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Abstract

Serverless Function-as-a-Service (FaaS) is an emerging cloud

computing paradigm that frees application developers from

infrastructure management tasks such as resource provi-

sioning and scaling. To reduce the tail latency of functions

and improve resource utilization, recent research has been

focused on applying online learning algorithms such as rein-

forcement learning (RL) to manage resources. Compared to

existing heuristics-based resource management approaches,

RL-based approaches eliminate humans in the loop and avoid

the painstaking generation of heuristics. In this paper, we

show that the state-of-the-art single-agent RL algorithm (S-

RL) suffers up to 4.6× higher function tail latency degradation

on multi-tenant serverless FaaS platforms and is unable to

converge during training. We then propose and implement a

customized multi-agent RL algorithm based on Proximal Pol-

icy Optimization, i.e., multi-agent PPO (MA-PPO). We show

that in multi-tenant environments, MA-PPO enables each

agent to be trained until convergence and provides online

performance comparable to S-RL in single-tenant cases with

less than 10% degradation. Besides, MA-PPO provides a 4.4×

improvement in S-RL performance (in terms of function tail

latency) in multi-tenant cases.

CCS Concepts: • Software and its engineering → Cloud

computing; •Computingmethodologies→Multi-agent

planning; Multi-agent systems.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

EuroMLSys’22, April 5–8, 2022, RENNES, France

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9254-9/22/04. . . $15.00

https://doi.org/10.1145/3517207.3526971

Keywords: Function-as-a-Service, serverless computing, re-

source allocation, reinforcement learning, multi-agent

ACM Reference Format:

Haoran Qiu, Weichao Mao, Archit Patke, Chen Wang, Hubertus

Franke, Zbigniew T. Kalbarczyk, Tamer Başar, and Ravishankar

K. Iyer. 2022. Reinforcement Learning for Resource Management

in Multi-tenant Serverless Platforms. In 2nd European Workshop

on Machine Learning and Systems (EuroMLSys’22), April 5–8, 2022,

RENNES, France. ACM, New York, NY, USA, 9 pages. https://doi.

org/10.1145/3517207.3526971

1 Introduction

Serverless Function-as-a-Service (FaaS) is a category of cloud

computing services that frees customers from managing re-

source allocation for their functions (e.g, scaling the number

of containers and their resource limits, and scheduling func-

tions to servers) while leaving the performance-utilization

trade-off problem with the cloud provider [3, 17, 22, 27]. The

problem of resource management to achieve performance

and utilization objectives is at its core an intractable NP-

hard problem [4, 13]. While the majority of the problems

are approached using meticulously designed heuristics with

extensive application- and system-specific domain-expert-

driven tuning, a substantial line of work has recently been

focused on learning-based approaches such as reinforcement

learning (RL) [4, 8, 11, 12, 16, 18, 19, 30, 32, 34].

As a viable alternative to human-generated heuristics, RL

enables an agent to learn the optimal policy directly from in-

teracting with the environment. RL is especially well-suited

for resourcemanagement problems [12] due to the sequential

nature of the decision-making process, and it has been shown

that deep neural networks can express the complex dynamics

and decision-making policies in such system-application en-

vironment. Since resource management decisions made for

each serverless function are highly repetitive, an abundance

of data can be easily generated for training such RL algo-

rithms. By continuing to learn, the RL agent can optimize

for a specific workload and adapt to varying conditions.
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Motivation. Despite the recent successes, existing RL-

based solutions [4, 8, 11, 16, 18, 19, 29, 34] are all single-

agent RL (S-RL) where each RL agent controls one function.

In contrast, a serverless FaaS platform is multi-tenant where

heterogeneous functions from all customers compete for

shared resources in a cluster. Multi-tenancy makes the envi-

ronment non-stationary from each agent’s own perspective,

as it is also affected by the actions of other agents, which

breaks the standard assumption that underpins S-RL algo-

rithms. Since the transitions and rewards depend on the joint

actions of all agents, whose decision policies keep changing

in the learning process, each agent can enter an endless cy-

cle of adapting to other agents in the shared environment.

We show in §5.1 that in multi-tenant scenarios, the state-

of-the-art S-RL algorithm suffers up to 4.6× higher function

tail latency degradation and is unable to converge during

training.

Design principles. To address the convergence failure

during training and the online performance degradation

problem for multiple RL agents in a shared environment,

we target the following challenging objectives: (a) Perfor-

mance isolation: agent performance in multi-tenant environ-

ments should be comparable to single-RL agent performance

in single-tenant scenarios. (b) Scalability: a serverless FaaS

platform is multi-tenant and new functions from different

customers can be increasingly registered. (c) Fast training:

functions from any customer can be registered, removed, or

updated at any time, which changes the joint state space.

Solution. Based on the defined design principles, we pro-

pose and implement MA-PPO (§6.2), a customized multi-

agent RL algorithm motivated by its single-agent counter-

part PPO [20]. In MA-PPO, we customize PPO, where each

agent treats the other agents as part of the environment. In

addition, we use aggregated and mean state-action values

across all the other agents to make the MA-PPO model ag-

nostic to agent order or the size of the agent group, and thus

more scalable and faster to train.

Results. An evaluation of MA-PPO (§6.3) shows that it

enables each agent’s behavior to converge during training

and that it provides online performance in multi-tenant cases

comparable to S-RL in single-tenant cases with less than

10% degradation. Besides, functions controlled by MA-PPO

achieve up to 4.4× improvement in tail latencies of function

invocations compared to S-RL in multi-tenant cases.

2 Background and Related Work

2.1 Serverless Function-as-a-Service

Serverless Function-as-a-Service (FaaS) is a cloud program-

ming model and architecture where customers execute small

code snippets without any control over the resources on

which the code runs [3]. A serverless FaaS platform runs

functions in response to invocations (i.e., requests) from

end-users or clients. It consists of a central controller and a

group of invokers. In our study, we chose OpenWhisk [10], a

production-grade serverless FaaS platform based on Docker

containers. Fig. 1 shows the architecture of a distributed

OpenWhisk platform. The controller (labeled as 5 ) cre-

ates function containers, allocates CPU and RAM for each

function container, and assigns the containers to invokers

(labeled as 6 ). When requests arrive via the API gateway,

the controller distributes the requests to invokers. An in-

voker executes the function after it receives a request and

the execution results are written to a data store 2 .

2.2 Learning-based Resource Management

Lately, ML-based resource management approaches have

gained significant momentum towards achieving application

service-level objectives (SLOs) [15, 16, 29, 30, 35]. In [16],

the authors proposed an ML-based resource management

framework, FIRM, to tackle the issue of microservices under-

utilization and SLO violations. The two-tier ML model is

responsible for first identifying the microservices that cause

SLO violations and then mitigating those violations via dy-

namic resource reprovisioning. Sinan [30], an SLO-aware

resource management framework for microservices, is an-

othermodel that employsML algorithms to improve resource

utilization while meeting end-to-end performance SLOs.

Since Mao et al. proposed a reinforcement learning (RL)-

based solution for scheduling cluster resources [12], there

has been a line of work using RL for resource manage-

ment [4, 8, 11, 16, 18, 19, 32, 34]. Schuler et al. [19] proposed

a Q-Learning-based autoscaler that decides the horizontal

concurrency for a serverless function with the only objec-

tive being minimizing the function latency. Zafeiropoulos et

al. [34] also applied Q-Learning to threshold-based autoscal-

ing for determining the CPU and memory usage threshold.

Both SLO violation and resource utilization are considered

in the reward function of each RL agent for a function. FaaS-

Rank [32] is an RL-based serverless function scheduler that

uses a policy gradient method (i.e., PPO) to minimize func-

tion completion time. However, no existing work has been

focused on addressing the single-agent RL failure in multi-

tenant environments (as we will describe in §5.1).

3 Reinforcement Learning Formulation

In this section, we present the problem formulation and our

design for online serverless resource management with RL.

In the following, we first provide a brief introduction to RL.

RL Primer. An RL agent solves a sequential decision-

making problem (modeled as a Markov decision process, or

MDP) by interacting with an unknown environment. At each

discrete time step 𝑡 , the agent observes the current state of
the environment 𝑠𝑡 ∈ 𝑆 , and performs an action 𝑎𝑡 ∈ 𝐴 based

on its policy 𝜋𝜃 (𝑠) (parameterized by 𝜃 ), whichmaps the state

space 𝑆 to the action space 𝐴. The agent then observes an

immediate reward 𝑟𝑡 ∈ R given by a reward function 𝑟 (𝑠𝑡 , 𝑎𝑡 );
the immediate reward represents the loss/gain in transition-

ing from 𝑠𝑡 to 𝑠𝑡+1 because of action 𝑎𝑡 . The agent’s goal is
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Figure 1. Resource management in OpenWhisk [10] as a

sequential decision-making process. At each step, the RL

agent perceives system and application conditions from the

environment. The measurements are then translated to state

and reward signals that mapped by the agent to an action.

to optimize the policy 𝜋𝜃 so as to maximize the expected

cumulative discounted reward E[
∑𝑇

𝑡=0 𝛾
𝑡𝑟𝑡 ] starting from a

certain initial state 𝑠0, where the expectation is taken over the
“randomness” of state transitions and the agent’s possibly

randomized policy. The discount factor 𝛾 ∈ (0, 1) penalizes
the rewards far in the future. Two main categories of ap-

proaches are proposed for RL training: value-based methods

and policy-based methods [2]. In value-based methods, the

agent learns an estimate of the optimal value function and

approaches the optimal policy by maximizing it. In policy-

based methods, the agent tries to directly approximate the

optimal policy. We refer the readers to [2, 25, 36, 37] for de-

tailed surveys and rigorous derivations of value-based and

policy-based RL algorithms.

Problem Formulation. We model the resource manage-

ment in a serverless FaaS platform as a sequential decision-

making problem that can be solved by the RL framework

(illustrated in Fig. 1). Since all serverless FaaS platforms have

similar controller-worker architectures and function request

servingworkflows, for themodeling purpose, we chose to use

an open-source serverless FaaS platform, OpenWhisk [10].

At each step in the sequence, the RL agent (labeled as 1 )

monitors system and application conditions from both the

OpenWhisk data store (labeled as 2 ) and the Linux cgroups

(labeled as 3 ). Measurements include function-level perfor-

mance statistics (i.e., tail latencies on execution time, wait-

ing time, and cold-start time for serving function requests)

and system-level resource utilization statistics (e.g., CPU

utilization of function containers). These measured teleme-

try data are pre-processed and used to define a state, which

is then mapped to a resource management decision by the

RL agent. In this model, we consider both vertical and hor-

izontal resource scaling actions. A vertical-scaling action

in OpenWhisk corresponds to scale either up or down the

cpu.shares or the memory limit of a function container. A

horizontal-scaling action in OpenWhisk corresponds to scale

either out or in the function containers, i.e., changing the

Table 1. State-action space of the RL formulation.

State Space 𝑆𝑡 (for both single- and multi-agent)

SLO Preservation Ratio (𝑆𝑃 (𝑡)), Resource Utilization (𝑅𝑈𝑐𝑝𝑢 (𝑡),
𝑅𝑈𝑚𝑒𝑚 (𝑡)), Arrival Rate Changes (𝐴𝐶 (𝑡)), Resource Limits (𝑅𝐿𝑇𝑐𝑝𝑢 (𝑡),
𝑅𝐿𝑇𝑚𝑒𝑚 (𝑡)), Horizontal Concurrency (𝑁𝐶 (𝑡))

Action Space 𝐴𝑡 (for both single- and multi-agent)

Vertical Scaling: Resource Limits (𝑅𝐿𝑇𝑐𝑝𝑢 (𝑡), 𝑅𝐿𝑇𝑚𝑒𝑚 (𝑡)) Horizontal
Scaling: Number of Containers (𝑁𝐶 (𝑡))

Auxiliary Global State Space 𝐺𝑡 (for multi-agent)

Aggregated Resource Limits (𝐴𝑅𝐿𝑇𝑐𝑝𝑢 (𝑡), 𝐴𝑅𝐿𝑇𝑚𝑒𝑚 (𝑡)), Aggregated
Vertical Actions (𝐴𝑉 (𝑡)), Aggregated Horizontal Actions (𝐴𝐻 (𝑡)), Mean

SLO Preservation Ratio (𝑀𝑆𝑃 (𝑡)), Mean Resource Utilization (𝑀𝑅𝑈 (𝑡))

number of created containers for a function. The decision

made by the RL agent is then passed by the horizontal and

vertical scaler (labeled as 4 ) to the FaaS controller (labeled

as 5 ) and finally changes the system state and function

performance.

We carefully design the state-action space, state transition

and reward function to satisfy the Markov property in the

RL framework. Each function instance is deployed in a sepa-

rate container with resource limits 𝑅𝐿𝑇𝑐𝑝𝑢 and 𝑅𝐿𝑇𝑚𝑒𝑚 since

OpenWhisk’s default resource model includes cpu.shares
and memory limits, both are configurable parameters in all

commercial serverless platforms. The initial limit for each

type of resource is overprovisioned before containers are

created for a function and later controlled by the RL agent.

The number of created containers is denoted as 𝑁𝐶 . We de-

fine the action space (as shown in Table 1) to be the available

vertical scaling actions which changes 𝑅𝐿𝑇𝑐𝑝𝑢, 𝑅𝐿𝑇𝑚𝑒𝑚 and

horizontal scaling actions which changes 𝑁𝐶 .
We define the state space based on the five features listed

in Table 1. At each time step 𝑡 , the utilization 𝑅𝑈 (𝑡) for each
type of resource is retrieved from cgroups as telemetry data

in 3 . The current resource allocation 𝑅𝐿𝑇𝑐𝑝𝑢 (𝑡), 𝑅𝐿𝑇𝑚𝑒𝑚 (𝑡),
and 𝑁𝐶 (𝑡) are kept as part of the state. In addition, Open-

Whisk’s data store (labeled as 2 ) also collects function la-

tency composition and request arrival rate. Based on these

measurements, the RL agent calculates the remaining two

states listed in Table 1 and described below:

• SLO preservation ratio (𝑆𝑃 (𝑡)) is defined as latency_SLO
/ latency_measured if there is an SLO violation. The

ratio is smaller for more critical SLO violations. Otherwise,

𝑆𝑃 (𝑡) is set to 1, meaning that there is no SLO violation

or no function request coming.

• Arrival rate change (𝐴𝐶 (𝑡)) is defined as (𝐴𝑅(𝑡) −𝐴𝑅(𝑡 −
1))/𝑚𝑎𝑥{𝐴𝑅(𝑡), 𝐴𝑅(𝑡 − 1)}, where 𝐴𝑅(𝑡) and 𝐴𝑅(𝑡 − 1)

denote the function request arrival rates at the current

and previous time steps, respectively. A positive value

indicates an increasing arrival rate and vice versa.

All variables in the state vector are of range [−1, 1] except
𝑅𝐿𝑇 (𝑡) and 𝑁𝐶 (𝑡). To facilitate RL training, we normalized

the two variables by setting a predefined resource upper

limit 𝑅𝑖 and a lower limit
ˇ
𝑅𝑖 . For instance, the cpu.shares

for a container cannot be smaller than 128 or larger than

2048; and the number of containers cannot be smaller than

22
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Table 2. Serverless benchmarks adopted from [21, 33].

Benchmark Description

Base64 Encode and decode a string with the Base64 algorithm.

Primes Find the list of prime numbers less than 107.

Markdown2HTML Render a Base64 uploaded text string as HTML.

Sentiment-Analysis Generate a sentiment analysis score for the input text.

Image-Resize Resize the Base64-coded image with new sizes.

0 or larger than 1000 (the default maximum concurrency

setting in AWS Lambda [1]). If the amount of resources to

be vertically-scaled reaches the total available amount, then

a horizontal scaling operation is needed.

The goal of the RL agent is, given a time duration 𝑇 , to
learn an optimal policy 𝜋𝜃 that results in as few SLO viola-

tions as possible (i.e., max𝜋𝜃
∑𝑇

𝑡=0 𝑆𝑃 (𝑡)) while keeping the re-
source utilization as high as possible (i.e., max𝜋𝜃

∑𝑇
𝑡=0 𝑅𝑈 (𝑡)).

Based on both objectives, the reward function is then defined

as 𝑟𝑡 = 𝛼 ·𝑆𝑃 (𝑡) · |R|+ (1−𝛼) ·
∑ |R |

𝑖 𝑅𝑈𝑖 (𝑡)+𝑝𝑒𝑛𝑎𝑙𝑡𝑦, where R
is the set of resources and 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 is set to -1 in the following

cases: (a) Illegal actions such as scaling-in/up/down when

the number of function containers is zero or scaling beyond

the resource limits. Since illegal actions are not executable in

the serverless FaaS platform, an illegal action leads to a self-

-loop transition from a state to itself with a negative reward.

(b) Undesired actions such as frequent dangling decisions,

which are detected by comparing the actions of the current

and last time step.

Implementation with PPO. We use a policy gradient

method, Proximal Policy Optimization (PPO) [20], to learn

the optimal resource management policy under the RL prob-

lem formulation described above. PPO is the default RL algo-

rithm at OpenAI [14] which performs comparably or better

than state-of-the-art approaches while being much simpler

to tune. It is also hypothesized that the smooth policy up-

dates (due to clipping) in PPO can help mitigate the non-

stationarity issue in multi-agent RL [6]. The algorithm and

implementation details are left to Appendix A.

4 Experimental Methodology

OpenWhisk Cluster Setup. We deploy OpenWhisk [10]

on five physical nodes in our local cluster with one mas-

ter node (which runs the FaaS Controller) and four worker

nodes (each of which runs an Invoker), as shown in Fig. 1.

Each node has a dual-socket Intel Xeon E5-2683 v3 processor

with 14 cores per socket and 500 GB memory. All nodes run

Ubuntu 18.04.3 LTS with Linux kernel version 4.15. Mem-

ory swapping is disabled for the Docker service. We run

the workload generator [21] and the RL controller from two

separate nodes in the same cluster and use FaaSProfiler [21]

to trace requests to measure the end-to-end latency.

Serverless Benchmarks. The benchmarks used in this

study (listed in Table 2) are from widely used open-source

FaaS benchmark suites [21, 33]. They include both micro-

benchmarks and macrobenchmarks which have different

runtime behaviors and resource demands (e.g., CPU utiliza-

tion and memory bandwidth utilization). The functions are

written in either Python or Java.

Workloads.We evaluated using both real-world and syn-

thetic function invocation patterns. For real-world work-

loads, we sampled and replayed the function invocations

from Azure function traces [22] from 2019 collected over

two weeks. For synthetic workloads, we used common pat-

terns [7] indicating flat and fluctuating loads, with a Poisson

inter-arrival rate ranging from zero to the maximum ob-

served in the sampled Azure function traces. The change of

arrival rates is intended to evaluate whether RL agents could

adapt to such workload change.

5 The Multi-tenancy Challenge

5.1 Single-RL in Single-tenant Environments

We implemented the RL prototype described in §3, conducted

training convergence analysis, and evaluated the function

SLO preservation and resource utilization with a state-of-the-

art heuristics-based approach ENSURE [24] as the baseline.

Since each RL agent in this approach manages resources for

one specific function, we call it single-agent RL or S-RL.

Convergence Analysis. RL training proceeds in episodes

(iterations). To understand the convergence behavior of the

S-RL agent in single-tenant environments, we trained the

agent by using the workload described in §4 without any

other functions running on the platform. We then analyzed

the per-episode reward evolution and Fig. 2(a) shows the

results. We found that the agent training progress is similar

across different function benchmarks so we chose to show

the RL agent for function primes. We fixed the number of

time steps in each training episode to be 200, except that for

the initial stage of the training process, we terminated the RL

exploration early so that the agent could reset and try again

from the initial state. We did so because the initial policies

of the agent were unable to mitigate SLO violations. As the

training progressed, the agent improved its resource alloca-

tion policy and could mitigate SLO violations in less time.

At that point (around 70 episodes), we linearly increased the

number of time steps to let the agent interact with the envi-

ronment for a longer time before terminating the exploration

and entering the next iteration. The agent’s behavior was

able to converge after around 300 episodes (ranging from

280 to 350 across functions).

Performance Assessment. After convergence, we lever-

aged the trained S-RL agent (by using the saved checkpoints

at episode 1000) as the function resource controller and com-

pared it with the baseline approach ENSURE [24], which is

a state-of-the-art threshold-based autoscaler implemented

based on OpenWhisk as well. In the baseline approach, we

set the parameters and thresholds the same as the paper spec-

ified. Fig. 2(b) shows the online performance comparison.

S-RL agent was able to keep the CPU utilization at a higher

23



Reinforcement Learning for Resource Management in Multi-tenant Serverless Platforms EuroMLSys’22, April 5–8, 2022, RENNES, France

0 200 400 600 800 1000 1200

RL Training Episodes

0

50

100

150

T
ot
al

R
ew

ar
d
p
er

E
pi
so
de

(a) Training curve of the single-agent RL (for func-

tion primes) in single-tenant environments.

Prim
es

Bas
e64 M2H

Sen
time

nt

Ima
ge-R

esize
0

2000

4000

6000

E
nd

-t
o-
en
d
L
at
en
cy

(m
s)

Single-RL (Single)

ENSURE (Single)

Single-RL (Multi)

(b) Single-agent RL 99th-% end-to-end latency com-

parison for all function benchmarks.

0 200 400 600 800 1000 1200

RL Training Episodes

0

50

100

150

T
ot
al

R
ew

ar
d
p
er

E
pi
so
de

(c) Training curve of the single-agent RL (for func-

tion primes) in multi-tenant environments.

Figure 2. Training convergence analysis and online performance evaluation of S-RL in single- and multi-tenant environments.

level (around 20% higher than ENSURE) and achieved simi-

lar end-to-end latency compared to the baseline approach.

We found that it is because ENSURE over-provisioned con-

tainers and resources in some cases. After increasing the

performance SLO threshold to a higher value (namely from

15% to 25%), we observed that the S-RL agent significantly

improved over the baseline approach regarding tail latencies

at similar CPU utilizations (not shown in the figure).

By interacting with dynamic FaaS environments under com-

plicated loads and resource allocation scenarios, the S-RL agent

dynamically learns the policy that maximizes the cumulative

rewards and hence outperforms heuristics-based approaches.

5.2 Single-RL in Multi-tenant Environments

Serverless FaaS platforms are in essence multi-tenant where

different function owners deploy and run heterogeneous

functions with various function characteristics, SLOs, and

workload patterns [3, 9, 17, 27]. Each function controlled by

an RL agent competes with other functions on the same plat-

form for limited resources. Function container co-location

for higher utilization has made resource contention worse

on a cloud serverless platform [17, 21, 27]. The transition

from single-tenant to multi-tenant settings introduces new

challenges that require a fundamentally different RL algo-

rithm design. Before presenting our multi-agent solution, we

first explored the environment non-stationarity issue, and

conducted training convergence analysis and performance

assessment of S-RL agents in multi-tenant environments.

Environment Non-stationarity. The shared environ-

ment in a multi-agent setting can be affected by the actions

of all agents; thus, from a single agent’s perspective, the en-

vironment becomes non-stationary, which breaks the critical

stationarity assumption made by most RL algorithms [25].

Under non-stationarity, an agent needs to explore the un-

known environment efficiently while keeping in mind that

the information it gathers now will soon become outdated,

because the other agents are also updating their policies.

A naive approach to tackle the non-stationarity issue is to

use centralized learning, e.g., joint action learners (JAL) [5].

In such a centralized approach, the agents are jointly mod-

eled and a centralized policy for all the agents is trained.

The input to this algorithm is the concatenation of the ob-

servations of all the agents, and the output is the actions

specified to the agents. This approach eliminates the problem

of non-stationarity entirely; however, it is computationally

inefficient (with exponential complexity) because the cen-

tralized learner needs to search in the joint action space of

the size
∏𝑁

𝑖=1 |𝐴𝑖 | in order to enumerate all possible action

combinations, where 𝑁 is the number of agents and 𝐴𝑖 is

the individual action space of agent 𝑖 for 1 ≤ 𝑖 ≤ 𝑁 . The

exponential dependence on 𝑁 makes the centralized learn-

ing approach difficult to scale up beyond a few agents [5].

Therefore, given that there could be tens or even hundreds

of functions on a server [26], we do not proceed further with

this centralized approach.

PerformanceDegradation.We conducted a performance

assessment of the S-RL agent in multi-tenant cases where

each function is in control of an independent S-RL agent

trained in isolation. Fig. 2(b) shows the performance degrada-

tion after introducingmultiple tenants on the same serverless

FaaS platform. In this experiment, we created one function

for each benchmark from Table 2 and trained one S-RL agent

for each function in isolation until convergence. Then, we

ran all five functions simultaneously with each function con-

trolled by its trained S-RL agent. Evaluation results show that

the degradation can be up to 78.2% (for markdown2html) and
as low as 64.5% (for sentiment-analysis). That is because
when the RL agent made a decision, it was based on the state

information measured at the current time step; but at the

same time, all other agents were also making their resource

allocation decisions which can affect the shared environ-

ment. Therefore, the estimated value function for an action

by the S-RL model is no longer accurate in a non-stationary

multi-tenant environment.

Convergence Failure.Multi-tenancy not only affects the

online performance of S-RL agents trained in isolation but

also leads to problems during training. We trained five S-RL

agents together in the same serverless FaaS platform, each of

which controlled one function from the benchmarks listed in

Table 2. Each S-RL agent was trained independently and did

not consider the other agents in the same environment. Ev-

erything else was kept the same with the S-RL agent trained
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in isolation. Fig. 2(c) shows the per-episode reward evolu-

tion for the agent controlling function primes. It would be

expected for the S-RL agent to adapt to the stochasticity

introduced by other agents. However, compared to the learn-

ing curve of the S-RL agent trained in isolation (as shown

in Fig. 2(a)), the S-RL agent trained in a multi-tenant envi-

ronment achieved lower performance (a 55.9% drop in terms

of per-episode reward) with higher variance and did not

converge in a stable manner. We observed similar behaviors

from the training curves of the other agents across different

function benchmarks (not shown due to page limit).

System support for many-agent RL controllers that provides

both training convergence and performance isolation is needed.

6 Multi-agent Reinforcement Learning
To tackle the non-stationarity issue for S-RL agents in multi-

tenant serverless FaaS platforms, we first present the re-

modeled resource management problem as a multi-agent

extension of the Markov decision process (MDP) in §6.1 and

then designed a customized multi-agent RL algorithm multi-

agent PPO (or MA-PPO 1) for this problem (§6.2). Our design

choices were made to favor the scalability and adaptivity

(to agent churn for added/removed functions) of the multi-

agent model. Evaluation shows that MA-PPO enables the

convergence behavior of the agents and provides online per-

formance comparable to S-RL in single-tenant cases (§6.3).

6.1 Multi-agent RL (MARL) Formulation

We extended the MDP formulation for single-agent RL (§3)

to a Markov game (also known as stochastic game [23]) for

𝑁 agents, each of which controls the resource management

for one particular function. In our formulated Markov game,

the state space is defined as the Cartesian product of the state

spaces of all S-RL agents (as defined in §3). After observing

the environment state 𝑠𝑡 at time 𝑡 , each agent 𝑖 takes an action
𝑎𝑖𝑡 based on its policy 𝜋𝜃𝑖 (parameterized by 𝜃 𝑖 ), and receives
a reward 𝑟 𝑖𝑡 . The environment state then transitions to a new

state depending on the joint action of all the agents.Whenwe

view the MARL setup from the point of view of a particular

agent 𝑖 , all the other agents are part of the environment.

Each agent extracts its local information 𝑙𝑖𝑡 and auxiliary

global information 𝑔𝑖𝑡 from the environment state 𝑠𝑡 . The
local information 𝑙𝑖𝑡 of agent 𝑖 is from the same state space

in S-RL (as listed at the first row in Table 1). The action

and reward of each agent 𝑖 are also the same as defined in

S-RL. We use the auxiliary global information 𝑔𝑖𝑡 to describe

the status of all the other agents (except for agent 𝑖) and it

consists of the following variables (as listed at the third row

in Table 1):

• Aggregated resource limits: 𝐴𝑅𝐿𝑇 𝑖
𝑐𝑝𝑢 (𝑡) =

∑𝑁
𝑗≠𝑖 𝑅𝐿𝑇

𝑗
𝑐𝑝𝑢 (𝑡),

𝐴𝑅𝐿𝑇 𝑖
𝑚𝑒𝑚 (𝑡) =

∑𝑁
𝑗≠𝑖 𝑅𝐿𝑇

𝑗
𝑚𝑒𝑚 (𝑡)

1Note that MA-PPO is a novel multi-agent RL algorithm and is not to be

confused with MAPPO [31], which is a different algorithm that happens

to share a similar acronym. In particular, MAPPO [31] focuses on the fully

cooperative setting while serverless functions are not.

• Aggregated vertical actions: 𝐴𝑉 𝑖 (𝑡) =
∑𝑁

𝑗≠𝑖 Δ𝑅𝐿𝑇 (𝑡)

• Aggregated horizontal actions: 𝐴𝐻 𝑖 (𝑡) =
∑𝑁

𝑗≠𝑖 Δ𝑁𝐶
𝑗 (𝑡)

• Mean SLO preservation ratio:𝑀𝑆𝑃𝑖 (𝑡) =
∑𝑁

𝑗≠𝑖 𝑆𝑃
𝑗 (𝑡 )

(𝑁−1)

• Mean resource utilization:𝑀𝑅𝑈 𝑖 (𝑡) =
∑𝑁

𝑗≠𝑖 𝑅𝑈
𝑗 (𝑡 )

𝑁−1

Using aggregated andmean values across all the other agents

allows the MARL model to be agnostic to agent order or the

amount of agents. This is especially important in a serverless

environment where tenants can join and leave from time

to time, creating and removing their functions at any time.

However, in a centralized MARL approach that explicitly

models each function or agent (e.g., the JAL [5] mentioned

in §5.1), the whole MARL algorithm needs to be retrained

because the input to the algorithm has been changed. In

the typical case where the policy or value functions are

parameterized by neural networks, the network structure

would also need to be reconstructed. In contrast, the agent

group order- and size-agnostic MARL formulation is more

scalable and enables fast-retraining.

The goal in the MARL setting is (see [36, 37]), given a

time duration 𝑇 , to determine an optimal collection of poli-

cies 𝜋 = {𝜋𝜃 1 , 𝜋𝜃 2 , ..., 𝜋𝜃𝑁 } that results in fewer SLO viola-

tions across all functions (i.e., max𝜃 1,𝜃 2,...,𝜃𝑁

∑𝑁
𝑖=1

∑𝑇
𝑡=0 𝑆𝑃

𝑖 (𝑡))
while keeping the resource utilization as high as possible

(i.e., max𝜃 1,𝜃 2,...,𝜃𝑁

∑𝑁
𝑖=1

∑𝑇
𝑡=0 𝑅𝑈

𝑖 (𝑡)). The team-averaged re-

ward function for the MARL setting is then defined as 𝑟𝑡 =
∑𝑁

𝑖=1 𝑟
𝑖
𝑡/𝑁 =

∑𝑁
𝑖=1 (𝛼 · 𝑆𝑃𝑖 (𝑡) · |R| + (1 − 𝛼) ·

∑ |R |
𝑗 𝑅𝑈 𝑖

𝑗 (𝑡) +

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑖 )/𝑁 , where R is the set of resources and 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 is

the same as defined in §3. Our objective is to maximize the

expected total return E[
∑𝑇

𝑡=0 𝛾
𝑡𝑟𝑡 ] = E[

∑𝑇
𝑡=0 𝛾

𝑡 ·
∑𝑁

𝑖=1 𝑟
𝑖
𝑡/𝑁 ],

where 𝛾 ∈ (0, 1) is the discount factor.

6.2 Multi-agent PPO

Based on the PPO algorithm for S-RL described in Appen-

dix A, we introduce a multi-agent version of PPO (MA-PPO)

in this section. MA-PPO follows the same algorithmic struc-

ture of the PPO algorithm by learning a policy 𝜋𝜃𝑖 and a

value network𝑉𝜙𝑖 (parameterized by 𝜙𝑖 ) for each agent 𝑖 . We

concatenate the auxiliary global information 𝑔𝑖 (described in
§6.1) to each agent’s local information 𝑙𝑖 to feed it as input

to the value network 𝑉 𝑖
𝜙
. The value network then outputs a

single number representing the estimated state value. The

policy network 𝜋𝜃𝑖 is the same as the policy network in PPO,

which takes the states as inputs and outputs an action from

the same action space. The other extension from PPO is that

the reward for each agent at time 𝑡 is changed to the total

reward across all agents: 𝑟𝑡 =
∑𝑁

𝑖=1 𝑟
𝑖
𝑡 . The hyperparameters

are kept the same. We provide the pseudocode of MA-PPO

algorithm in Appendix B.2.

6.3 Preliminary Results

In this sub-section, we present evaluation results forMA-PPO

training and its online performance. During the training of

MA-PPO agents, we intentionally added and removed a few
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Figure 3. Training convergence analysis and online performance evaluation of multi-agent RL (MA-PPO).

agents from the environment to evaluate the adaptability

of the MA-PPO model to agent updates. Fig. 3(a) shows the

training curves of MA-PPO in multi-tenant environments.

To start with, we created five functions (one from each bench-

mark in Table 2), and each function is then controlled by an

initialized MA-PPO agent. Since all agents use the team re-

ward which is the average reward across all agents, Fig. 3(a)

shows the evolution of the average total reward per episode.

The MA-PPO agents were able to reach a stable converged

policy after around 500 episodes. Then at episode 800, we

updated the multi-tenant environment by adding five func-

tions (one from each benchmark), each of which is controlled

by a different MA-PPO agent. As noticed in the figure, the

total reward per episode dropped to around 80 and that was

mainly because the added five new MA-PPO agents were

learning the optimal policy which led to low reward values.

After around 300 more episodes (around 2.5 hours), the learn-

ing curve of the MA-PPO agents was able to converge again.

We updated the environment three more times after every

800 episodes by either adding five new functions or remov-

ing five existing functions. We observed a similar reward

drop and later convergence to about the same level after sev-

eral hundreds of training episodes. When we removed five

existing functions from the environment, the reward drop

(i.e., around 125) was not as much as the previous cases. We

attribute the smaller reward drop to the fact that there was

no added agent whose reward starts to be randomly lower

than a trained agent. The team reward still dropped due to

the fluctuation of the environment as there were five newly

added functions.

We saved the checkpoints at the 4000th episode for all

MA-PPO agents and used those checkpoints to evaluate the

online performance for each of the five functions together on

amulti-tenant serverless FaaS platform.We observed that the

function performance was similar at different episodes when

the agents’ behavior converged so we picked the 4000th

episode. At the 4000th episode, there were 15 functions

in total (i.e., three functions from each of the five bench-

marks) Fig. 3(b) shows the performance comparison between

MA-PPO-controlled functions and the single-RL trained in a

multi-tenant environment. We averaged over all three func-

tions of the same type of benchmark. As shown in the figure,

MA-PPO was able to provide online performance compara-

ble to single-RL in single-tenant cases, with the performance

degradation ranging from 1.8% (for sentiment-analysis,
1190.2 ms to 1211.5 ms) to 9.9% (for markdown2html, 178.4
ms to 198.1 ms). Compared to the single-RL trained in multi-

tenant environments (as shown in §5.1 and Fig. 2(c)), the

MA-PPO achieves 2.5× (for sentiment-analysis, 1211.5 ms

to 3047.8 ms) to 4.4× (for image-resize, 154.2 ms to 672.4

ms) improvement in terms of the 99th-percentile latency.

7 Conclusion and Future Steps
We presented our early work on a multi-agent framework

to support RL-based resource management controllers in

serverless FaaS platforms. We highlighted the multi-tenancy

challenges that single-agent RL faces and proposed a scalable

and validated MARL algorithm which resolves the training

convergence problem while providing online performance

comparable to single-RL in single-tenant scenarios. Never-

theless, a few challenges and potential improvement are left

for future work, including fast retraining for newly joined

or updated functions with network parameter sharing or

transfer learning and fault tolerance to agent disconnection

or RL transition corruption.
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A Proximal Policy Optimization (PPO)
We use a policy-based method, PPO [20], to learn the optimal re-

source management policy under the MDP formulation described

in §3. Compared to the vanilla policy gradient, PPO guarantees an
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Table 3. RL training hyperparameters.

Parameter Value

Learning Rate Actor (3 × 10−4), Critic (3 × 10−4)

Discount Factor (𝛾 ) 0.99

Number of Hidden Layers Actor (2), Critic (2)

Number of Hidden Units Actor (64), Critic (64)

Mini-batch Size 5

Number of SGD Epochs 5

Clip Value (𝜖) 0.2

Entropy Coefficient (𝛽) 0.01

Critic Loss Discount (𝛿) 0.05

Number of Time Steps 200 (per Episode)

Reward Coefficient (𝛼) 0.3

improved policy by specialized clipping in the objective function

to prevent the new policy from getting far from the old policy. It

does this by defining a probability ratio 𝑝𝑡 (𝜃 ):

𝑝𝑡 (𝜃 ) =
𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 )
(1)

This ratio denotes the change the policy has gone through within

an episode of training. 𝜋𝜃𝑜𝑙𝑑 is the policy at the beginning of the

update. The clipped surrogate objective function 𝐽𝐶𝐿𝐼𝑃 (𝜃 ) is then
maximized to update the policy:

𝐽𝐶𝐿𝐼𝑃 (𝜃 ) = E[𝑚𝑖𝑛(𝑐𝑙𝑖𝑝 (𝑝𝑡 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴𝑡 , 𝑝𝑡 (𝜃 )𝐴𝑡 )] (2)

where 𝜖 is a hyperparameter specific to PPO and𝐴𝑡 is the estimator

of the advantage function at 𝑡 [20]. Taking the minimum of the

clipped and unclipped terms results in the objective only being

clipped if its value is improved by the new policy.

PPO has a critic component that estimates the value function

𝑉𝜙 (parameterized by 𝜙) under a certain policy. The critic network

receives the state as the input and outputs a single number rep-

resenting the estimated value of that state. To update the critic

network, we seek to minimize the difference between the estimated

value and the actual return. Using the squared loss, we get another

objective function:

𝐽𝑉𝐹 (𝜙) = −(𝑉𝜙 − 𝑔)2, (3)

where 𝑔 =
∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡 is the actual cumulative discounted reward of

running the policy being evaluated.

Finally, we added an entropy regularization term (i.e., 𝐻 (𝑝) =
−
∑𝑛
𝑖=1 𝑝𝑖 log 𝑝𝑖 for a probability distribution 𝑝 in an 𝑛-dimensional

simplex) of 𝜋𝜃 (𝑠𝑡 ) multiplied by a factor 𝛽 to the objective to dis-

courage premature convergence [28]. While this is not mandatory,

we found that it increased performance significantly. The final

objective function is:

𝐽 (𝜃, 𝜙) = 𝐽𝐶𝐿𝐼𝑃 (𝜃 ) + 𝛿 𝐽𝑉𝐹 (𝜙) + 𝛽𝐻 (𝜋𝜃 ) (4)

The 𝜖 , 𝛿 and 𝛽 values in our experiments along with all the other

hyperparameters are listed in Table 3. We provide the pseudocode

of PPO algorithm in Appendix B.1.

B Pseudocode

We provide the pseudocode of PPO and MA-PPO used for our

single-agent RL and multi-agent RL algorithms in this section.

Algorithm 1 PPO with Clipped Objective

1: Randomly initialize network parameters 𝜃0, 𝜙0.
2: for iteration 𝑘 = 0, 1, 2, . . . , 𝑀 do

3: Run policy 𝜋𝜃𝑘 for 𝑇 time steps.

4: Estimate advantages 𝐴𝑡 at all time steps 𝑡 .
5: Optimize the objective 𝐽 as in Eq. 4 with respect to 𝜃 and

𝜙 using 𝐾 steps of minibatch SGD (via Adam), and obtain the

new parameters 𝜃𝑘+1 and 𝜙𝑘+1.
6: end for

Algorithm 2 MA-PPO with Augmented State Space

1: Randomly initialize network parameters 𝜃𝑖0, 𝜙
𝑖
0 for all 𝑖 .

2: for iteration 𝑘 = 0, 1, 2, . . . , 𝑀 do

3: for each agent 𝑖 do (in parallel)

4: Run policy 𝜋𝑖
𝜃𝑘

for 𝑇 time steps.

5: Calculate augmented 𝑉 𝑖
𝑡

6: Estimate advantages 𝐴𝑡
𝑖 at all time steps 𝑡 .

7: end for

8: for each agent 𝑖 do (in parallel)

9: Optimize the objective 𝐽 as in Eq. 4 with respect to 𝜃𝑖

and 𝜙𝑖 using 𝐾 steps of minibatch SGD (via Adam), and obtain

the new parameters 𝜃𝑖
𝑘+1

and 𝜙𝑖
𝑘+1

.

10: end for

11: end for

B.1 PPO

PPO [20] trains a stochastic policy in an on-policy way by sam-

pling actions according to the latest version of its stochastic policy.

The algorithm that uses fixed-length trajectory segments is shown

below. In each iteration, the agent collects 𝑇 time steps of data and

then the surrogate loss on these time steps of data is calculated and

optimized with minibatch SGD for 𝐾 epochs. The pseudocode is

described in Alg. 1.

B.2 Multi-agent PPO

MA-PPO follows the algorithmic structure of the PPO algorithm by

learning a policy network and a value function for each agent. We

extended the input vector to the value function with the auxiliary

global states from the environment and used the team reward as

the reward to each agent. Alg. 2 described the pseudocode of the

MA-PPO algorithm.
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