2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) | 978-1-6654-9747-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/IPDPSW55747.2022.00210

2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Evaluating Hardware Memory Disaggregation under
Delay and Contention

Archit Patke*, Haoran Qiu*, Saurabh Jhat, Srikumar VenugopalT, Michele Gazzetti',
Christian Pintof, Zbigniew Kalbarczyk*, Ravishankar Iyer *

*University of Illinois at Urbana-Champaign, USA
{IBM Research, USA
1IBM Research, Ireland

Abstract—Hardware memory disaggregation is an emerging
trend in datacenters that provides access to remote memory as
part of a shared pool or unused memory on machines across
the network. Memory disaggregation aims to improve memory
utilization and scale memory-intensive applications. Current state-
of-the-art prototypes have shown that hardware disaggregated
memory is a reality at the rack-scale. However, the memory
utilization benefits of memory disaggregation can only be fully
realized at larger scales enabled by a datacenter-wide network.
Introduction of a datacenter network results in new performance
and reliability failures that may manifest as higher network
latency. Additionally, sharing of the network introduces new
points of contention between multiple applications. In this work,
we characterize the impact of variable network latency and
contention in an open-source hardware disaggregated memory
prototype — ThymesisFlow. To support our characterization, we
have developed a delay injection framework that introduces delays
in remote memory access to emulate network latency. Based
on the characterization results, we develop insights into how
reliability and resource allocation mechanisms should evolve to
support hardware memory disaggregation beyond rack-scale in
datacenters.

I. INTRODUCTION

Hardware memory disaggregation [1]-[3] is an emerging
trend in datacenters that provides access to remote memory as
part of a shared pool, or by borrowing unused memory from re-
mote machines across the network. To enable memory accesses
across the network, processor cache misses are re-directed
on a cache-coherent interconnect [4]-[6] to a special remote
memory controller that further forwards the cache misses on the
network. Memory disaggregation has multiple advantages as it
can potentially 1) increase utilization of data center memory by
upto 30-40% [7], and 2) scale memory-intensive applications
(such as in-memory databases [8], parallel data processing
frameworks [9], and HPC applications [10]) by provisioning
them with additional memory in a cost-effective manner.

Current state-of-the-art prototypes ! have shown that hard-
ware disaggregated memory is a reality at the rack-scale [1].
However, scaling disaggregation further to fully realize its

'We consider the memory borrowing model for disaggregation, where
compute nodes can borrow unutilized memory from other datacenter nodes.

An alternative model is memory pooling where nodes access CPU-less memory
devices over the network (as discussed in §V)

benefits can be challenging because of higher and dynamic
memory access latency imposed by the datacenter network.
In this work, we characterize the impact of contention and
variable network latency in a rack-scale hardware disaggregated
memory prototype — ThymesisFlow [1]. To support our
characterization, we have developed a delay injector that delays
outgoing remote memory requests to emulate delays associated
with the network. Injecting delay is a useful approach to
assess a system [11], [12] as delays can arise due to multiple
performance (such as network congestion) and reliability (such
as link repair) failures. Our delay injection experiments help
characterize the performance and reliability properties of a
hardware disaggregated memory system. We extrapolate the
characterization to suggest future research directions for the
evolution of resource management and reliability mechanisms
in hardware disaggregated memory beyond the rack-scale.
Our key findings and insights are following:

o Current processor architecture is resilient to timeout-
induced failures introduced by tail network latency.
While very high network delay leads to OS-level timeouts
and system crashes, we find that such delay is beyond the
tail latency observed in current datacenter network fabrics.
For example, we find that introducing additional network
delay which corresponds to the 99th percentile datacenter
network latency [13] to a hardware disaggregated memory
system, leads to performance degradation but does not
cause any system crashes. Therefore, improving processor
resilience to delay-induced failures is not of immediate
concern for beyond rack-scale memory disaggregation.

e Resource management mechanisms for disaggregated
memory need to enable Quality-of-Service (QoS) features.
Impact of network delay on application-level metrics (such
as request completion rate and job completion times)
is drastically different across workloads. For example,
a delay injection of 30 pus leads to a performance
degradation of less than 1% in Redis, an in-memory
key-value store, but an identical delay injection in the
Graph 500 benchmark leads to a 7x job completion
time increase. As the impact of additional delay is
substantially different for different applications, future
resource allocation mechanisms need to enable Quality-

978-1-6654-9747-3/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPSW55747.2022.00210

1221

Authorized licensed use limited to: University of lllinois. Downloaded on September 30,2022 at 18:48:34 UTC from IEEE Xplore. Restrictions apply.

Borrower Node

Lender Node

LLC Miss Network

Disaggregated
E67CE Packet

CPU Memory NIC

SHARED
NETWORK

Network !
Packet

Disaggregated Mem Access

Memory NIC

Unmodified OS
Unmodified Apps

[] Local Memory

[Disaggregated Memory
Cache Coherent Interconnect

Unmodified OS
Unmodified Apps

Figure 1: Overview of a remote memory access in a hardware disaggregated memory borrowing system.

of-Service (QoS) features to support workloads that are
sensitive to memory access latency increase. Examples
of such resource allocation mechanisms include page
migration at the operating system, congestion control and
packet scheduling at the network, and remote memory
allocations at the control plane.

Impact of network latency dominates over memory con-
tention at lender node. Multiple concurrently running
applications at the lender node do not lead to a significant
performance impact on disaggregated memory at the bor-
rower node. As memory bus bandwidth is typically much
higher than network bandwidth, the network continues to
remain the bottleneck even when memory is shared. These
experimental insights can be used to improve the dynamic
assignment of disaggregated memory. For example, a
lender node with multiple running applications and an
idle lender node can be equally viable candidates for
remote memory reservation and access.

II. BACKGROUND

Several academic and industry prototypes have been pro-
posed to enable memory disaggregation by making changes to
the application [14], operating system [15], and hardware [1].
While each approach comes with its own advantages, we focus
on a hardware-based approach for memory disaggregation as
it has the lowest memory access latency and does not need
modifications to applications and the operating system kernel.

A. A model for hardware memory disaggregation

State-of-the-art architectures [1], [2] for hardware memory
disaggregation in the datacenter have proposed using cache
lines as basic blocks for remote memory accesses. Using
cache-line-sized memory accesses has gained traction as it
allows finer-grained access to memory (compared to pages)
and avoids expensive page faults. Enabling transfer via cache
lines involves: 1) Reserving memory at a datacenter node for
remote access, and 2) Enabling processor cache miss redirection
to access the reserved remote memory. Decisions involved in
reserving memory and configuring access to remote memory
are performed by a control plane.

Remote Memory Reservation: Each node in the system is
designated a role of either “borrower” (borrowing memory)
or “lender” (lending memory) node by the control plane. Role
assignment is dynamic and dependent on real-time memory

1222

availability and demand of each node across the datacenter.
Additionally, the control plane decides the size of memory
reservations at each lender node.

Remote Memory Access: Figure 1 shows a representation of a
remote memory access from the borrower node CPU (left) to
memory at the lender node (right). We describe the memory
access path in further detail. Any remote memory address
accessed by the borrower node CPU that is not present in the
last-level cache is sent to a custom disaggregated memory NIC
via a cache-coherent interconnect protocol such as CXL [4] or
OpenCAPI [6]. The disaggregated memory NIC is implemented
via a custom ASIC or FPGA that transforms the cache miss
into a network packet by encapsulating with a packet header
for network transmission (such as the destination network
address, checksum, etc.). Additionally, address translation is
implemented to convert addresses at the borrower node to
corresponding addresses at the lender node. The network packet
containing the cache miss is then transmitted on a network
shared between multiple borrower-lender node pairs and can
include intermediate switches to support a large-scale datacenter.
The network packet reaches the lender node at the disaggregated
memory NIC that extracts out the address information. The
address is accessed from the local memory of the lender node
again via a cache-coherence protocol. The corresponding data
is then returned to the borrower node by reversing the entire
path. Note that the operating system kernel and applications at
the borrower and lender node do not need to be modified to
access disaggregated memory.

B. Challenges in scaling current architecture

State-of-the-art prototypes for hardware memory disaggre-
gation are limited to the rack-scale as they use direct point-to-
point links (instead of a shared network as described in §II-A)
between borrower and lender nodes [1]. Scaling beyond the
rack-scale can be advantageous as it can help fully realize the
benefits of memory disaggregation such as further improved
memory utilization. Attempts are being made to enable the
transition beyond rack-scale with the introduction of switching
support such as the CXL interconnect [4] and the Gen-Z
consortium [16]. The CXL standard provides a cache-coherent
interconnect between CPU and accelerators/memory, while the
GenZ standard provides a memory-centric server interconnect
across nodes. The recent merging of the Gen-Z specification
into CXL [17] has sent a clear sign of disaggregation of

Authorized licensed use limited to: University of lllinois. Downloaded on September 30,2022 at 18:48:34 UTC from IEEE Xplore. Restrictions apply.

memory being pushed beyond the limits of the single machine
and rack. However, the introduction of a switched network
brings additional challenges due to new failure modes (such
as network congestion), some of which manifest as increased
network latency [18]. Additionally, the use of a large-scale
and shared disaggregated memory system introduces resource
contention due to multi-tenancy (i.e. multiple applications from
different nodes competing for the same lender node).

C. Addressing the Gap

In this work, we characterize a rack-scale hardware disag-
gregated memory prototype [1] under variable network latency
and different contention scenarios to understand the behaviour
of a beyond rack-scale hardware disaggregated memory system
with a switched network. To emulate higher network latency,
we have developed a delay injection framework that adds
specified delay values to remote memory access (as described
in §III). To create contention, we vary concurrency (i.e. number
of applications running simultaneously) at both lender and
borrower nodes (as described in §IV-E). Our characterization
results provide insights for designing future resource allocation
and reliability mechanisms in beyond rack-scale disaggregation
with a switched network.

III. DELAY INJECTION

In this section, we describe ThymesisFlow, the hardware
disaggregated memory system that we use as a characterization
testbed. We also discuss implementation details of the delay
injection framework that we use to synthetically emulate higher
network latency.

A. Prototype System

We use ThymesisFlow [1], an open-source prototype for
hardware memory disaggregation. ThymesisFlow implements
a hardware-software co-designed memory disaggregation in-
terconnect on top of the POWERO9™ architecture, by directly
interfacing the memory bus via the OpenCAPI cache coherence
protocol. The prototype is composed of two IBM Power
System AC922 nodes. Each node features a dual socket
POWER9™ CPU (32 physical cores and 128 parallel hardware
threads) and 512GB of RAM. Both nodes are equipped with
an AlphaData 9V3 card that features a Xilinx Ultrascale FPGA
that implements the OpenCAPI stack and the ThymesisFlow
interconnect. Our prototype implements a two-node version of
the disaggregated memory model described in §II-A where:
1) the shared network is replaced by a 100Gb/s point-to-point
connection over a copper cable, and 2) the disaggregated
memory NIC is deployed on the AlphaData 9V3 cards. On the
software side, we rely on libthymesisflow, a user-space library
part of the ThymesysFlow project that configures the FPGAs,
and takes care of reserving the memory at the lender node and
hot-plugging it to the borrower node. The memory borrowed
is dedicated to the borrower node, and it is not accessed from
any process running on the lender node.

B. Delay Injection Implementation

We have created a delay injection framework that syn-
thetically emulates the delay between consecutive memory
requests. To synthetically generate delays, we introduce an
additional module between the routing and multiplexer modules
at the compute node egress in the ThymesisFlow prototype.
In the context of Figure 1, the delay injection module is part
of the borrower’s disaggregated memory NIC. The module
introduces delay while obeying the AXI4-Stream [19] protocol
conventions, used to interconnect the internal blocks of the
ThymesisFlow hardware design. The AXI4-Stream data transfer
is based on a two-way handshake mechanism of VALID and
READY binary signals that indicate whether data is available
and can be processed by the module downstream. Both READY
and VALID signals need to be high for the data to be read and
further processed. Our key modification was to keep the VALID
signal unchanged and set the modified READYyzy signal to
be high once every PERIOD FPGA clock cycles obeying (1).
In (1), COUNTER is the number of FPGA clock cycles that
have elapsed since system start and READYq;p is the original
unmodified READY signal.

READYyew = READYorp & (COUNTERSPERIOD==0) (1)

Effectively, a transaction is allowed to proceed once every
PERIOD cycles if READYq;p and VALID signals remain high.

We test our delay injection framework along with the
STREAM benchmark at varying values of PERIOD. Using our
delay injections, we: 1) validate that our injection framework
is able to emulate network latency at levels observed in
datacenter network fabrics, 2) find strong linear correlation
between PERIOD and application-level latency measurements,
and 3) observe that the overall system continues to have a
constant bandwidth-delay product (BDP) across different delay
injections. We elaborate on these results further in §IV.

IV. EVALUATION

In our evaluation, we first validate the correctness of our
delay injection framework (described in §III) in §IV-B. Next,
we use the delay injection framework to assess system resilience
and application performance degradation in §IV-C and §IV-D.
Additionally, we evaluate the effects of application concur-
rency (i.e. number of simultaneously running applications) at
borrower and lender nodes in §IV-E. Using our results, we
present insights for design of resource control and reliability
mechanisms in future hardware disaggregated memory systems
(at the end of each subsection).

A. Benchmarks

We consider benchmarks that represent applications with di-
verse memory bandwidth demands and latency requirements. In
this section, we describe each of these benchmarks and specific
configurations used to execute them in the ThymesisFlow
prototype with remote memory access.

STREAM: STREAM [20] is a memory testing benchmark that
measures memory access times and bandwidth for commonly
used kernels. We configured STREAM to use 10 million array
elements, requiring a total memory of 0.2 GiB, which is beyond

1223

Authorized licensed use limited to: University of lllinois. Downloaded on September 30,2022 at 18:48:34 UTC from IEEE Xplore. Restrictions apply.

15000

N
o

= Copy —
= Add a
g30 Z 10000
g M Triad <
0 20 5
S B Scale 3
b < 5000
4 10 =
|| I | | :
0o = 0
' |
PERIOD
Figure 2:

STREAM for varying delay injection.

the total cache size of 120 MiB on each node. Each benchmark
run executes four kernels, i.e., “copy”, “scale”, “add” and
“triad”. “copy” reads/writes 16 bytes (1 read, 1 write ops) of
memory per iteration, performing no floating point operations
(FLOPs), “scale” reads/writes the same amount of memory
with the same number of operations but it performs 1 FLOP
per iteration, “add” accesses 24 bytes of memory (2 read and
1 write ops) and executes 1 FLOP per iteration, and “triad”
accesses 24 bytes of memory (2 read and 1 write ops) executing
2 FLOPs per iteration.

Redis: Redis [21] is an in-memory data structure store used as a
database, cache, and message broker. To improve performance,
Redis works with an in-memory dataset. We test performance
of Redis with the Memtier [22] benchmark that generates data
for a variety of structures, performs stress testing, and helps
understand performance limits. We configured Memtier to use
4 threads with 50 connections per thread that cumulatively
send 10000 requests per client. The Memtier benchmark along
with Redis uses a working memory set of size ~4 GB.
Graph 500: The Graph500 benchmark [23] constructs large
graphs and performs multiple iterations of Breadth First Search
(BFS) and Single Source Shortest Path (SSSP) on a generated
graph. We use a problem size of 20 with a edge factor of 16
with the Graph500 benchmark. In this configuration, Graph
500 uses a working memory set of size ~1 GB.

B. Validating Delay Injection

To validate the functionality of the delay injection framework,
we run STREAM on the borrower node while keeping the
lender node idle, and introduce varying levels of delay via our
delay injection framework. Figure 2 shows the variation in
measured STREAM latency for varying PERIOD values set
via the delay injection framework. For the smallest PERIOD =
1, the system effectively behaves as the vanilla ThymesisFlow
prototype as all valid transactions pass through without any
waiting. Other values of PERIOD lead to varying levels of
delay injection and STREAM-measured latency lies between
1.2-150 ps. The measured range of latency corresponds to the
[0-90th]-percentile network latency in production datacenter
networks [13], [24]. Thus, our delay injection framework is able
to generate sufficiently high latency values to enable realistic
emulations of network conditions.

STREAM for varying delay injection.

m Copy 1000 m Copy
Add = Add

M Triad 2 100 o Triad

W Scale g B Scale
5 10 | |
-

IIII"lIIlll I III
I5 25 35 45 100 1000
PERIOD PERIOD

Latency measured by Figure 3: Bandwidth measured by Figure 4: System reliability testing under

heavy delay injection.

Figure 3 shows variation in measured STREAM bandwidth
for varying PERIOD values set via the delay injection frame-
work. We find that consumed bandwidth rapidly decreases
with additional delay and the bandwidth-delay product remains
roughly constant across all the delay injections with a value
equal to ~16.5 kB.

C. Resilience Assesment

In this set of experiments, we intend to assess the potential
resilience limits of the processor and applications running
in the context of a hardware disaggregated memory system.
Our experimental setup is identical to the setup described
in §IV-B where we run a single STREAM instance on the
borrower node while keeping the lender node idle. We use
the delay injection framework (described in Section III) to
add exponentially increasing levels of delay to stress test our
system. Figure 4 shows the impact of increasing latency via
increasing PERIOD on latency measured by the STREAM
benchmark. At PERIOD = 1000, STREAM is able to run to
completion and measures the average memory access time to be
close to 400us. Despite introducing such high delay, the system
stack at the borrower node (including the POWER9™ CPU,
OpenCAPI, and the FPGA) continues to remain functional.
Thus, we infer that the CPU is resilient to high values of delay.
When we increase PERIOD further and set it to 10000, the
ThymesisFlow compute-side FPGA is no longer detected due
to timeout and the disaggregated memory cannot be attached.
However, such a high value of PERIOD corresponds to a delay
of 4 ms, which is far beyond the 99th percentile tail network
latency as reported in existing datacenters [13], [24].

PERIOD=1 PERIOD=1000
Redis 1.01x 1.73x
Graph500 BFS 6x 2209x
Graph500 SSSP 5.3x 1800x

Table I: Impact of high delay on application performance.

We also evaluate the impact of high delay on application
performance as shown in Table 1. To estimate performance
degradation, we use the ratio between the completion time on
disaggregated memory under delay injection and the original
completion time on local memory. For some applications
(Graph 500 and STREAM), we find that extremely high
delay leads to severe performance degradation that makes

1224

Authorized licensed use limited to: University of Illinois. Downloaded on September 30,2022 at 18:48:34 UTC from |IEEE Xplore. Restrictions apply.

5 ‘ 15000
Redis BFS SSSP o
c @

210 Z 10000
3 5
g °

g 5 é 5000
&

0 0

I 10 20 30 40 |
PERIOD

Figure 5: Impact of delay on application Figure 6: Contention for bandwidth at

performance. borrower node.

the application completely unresponsive. For example, the
performance of Graph 500 degrades by almost 2209x compared
to local memory performance. Such an extreme performance
hit effectively renders the application unusable and could
violate service-level agreements (SLAs) provided by the
datacenter operator.

Takeaway: While the CPU is resilient to extremely high
delay values, severe performance degradation could violate
SLAs for applications.

D. Application Performance Impact

We measure the impact of varying delay on application
performance to understand the end-to-end impact of higher
network latency. We define application performance on a per-
application basis. For example, the number of requests served
per second and job completion times are used as metrics to
measure the performance of Redis and Graph 500, respectively.
To calculate performance degradation, we use the ratio between
the degraded runtime due to delay and the original baseline
runtime when running on vanilla ThymesisFlow with disaggre-
gated memory. Figure 5 shows the performance degradation due
to delay by setting different values of PERIOD (as discussed
in §1IT). We observe that application performance degradation
can be significantly different for different applications. For
example, the performance degradation of Redis is 1.01x at
high delay values, effectively amounting to a loss of less than
1%. However, the performance degradation of both Graph
500 benchmarks (BFS and SSSP) is upto 10.7x and 8x ,
which is significantly higher than Redis. The difference in
performance degradation arises because Redis serves requests
via the network stack which adds significant serving overhead.
While memory access time is also a component of the end-
to-end latency, it is negligible compared to the network stack
overheads that act as the limiting factor. On the other hand,
the Graph 500 benchmarks are almost completely limited by
memory and compute, and suffer from much more severe
performance degradation.

A hardware disaggregated memory datacenter will run a
mix of applications that have different sensitivity to memory
access latency. During periods of increased network latency,
applications with higher sensitivity to remote memory access
latency can benefit from additional resource allocation such

Add 15000

Co a
SCJey 210000 EA—A—t—%
—e— Triad é Add
3 5000 Copy
= Scale
@ 0 —o—Triad
2 3 4 5 6 I 2 3 4 5 6
Concurrency Concurrency

1225

Figure 7: Contention for bandwidth at
lender node.

as network packet prioritization or page migration to local
memory. Therefore, resource allocation mechanisms across the
system stack should enable Quality-of-Service (QoS) features
to benefit sensitive applications. Examples of such resource
control mechanisms include: memory allocation at the control
plane, congestion control at the network, and page migration
at the operating system.

Takeaway: Application performance degradation under
increased remote memory access latency is variable and
warrants including QoS features in resource control mecha-
nisms.

E. Resource Contention

We run multiple memory contending applications concur-
rently to understand the impact of contention on application
performance at both the borrower and lender nodes. Specifically,
we run multiple instances of the STREAM benchmark in the
following two configurations:

e Memory Contention at the Borrower Node (MCBN):
All instances of STREAM run on the borrower node and
use disaggregated memory from the lender node.
Memory Contention at the Lender Node (MCLN): All
but one instance of STREAM run on the lender node. A
single instance of STREAM runs on the borrower node
and uses disaggregated memory from the lender node,
thus contending with other STREAM instances running
on the lender node.

Figure 6 and Figure 7 show available bandwidth reported
by STREAM running at the borrower node in the MCBN
and MCLN scenarios respectively. We find that in the case
of MCLN, the available bandwidth on the borrower node is
independent of the number of concurrent running instances of
STREAM. The network bandwidth acts as a greater bottleneck
compared to decrease in available memory bus bandwidth at
the lender node. Therefore, the impact of memory contention at
the lender node does not lead to significant drop in performance
at the borrower node. In general, we expect the lender node
contention to be insignificant compared to the network as
memory bus bandwidth is significantly higher compared to
network bandwidth (100s of GB/s vs. 100s of Gb/s).

However, in the case of MCBN, multiple STREAM instances
contend on the same borrower node and there is an equal divi-

Authorized licensed use limited to: University of lllinois. Downloaded on September 30,2022 at 18:48:34 UTC from IEEE Xplore. Restrictions apply.

sion of bandwidth amongst the competing STREAM instances
as they compete for the bottleneck network bandwidth.

The insight that lender-side contention for memory is
relatively insignificant can be used to drive better memory
allocation decisions at the control plane. For example, a lender
node with multiple running applications and an idle lender
node can be equally viable candidates for remote memory
reservation and access.

Takeaway: Memory allocation mechanisms can be
contention-aware to take advantage of variable contention
at borrower and lender nodes.

V. DISCUSSION

Limitations of the delay injection framework. Our delay
injection framework injects a near-constant delay and does not
create variability across memory accesses. However, production
datacenter networks have variable latencies with significant
variation at short timescales. In this paper, we demonstrate the
effects of variation in a coarse-grained manner by changing
injected delay values between two application runs. However,
injected delay for a single application is kept constant. It would
be interesting to explore the impact on application performance
when the delay varies at shorter timescales (i.e. within an
application run).

Applicability to alternate models of memory disaggregation.
An alternate model of hardware memory disaggregation is
memory pooling where the dedicated memory is mananged by a
controller without any attached CPUs. If disaggregated memory
is deployed with memory pools, results presented in §IV-E
could be significantly different. For instance, the memory
bandwidth contention between multiple applications could be
significantly higher depending on the available bandwidth of
each memory pool and the bottleneck could shift from the
network to the memory pool itself.

Differences between cache-coherence protocols. Our test
system ThymesisFlow uses the OpenCAPI protocol to redirect
cache misses to the network. A competing cache coherent
interconnect for memory disaggregation is the CXL [4] standard
which is similar to OpenCAPI but has some major differences.
CXL supports native packet switching on the network and
hence does not rely on Ethernet or Infiniband networks. Unlike
OpenCAPI, CXL works only with physical addresses at the
compute and memory nodes. Additional experimentation is
required to understand our results in the context of a CXL-based
hardware memory disaggregated system.

VI. RELATED WORK

Remote Memory Systems. Works on distributed shared
memory [25]-[29] provide shared memory and cache coherence
across nodes. In contrast, hardware memory disaggregation
leverages local cache coherence within a single host to expose
remote memory to applications without any code changes.
The availability of low-latency networking has recently made
remote memory practical, resulting in a resurgence of research
in this area [15], [30]-[33]. However, these works, including

disk swapping [34] rely on page faults and page-based tracking,
which severely limits their performance. Some remote memory
systems [14], [35]-[37] use an object-based interface that
avoids the virtual memory subsystem’s overhead, but these
systems require modifications of the application code. Hardware
memory disaggregation avoids virtual memory overhead by
using the local cache coherence traffic to access remote data
while remaining transparent to applications.

Impact of Memory Latency on Applications. Previous work
has explored the impact of memory bandwidth and latency on
application performance. Using the right hardware performance
counters to analyze the performance of memory subsystem has
been studied. For example, in [38] performance counters are
identified to measure the usage of available bandwidth and
the percentage of cycles consumed by the components in the
memory hierarchy. However, the work does not address the
measurement of memory request latency. Workload memory
characterization has also been studied extensively. For example,
a performance model is proposed in [39] to evaluate the
workloads’ sensitivity towards memory bandwidth and memory
access latency. The model focuses on the characterization of
different types of workloads in a static offline environment.
However, the static evaluation does not account for the
complexity of runtime memory subsystem performance that
impacts the application performance. An analytical memory
model is presented in [40] to predict the performance of a
program on different processors. The model uses static analysis
based on reuse distances to estimate the memory latencies at
different hierarchies of the memory subsystem. However, the
static analysis does not account for the varying runtime factors
such as interference from other co-located workloads.
Memory Fault Injection. There has been a large body of work
that tests the impact of DRAM errors on operating system
and application performance [12], [41]. To the best of our
knowledge, no work injects latency to memory requests at an
order of magnitude close to network latency.

VII. CONCLUSION AND FUTURE WORK

In this work, we characterize a hardware memory disaggre-
gated prototype under emulated network delay and performance
contention due to multi-tenancy. Our results suggest directions
to explore for future reliability and resource management
mechanisms in hardware disaggregated memory. As a part of
future work, we aim to improve the delay injection framework
by enabling injecting delays according to a distribution instead
of fixed values. Additionally, we aim to integrate our insights
into resource management mechanisms to improve system
performance and reliability.

VIII. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable
comments that improved the paper. This work is partially
supported by the National Science Foundation (NSF) under
grant No. CCF 20-29049; by the IBM-ILLINOIS Center for
Cognitive Computing Systems Research (C3SR), a research
collaboration that is part of the IBM Al Horizon Network; and
by the IBM-ILLINOIS Discovery Accelerator Institute (IIDAI).

1226

Authorized licensed use limited to: University of lllinois. Downloaded on September 30,2022 at 18:48:34 UTC from IEEE Xplore. Restrictions apply.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF or IBM.

REFERENCES

[1] “ThymesisFlow Home Page,” https://github.com/OpenCAPI/ThymesisFlow/,

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18

[19]

[20]

[21]
[22]

accessed: 2022-02-08.

I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu, and
A. Kolli, “Rethinking software runtimes for disaggregated memory,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
79-92.

Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang, “Clio: A hardware-
software co-designed disaggregated memory system,” arXiv preprint
arXiv:2108.03492, 2021.

“Compute Express Link,” https://www.computeexpresslink.org/, accessed:
2021-07-24.

“Ccix,” https://www.ccixconsortium.com/, accessed: 2021-07-24.
“opencapi,” https://opencapi.org/, accessed: 2021-07-24.

M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand,
M. Harchol-Balter, and J. Wilkes, “Borg: the next generation,” in
Proceedings of the Fifteenth European Conference on Computer Systems,
2020, pp. 1-14.

Y. Zhang, C. Ruan, C. Li, X. Yang, W. Cao, F. Li, B. Wang, J. Fang,
Y. Wang, J. Huo et al., “Towards cost-effective and elastic cloud database
deployment via memory disaggregation,” Proceedings of the VLDB
Endowment, vol. 14, no. 10, pp. 1900-1912, 2021.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica et al.,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

L. Bergstrom, “Measuring numa effects with the stream benchmark,”
arXiv preprint arXiv:1103.3225, 2011.

H. A. Rosenberg and K. G. Shin, “Software fault injection and its
application in distributed systems,” in FTCS-23 The Twenty-Third
International Symposium on Fault-Tolerant Computing. IEEE, 1993,
pp. 208-217.

S. Han, K. G. Shin, and H. A. Rosenberg, “Doctor: An integrated
software fault injection environment for distributed real-time systems,”
in Proceedings of 1995 IEEE International Computer Performance and
Dependability Symposium. 1EEE, 1995, pp. 204-213.

C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang,
B. Pang, H. Chen et al., “Pingmesh: A large-scale system for data center
network latency measurement and analysis,” in Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication,
2015, pp. 139-152.

A. Dragojevi¢, D. Narayanan, M. Castro, and O. Hodson, “{FaRM}: Fast
remote memory,” in /1th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), 2014, pp. 401-414.

Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “{LegoOS}: A disseminated,
distributed {OS} for hardware resource disaggregation,” in /3th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), 2018, pp. 69-87.

“GenZ consortium,” https://genzconsortium.org/, accessed: 2022-02-08.
“CXL Consortium & Gen-Z Consortium Sign Let-
ter of Intent to Advance Interconnect Technology,”

https://www.computeexpresslink.org/post/exploring-the-future-cxI-
consortium-gen-z-consortium, accessed: 2022-02-08.

S. Jha, A. Patke, J. Brandt, A. Gentile, B. Lim, M. Showerman, G. Bauer,
L. Kaplan, Z. Kalbarczyk, W. Kramer et al., “Measuring congestion
in high-performance datacenter interconnects,” in /7th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
20), 2020, pp. 37-57.

“AMBA 4 AXI4-Stream Protocol Specification,’
https://developer.arm.com/documentation/ihi005 1/a/Introduction/About-
the-AXI4-Stream-protocol, accessed: 2022-02-10.

5

J. D. McCalpin, “Stream: Sustainable memory bandwidth in high
performance computers,” University of Virginia, Charlottesville,
Virginia, Tech. Rep., 1991-2007, a continually updated

technical report. http://www.cs.virginia.edu/stream/. [Online]. Available:
http://www.cs.virginia.edu/stream/

J. Carlson, Redis in action. Simon and Schuster, 2013.

“Memtier Redis benchmark,” https://github.com/RedisLabs/memtier_benchmark,
accessed: 2022-02-10.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

1227

R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” Cray Users Group (CUG), vol. 19, pp. 45-74, 2010.
G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu, B. Montazeri,
Y. Wang, K. Springborn, C. Alfeld, M. Ryan et al., “Swift: Delay is simple
and effective for congestion control in the datacenter,” in Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, 2020, pp. 514-528.

C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
W. Yu, and W. Zwaenepoel, “Treadmarks: Shared memory computing on
networks of workstations,” Computer, vol. 29, no. 2, pp. 18-28, 1996.
J. K. Bennett, J. B. Carter, and W. Zwaenepoel, “Munin: Distributed
shared memory based on type-specific memory coherence,” in Proceed-
ings of the second ACM SIGPLAN symposium on Principles & practice
of parallel programming, 1990, pp. 168-176.

K. Li and P. Hudak, “Memory coherence in shared virtual memory
systems,” ACM Transactions on Computer Systems (TOCS), vol. 7, no. 4,
pp. 321-359, 1989.

D. J. Scales, K. Gharachorloo, and C. A. Thekkath, “Shasta: A low
overhead, software-only approach for supporting fine-grain shared
memory,” in Proceedings of the seventh international conference on
Architectural support for programming languages and operating systems,
1996, pp. 174-185.

1. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus, and
D. A. Wood, “Fine-grain access control for distributed shared memory,”
in Proceedings of the sixth international conference on Architectural
support for programming languages and operating systems, 1994, pp.
297-306.

M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, S. No-
vakovic, A. Ramanathan, P. Subrahmanyam, L. Suresh, K. Tati et al.,
“Remote regions: a simple abstraction for remote memory,” in 2018
USENIX Annual Technical Conference (USENIX ATC 18), 2018, pp.
775-787.

E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,
A. Panda, S. Ratnasamy, and S. Shenker, “Can far memory improve job
throughput?” in Proceedings of the Fifteenth European Conference on
Computer Systems, 2020, pp. 1-16.

J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient
memory disaggregation with infiniswap,” in 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), 2017, pp.
649-667.

H. Al Maruf and M. Chowdhury, “Effectively prefetching remote memory
with leap,” in 2020 USENIX Annual Technical Conference (USENIX ATC
20), 2020, pp. 843-857.

S. F. Kaplan, L. A. McGeoch, and M. F. Cole, “Adaptive caching for
demand prepaging,” ACM SIGPLAN Notices, vol. 38, no. 2 supplement,
pp. 114-126, 2002.

A. Dragojevi¢, D. Narayanan, E. B. Nightingale, M. Renzelmann,
A. Shamis, A. Badam, and M. Castro, “No compromises: distributed
transactions with consistency, availability, and performance,” in Proceed-
ings of the 25th symposium on operating systems principles, 2015, pp.
54-170.

J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and
M. Oskin, “{Latency-Tolerant} software distributed shared memory,”
in 2015 USENIX Annual Technical Conference (USENIX ATC 15), 2015,
pp. 291-305.

Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay,
“{AIFM }:{High-Performance}{ Application-Integrated} far memory,” in
14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20), 2020, pp. 315-332.

D. Molka, R. Schone, D. Hackenberg, and W. E. Nagel, “Detecting
memory-boundedness with hardware performance counters,” in Proceed-
ings of the 8th ACM/SPEC on International Conference on Performance
Engineering, 2017, pp. 27-38.

R. Clapp, M. Dimitrov, K. Kumar, V. Viswanathan, and T. Willhalm,
“Quantifying the performance impact of memory latency and bandwidth
for big data workloads,” in 2015 IEEE International Symposium on
Workload Characterization. 1EEE, 2015, pp. 213-224.

G. Chennupati, N. Santhi, and S. Eidenbenz, “Scalable performance
prediction of codes with memory hierarchy and pipelines,” in Proceedings
of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, 2019, pp. 13-24.

M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75-82, 1997.

Authorized licensed use limited to: University of Illinois. Downloaded on September 30,2022 at 18:48:34 UTC from |IEEE Xplore. Restrictions apply.

