared-memory system and
characterize the execution time and energy consumption of dif-
ferent NN workloads. We build a scheduling model to find the
minimum execution time for different energy targets. We test our
methodology with 6 different networks, and test our results with
the Z3 SMT Solver, obtaining up to 98% prediction accuracy.
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