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Visible light photonic integrated Brillouin laser
Nitesh Chauhan1, Andrei Isichenko1, Kaikai Liu 1, Jiawei Wang 1, Qiancheng Zhao 1, Ryan O. Behunin2,3,
Peter T. Rakich4, Andrew M. Jayich5, C. Fertig6, C. W. Hoyt6 & Daniel J. Blumenthal 1✉

Narrow linewidth visible light lasers are critical for atomic, molecular and optical (AMO)

physics including atomic clocks, quantum computing, atomic and molecular spectroscopy,

and sensing. Stimulated Brillouin scattering (SBS) is a promising approach to realize highly

coherent on-chip visible light laser emission. Here we report demonstration of a visible light

photonic integrated Brillouin laser, with emission at 674 nm, a 14.7 mW optical threshold,

corresponding to a threshold density of 4.92 mW μm−2, and a 269 Hz linewidth. Significant

advances in visible light silicon nitride/silica all-waveguide resonators are achieved to

overcome barriers to SBS in the visible, including 1 dB/meter waveguide losses, 55.4 million

quality factor (Q), and measurement of the 25.110 GHz Stokes frequency shift and 290MHz

gain bandwidth. This advancement in integrated ultra-narrow linewidth visible wavelength

SBS lasers opens the door to compact quantum and atomic systems and implementation of

increasingly complex AMO based physics and experiments.
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U ltra-narrow linewidth visible light lasers provide the
spectral purity required for precision atomic, molecular
and optical (AMO) physics including atomic clocks1,2,

atomic and molecular spectroscopy3–5, and quantum sensing1,6,7.
Historically, it has been necessary to use macroscopic laser sys-
tems locked to vapor cells or large optical reference cavities to
obtain the low phase noise and high frequency stability needed to
address narrow optical clock transitions in atoms8,9. While pro-
viding state of the art performance1,10,11, these lab-scale systems
pose challenges for atomic and molecular experiments of ever-
growing complexity and for a portable or even autonomous
optical clocks. There is a need for visible wavelength lasers that
are smaller and more reliable so that experiments can scale in the
number of wavelengths, atoms or molecules, and complexity in
general. Photonic integration provides a path to miniaturize these
laser systems as well as improve their reliability12–14, reduce
sensitivity to environmental disturbances, and enable systems
with a larger number of entangled atoms15,16, higher sensitivity
quantum sensors6,17, higher precision positioning, timing and
navigation18, and probing of complex molecules19–24.

Stimulated Brillouin scattering (SBS) lasers, with their pump
linewidth narrowing properties and ultra-low phase noise
emission25 are a promising candidate for AMO physics and
quantum applications. SBS emission in the visible has been
achieved with fiber optic based resonators, exotic fiber, and bulk
optic implementations26–32. Recently the coherence of a near
infrared (NIR) fiber SBS laser was transferred to the visible to
address the clock transition of strontium, however, this work
required bulky, power inefficient, nonlinear frequency
conversion33. To reduce system complexity and improve relia-
bility, it is desirable to use a “direct-drive” approach, where the
SBS laser directly emits at the desired visible wavelength, without
intermediate conversion stages. Chip-scale SBS lasers operating in
the NIR have exhibited impressive performance34–41, achieving
sub-Hz fundamental linewidth34, 30 Hz integral linewidth over
100 ms, and 2 × 10−13 fractional frequency stability42. To date,
visible light emission in a photonic integrated SBS laser has
remained out of reach. This lack of progress has been primarily
due to barriers such as realizing ultra-low loss Brillouin-active
planar waveguides in the visible, leading to inefficient Brillouin
scattering and preventing SBS lasing in the desired operating
regime of long photon guiding lifetime, short phonon guiding
lifetime, large resonator photon lifetime, and large resonator
mode volume34. Overcoming these barriers, as well as realizing a
visible light SBS laser in a wafer-scale integration platform, will
lead to reduced size, cost and improve stability and robustness to
environmental disturbances, and enable experiments and appli-
cations with increasing number of stable lasers and wavelengths.

In this work we report demonstration of visible light Brillouin
lasing and visible light spontaneous Brillouin scattering in a
photonic integrated waveguide structure. The laser is a ring-bus
resonator design fabricated using a silicon nitride (Si3N4) core,
oxide clad, moderately confining waveguide structure. Brillouin
lasing at 674 nm is demonstrated with a 14.7 mW optical
threshold, a 45% slope efficiency, and 9.28 mW on-chip output
power for the first order Stokes (S1) with linewidth narrowing to
269 Hz as the pump power is increased from below threshold up
to the second order Stokes (S2) emission threshold. This laser
demonstration requires advances in waveguide loss reduction
techniques including optimized geometry and process annealing
to reduce top-side and side-wall scattering, and nitride surface
and bulk oxide absorption43 at visible wavelengths. These
advances enable record-low waveguide losses (~ 1 dB/m) and
record-high Q (60 Million) at 674 nm, to the best of our
knowledge, in a 2.68 × 104 μm3 mode volume resonator. To
measure visible light Brillouin gain and its Stokes frequency shift

in a photonic waveguide, detection of the weak spontaneous
Brillouin gain backscattered signal is enabled without the benefit
of stimulated gain measurements. Traditional real-time pump-
probe stimulated Brillouin gain measurements were difficult to
perform due to the absence today of 26 GHz phase modulators
that operate at 674 nm and 698 nm and 1348 nm semiconductor
sources that can be frequency doubled without filtering out the
sideband. To accurately predict the ~26 GHz Stokes frequency
shift, we utilize a multi-physics simulation (details in the Methods
section) and measure the Stokes shift by time averaged hetero-
dyne Brillouin spectroscopy between the pump and backscattered
signal which is guided. We measure a 25.110 GHz first order
Stokes frequency shift and a 290MHz gain bandwidth; accurately
predicted by our simulations. We predict a peak Brillouin gain of
2.73 (W m)−1. The gain measurements guide the laser ring-bus
resonator design, with a 3.587 GHz free-spectral range (FSR),
equal to 1/7 of the 25.110 GHz S1 frequency shift. To highlight
the versatility of this laser, we also demonstrate SBS lasing at 698
nm using the same waveguide materials and design, with mask-
only changes. The 674 nm and 698 nm wavelengths are chosen to
highlight applicability to ion and neutral strontium clock tran-
sitions respectively. The SBS laser waveguide is compatible with
wafer-scale silicon nitride foundry processes and can be inte-
grated with other photonic elements19. As an example, this laser
can be used as a compact “direct-drive” optical laser oscillator
(OLO) for a strontium ion clock (see Fig. 1). In this example, an
integrated 674 nm semiconductor laser44 pumps the silicon
nitride SBS laser to generate a reduced fundamental linewidth
backward propagating first order Stokes wave (S1)14,45,46.
The return Stokes signal, S1, can be filtered using an integration
compatible silicon nitride waveguide dual-bus filter47. A
tunable sideband, such as that generated by an acousto-optic
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Fig. 1 Example integration application of the visible light SBS laser.
Example of how the integrated visible wavelength silicon nitride/silica
waveguide stimulated Brillouin scattering (SBS) laser can be used as a clock
transition optical laser oscillator (OLO) to lock to a strontium ion (88Sr+). A
heterogeneously integrated 674 nm external cavity Si3N4 tunable laser can
serve as the SBS pump, while a silicon nitride optical filter isolates and
routes a portion of the SBS first order Stokes (S1) to an acousto-optic
modulator (AOM) for sideband locking to an on-chip silicon nitride
waveguide frequency reference cavity. The reference cavity stabilizes the
SBS sideband laser for locking to the narrow atom transition. A single 88Sr+

ion trap is shown as example of chip-integrated trap53,61. Fiber-coupled
1092 nm and 1033 nm lasers can be converted to free-space beams for
state re-pumping53–55 and on-chip photodiodes62 can provide monitoring
for signal feedback for locking. The image on bottom right illustrates the
reported Si3N4/SiO2 SBS laser.
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modulator48,49 (AOM), is locked to a silicon nitride waveguide
optical reference cavity50,51 to reduce the integral linewidth and
provide the carrier stability needed to address the atomic optical
clock transition. The stabilized 674 nm OLO can be coupled to a
88Sr+ ion in an electrostatic trap33,52 using, for example, silicon
nitride waveguide to free-space grating couplers53–55. Additional
cooling and repump beams can be provided via lasers coupled to
silicon nitride waveguides and free-space grating couplers54.

Results
Visible wavelength SBS laser resonator. The SBS laser resonator
is based on an ultra-low loss single mode Si3N4 core and SiO2
cladding waveguide that is designed to operate at 674 nm. The
waveguide consists of a 20 nm tall and 2.3 μm wide silicon nitride
core deposited and etched on a lower thermally grown oxide
cladding on a silicon substrate, with a TEOS-PECVD deposited
upper cladding47 (cross section shown in Supplementary Fig. 4)
and a final two-step anneal at 1050 °C for 7 h and 1150 °C for 2 h
which is optimized anneal process for our waveguides. For further
fabrication details see Methods. To maximize the spontaneous
Brillouin signal, we fabricate a 2 meter on-chip spiral waveguide
with ~ 1 dB/m loss and measure the small !10"18W (spectrum
analyser resolution bandwidth of 100 Hz) spontaneous Brillouin
signal (Fig. 2a, b).

Multi-physics vectorial simulations that incorporate actual
measured materials and device parameters are used to predict the
frequency offset and the Brillouin gain shape (red curve in
Fig. 2c) (for details see the Methods and Supplementary Note 5).
The weak back-scattered signal is measured by heterodyne
detection of the pump-Brillouin beat note (Fig. 2c) using an
ESA (for details see the Supplementary Note 2). Using time-
averaged detection on an electrical spectrum analyzer (ESA) we
measure a 25.110 GHz peak frequency shift and 290MHz gain
bandwidth, which agrees with our numerical simulations. The
broad gain bandwidth and skewed line shape is due to the
continuous generation of photons in the ultra-low loss optical
waveguide without acoustic waveguiding, which permits coupling
to a continuum of bulk acoustic phonon states within the
waveguide oxide cladding34,37. The simulated Brillouin gain
coefficient is 2.73 (W m)−1. Brillouin scattering in the optical
fiber used to deliver the 674 nm pump laser light is distinguished

from the waveguide Brillouin scattering (Fig. 2c blue curve) by
decoupling the fiber from the chip and making an independent
measurement (Fig. 2c gray curve), described further in the
Supplementary Note 5).

The SBS laser resonator is a 8.9509 mm radius bus-coupled
ring structure with a free-spectral range (FSR) designed to be 1/7
of the measured 25.110 GHz peak Stokes shift at 674 nm (Fig. 3b
and Fig. 3c) and a bus-to-ring power coupling coefficient34 к2 of
~ 1.5%. We design the ring to have multiple FSRs per Brillouin
Stokes frequency shift to facilitate alignment of the Stokes shift
and cavity resonance, increase the cavity volume, and provide
robustness to fabrication variations34. A high intrinsic Q of 55.4
million and loaded Q= 27.7 million at 674 nm is achieved
(Fig. 3d). These measurements are made using an RF calibrated
Mach–Zehnder interferometer47,56,57 (MZI), and yield a low
propagation loss of 1.09 dBm−1 at 674 nm (see Methods).

Visible light 674 nm SBS lasing. The SBS laser resonator is
pumped by an off-chip tapered optical amplifier (TA) that is seeded
with 674 nm light from a continuous wave external cavity diode
laser (see experimental setup details in Supplementary Note 3). The
TA output is coupled to the waveguide SBS resonator through
a high-power fiber circulator. A maximum of 35mW on-chip
power is delivered to the waveguide bus, limited by a 180mW TA
maximum output power and ~4 dB fiber-to-facet coupling loss. The
backward propagating S1 signal is measured using a 3-port fiber
optic recirculator. The measured and simulated S1 powers are
plotted vs. the pump power in Fig. 4a. A clear S1 threshold is
observed for an on-chip pump power of 14.7 mW corresponding to
a threshold density of 4.92mW μm−2 and a 45% slope efficiency
is measured, both in good agreement with our SBS model56 (for
details of model see Supplementary Note 6).

In addition to verifying the laser threshold, we demonstrate a
decrease in the S1 emission linewidth as the pump power is
increased from below threshold, through threshold, and above
threshold34,57. Below threshold, the optical power spectrum is
measured using a heterodyne beat note produced by mixing
the backward propagating S1 with the pump on an ESA
(see Supplementary Note 3). To minimize the contribution of
the pump linewidth to the measured beat note we lock
the pump laser to a commercial high finesse ultra-stable
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cavity (Stable Laser SystemsTM). Well below threshold (i), the
scattered light is produced by uncorrelated spontaneous
scattering from thermal phonons and is linearly filtered by
the cavity resonance which is ~16.1 MHz. As threshold is
approached, the spontaneous emission spectra, point (ii) in
Fig. 4b, measures FWHM at 12.0 MHz, indicating the onset of
stimulated emission, since the emission spectra is narrower
than the cold-cavity resonance FWHM.

At just above threshold (iii), we see a dramatic 100× narrowing
of the linewidth to 120 kHz as SBS dominates the emission
(Fig. 4b, trace (iii)). At all points above threshold, we measure the
frequency noise of S1 using an optical frequency discriminator
(OFD) (see Methods and Supplementary Note 3). The funda-
mental linewidth (4ν) is defined34,38 as the far-from-carrier
white frequency noise floor, in Hz2Hz−1, multiplied by π. In
Fig. 4c the noise floor for each pump power input is indicated by
horizontal dashed lines (iii–vi). As the pump power increases
beyond S1 threshold, the fundamental linewidth drops dramati-
cally from 1.1 kHz (iv) to 269.7 Hz (vi). These linewidth results
are summarized in Fig. 4d, indicating the integral linewidths for
points (i–ii) below threshold, and the fundamental linewidths for
the frequency noise curves in (iii–vi) in Fig. 4c. We were not able
to provide the required on-chip pump power, 59.4 mW, to
achieve lasing of the second order Stokes (S2). Future work will
look further into noise properties measured using stabilized pump
sources and exploring linewidth behavior as S1 approaches the S2
lasing threshold.

Demonstration of 698 nm SBS lasing. We demonstrate the
versatility of this SBS laser design by operation at another atom
transition related visible wavelength. The silicon nitride bandgap
supports low loss for wavelengths down to ~405 nm13, making
this a powerful tool for a broad range of visible light atomic
transitions. We design and fabricate a 698 nm SBS resonator

using the same 674 nm waveguide design and geometry (as ver-
ified by optical mode simulations, see Supplementary Note 4)
with modifications to the FSR and bus-ring coupling gap. At 698
nm, our multi-physics simulation predicts a 24.243 GHz Stokes
shift and 300MHz Brillouin gain bandwidth (Fig. 5a). 698 nm is
chosen to match the neutral strontium atom clock transition. As
with the 674 nm laser, the FSR is designed to be 1/7 of the S1
frequency shift, resulting in a 9.4 mm radius resonator design. A
3.4 μm bus-ring coupling gap is chosen to operate the resonator
in the under-coupled regime with a power coupling coefficient of
~1%. For the fabricated devices, we measure a 12.7 MHz cavity
resonance width, a 60 million intrinsic Q, a 33.8 million loaded Q,
and a 3.421 GHz FSR (see Fig. 5b and Fig. 5c). Lasing at S1 is
observed by pumping the cavity with a Ti:sapphire laser at the
expected pump-Stokes frequency offset as measured shown in
Fig. 5d. The observed pump is a reflection from the resonator far
facet. A pump-S1 heterodyne 23.892 GHz beat note is measured
as shown in Fig. 5d inset (see Supplementary Fig. 3). The 351
MHz beat note offset from our simulated shift and is most likely
due the slight offset between the Brillouin gain peak and the
narrow cavity resonance. The pump laser is free running (i.e.,
stabilized neither to the resonator nor a reference optical cavity),
and the beat note drifts on the order of 100 kHz over tens of
milliseconds. The on-chip pump power is 108 mW and the
measured on-chip pump threshold power (Pth) is ~75 mW.

Discussion
We report demonstration of visible light SBS lasing and mea-
surement of Brillouin gain in a waveguide photonic integrated
circuit. The 674 nm laser is designed to serve as a low phase noise
“direct-drive” chip-scale source that can couple directly to the
88Sr+ ion clock transition without the need for intermediate
frequency translation and has wide application to other visible
light ultra-low phase noise applications including quantum and
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precision metrology. The bus-coupled ring laser design produces
Brillouin linewidth narrowing in the visible by operating in the
regime of long photon lifetime, short phonon lifetime, large cavity
volume, and long resonator decay time. To meet these lasing
requirements, prior limitations are overcome and advances in
visible light photonics required, including low waveguide ~1 dB/
m losses and high resonator intrinsic 55.4 million Q, in a 2.68 ×
104 μm3 mode volume resonator. Since visible wavelength loss
due to waveguide side-wall scattering is more severe at shorter
wavelengths than in prior 1550 nm designs34, waveguides are
designed by carefully reducing the optical mode overlap with the
waveguide surface. With these advances, our laser operates at a
14.7 mW optical pump threshold with a 45% slope efficiency.
Brillouin emission linewidth narrowing is demonstrated as the
pump is increased from below threshold to above threshold,
achieving 269.7 Hz fundamental linewidth at an on-chip pump
power of 36 mW. Assuming the slope efficiency is constant and a
calculated S2 threshold power of 59 mW (Fig. 4a), at the onset of
S2 lasing (threshold), we estimate the S1 cavity photon number
can be increased by a factor of 2× leading to an expected S1
linewidth of ~153 Hz56. Laser frequency noise sources include

SBS fundamental noise38, intrinsic noise of the SBS cavity, noise
coupling from backscattered pump, and technical noise sources in
the pump laser and SBS resonator as well as pump amplitude to
phase noise conversion. These noise sources can be decreased by
locking the resonator, pump laser, or modulated S1 emission to
an optical reference cavity42. Combining these advances with the
results reported here shows promise for visible laser linewidth
and stability for precision applications normally requiring table-
top laser systems. Using this laser design, SBS lasing can be
achieved at other visible wavelengths by making mask-only
changes and a change in the pump source. To illustrate this
versatility, we demonstrate lasing at 698 nm, a wavelength sui-
table to probe long-lived transitions in neutral strontium.

To improve SBS laser efficiency and further reduce linewidth,
our simulations show that improvements can be made with closer
FSR matching to the Brillouin gain peak shift. Calculations pre-
dict a 7 mW threshold as well as higher S1 optical output power.
FSR optimization can be achieved by adjustment of the SBS cavity
using waveguide tuning utilizing thermal58 and piezoelectric59
techniques. We predict that with the continued increase in S1
photon number up to the S2 threshold and with pump filtering,
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the fundamental linewidth can be reduced to ~2 Hz. Further
improvements will require lowering the visible light loss, by
exploring additional silica deposition processing techniques60 and
different waveguide modes for lasing. Our side-wall scattering
loss models60 suggest a significant improvement of 3×–4× is
possible if the TM0 mode is used instead of TE0 mode. Such a
loss reduction will linearly translate to a lower threshold and a
smaller fundamental noise limit but will require careful design of
couplers to suppress the TE0 mode to avoid crosstalk. Other
possible improvements to further reduce the linewidth include
modulating the laser resonator with a grating, to split the second
order Stokes (S2) resonance and prevent S2 emission and further
increase in S1 optical power56. Given the transparency and
bandgap of the silicon nitride core and the low loss achievable
down to ~405 nm, this platform can support a wide range of SBS
photon-phonon interactions and as such, wavelengths for a
variety atomic and molecular transitions. Future work will involve
demonstrating this design across the broad range of silicon
nitride waveguide transparency (e.g., Yb @ 578 nm, Ca+@
729 nm and waveguides with higher bandgap that can support the
UV (e.g., Al+ 267.4 nm).

Methods
Fabrication process. The fabrication process is foundry compatible and starts with
15 µm-thick thermal oxide that is grown on a 100 mm (4 inch) diameter, 1 mm
thick silicon wafer substrate to form the lower cladding. The waveguide layer is
formed by depositing 20 nm thick stoichiometric Si3N4 film using low-pressure
chemical vapor deposition on top the lower cladding thermal oxide. The wave-
guides are patterned using a standard deep ultraviolet (DUV) stepper on the DUV
photoresist layer that was spun on the waveguide layer. The waveguide core is
patterned by dry etching the Si3N4 layer anisotropically using an inductively

coupled plasma etcher with a CHF3/CF4/O2 chemistry. This is followed by a
cleaning step with a standard Radio Corporation of America process. A two-step
(3 µm each) plasma-enhanced chemical vapor deposition (PECVD) with tetra-
ethoxysilane (TEOS) as a precursor is used to form the 6 µm-thick silicon dioxide
upper cladding. The final step in fabrication is a two-step anneal at 1050 °C for 7 h
and 1150 °C for 2 h, which is optimized anneal process for our waveguides.

Multi-physics simulations of Brillouin scattering. To simulate the Brillouin gain
spectrum, we use finite element solvers to obtain the optical modes of the SBS laser
resonator and then use these modes to construct electrostrictive forces, and
determine the mechanical response of the system to these time-harmonic forces.
Using an argument based on the Manley–Rowe relations, we obtain the Brillouin
gain (GB Ωð Þ) from the dissipated mechanical power when the system is driven by
electrostrictive forces:

GB ¼
1
δz

ωS

Ω
1

PpPS

Z
d3x f & _uh i ð1Þ

where ωS and Ω are the angular frequencies of the Stokes and phonon modes
respectively, δz is the length of the waveguide, PpðPSÞ is the power in the pump
(Stokes) modes used to construct the optical forces, u is the elastic displacement,
and f is the electrostrictive force density. The dissipated mechanical power is
represented here as the volume integral of the time-averaged power

R
d3x f & _uh i: To

obtain the electrostrictive force, the photoelastic tensor (pijkl) and the optical mode
components are combined to give the ith component of the force density given by

f i ¼
1
4
ϵ0∂jn

4pijklðEp;kE
*
S;l þ Ep;lE

*
S;kÞ ð2Þ

where Ep;k and ES;k are the kth components of the pump and Stokes electric fields,
respectively. In addition to providing the magnitude, bandwidth and peak of the
Brillouin gain these simulations provide insights about the spectrum structure. For
example, our simulations show that phonon interference with the air-cladding
boundary explains the modulation of the gain spectrum with frequency shown in
Fig. 2c.
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Resonator linewidth measurements. To measure the 674 nm resonator we use a
commercially available external cat-eye diode tunable pump laser (from
MOGLabsTM). For calibrating the resonator linewidth, we use a fiber based
(external) ~50 meter unbalanced radio frequency (RF) calibrated MZI. The FSR of
the MZI is calibrated using an RF electro-optic phase modulator (EOM) whose
sidebands scan across the resonance. The measured MZI FSR is 3.99 ± 0.02 MHz.
The MZI is acoustically isolated to minimize noise in the fringes. A small portion
(1%) of the laser power is tapped and sent to the MZI to simultaneously provide
the RF calibrated frequency references.

For the 698 nm resonator, we use a Ti:Sapphire laser at 698 nm. To calibrate the
frequency, we use two different phase modulators to add sidebands at 1.4645 GHz
for FSR measurements and at 60 MHz for Q measurements.

Frequency noise measurements. Measurement of the frequency noise and fun-
damental linewidth are performed using an OFD whose two parts are a fiber based
unbalanced MZI (~50 m fiber length, ~3.99 MHz FSR) and a balanced photo-
detector (BPD, Thorlabs PDB450A). The relation between the detector’s output
power spectral density, Sout νð Þ in (V2Hz−1) and the laser’s frequency noise, Sf νð Þ in
(Hz2Hz−1) is given by:

Sf νð Þ ¼ Sout νð Þ
ν

sinðπντDÞVPP

! "2

ð3Þ

where τD is the MZI’s optical delay, ν is the frequency offset. The detector’s output
peak to peak voltage is VPP. A tangent is taken at the lowest point of the Sf νð Þ,
usually far-from-carrier (>1MHz), to give the value Sw. The Fundamental line-
width is given by Δν ¼ πSw.

The S1 power is collected from the circulator reflection port and is sent into the
unbalanced MZI which is housed in an enclosure to isolate from acoustic
disturbances. The two MZI outputs are inputs of the two arms of the BPD. The
bandwidth of the BPD is set to its highest value of 150MHz to minimize the impact
of intensity variations in the BPD output. The power spectral density Sout νð Þ of the
BPD RF (difference) output is measured using a digital sampling oscilloscope
(Keysight DSOX1204G with a 200MHz bandwidth). The RF output triggers the
scope at the MZI’s quadrature operating point and the power spectral density data
are averaged over 16 traces with a Hann window applied. The frequency noise is
calculated using Eq. (3).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author on reasonable request.
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