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Abstract

Serverless Function-as-a-Service (FaaS) is an emerging cloud
computing paradigm that frees application developers from
infrastructure management tasks such as resource provi-
sioning and scaling. To reduce the tail latency of functions
and improve resource utilization, recent research has been
focused on applying online learning algorithms such as rein-
forcement learning (RL) to manage resources. Compared to
existing heuristics-based resource management approaches,
RL-based approaches eliminate humans in the loop and avoid
the painstaking generation of heuristics. In this paper, we
show that the state-of-the-art single-agent RL algorithm (S-
RL) suffers up to 4.6 higher function tail latency degradation
on multi-tenant serverless FaaS platforms and is unable to
converge during training. We then propose and implement a
customized multi-agent RL algorithm based on Proximal Pol-
icy Optimization, i.e., multi-agent PPO (MA-PPO). We show
that in multi-tenant environments, MA-PPO enables each
agent to be trained until convergence and provides online
performance comparable to S-RL in single-tenant cases with
less than 10% degradation. Besides, MA-PPO provides a 4.4x
improvement in S-RL performance (in terms of function tail
latency) in multi-tenant cases.

CCS Concepts: « Software and its engineering — Cloud
computing; - Computing methodologies — Multi-agent
planning; Multi-agent systems.
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1 Introduction

Serverless Function-as-a-Service (FaaS) is a category of cloud
computing services that frees customers from managing re-
source allocation for their functions (e.g, scaling the number
of containers and their resource limits, and scheduling func-
tions to servers) while leaving the performance-utilization
trade-off problem with the cloud provider [3, 17, 22, 27]. The
problem of resource management to achieve performance
and utilization objectives is at its core an intractable NP-
hard problem [4, 13]. While the majority of the problems
are approached using meticulously designed heuristics with
extensive application- and system-specific domain-expert-
driven tuning, a substantial line of work has recently been
focused on learning-based approaches such as reinforcement
learning (RL) [4, 8, 11, 12, 16, 18, 19, 30, 32, 34].

As a viable alternative to human-generated heuristics, RL
enables an agent to learn the optimal policy directly from in-
teracting with the environment. RL is especially well-suited
for resource management problems [12] due to the sequential
nature of the decision-making process, and it has been shown
that deep neural networks can express the complex dynamics
and decision-making policies in such system-application en-
vironment. Since resource management decisions made for
each serverless function are highly repetitive, an abundance
of data can be easily generated for training such RL algo-
rithms. By continuing to learn, the RL agent can optimize
for a specific workload and adapt to varying conditions.
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Motivation. Despite the recent successes, existing RL-
based solutions [4, 8, 11, 16, 18, 19, 29, 34] are all single-
agent RL (S-RL) where each RL agent controls one function.
In contrast, a serverless Faa$S platform is multi-tenant where
heterogeneous functions from all customers compete for
shared resources in a cluster. Multi-tenancy makes the envi-
ronment non-stationary from each agent’s own perspective,
as it is also affected by the actions of other agents, which
breaks the standard assumption that underpins S-RL algo-
rithms. Since the transitions and rewards depend on the joint
actions of all agents, whose decision policies keep changing
in the learning process, each agent can enter an endless cy-
cle of adapting to other agents in the shared environment.
We show in §5.1 that in multi-tenant scenarios, the state-
of-the-art S-RL algorithm suffers up to 4.6x higher function
tail latency degradation and is unable to converge during
training.

Design principles. To address the convergence failure
during training and the online performance degradation
problem for multiple RL agents in a shared environment,
we target the following challenging objectives: (a) Perfor-
mance isolation: agent performance in multi-tenant environ-
ments should be comparable to single-RL agent performance
in single-tenant scenarios. (b) Scalability: a serverless FaaS
platform is multi-tenant and new functions from different
customers can be increasingly registered. (c) Fast training:
functions from any customer can be registered, removed, or
updated at any time, which changes the joint state space.

Solution. Based on the defined design principles, we pro-
pose and implement MA-PPO (§6.2), a customized multi-
agent RL algorithm motivated by its single-agent counter-
part PPO [20]. In MA-PPO, we customize PPO, where each
agent treats the other agents as part of the environment. In
addition, we use aggregated and mean state-action values
across all the other agents to make the MA-PPO model ag-
nostic to agent order or the size of the agent group, and thus
more scalable and faster to train.

Results. An evaluation of MA-PPO (§6.3) shows that it
enables each agent’s behavior to converge during training
and that it provides online performance in multi-tenant cases
comparable to S-RL in single-tenant cases with less than
10% degradation. Besides, functions controlled by MA-PPO
achieve up to 4.4x improvement in tail latencies of function
invocations compared to S-RL in multi-tenant cases.

2 Background and Related Work

2.1 Serverless Function-as-a-Service

Serverless Function-as-a-Service (FaaS) is a cloud program-
ming model and architecture where customers execute small
code snippets without any control over the resources on
which the code runs [3]. A serverless FaaS platform runs
functions in response to invocations (i.e., requests) from
end-users or clients. It consists of a central controller and a
group of invokers. In our study, we chose OpenWhisk [10], a
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production-grade serverless FaaS platform based on Docker
containers. Fig. 1 shows the architecture of a distributed
OpenWhisk platform. The controller (labeled as @) cre-
ates function containers, allocates CPU and RAM for each
function container, and assigns the containers to invokers
(labeled as @). When requests arrive via the API gateway,
the controller distributes the requests to invokers. An in-
voker executes the function after it receives a request and
the execution results are written to a data store ).

2.2 Learning-based Resource Management

Lately, ML-based resource management approaches have
gained significant momentum towards achieving application
service-level objectives (SLOs) [15, 16, 29, 30, 35]. In [16],
the authors proposed an ML-based resource management
framework, FIRM, to tackle the issue of microservices under-
utilization and SLO violations. The two-tier ML model is
responsible for first identifying the microservices that cause
SLO violations and then mitigating those violations via dy-
namic resource reprovisioning. Sinan [30], an SLO-aware
resource management framework for microservices, is an-
other model that employs ML algorithms to improve resource
utilization while meeting end-to-end performance SLOs.

Since Mao et al. proposed a reinforcement learning (RL)-
based solution for scheduling cluster resources [12], there
has been a line of work using RL for resource manage-
ment [4, 8, 11, 16, 18, 19, 32, 34]. Schuler et al. [19] proposed
a Q-Learning-based autoscaler that decides the horizontal
concurrency for a serverless function with the only objec-
tive being minimizing the function latency. Zafeiropoulos et
al. [34] also applied Q-Learning to threshold-based autoscal-
ing for determining the CPU and memory usage threshold.
Both SLO violation and resource utilization are considered
in the reward function of each RL agent for a function. FaaS-
Rank [32] is an RL-based serverless function scheduler that
uses a policy gradient method (i.e., PPO) to minimize func-
tion completion time. However, no existing work has been
focused on addressing the single-agent RL failure in multi-
tenant environments (as we will describe in §5.1).

3 Reinforcement Learning Formulation

In this section, we present the problem formulation and our
design for online serverless resource management with RL.
In the following, we first provide a brief introduction to RL.

RL Primer. An RL agent solves a sequential decision-
making problem (modeled as a Markov decision process, or
MDP) by interacting with an unknown environment. At each
discrete time step t, the agent observes the current state of
the environment s; € S, and performs an action a; € A based
onits policy 7y (s) (parameterized by 6), which maps the state
space S to the action space A. The agent then observes an
immediate reward r; € R given by a reward function r(s;, a;);
the immediate reward represents the loss/gain in transition-
ing from s; to s;4+; because of action a;. The agent’s goal is
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Figure 1. Resource management in OpenWhisk [10] as a
sequential decision-making process. At each step, the RL
agent perceives system and application conditions from the
environment. The measurements are then translated to state
and reward signals that mapped by the agent to an action.

to optimize the policy 7y so as to maximize the expected
cumulative discounted reward E[ZtT:o y'r,] starting from a
certain initial state sy, where the expectation is taken over the
“randomness” of state transitions and the agent’s possibly
randomized policy. The discount factor y € (0, 1) penalizes
the rewards far in the future. Two main categories of ap-
proaches are proposed for RL training: value-based methods
and policy-based methods [2]. In value-based methods, the
agent learns an estimate of the optimal value function and
approaches the optimal policy by maximizing it. In policy-
based methods, the agent tries to directly approximate the
optimal policy. We refer the readers to [2, 25, 36, 37] for de-
tailed surveys and rigorous derivations of value-based and
policy-based RL algorithms.

Problem Formulation. We model the resource manage-
ment in a serverless Faa$S platform as a sequential decision-
making problem that can be solved by the RL framework
(illustrated in Fig. 1). Since all serverless Faa$S platforms have
similar controller-worker architectures and function request
serving workflows, for the modeling purpose, we chose to use
an open-source serverless Faa$S platform, OpenWhisk [10].
At each step in the sequence, the RL agent (labeled as @)
monitors system and application conditions from both the
OpenWhisk data store (labeled as @) and the Linux cgroups
(labeled as e) Measurements include function-level perfor-
mance statistics (i.e., tail latencies on execution time, wait-
ing time, and cold-start time for serving function requests)
and system-level resource utilization statistics (e.g., CPU
utilization of function containers). These measured teleme-
try data are pre-processed and used to define a state, which
is then mapped to a resource management decision by the
RL agent. In this model, we consider both vertical and hor-
izontal resource scaling actions. A vertical-scaling action
in OpenWhisk corresponds to scale either up or down the
cpu. shares or the memory limit of a function container. A
horizontal-scaling action in OpenWhisk corresponds to scale
either out or in the function containers, i.e., changing the
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Table 1. State-action space of the RL formulation.

State Space S; (for both single- and multi-agent)
SLO Preservation Ratio (SP(t)), Resource Utilization (RUcpy(t),
RUpem(1)), Arrival Rate Changes (AC(t)), Resource Limits (RLT;py (1),
RLT nem(t)), Horizontal Concurrency (NC(t))

Action Space A; (for both single- and multi-agent)

Vertical Scaling: Resource Limits (RLT.py(t), RLTnem(t)) Horizontal
Scaling: Number of Containers (NC(t))

Auxiliary Global State Space G; (for multi-agent)
Aggregated Resource Limits (ARLTpy(t), ARLTnem (1)), Aggregated
Vertical Actions (AV (t)), Aggregated Horizontal Actions (AH(t)), Mean
SLO Preservation Ratio (MSP(t)), Mean Resource Utilization (MRU (t))

number of created containers for a function. The decision

made by the RL agent is then passed by the horizontal and

vertical scaler (labeled as °) to the FaaS controller (labeled
as @) and finally changes the system state and function
performance.

We carefully design the state-action space, state transition
and reward function to satisfy the Markov property in the
RL framework. Each function instance is deployed in a sepa-
rate container with resource limits RLT; ,,, and RLT ., since
OpenWhisk’s default resource model includes cpu. shares
and memory limits, both are configurable parameters in all
commercial serverless platforms. The initial limit for each
type of resource is overprovisioned before containers are
created for a function and later controlled by the RL agent.
The number of created containers is denoted as NC. We de-
fine the action space (as shown in Table 1) to be the available
vertical scaling actions which changes RLT. .y, RLTnem and
horizontal scaling actions which changes NC.

We define the state space based on the five features listed
in Table 1. At each time step ¢, the utilization RU (¢) for each
type of resource is retrieved from cgroups as telemetry data
in o The current resource allocation RLT;py, (t), RLTnem (1),
and NC(t) are kept as part of the state. In addition, Open-
Whisk’s data store (labeled as e) also collects function la-
tency composition and request arrival rate. Based on these
measurements, the RL agent calculates the remaining two
states listed in Table 1 and described below:

e SLO preservation ratio (SP(t)) is defined as latency_SLO
/ latency_measured if there is an SLO violation. The
ratio is smaller for more critical SLO violations. Otherwise,
SP(t) is set to 1, meaning that there is no SLO violation
or no function request coming.

e Arrival rate change (AC(t)) is defined as (AR(t) — AR(t —
1))/max{AR(t), AR(t — 1)}, where AR(t) and AR(t — 1)
denote the function request arrival rates at the current
and previous time steps, respectively. A positive value
indicates an increasing arrival rate and vice versa.

All variables in the state vector are of range [—1, 1] except
RLT(t) and NC(t). To facilitate RL training, we normalized
the two variables by setting a predefined resource upper
limit R; and a lower limit R;. For instance, the cpu.shares
for a container cannot be smaller than 128 or larger than
2048; and the number of containers cannot be smaller than
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Table 2. Serverless benchmarks adopted from [21, 33].

Benchmark Description

Base64 Encode and decode a string with the Base64 algorithm.
Primes Find the list of prime numbers less than 107
Markdown2HTML  Render a Base64 uploaded text string as HTML.

Sentiment-Analysis
Image-Resize

Generate a sentiment analysis score for the input text.
Resize the Base64-coded image with new sizes.

0 or larger than 1000 (the default maximum concurrency
setting in AWS Lambda [1]). If the amount of resources to
be vertically-scaled reaches the total available amount, then
a horizontal scaling operation is needed.

The goal of the RL agent is, given a time duration T, to
learn an optimal policy 7y that results in as few SLO viola-
tions as possible (i.e., max,;, >.7_; SP(t)) while keeping the re-
source utilization as high as possible (i.e., max,, Z,T:o RU(t)).
Based on both objectives, the reward function is then defined
asr; = a-SP(t)-|R|+(1-a)- X% RU,(t) + penalty, where R
is the set of resources and penalty is set to -1 in the following
cases: (a) lllegal actions such as scaling-in/up/down when
the number of function containers is zero or scaling beyond
the resource limits. Since illegal actions are not executable in
the serverless FaaS platform, an illegal action leads to a self-
-loop transition from a state to itself with a negative reward.
(b) Undesired actions such as frequent dangling decisions,
which are detected by comparing the actions of the current
and last time step.

Implementation with PPO. We use a policy gradient
method, Proximal Policy Optimization (PPO) [20], to learn
the optimal resource management policy under the RL prob-
lem formulation described above. PPO is the default RL algo-
rithm at OpenAl [14] which performs comparably or better
than state-of-the-art approaches while being much simpler
to tune. It is also hypothesized that the smooth policy up-
dates (due to clipping) in PPO can help mitigate the non-
stationarity issue in multi-agent RL [6]. The algorithm and
implementation details are left to Appendix A.

4 Experimental Methodology

OpenWhisk Cluster Setup. We deploy OpenWhisk [10]
on five physical nodes in our local cluster with one mas-
ter node (which runs the FaaS Controller) and four worker
nodes (each of which runs an Invoker), as shown in Fig. 1.
Each node has a dual-socket Intel Xeon E5-2683 v3 processor
with 14 cores per socket and 500 GB memory. All nodes run
Ubuntu 18.04.3 LTS with Linux kernel version 4.15. Mem-
ory swapping is disabled for the Docker service. We run
the workload generator [21] and the RL controller from two
separate nodes in the same cluster and use FaaSProfiler [21]
to trace requests to measure the end-to-end latency.
Serverless Benchmarks. The benchmarks used in this
study (listed in Table 2) are from widely used open-source
FaaS benchmark suites [21, 33]. They include both micro-
benchmarks and macrobenchmarks which have different
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runtime behaviors and resource demands (e.g., CPU utiliza-
tion and memory bandwidth utilization). The functions are
written in either Python or Java.

Workloads. We evaluated using both real-world and syn-
thetic function invocation patterns. For real-world work-
loads, we sampled and replayed the function invocations
from Azure function traces [22] from 2019 collected over
two weeks. For synthetic workloads, we used common pat-
terns [7] indicating flat and fluctuating loads, with a Poisson
inter-arrival rate ranging from zero to the maximum ob-
served in the sampled Azure function traces. The change of
arrival rates is intended to evaluate whether RL agents could
adapt to such workload change.

5 The Multi-tenancy Challenge

5.1 Single-RL in Single-tenant Environments

We implemented the RL prototype described in §3, conducted
training convergence analysis, and evaluated the function
SLO preservation and resource utilization with a state-of-the-
art heuristics-based approach ENSURE [24] as the baseline.
Since each RL agent in this approach manages resources for
one specific function, we call it single-agent RL or S-RL.

Convergence Analysis. RL training proceeds in episodes
(iterations). To understand the convergence behavior of the
S-RL agent in single-tenant environments, we trained the
agent by using the workload described in §4 without any
other functions running on the platform. We then analyzed
the per-episode reward evolution and Fig. 2(a) shows the
results. We found that the agent training progress is similar
across different function benchmarks so we chose to show
the RL agent for function primes. We fixed the number of
time steps in each training episode to be 200, except that for
the initial stage of the training process, we terminated the RL
exploration early so that the agent could reset and try again
from the initial state. We did so because the initial policies
of the agent were unable to mitigate SLO violations. As the
training progressed, the agent improved its resource alloca-
tion policy and could mitigate SLO violations in less time.
At that point (around 70 episodes), we linearly increased the
number of time steps to let the agent interact with the envi-
ronment for a longer time before terminating the exploration
and entering the next iteration. The agent’s behavior was
able to converge after around 300 episodes (ranging from
280 to 350 across functions).

Performance Assessment. After convergence, we lever-
aged the trained S-RL agent (by using the saved checkpoints
at episode 1000) as the function resource controller and com-
pared it with the baseline approach ENSURE [24], which is
a state-of-the-art threshold-based autoscaler implemented
based on OpenWhisk as well. In the baseline approach, we
set the parameters and thresholds the same as the paper spec-
ified. Fig. 2(b) shows the online performance comparison.
S-RL agent was able to keep the CPU utilization at a higher
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Figure 2. Training convergence analysis and online performance evaluation of S-RL in single- and multi-tenant environments.

level (around 20% higher than ENSURE) and achieved simi-
lar end-to-end latency compared to the baseline approach.
We found that it is because ENSURE over-provisioned con-
tainers and resources in some cases. After increasing the
performance SLO threshold to a higher value (namely from
15% to 25%), we observed that the S-RL agent significantly
improved over the baseline approach regarding tail latencies
at similar CPU utilizations (not shown in the figure).

By interacting with dynamic FaaS environments under com-
plicated loads and resource allocation scenarios, the S-RL agent
dynamically learns the policy that maximizes the cumulative
rewards and hence outperforms heuristics-based approaches.

5.2 Single-RL in Multi-tenant Environments

Serverless Faa$S platforms are in essence multi-tenant where
different function owners deploy and run heterogeneous
functions with various function characteristics, SLOs, and
workload patterns [3, 9, 17, 27]. Each function controlled by
an RL agent competes with other functions on the same plat-
form for limited resources. Function container co-location
for higher utilization has made resource contention worse
on a cloud serverless platform [17, 21, 27]. The transition
from single-tenant to multi-tenant settings introduces new
challenges that require a fundamentally different RL algo-
rithm design. Before presenting our multi-agent solution, we
first explored the environment non-stationarity issue, and
conducted training convergence analysis and performance
assessment of S-RL agents in multi-tenant environments.
Environment Non-stationarity. The shared environ-
ment in a multi-agent setting can be affected by the actions
of all agents; thus, from a single agent’s perspective, the en-
vironment becomes non-stationary, which breaks the critical
stationarity assumption made by most RL algorithms [25].
Under non-stationarity, an agent needs to explore the un-
known environment efficiently while keeping in mind that
the information it gathers now will soon become outdated,
because the other agents are also updating their policies.
A naive approach to tackle the non-stationarity issue is to
use centralized learning, e.g., joint action learners (JAL) [5].
In such a centralized approach, the agents are jointly mod-
eled and a centralized policy for all the agents is trained.
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The input to this algorithm is the concatenation of the ob-
servations of all the agents, and the output is the actions
specified to the agents. This approach eliminates the problem
of non-stationarity entirely; however, it is computationally
inefficient (with exponential complexity) because the cen-
tralized learner needs to search in the joint action space of
the size [TY, |A;| in order to enumerate all possible action
combinations, where N is the number of agents and A4; is
the individual action space of agent i for 1 < i < N. The
exponential dependence on N makes the centralized learn-
ing approach difficult to scale up beyond a few agents [5].
Therefore, given that there could be tens or even hundreds
of functions on a server [26], we do not proceed further with
this centralized approach.

Performance Degradation. We conducted a performance
assessment of the S-RL agent in multi-tenant cases where
each function is in control of an independent S-RL agent
trained in isolation. Fig. 2(b) shows the performance degrada-
tion after introducing multiple tenants on the same serverless
FaaS$ platform. In this experiment, we created one function
for each benchmark from Table 2 and trained one S-RL agent
for each function in isolation until convergence. Then, we
ran all five functions simultaneously with each function con-
trolled by its trained S-RL agent. Evaluation results show that
the degradation can be up to 78.2% (for markdown2html) and
as low as 64.5% (for sentiment-analysis). That is because
when the RL agent made a decision, it was based on the state
information measured at the current time step; but at the
same time, all other agents were also making their resource
allocation decisions which can affect the shared environ-
ment. Therefore, the estimated value function for an action
by the S-RL model is no longer accurate in a non-stationary
multi-tenant environment.

Convergence Failure. Multi-tenancy not only affects the
online performance of S-RL agents trained in isolation but
also leads to problems during training. We trained five S-RL
agents together in the same serverless FaaS platform, each of
which controlled one function from the benchmarks listed in
Table 2. Each S-RL agent was trained independently and did
not consider the other agents in the same environment. Ev-
erything else was kept the same with the S-RL agent trained
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in isolation. Fig. 2(c) shows the per-episode reward evolu-
tion for the agent controlling function primes. It would be
expected for the S-RL agent to adapt to the stochasticity
introduced by other agents. However, compared to the learn-
ing curve of the S-RL agent trained in isolation (as shown
in Fig. 2(a)), the S-RL agent trained in a multi-tenant envi-
ronment achieved lower performance (a 55.9% drop in terms
of per-episode reward) with higher variance and did not
converge in a stable manner. We observed similar behaviors
from the training curves of the other agents across different
function benchmarks (not shown due to page limit).

System support for many-agent RL controllers that provides
both training convergence and performance isolation is needed.

6 Multi-agent Reinforcement Learning

To tackle the non-stationarity issue for S-RL agents in multi-
tenant serverless FaaS platforms, we first present the re-
modeled resource management problem as a multi-agent
extension of the Markov decision process (MDP) in §6.1 and
then designed a customized multi-agent RL algorithm multi-
agent PPO (or MA-PPO ') for this problem (§6.2). Our design
choices were made to favor the scalability and adaptivity
(to agent churn for added/removed functions) of the multi-
agent model. Evaluation shows that MA-PPO enables the
convergence behavior of the agents and provides online per-
formance comparable to S-RL in single-tenant cases (§6.3).

6.1 Multi-agent RL (MARL) Formulation

We extended the MDP formulation for single-agent RL (§3)
to a Markov game (also known as stochastic game [23]) for
N agents, each of which controls the resource management
for one particular function. In our formulated Markov game,
the state space is defined as the Cartesian product of the state
spaces of all S-RL agents (as defined in §3). After observing
the environment state s; at time ¢, each agent i takes an action
al based on its policy 7p: (parameterized by 6'), and receives
areward r. The environment state then transitions to a new
state depending on the joint action of all the agents. When we
view the MARL setup from the point of view of a particular
agent i, all the other agents are part of the environment.
Each agent extracts its local information /! and auxiliary
global information ¢! from the environment state s;. The
local information I! of agent i is from the same state space
in S-RL (as listed at the first row in Table 1). The action
and reward of each agent i are also the same as defined in
S-RL. We use the auxiliary global information g to describe
the status of all the other agents (except for agent i) and it
consists of the following variables (as listed at the third row
in Table 1):

o Aggregated resource limits: ARLTCipu(t) =

ARLT} 0 (£) = 3% RLT o (1)

é\;i RLTC]pu (t) >

INote that MA-PPO is a novel multi-agent RL algorithm and is not to be
confused with MAPPO [31], which is a different algorithm that happens
to share a similar acronym. In particular, MAPPO [31] focuses on the fully
cooperative setting while serverless functions are not.
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o Aggregated vertical actions: AV (t) = ﬁ-\;i ARLT(t)

i ANCI (1)
N _SPi(t)

e Mean SLO preservation ratio: MSPi(t) = Z"z‘vfl)

; N RUI (1
e Mean resource utilization: MRU'(t) = %

Using aggregated and mean values across all the other agents
allows the MARL model to be agnostic to agent order or the
amount of agents. This is especially important in a serverless
environment where tenants can join and leave from time
to time, creating and removing their functions at any time.
However, in a centralized MARL approach that explicitly
models each function or agent (e.g., the JAL [5] mentioned
in §5.1), the whole MARL algorithm needs to be retrained
because the input to the algorithm has been changed. In
the typical case where the policy or value functions are
parameterized by neural networks, the network structure
would also need to be reconstructed. In contrast, the agent
group order- and size-agnostic MARL formulation is more
scalable and enables fast-retraining.

The goal in the MARL setting is (see [36, 37]), given a
time duration T, to determine an optimal collection of poli-
cies w = {mg1, Mgz, ..., Tn } that results in fewer SLO viola-
tions across all functions (i.e., maxg1 g2 __gn N ST SPi(t))
while keeping the resource utilization as high as possible

o Aggregated horizontal actions: AH'(t) =

ward function for the MARL setting is then defined as r;, =

NoriN = 3N (@ SPUt) - R+ (1-a) - XX RU(E) +
penalty’) /N, where R is the set of resources and penalty is
the same as defined in §3. Our objective is to maximize the
expected total return E[X 7 y'r,] = E[XL, y* - =N, ri/N],
where y € (0, 1) is the discount factor.

6.2 Multi-agent PPO

Based on the PPO algorithm for S-RL described in Appen-
dix A, we introduce a multi-agent version of PPO (MA-PPO)
in this section. MA-PPO follows the same algorithmic struc-
ture of the PPO algorithm by learning a policy 7y and a
value network Vy: (parameterized by #") for each agent i. We
concatenate the auxiliary global information g’ (described in
§6.1) to each agent’s local information I to feed it as input
to the value network Vq;'. The value network then outputs a
single number representing the estimated state value. The
policy network 7y: is the same as the policy network in PPO,
which takes the states as inputs and outputs an action from
the same action space. The other extension from PPO is that
the reward for each agent at time ¢ is changed to the total
reward across all agents: r, = Y.V ri. The hyperparameters
are kept the same. We provide the pseudocode of MA-PPO
algorithm in Appendix B.2.

6.3 Preliminary Results

In this sub-section, we present evaluation results for MA-PPO
training and its online performance. During the training of
MA-PPO agents, we intentionally added and removed a few
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Figure 3. Training convergence analysis and online performance evaluation of multi-agent RL (MA-PPO).

agents from the environment to evaluate the adaptability
of the MA-PPO model to agent updates. Fig. 3(a) shows the
training curves of MA-PPO in multi-tenant environments.
To start with, we created five functions (one from each bench-
mark in Table 2), and each function is then controlled by an
initialized MA-PPO agent. Since all agents use the team re-
ward which is the average reward across all agents, Fig. 3(a)
shows the evolution of the average total reward per episode.
The MA-PPO agents were able to reach a stable converged
policy after around 500 episodes. Then at episode 800, we
updated the multi-tenant environment by adding five func-
tions (one from each benchmark), each of which is controlled
by a different MA-PPO agent. As noticed in the figure, the
total reward per episode dropped to around 80 and that was
mainly because the added five new MA-PPO agents were
learning the optimal policy which led to low reward values.
After around 300 more episodes (around 2.5 hours), the learn-
ing curve of the MA-PPO agents was able to converge again.
We updated the environment three more times after every
800 episodes by either adding five new functions or remov-
ing five existing functions. We observed a similar reward
drop and later convergence to about the same level after sev-
eral hundreds of training episodes. When we removed five
existing functions from the environment, the reward drop
(i.e., around 125) was not as much as the previous cases. We
attribute the smaller reward drop to the fact that there was
no added agent whose reward starts to be randomly lower
than a trained agent. The team reward still dropped due to
the fluctuation of the environment as there were five newly
added functions.

We saved the checkpoints at the 4000th episode for all
MA-PPO agents and used those checkpoints to evaluate the
online performance for each of the five functions together on
amulti-tenant serverless FaaS platform. We observed that the
function performance was similar at different episodes when
the agents’ behavior converged so we picked the 4000th
episode. At the 4000th episode, there were 15 functions
in total (i.e., three functions from each of the five bench-
marks) Fig. 3(b) shows the performance comparison between
MA-PPO-controlled functions and the single-RL trained in a
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multi-tenant environment. We averaged over all three func-
tions of the same type of benchmark. As shown in the figure,
MA-PPO was able to provide online performance compara-
ble to single-RL in single-tenant cases, with the performance
degradation ranging from 1.8% (for sentiment-analysis,
1190.2 ms to 1211.5 ms) to 9.9% (for markdown2html, 178.4
ms to 198.1 ms). Compared to the single-RL trained in multi-
tenant environments (as shown in §5.1 and Fig. 2(c)), the
MA-PPO achieves 2.5x (for sentiment-analysis, 1211.5 ms
to 3047.8 ms) to 4.4x (for image-resize, 154.2 ms to 672.4
ms) improvement in terms of the 99th-percentile latency.

7 Conclusion and Future Steps

We presented our early work on a multi-agent framework
to support RL-based resource management controllers in
serverless FaaS platforms. We highlighted the multi-tenancy
challenges that single-agent RL faces and proposed a scalable
and validated MARL algorithm which resolves the training
convergence problem while providing online performance
comparable to single-RL in single-tenant scenarios. Never-
theless, a few challenges and potential improvement are left
for future work, including fast retraining for newly joined
or updated functions with network parameter sharing or
transfer learning and fault tolerance to agent disconnection
or RL transition corruption.
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A Proximal Policy Optimization (PPO)

We use a policy-based method, PPO [20], to learn the optimal re-
source management policy under the MDP formulation described
in §3. Compared to the vanilla policy gradient, PPO guarantees an
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Table 3. RL training hyperparameters.

Parameter Value

Actor (3 x 107%), Critic (3 x 107%)
0.99

Learning Rate
Discount Factor (y)

Number of Hidden Layers  Actor (2), Critic (2)
Number of Hidden Units  Actor (64), Critic (64)
Mini-batch Size 5

Number of SGD Epochs 5

Clip Value (¢) 0.2

Entropy Coefficient (f) 0.01

Critic Loss Discount (8) 0.05

Number of Time Steps 200 (per Episode)
Reward Coefficient () 0.3

improved policy by specialized clipping in the objective function
to prevent the new policy from getting far from the old policy. It
does this by defining a probability ratio p;(6):

mg(atlst)
o1 (at |sl‘)

pe(0) = 1
This ratio denotes the change the policy has gone through within
an episode of training. g ,, is the policy at the beginning of the
update. The clipped surrogate objective function J°XP (6) is then
maximized to update the policy:

JEHE(9) = Elmin(clip(p:(6),1- €, 1+ €) A, pr(0)A)]  (2)

where € is a hyperparameter specific to PPO and A; is the estimator
of the advantage function at ¢ [20]. Taking the minimum of the
clipped and unclipped terms results in the objective only being
clipped if its value is improved by the new policy.

PPO has a critic component that estimates the value function
Vs (parameterized by ¢) under a certain policy. The critic network
receives the state as the input and outputs a single number rep-
resenting the estimated value of that state. To update the critic
network, we seek to minimize the difference between the estimated
value and the actual return. Using the squared loss, we get another
objective function:

TV (@) = -(Vg - 9)°, (3)
where g = Ztho y!'ry is the actual cumulative discounted reward of
running the policy being evaluated.

Finally, we added an entropy regularization term (i.e., H(p) =
— 2, pilog p; for a probability distribution p in an n-dimensional
simplex) of 7y (s;) multiplied by a factor f to the objective to dis-
courage premature convergence [28]. While this is not mandatory,
we found that it increased performance significantly. The final
objective function is:

J(0.¢) = TP (0) + 57V F (¢) + BH (7rg) )

The €, § and S values in our experiments along with all the other
hyperparameters are listed in Table 3. We provide the pseudocode
of PPO algorithm in Appendix B.1.

B Pseudocode

We provide the pseudocode of PPO and MA-PPO used for our
single-agent RL and multi-agent RL algorithms in this section.
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Algorithm 1 PPO with Clipped Objective

1: Randomly initialize network parameters 6o, @.
2: for iterationk =0,1,2,...,M do

3: Run policy g, for T time steps.
4: Estimate advantages A; at all time steps ¢.
5 Optimize the objective J as in Eq. 4 with respect to 6 and

¢ using K steps of minibatch SGD (via Adam), and obtain the
new parameters 0,1 and ¢pq.
6: end for

Algorithm 2 MA-PPO with Augmented State Space

: Randomly initialize network parameters 6}, qﬁé for all i.
: for iterationk =0,1,2,...,M do
for each agent i do (in parallel)
Run policy ﬁé,k for T time steps.

Estimate advantages A, at all time steps .

end for
for each agent i do (in parallel)

Optimize the objective J as in Eq. 4 with respect to "
and ¢’ using K steps of minibatch SGD (via Adam), and obtain
the new parameters 6]’;“ and ¢Ii<+1'

10: end for
11: end for

1
2
3
4
5: Calculate augmented Vti
6
7
8
9

B.1 PPO

PPO [20] trains a stochastic policy in an on-policy way by sam-
pling actions according to the latest version of its stochastic policy.
The algorithm that uses fixed-length trajectory segments is shown
below. In each iteration, the agent collects T time steps of data and
then the surrogate loss on these time steps of data is calculated and
optimized with minibatch SGD for K epochs. The pseudocode is
described in Alg. 1.

B.2 Multi-agent PPO

MA-PPO follows the algorithmic structure of the PPO algorithm by
learning a policy network and a value function for each agent. We
extended the input vector to the value function with the auxiliary
global states from the environment and used the team reward as
the reward to each agent. Alg. 2 described the pseudocode of the
MA-PPO algorithm.
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