
Evaluating Hardware Memory Disaggregation under
Delay and Contention

Archit Patke∗, Haoran Qiu∗, Saurabh Jha‡, Srikumar Venugopal†, Michele Gazzetti†,
Christian Pinto†, Zbigniew Kalbarczyk∗, Ravishankar Iyer ∗

∗University of Illinois at Urbana-Champaign, USA
‡IBM Research, USA

†IBM Research, Ireland

Abstract—Hardware memory disaggregation is an emerging
trend in datacenters that provides access to remote memory as
part of a shared pool or unused memory on machines across
the network. Memory disaggregation aims to improve memory
utilization and scale memory-intensive applications. Current state-
of-the-art prototypes have shown that hardware disaggregated
memory is a reality at the rack-scale. However, the memory
utilization benefits of memory disaggregation can only be fully
realized at larger scales enabled by a datacenter-wide network.
Introduction of a datacenter network results in new performance
and reliability failures that may manifest as higher network
latency. Additionally, sharing of the network introduces new
points of contention between multiple applications. In this work,
we characterize the impact of variable network latency and
contention in an open-source hardware disaggregated memory
prototype — ThymesisFlow. To support our characterization, we
have developed a delay injection framework that introduces delays
in remote memory access to emulate network latency. Based
on the characterization results, we develop insights into how
reliability and resource allocation mechanisms should evolve to
support hardware memory disaggregation beyond rack-scale in
datacenters.

I. INTRODUCTION

Hardware memory disaggregation [1]–[3] is an emerging

trend in datacenters that provides access to remote memory as

part of a shared pool, or by borrowing unused memory from re-

mote machines across the network. To enable memory accesses

across the network, processor cache misses are re-directed

on a cache-coherent interconnect [4]–[6] to a special remote

memory controller that further forwards the cache misses on the

network. Memory disaggregation has multiple advantages as it

can potentially 1) increase utilization of data center memory by

upto 30–40% [7], and 2) scale memory-intensive applications

(such as in-memory databases [8], parallel data processing

frameworks [9], and HPC applications [10]) by provisioning

them with additional memory in a cost-effective manner.

Current state-of-the-art prototypes 1 have shown that hard-

ware disaggregated memory is a reality at the rack-scale [1].

However, scaling disaggregation further to fully realize its

1We consider the memory borrowing model for disaggregation, where
compute nodes can borrow unutilized memory from other datacenter nodes.
An alternative model is memory pooling where nodes access CPU-less memory
devices over the network (as discussed in §V)

benefits can be challenging because of higher and dynamic

memory access latency imposed by the datacenter network.

In this work, we characterize the impact of contention and

variable network latency in a rack-scale hardware disaggregated

memory prototype — ThymesisFlow [1]. To support our

characterization, we have developed a delay injector that delays

outgoing remote memory requests to emulate delays associated

with the network. Injecting delay is a useful approach to

assess a system [11], [12] as delays can arise due to multiple

performance (such as network congestion) and reliability (such

as link repair) failures. Our delay injection experiments help

characterize the performance and reliability properties of a

hardware disaggregated memory system. We extrapolate the

characterization to suggest future research directions for the

evolution of resource management and reliability mechanisms

in hardware disaggregated memory beyond the rack-scale.

Our key findings and insights are following:

• Current processor architecture is resilient to timeout-
induced failures introduced by tail network latency.
While very high network delay leads to OS-level timeouts

and system crashes, we find that such delay is beyond the

tail latency observed in current datacenter network fabrics.

For example, we find that introducing additional network

delay which corresponds to the 99th percentile datacenter

network latency [13] to a hardware disaggregated memory

system, leads to performance degradation but does not

cause any system crashes. Therefore, improving processor

resilience to delay-induced failures is not of immediate

concern for beyond rack-scale memory disaggregation.

• Resource management mechanisms for disaggregated
memory need to enable Quality-of-Service (QoS) features.
Impact of network delay on application-level metrics (such

as request completion rate and job completion times)

is drastically different across workloads. For example,

a delay injection of 30 μs leads to a performance

degradation of less than 1% in Redis, an in-memory

key-value store, but an identical delay injection in the

Graph 500 benchmark leads to a 7× job completion

time increase. As the impact of additional delay is

substantially different for different applications, future

resource allocation mechanisms need to enable Quality-

1221

2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-6654-9747-3/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPSW55747.2022.00210

20
22

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
78

-1
-6

65
4-

97
47

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
SW

55
74

7.
20

22
.0

02
10

Authorized licensed use limited to: University of Illinois. Downloaded on September 30,2022 at 18:48:34 UTC from IEEE Xplore. Restrictions apply.

Mem AccessNetwork
Packet

LLC Miss SHARED
NETWORK

Borrower Node Lender Node

CPU

CPUUnmodified OS
Unmodified Apps

Unmodified OS
Unmodified Apps

Network
PacketCCI

Local Memory
Disaggregated Memory
Cache Coherent InterconnectCCI

CCI
Disaggregated
Memory NIC

Disaggregated
Memory NIC

Figure 1: Overview of a remote memory access in a hardware disaggregated memory borrowing system.

of-Service (QoS) features to support workloads that are

sensitive to memory access latency increase. Examples

of such resource allocation mechanisms include page

migration at the operating system, congestion control and

packet scheduling at the network, and remote memory

allocations at the control plane.

• Impact of network latency dominates over memory con-
tention at lender node. Multiple concurrently running

applications at the lender node do not lead to a significant

performance impact on disaggregated memory at the bor-

rower node. As memory bus bandwidth is typically much

higher than network bandwidth, the network continues to

remain the bottleneck even when memory is shared. These

experimental insights can be used to improve the dynamic

assignment of disaggregated memory. For example, a

lender node with multiple running applications and an

idle lender node can be equally viable candidates for

remote memory reservation and access.

II. BACKGROUND

Several academic and industry prototypes have been pro-

posed to enable memory disaggregation by making changes to

the application [14], operating system [15], and hardware [1].

While each approach comes with its own advantages, we focus

on a hardware-based approach for memory disaggregation as

it has the lowest memory access latency and does not need

modifications to applications and the operating system kernel.

A. A model for hardware memory disaggregation

State-of-the-art architectures [1], [2] for hardware memory

disaggregation in the datacenter have proposed using cache

lines as basic blocks for remote memory accesses. Using

cache-line-sized memory accesses has gained traction as it

allows finer-grained access to memory (compared to pages)

and avoids expensive page faults. Enabling transfer via cache

lines involves: 1) Reserving memory at a datacenter node for

remote access, and 2) Enabling processor cache miss redirection

to access the reserved remote memory. Decisions involved in

reserving memory and configuring access to remote memory

are performed by a control plane.

Remote Memory Reservation: Each node in the system is

designated a role of either “borrower” (borrowing memory)

or “lender” (lending memory) node by the control plane. Role

assignment is dynamic and dependent on real-time memory

availability and demand of each node across the datacenter.

Additionally, the control plane decides the size of memory

reservations at each lender node.

Remote Memory Access: Figure 1 shows a representation of a

remote memory access from the borrower node CPU (left) to

memory at the lender node (right). We describe the memory

access path in further detail. Any remote memory address

accessed by the borrower node CPU that is not present in the

last-level cache is sent to a custom disaggregated memory NIC
via a cache-coherent interconnect protocol such as CXL [4] or

OpenCAPI [6]. The disaggregated memory NIC is implemented

via a custom ASIC or FPGA that transforms the cache miss

into a network packet by encapsulating with a packet header

for network transmission (such as the destination network

address, checksum, etc.). Additionally, address translation is

implemented to convert addresses at the borrower node to

corresponding addresses at the lender node. The network packet

containing the cache miss is then transmitted on a network

shared between multiple borrower-lender node pairs and can

include intermediate switches to support a large-scale datacenter.

The network packet reaches the lender node at the disaggregated

memory NIC that extracts out the address information. The

address is accessed from the local memory of the lender node

again via a cache-coherence protocol. The corresponding data

is then returned to the borrower node by reversing the entire

path. Note that the operating system kernel and applications at

the borrower and lender node do not need to be modified to

access disaggregated memory.

B. Challenges in scaling current architecture

State-of-the-art prototypes for hardware memory disaggre-

gation are limited to the rack-scale as they use direct point-to-

point links (instead of a shared network as described in §II-A)

between borrower and lender nodes [1]. Scaling beyond the

rack-scale can be advantageous as it can help fully realize the

benefits of memory disaggregation such as further improved

memory utilization. Attempts are being made to enable the

transition beyond rack-scale with the introduction of switching

support such as the CXL interconnect [4] and the Gen-Z

consortium [16]. The CXL standard provides a cache-coherent

interconnect between CPU and accelerators/memory, while the

GenZ standard provides a memory-centric server interconnect

across nodes. The recent merging of the Gen-Z specification

into CXL [17] has sent a clear sign of disaggregation of

1222

Authorized licensed use limited to: University of Illinois. Downloaded on September 30,2022 at 18:48:34 UTC from IEEE Xplore. Restrictions apply.

memory being pushed beyond the limits of the single machine

and rack. However, the introduction of a switched network

brings additional challenges due to new failure modes (such

as network congestion), some of which manifest as increased

network latency [18]. Additionally, the use of a large-scale

and shared disaggregated memory system introduces resource

contention due to multi-tenancy (i.e. multiple applications from

different nodes competing for the same lender node).

C. Addressing the Gap

In this work, we characterize a rack-scale hardware disag-

gregated memory prototype [1] under variable network latency

and different contention scenarios to understand the behaviour

of a beyond rack-scale hardware disaggregated memory system

with a switched network. To emulate higher network latency,

we have developed a delay injection framework that adds

specified delay values to remote memory access (as described

in §III). To create contention, we vary concurrency (i.e. number

of applications running simultaneously) at both lender and

borrower nodes (as described in §IV-E). Our characterization

results provide insights for designing future resource allocation

and reliability mechanisms in beyond rack-scale disaggregation

with a switched network.

III. DELAY INJECTION

In this section, we describe ThymesisFlow, the hardware

disaggregated memory system that we use as a characterization

testbed. We also discuss implementation details of the delay

injection framework that we use to synthetically emulate higher

network latency.

A. Prototype System

We use ThymesisFlow [1], an open-source prototype for

hardware memory disaggregation. ThymesisFlow implements

a hardware-software co-designed memory disaggregation in-

terconnect on top of the POWER9™ architecture, by directly

interfacing the memory bus via the OpenCAPI cache coherence

protocol. The prototype is composed of two IBM Power

System AC922 nodes. Each node features a dual socket

POWER9™ CPU (32 physical cores and 128 parallel hardware

threads) and 512GB of RAM. Both nodes are equipped with

an AlphaData 9V3 card that features a Xilinx Ultrascale FPGA

that implements the OpenCAPI stack and the ThymesisFlow

interconnect. Our prototype implements a two-node version of

the disaggregated memory model described in §II-A where:

1) the shared network is replaced by a 100Gb/s point-to-point

connection over a copper cable, and 2) the disaggregated

memory NIC is deployed on the AlphaData 9V3 cards. On the

software side, we rely on libthymesisflow, a user-space library

part of the ThymesysFlow project that configures the FPGAs,

and takes care of reserving the memory at the lender node and

hot-plugging it to the borrower node. The memory borrowed

is dedicated to the borrower node, and it is not accessed from

any process running on the lender node.

B. Delay Injection Implementation

We have created a delay injection framework that syn-

thetically emulates the delay between consecutive memory

requests. To synthetically generate delays, we introduce an

additional module between the routing and multiplexer modules

at the compute node egress in the ThymesisFlow prototype.

In the context of Figure 1, the delay injection module is part

of the borrower’s disaggregated memory NIC. The module

introduces delay while obeying the AXI4-Stream [19] protocol

conventions, used to interconnect the internal blocks of the

ThymesisFlow hardware design. The AXI4-Stream data transfer

is based on a two-way handshake mechanism of VALID and

READY binary signals that indicate whether data is available

and can be processed by the module downstream. Both READY
and VALID signals need to be high for the data to be read and

further processed. Our key modification was to keep the VALID
signal unchanged and set the modified READYNEW signal to

be high once every PERIOD FPGA clock cycles obeying (1).

In (1), COUNTER is the number of FPGA clock cycles that

have elapsed since system start and READYOLD is the original

unmodified READY signal.

READYNEW = READYOLD &(COUNTER%PERIOD==0) (1)

Effectively, a transaction is allowed to proceed once every

PERIOD cycles if READYOLD and VALID signals remain high.

We test our delay injection framework along with the

STREAM benchmark at varying values of PERIOD. Using our

delay injections, we: 1) validate that our injection framework

is able to emulate network latency at levels observed in

datacenter network fabrics, 2) find strong linear correlation

between PERIOD and application-level latency measurements,

and 3) observe that the overall system continues to have a

constant bandwidth-delay product (BDP) across different delay

injections. We elaborate on these results further in §IV.

IV. EVALUATION

In our evaluation, we first validate the correctness of our

delay injection framework (described in §III) in §IV-B. Next,

we use the delay injection framework to assess system resilience

and application performance degradation in §IV-C and §IV-D.

Additionally, we evaluate the effects of application concur-

rency (i.e. number of simultaneously running applications) at

borrower and lender nodes in §IV-E. Using our results, we

present insights for design of resource control and reliability

mechanisms in future hardware disaggregated memory systems

(at the end of each subsection).

A. Benchmarks

We consider benchmarks that represent applications with di-

verse memory bandwidth demands and latency requirements. In

this section, we describe each of these benchmarks and specific

configurations used to execute them in the ThymesisFlow

prototype with remote memory access.

STREAM: STREAM [20] is a memory testing benchmark that

measures memory access times and bandwidth for commonly

used kernels. We configured STREAM to use 10 million array

elements, requiring a total memory of 0.2 GiB, which is beyond

1223

Authorized licensed use limited to: University of Illinois. Downloaded on September 30,2022 at 18:48:34 UTC from IEEE Xplore. Restrictions apply.

0

10

20

30

40

1 15 25 35 45

La
te

nc
y

(u
s)

PERIOD

Copy
Add
Triad
Scale

Figure 2: Latency measured by

STREAM for varying delay injection.

0

5000

10000

15000

1 15 25 35 45

Ba
nd

w
id

th
 (M

B/
s)

PERIOD

Copy
Add
Triad
Scale

Figure 3: Bandwidth measured by

STREAM for varying delay injection.

1

10

100

1000

1 10 100 1000

La
te

nc
y

(u
s)

PERIOD

Copy
Add
Triad
Scale

Figure 4: System reliability testing under

heavy delay injection.

the total cache size of 120 MiB on each node. Each benchmark

run executes four kernels, i.e., “copy”, “scale”, “add” and

“triad”. “copy” reads/writes 16 bytes (1 read, 1 write ops) of

memory per iteration, performing no floating point operations

(FLOPs), “scale” reads/writes the same amount of memory

with the same number of operations but it performs 1 FLOP

per iteration, “add” accesses 24 bytes of memory (2 read and

1 write ops) and executes 1 FLOP per iteration, and “triad”

accesses 24 bytes of memory (2 read and 1 write ops) executing

2 FLOPs per iteration.

Redis: Redis [21] is an in-memory data structure store used as a

database, cache, and message broker. To improve performance,

Redis works with an in-memory dataset. We test performance

of Redis with the Memtier [22] benchmark that generates data

for a variety of structures, performs stress testing, and helps

understand performance limits. We configured Memtier to use

4 threads with 50 connections per thread that cumulatively

send 10000 requests per client. The Memtier benchmark along

with Redis uses a working memory set of size ∼4 GB.

Graph 500: The Graph500 benchmark [23] constructs large

graphs and performs multiple iterations of Breadth First Search

(BFS) and Single Source Shortest Path (SSSP) on a generated

graph. We use a problem size of 20 with a edge factor of 16

with the Graph500 benchmark. In this configuration, Graph

500 uses a working memory set of size ∼1 GB.

B. Validating Delay Injection

To validate the functionality of the delay injection framework,

we run STREAM on the borrower node while keeping the

lender node idle, and introduce varying levels of delay via our

delay injection framework. Figure 2 shows the variation in

measured STREAM latency for varying PERIOD values set

via the delay injection framework. For the smallest PERIOD =

1, the system effectively behaves as the vanilla ThymesisFlow

prototype as all valid transactions pass through without any

waiting. Other values of PERIOD lead to varying levels of

delay injection and STREAM-measured latency lies between

1.2–150 μs. The measured range of latency corresponds to the

[0-90th]-percentile network latency in production datacenter

networks [13], [24]. Thus, our delay injection framework is able

to generate sufficiently high latency values to enable realistic

emulations of network conditions.

Figure 3 shows variation in measured STREAM bandwidth

for varying PERIOD values set via the delay injection frame-

work. We find that consumed bandwidth rapidly decreases

with additional delay and the bandwidth-delay product remains

roughly constant across all the delay injections with a value

equal to ∼16.5 kB.

C. Resilience Assesment

In this set of experiments, we intend to assess the potential

resilience limits of the processor and applications running

in the context of a hardware disaggregated memory system.

Our experimental setup is identical to the setup described

in §IV-B where we run a single STREAM instance on the

borrower node while keeping the lender node idle. We use

the delay injection framework (described in Section III) to

add exponentially increasing levels of delay to stress test our

system. Figure 4 shows the impact of increasing latency via

increasing PERIOD on latency measured by the STREAM

benchmark. At PERIOD = 1000, STREAM is able to run to

completion and measures the average memory access time to be

close to 400μs. Despite introducing such high delay, the system

stack at the borrower node (including the POWER9™ CPU,

OpenCAPI, and the FPGA) continues to remain functional.

Thus, we infer that the CPU is resilient to high values of delay.

When we increase PERIOD further and set it to 10000, the

ThymesisFlow compute-side FPGA is no longer detected due

to timeout and the disaggregated memory cannot be attached.

However, such a high value of PERIOD corresponds to a delay

of 4 ms, which is far beyond the 99th percentile tail network

latency as reported in existing datacenters [13], [24].

PERIOD=1 PERIOD=1000

Redis 1.01x 1.73x
Graph500 BFS 6x 2209x
Graph500 SSSP 5.3x 1800x

Table I: Impact of high delay on application performance.

We also evaluate the impact of high delay on application

performance as shown in Table I. To estimate performance

degradation, we use the ratio between the completion time on

disaggregated memory under delay injection and the original

completion time on local memory. For some applications

(Graph 500 and STREAM), we find that extremely high

delay leads to severe performance degradation that makes

1224

Authorized licensed use limited to: University of Illinois. Downloaded on September 30,2022 at 18:48:34 UTC from IEEE Xplore. Restrictions apply.

0

5

10

15

1 10 20 30 40

D
eg
ra
da
tio

n

PERIOD

Redis BFS SSSP

Figure 5: Impact of delay on application

performance.

0

5000

10000

15000

1 2 3 4 5 6

Ba
nd

w
id

th
 (M

B/
s)

Concurrency

Add
Copy
Scale
Triad

Figure 6: Contention for bandwidth at

borrower node.

0

5000

10000

15000

1 2 3 4 5 6

Ba
nd

w
id

th
 (M

B/
s)

Concurrency

Add
Copy
Scale
Triad

Figure 7: Contention for bandwidth at

lender node.

the application completely unresponsive. For example, the

performance of Graph 500 degrades by almost 2209× compared

to local memory performance. Such an extreme performance

hit effectively renders the application unusable and could

violate service-level agreements (SLAs) provided by the

datacenter operator.

Takeaway: While the CPU is resilient to extremely high

delay values, severe performance degradation could violate

SLAs for applications.

D. Application Performance Impact

We measure the impact of varying delay on application

performance to understand the end-to-end impact of higher

network latency. We define application performance on a per-

application basis. For example, the number of requests served

per second and job completion times are used as metrics to

measure the performance of Redis and Graph 500, respectively.

To calculate performance degradation, we use the ratio between

the degraded runtime due to delay and the original baseline

runtime when running on vanilla ThymesisFlow with disaggre-

gated memory. Figure 5 shows the performance degradation due

to delay by setting different values of PERIOD (as discussed

in §III). We observe that application performance degradation

can be significantly different for different applications. For

example, the performance degradation of Redis is 1.01× at

high delay values, effectively amounting to a loss of less than

1%. However, the performance degradation of both Graph

500 benchmarks (BFS and SSSP) is upto 10.7× and 8× ,

which is significantly higher than Redis. The difference in

performance degradation arises because Redis serves requests

via the network stack which adds significant serving overhead.

While memory access time is also a component of the end-

to-end latency, it is negligible compared to the network stack

overheads that act as the limiting factor. On the other hand,

the Graph 500 benchmarks are almost completely limited by

memory and compute, and suffer from much more severe

performance degradation.

A hardware disaggregated memory datacenter will run a

mix of applications that have different sensitivity to memory

access latency. During periods of increased network latency,

applications with higher sensitivity to remote memory access

latency can benefit from additional resource allocation such

as network packet prioritization or page migration to local

memory. Therefore, resource allocation mechanisms across the

system stack should enable Quality-of-Service (QoS) features

to benefit sensitive applications. Examples of such resource

control mechanisms include: memory allocation at the control

plane, congestion control at the network, and page migration

at the operating system.

Takeaway: Application performance degradation under

increased remote memory access latency is variable and

warrants including QoS features in resource control mecha-

nisms.

E. Resource Contention

We run multiple memory contending applications concur-

rently to understand the impact of contention on application

performance at both the borrower and lender nodes. Specifically,

we run multiple instances of the STREAM benchmark in the

following two configurations:

• Memory Contention at the Borrower Node (MCBN):
All instances of STREAM run on the borrower node and

use disaggregated memory from the lender node.

• Memory Contention at the Lender Node (MCLN): All

but one instance of STREAM run on the lender node. A

single instance of STREAM runs on the borrower node

and uses disaggregated memory from the lender node,

thus contending with other STREAM instances running

on the lender node.

Figure 6 and Figure 7 show available bandwidth reported

by STREAM running at the borrower node in the MCBN

and MCLN scenarios respectively. We find that in the case

of MCLN, the available bandwidth on the borrower node is

independent of the number of concurrent running instances of

STREAM. The network bandwidth acts as a greater bottleneck

compared to decrease in available memory bus bandwidth at

the lender node. Therefore, the impact of memory contention at

the lender node does not lead to significant drop in performance

at the borrower node. In general, we expect the lender node

contention to be insignificant compared to the network as

memory bus bandwidth is significantly higher compared to

network bandwidth (100s of GB/s vs. 100s of Gb/s).

However, in the case of MCBN, multiple STREAM instances

contend on the same borrower node and there is an equal divi-

1225

Authorized licensed use limited to: University of Illinois. Downloaded on September 30,2022 at 18:48:34 UTC from IEEE Xplore. Restrictions apply.

sion of bandwidth amongst the competing STREAM instances

as they compete for the bottleneck network bandwidth.

The insight that lender-side contention for memory is

relatively insignificant can be used to drive better memory

allocation decisions at the control plane. For example, a lender

node with multiple running applications and an idle lender

node can be equally viable candidates for remote memory

reservation and access.

Takeaway: Memory allocation mechanisms can be

contention-aware to take advantage of variable contention

at borrower and lender nodes.

V. DISCUSSION

Limitations of the delay injection framework. Our delay

injection framework injects a near-constant delay and does not

create variability across memory accesses. However, production

datacenter networks have variable latencies with significant

variation at short timescales. In this paper, we demonstrate the

effects of variation in a coarse-grained manner by changing

injected delay values between two application runs. However,

injected delay for a single application is kept constant. It would

be interesting to explore the impact on application performance

when the delay varies at shorter timescales (i.e. within an

application run).

Applicability to alternate models of memory disaggregation.
An alternate model of hardware memory disaggregation is

memory pooling where the dedicated memory is mananged by a

controller without any attached CPUs. If disaggregated memory

is deployed with memory pools, results presented in §IV-E

could be significantly different. For instance, the memory

bandwidth contention between multiple applications could be

significantly higher depending on the available bandwidth of

each memory pool and the bottleneck could shift from the

network to the memory pool itself.

Differences between cache-coherence protocols. Our test

system ThymesisFlow uses the OpenCAPI protocol to redirect

cache misses to the network. A competing cache coherent

interconnect for memory disaggregation is the CXL [4] standard

which is similar to OpenCAPI but has some major differences.

CXL supports native packet switching on the network and

hence does not rely on Ethernet or Infiniband networks. Unlike

OpenCAPI, CXL works only with physical addresses at the

compute and memory nodes. Additional experimentation is

required to understand our results in the context of a CXL-based

hardware memory disaggregated system.

VI. RELATED WORK

Remote Memory Systems. Works on distributed shared

memory [25]–[29] provide shared memory and cache coherence

across nodes. In contrast, hardware memory disaggregation

leverages local cache coherence within a single host to expose

remote memory to applications without any code changes.

The availability of low-latency networking has recently made

remote memory practical, resulting in a resurgence of research

in this area [15], [30]–[33]. However, these works, including

disk swapping [34] rely on page faults and page-based tracking,

which severely limits their performance. Some remote memory

systems [14], [35]–[37] use an object-based interface that

avoids the virtual memory subsystem’s overhead, but these

systems require modifications of the application code. Hardware

memory disaggregation avoids virtual memory overhead by

using the local cache coherence traffic to access remote data

while remaining transparent to applications.

Impact of Memory Latency on Applications. Previous work

has explored the impact of memory bandwidth and latency on

application performance. Using the right hardware performance

counters to analyze the performance of memory subsystem has

been studied. For example, in [38] performance counters are

identified to measure the usage of available bandwidth and

the percentage of cycles consumed by the components in the

memory hierarchy. However, the work does not address the

measurement of memory request latency. Workload memory

characterization has also been studied extensively. For example,

a performance model is proposed in [39] to evaluate the

workloads’ sensitivity towards memory bandwidth and memory

access latency. The model focuses on the characterization of

different types of workloads in a static offline environment.

However, the static evaluation does not account for the

complexity of runtime memory subsystem performance that

impacts the application performance. An analytical memory

model is presented in [40] to predict the performance of a

program on different processors. The model uses static analysis

based on reuse distances to estimate the memory latencies at

different hierarchies of the memory subsystem. However, the

static analysis does not account for the varying runtime factors

such as interference from other co-located workloads.

Memory Fault Injection. There has been a large body of work

that tests the impact of DRAM errors on operating system

and application performance [12], [41]. To the best of our

knowledge, no work injects latency to memory requests at an

order of magnitude close to network latency.

VII. CONCLUSION AND FUTURE WORK

In this work, we characterize a hardware memory disaggre-

gated prototype under emulated network delay and performance

contention due to multi-tenancy. Our results suggest directions

to explore for future reliability and resource management

mechanisms in hardware disaggregated memory. As a part of

future work, we aim to improve the delay injection framework

by enabling injecting delays according to a distribution instead

of fixed values. Additionally, we aim to integrate our insights

into resource management mechanisms to improve system

performance and reliability.

VIII. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable

comments that improved the paper. This work is partially

supported by the National Science Foundation (NSF) under

grant No. CCF 20-29049; by the IBM-ILLINOIS Center for

Cognitive Computing Systems Research (C3SR), a research

collaboration that is part of the IBM AI Horizon Network; and

by the IBM-ILLINOIS Discovery Accelerator Institute (IIDAI).

1226

Authorized licensed use limited to: University of Illinois. Downloaded on September 30,2022 at 18:48:34 UTC from IEEE Xplore. Restrictions apply.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the NSF or IBM.

REFERENCES

[1] “ThymesisFlow Home Page,” https://github.com/OpenCAPI/ThymesisFlow/,
accessed: 2022-02-08.

[2] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu, and
A. Kolli, “Rethinking software runtimes for disaggregated memory,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
79–92.

[3] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang, “Clio: A hardware-
software co-designed disaggregated memory system,” arXiv preprint
arXiv:2108.03492, 2021.

[4] “Compute Express Link,” https://www.computeexpresslink.org/, accessed:
2021-07-24.

[5] “Ccix,” https://www.ccixconsortium.com/, accessed: 2021-07-24.
[6] “opencapi,” https://opencapi.org/, accessed: 2021-07-24.
[7] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand,

M. Harchol-Balter, and J. Wilkes, “Borg: the next generation,” in
Proceedings of the Fifteenth European Conference on Computer Systems,
2020, pp. 1–14.

[8] Y. Zhang, C. Ruan, C. Li, X. Yang, W. Cao, F. Li, B. Wang, J. Fang,
Y. Wang, J. Huo et al., “Towards cost-effective and elastic cloud database
deployment via memory disaggregation,” Proceedings of the VLDB
Endowment, vol. 14, no. 10, pp. 1900–1912, 2021.

[9] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica et al.,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[10] L. Bergstrom, “Measuring numa effects with the stream benchmark,”
arXiv preprint arXiv:1103.3225, 2011.

[11] H. A. Rosenberg and K. G. Shin, “Software fault injection and its
application in distributed systems,” in FTCS-23 The Twenty-Third
International Symposium on Fault-Tolerant Computing. IEEE, 1993,
pp. 208–217.

[12] S. Han, K. G. Shin, and H. A. Rosenberg, “Doctor: An integrated
software fault injection environment for distributed real-time systems,”
in Proceedings of 1995 IEEE International Computer Performance and
Dependability Symposium. IEEE, 1995, pp. 204–213.

[13] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang,
B. Pang, H. Chen et al., “Pingmesh: A large-scale system for data center
network latency measurement and analysis,” in Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication,
2015, pp. 139–152.

[14] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “{FaRM}: Fast
remote memory,” in 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), 2014, pp. 401–414.

[15] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “{LegoOS}: A disseminated,
distributed {OS} for hardware resource disaggregation,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), 2018, pp. 69–87.

[16] “GenZ consortium,” https://genzconsortium.org/, accessed: 2022-02-08.
[17] “CXL Consortium & Gen-Z Consortium Sign Let-

ter of Intent to Advance Interconnect Technology,”
https://www.computeexpresslink.org/post/exploring-the-future-cxl-
consortium-gen-z-consortium, accessed: 2022-02-08.

[18] S. Jha, A. Patke, J. Brandt, A. Gentile, B. Lim, M. Showerman, G. Bauer,
L. Kaplan, Z. Kalbarczyk, W. Kramer et al., “Measuring congestion
in high-performance datacenter interconnects,” in 17th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
20), 2020, pp. 37–57.

[19] “AMBA 4 AXI4-Stream Protocol Specification,”
https://developer.arm.com/documentation/ihi0051/a/Introduction/About-
the-AXI4-Stream-protocol, accessed: 2022-02-10.

[20] J. D. McCalpin, “Stream: Sustainable memory bandwidth in high
performance computers,” University of Virginia, Charlottesville,
Virginia, Tech. Rep., 1991-2007, a continually updated
technical report. http://www.cs.virginia.edu/stream/. [Online]. Available:
http://www.cs.virginia.edu/stream/

[21] J. Carlson, Redis in action. Simon and Schuster, 2013.
[22] “Memtier Redis benchmark,” https://github.com/RedisLabs/memtier_benchmark,

accessed: 2022-02-10.

[23] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” Cray Users Group (CUG), vol. 19, pp. 45–74, 2010.

[24] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu, B. Montazeri,
Y. Wang, K. Springborn, C. Alfeld, M. Ryan et al., “Swift: Delay is simple
and effective for congestion control in the datacenter,” in Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, 2020, pp. 514–528.

[25] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
W. Yu, and W. Zwaenepoel, “Treadmarks: Shared memory computing on
networks of workstations,” Computer, vol. 29, no. 2, pp. 18–28, 1996.

[26] J. K. Bennett, J. B. Carter, and W. Zwaenepoel, “Munin: Distributed
shared memory based on type-specific memory coherence,” in Proceed-
ings of the second ACM SIGPLAN symposium on Principles & practice
of parallel programming, 1990, pp. 168–176.

[27] K. Li and P. Hudak, “Memory coherence in shared virtual memory
systems,” ACM Transactions on Computer Systems (TOCS), vol. 7, no. 4,
pp. 321–359, 1989.

[28] D. J. Scales, K. Gharachorloo, and C. A. Thekkath, “Shasta: A low
overhead, software-only approach for supporting fine-grain shared
memory,” in Proceedings of the seventh international conference on
Architectural support for programming languages and operating systems,
1996, pp. 174–185.

[29] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus, and
D. A. Wood, “Fine-grain access control for distributed shared memory,”
in Proceedings of the sixth international conference on Architectural
support for programming languages and operating systems, 1994, pp.
297–306.

[30] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, S. No-
vakovic, A. Ramanathan, P. Subrahmanyam, L. Suresh, K. Tati et al.,
“Remote regions: a simple abstraction for remote memory,” in 2018
USENIX Annual Technical Conference (USENIX ATC 18), 2018, pp.
775–787.

[31] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,
A. Panda, S. Ratnasamy, and S. Shenker, “Can far memory improve job
throughput?” in Proceedings of the Fifteenth European Conference on
Computer Systems, 2020, pp. 1–16.

[32] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient
memory disaggregation with infiniswap,” in 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), 2017, pp.
649–667.

[33] H. Al Maruf and M. Chowdhury, “Effectively prefetching remote memory
with leap,” in 2020 USENIX Annual Technical Conference (USENIX ATC
20), 2020, pp. 843–857.

[34] S. F. Kaplan, L. A. McGeoch, and M. F. Cole, “Adaptive caching for
demand prepaging,” ACM SIGPLAN Notices, vol. 38, no. 2 supplement,
pp. 114–126, 2002.

[35] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzelmann,
A. Shamis, A. Badam, and M. Castro, “No compromises: distributed
transactions with consistency, availability, and performance,” in Proceed-
ings of the 25th symposium on operating systems principles, 2015, pp.
54–70.

[36] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and
M. Oskin, “{Latency-Tolerant} software distributed shared memory,”
in 2015 USENIX Annual Technical Conference (USENIX ATC 15), 2015,
pp. 291–305.

[37] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay,
“{AIFM}:{High-Performance},{Application-Integrated} far memory,” in
14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20), 2020, pp. 315–332.

[38] D. Molka, R. Schöne, D. Hackenberg, and W. E. Nagel, “Detecting
memory-boundedness with hardware performance counters,” in Proceed-
ings of the 8th ACM/SPEC on International Conference on Performance
Engineering, 2017, pp. 27–38.

[39] R. Clapp, M. Dimitrov, K. Kumar, V. Viswanathan, and T. Willhalm,
“Quantifying the performance impact of memory latency and bandwidth
for big data workloads,” in 2015 IEEE International Symposium on
Workload Characterization. IEEE, 2015, pp. 213–224.

[40] G. Chennupati, N. Santhi, and S. Eidenbenz, “Scalable performance
prediction of codes with memory hierarchy and pipelines,” in Proceedings
of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, 2019, pp. 13–24.

[41] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

1227

Authorized licensed use limited to: University of Illinois. Downloaded on September 30,2022 at 18:48:34 UTC from IEEE Xplore. Restrictions apply.

