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Abstract

Topological Data Analysis is a growing area of data science, which aims at computing and characterizing the geometry

and topology of data sets, in order to produce useful descriptors for subsequent statistical and machine learning tasks.

Its main computational tool is persistent homology, which amounts to track the topological changes in growing families

of subsets of the data set itself, called filtrations, and encode them in an algebraic object, called persistence module. Even
though algorithms and theoretical properties of modules are now well-known in the single-parameter case, that is, when

there is only one filtration to study, much less is known in the multi-parameter case, where several filtrations are given

at once. �ough more complicated, the resulting persistence modules are usually richer and encode more information,

making them be�er descriptors for data science.

In this article, we present the first approximation scheme, which is based on fibered barcodes and exact matchings,
two constructions that stem from the theory of single-parameter persistence, for computing and decomposing general

multi-parameter persistence modules. Our algorithm has controlled complexity and running time, and works in arbitrary

dimension, i.e., with an arbitrary number of filtrations. Moreover, when restricting to specific classes of multi-parameter

persistence modules, namely the ones that can be decomposed into intervals, we establish theoretical results about the

approximation error between our estimate and the true module in terms of interleaving distance. Finally, we present

empirical evidence validating output quality and speed-up on several data sets.

1. Introduction

Topological Data Analysis (TDA) [Car09, EH10] is an area of data science that has been developing quite fast and that

has gathered the interest of many practitioners in the last few years, due to its success in various applications. At

its core is the use of computational tools from algebraic topology to capture multiscale shape information from data,

that require only mild assumptions about the data (e.g., a metric or similarity measure between points) in order to be

applied. Moreover, a centerpiece of the formal foundations of TDA are mathematical guarantees that ensure the resulting

descriptors are reasonably efficient to compute and robust to perturbations. As such, TDA has been applied success-

fully in a wide range of scientific fields, including bioinformatics, computer graphics, and machine learning, among others.

Persistent homology. �e main computational tool of TDA is persistent homology (PH). Whereas homology is a

descriptor of a topological space 𝑋 , the core idea of PH is to study how the homology groups change when computed

on a specific family of subspaces of 𝑋 called a filtration of 𝑋 . A filtration is a family F of subspaces of 𝑋 indexed over

a partially ordered set 𝐼 : F = {𝑋𝑖 ⊆ 𝑋 }𝑖∈I , that is nested w.r.t. inclusion, i.e., it satisfies 𝑋𝑖 ⊆ 𝑋 𝑗 for any 𝑖 ≤ 𝑗 . �en,

the functoriality of homology and these inclusion induces morphisms between the corresponding homology groups

𝐻∗ (𝑋𝑖 ) → 𝐻∗ (𝑋 𝑗 ) for each pair 𝑖 ≤ 𝑗 , which allows to detect the differences in homology when going from index 𝑖 to

index 𝑗 . One of the most common ways to produce such filtrations is to study the sublevel sets of a continuous filter
function 𝑓 : 𝑋 → R𝑛 , defined with F = {𝑥 ∈ 𝑋 : 𝑓 (𝑥) ≤ 𝑢}𝑢∈R𝑛 ; where the partial order on the poset R𝑛 (denoted by

≤) is defined, for any 𝑎, 𝑏 ∈ R𝑛 , as 𝑎 ≤ 𝑏 if and only if 𝑎𝑖 ≤ 𝑏𝑖 for any 1 ≤ 𝑖 ≤ 𝑛.

Single-parameter PH. When I is totally ordered, e.g., when I ⊆ R, then applying the homology functor 𝐻∗ (−;𝑘)
for a field 𝑘 to a (single-parameter) filtration results in a sequence of vector spaces connected by linear transforma-

tions. �is sequence is called a single-parameter persistence module and has been studied extensively in the TDA

literature [Car09, CdGO16, EH10, Oud15]. Notably, one can show that such persistence modules can always be decom-

posed into a direct sum of simple summands, which intuitively represent the appearances (birth) and disappearances

(death) of topological structures detected by homology as the index increases. Moreover, single-parameter persistence

modules can be efficiently represented in a compact descriptor called the persistence barcode, and several vectorization

methods, as well as kernels and machine learning classifiers, have been proposed for such barcodes in the litera-

ture [Bub15, AEK
+
17, RHBK15, CCO17, CCI

+
20]. As a consequence, most applications of TDA use single-parameter

persistence modules, and o�en use the sublevel sets of, e.g., the data set scale, as the corresponding single-parameter

filtration.

Multi-parameter PH. However, many data sets come with not just one, but multiple, possibly intertwined, salient

filtrations. For example, image data typically has both a spatial filtration and an intensity filtration. Arbitrary point
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cloud data can be filtered both by feature scale and density. Unfortunately, in general, the resulting multi-parameter
persistence modules obtained by applying the homology functor to a filtration indexed over R𝑛 [Car09, Les15] are much

less tractable; contrary to the single-parameter case, there is no general decomposition theorem that can break down any

module into a direct sum of simple summands such as, e.g., interval modules.

Contributions. In this article, we build on the heuristic construction of [CB20] based on the fibered barcode [LW15]

and propose the first approximate decomposition of general multi-parameter persistence modules in arbitrary dimension.

1. We introduce a new candidate approximate decomposition, parameterized by an approximation parameter 𝛿 > 0,

that can be computed for any multi-parameter persistence module with running time

𝑂

(
𝑁 3 + 1

𝛿𝑛
(𝑁 + 𝑛 · 2𝑛−1)

)
,

where 𝑁 is the number of simplices and 𝑛 is the number of filtrations (Algorithm 1 in Section 3.3),

2. When computed over interval decomposable modules, we prove that the interleaving distance between our con-

struction 𝑀̃ and the module𝑀 it approximates is upper bounded under mild assumptions (Proposition5.5):

𝑑𝐼 (𝑀, 𝑀̃) ≤ 𝑑𝑏 (𝑀, 𝑀̃) ≤ 𝛿.

Even though our theoretical result only applies to interval decomposable modules, our candidate approximation

𝑀̃ always has the same fibered barcode and rank invariant than the module 𝑀 it approximates. Moreover,

we hypothesize that our approximate decomposition is also stable for modules that are close to being interval

decomposable, while being more powerful than the rank invariant.

3. We perform numerical experiments that showcase the performance of this approximation and exhibit the trade-off

between computation time and approximation error (Section 7).

Related work. �ere are several works in the literature that focused on the problem of computing or approximating

multi-parameter persistence modules.

When restricted to filtrations indexed over R2, decomposition theorems have been provided under strong assumptions

about the filter functions [ABE
+
21, BLO20, BLO22, BL18, CO19, Les15], as well as efficient algorithms for comparing

these decompositions [KLO19, KN20, Vip20a]. Minimal presentations of bimodules of simplicial complexes can also

be computed with Rivet [LW15] in 𝑂 (𝑁 3𝜅 + (𝑁 + log𝜅)𝜅2) operations, where 𝑁 is the number of simplices, and

𝜅 = 𝜅𝑥𝜅𝑦 is the product of unique 𝑥 and 𝑦 coordinates in the support of the module. Approximation schemes and

methods to produce estimate modules have also been proposed with polynomial complexity, that are based on, e.g,

Möbius inversions [AENY19], or rectangle summands [DX21]. While these running times are comparable to ours, we

substantially generalize these approaches since our approximation can be computed for any number of filtrations.

For general multi-parameter persistence modules in dimension 𝑛, i.e., computed from filtrations indexed over R𝑛 ,
alternative descriptors of the multi-parameter persistence modules (that are complete under specific assumptions) have

been presented [BOO21, CB20, CFK
+
19, Vip20b], and a decomposition algorithm for modules computed on simplicial

complexes and indexed over a grid has been proposed [DX22]. �is algorithm has complexity 𝑂 (𝑁𝑛 (2𝜔+1) ), where 𝑁
is the number of simplices (which can be typically more than cubic in the number of data points, depending on the

homology dimension) and 𝜔 < 2.373, and is thus very limited by the size of the input. Hence, computing approximate

decompositions for multi-parameter persistence modules indexed overR𝑛 for arbitrary 𝑛 ∈ N∗ with controlled complexity,

running time, and approximation error is still an open and important question, which we tackle in this article.

Outline. Section 2 provides a concise review of multi-parameter persistence modules. In Section 3, we present our

approximation scheme for general multi-parameter persistence modules, and in Sections 4 and 5, we study the theoretical

properties of our construction for interval decomposable modules. We also discuss in depth the exact matching parameter

of our construction in Section 6. Finally, we illustrate the performances of our candidate in Section 7.

2. Background

In this section, we recall the basics of multi-parameter persistence modules. �is section only contains the necessary

background and notations, and can be skipped if the reader is already familiar with persistence theory. A more complete

treatment of persistencemodules can be found in [Oud15, CdGO16, DW22]. Amore precise description ofmulti-parameter

persistence modules computed from filtered simplicial complexes can also be found in Section 6.3.

2.1. Multi-parameter persistence modules

In their most general form, i.e., regardless of whether they are computed from simplicial complexes, topological spaces,

etc, multi-parameter persistence modules are nothing but 𝑘-vector spaces indexed by R𝑛 and connected by linear

transformations (where 𝑘 denotes a field).
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Definition 2.1 (Multi-parameter persistence module). An 𝑛-multi-parameter persistence module (or 𝑛-multipersistence

module for short) is a covariant functor 𝑀 from R𝑛 to the category of 𝑘-vector spaces, 𝑀 : 𝑥 ∈ R𝑛 ↦→ 𝑀𝑥 . �e linear

transformations {𝜑𝑦𝑥 : 𝑀𝑥 → 𝑀𝑦}𝑥,𝑦∈R𝑛,𝑥≤𝑦 are called the transition maps of𝑀 . In particular, functoriality imposes the

following property on the transition maps: 𝜑𝑧𝑥 = 𝜑𝑧𝑦 ◦ 𝜑
𝑦
𝑥 for any 𝑥 ≤ 𝑦 ≤ 𝑧.

Amorphism between two 𝑛-multipersistence modules𝑀, 𝑁 with transition maps 𝜑 ·· and𝜓
·
· respectively, is a collection

of linear maps 𝑓 = {𝑓𝑥 : 𝑀𝑥 → 𝑁𝑥 }𝑥 ∈R𝑛 , called an 𝑛-multipersistence morphism, that commutes with transitions maps,

i.e., one has 𝑓𝑦 ◦ 𝜑𝑦𝑥 = 𝜓
𝑦
𝑥 ◦ 𝑓𝑥 , for all 𝑥 ≤ 𝑦.

Multipersistence modules can be compared with the interleaving distance [Les15], which is one of the most commonly

used distances in TDA, and which is based on the shi� functor.

Definition 2.2 (Shi� functor). Let 𝑣 ∈ R𝑛 . �e 𝑣-shi� functor is the endofunctor (·) (𝑣) that maps an 𝑛-multipersistence

module 𝑀 (resp. an 𝑛-multipersistence morphism 𝑓 ) to 𝑀 (𝑣) (resp. 𝑓 (𝑣)) defined, for any 𝑥 ∈ R𝑛 , as 𝑀 (𝑣)𝑥 := 𝑀𝑥+𝑣
(resp. 𝑓 (𝑣)𝑥 := 𝑓𝑥+𝑣).

Definition 2.3 (Interleaving distance). Given 𝜀 > 0, two 𝑛-multipersistence modules 𝑀 and 𝑁 are 𝜺-interleaved if

there exist two morphisms 𝑓 : 𝑀 → 𝑁 (𝜺) and 𝑔 : 𝑁 → 𝑀 (𝜺) such that 𝑔(𝜺) ◦ 𝑓 = 𝜑 ·+2𝜺· and 𝑓 (𝜺) ◦ 𝑔 = 𝜓 ·+2𝜺· , where

𝜺 = (𝜀, . . . , 𝜀) ∈ R𝑛 , and 𝜑 and𝜓 are the transition maps of𝑀 and 𝑁 respectively.

�e interleaving (pseudo)distance between two multipersistence modules𝑀 and 𝑁 is then defined as

𝑑𝐼 (𝑀, 𝑁 ) = inf {𝜀 ≥ 0 : 𝑀 and 𝑁 are 𝜺-interleaved} .

Another usual distance is the bo�leneck distance [BL18, Section 2.3]. Intuitively, it relies on decompositions of the

modules into direct sums of summands, and is defined as the interleaving distance between these summands. As such, it

first requires the definition of a matching between summands.

Definition 2.4 (Matching). Given two multisets𝐴 and 𝐵, 𝜇 : 𝐴 6→ 𝐵 is called amatching if there exist𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵
such that 𝜇 : 𝐴′→ 𝐵′ is a bijection. In the following, we let im(𝜇) = 𝐵′ and coim(𝜇) = 𝐴′.

Moreover, in order to define meaningful decompositions, summands are required to be indecomposable modules.

Definition 2.5 (Indecomposable module). A multipersistence module𝑀 is indecomposable if

𝑀 � 𝐴 ⊕ 𝐵 =⇒ 𝑀 ' 𝐴 or𝑀 ' 𝐵

Since decompositions of multipersistence modules are unique [Oud15], the following distance is well-defined.

Definition 2.6 (Bo�leneck distance). Let𝑀 �
⊕

𝑖∈I 𝑀𝑖 and 𝑁 �
⊕

𝑗 ∈J 𝑁 𝑗 be two multipersistence modules decom-

posed into indecomposable summands. Given 𝜀 ≥ 0, the modules 𝑀 and 𝑁 are 𝜺-matched if there exists a matching

𝜎 : I 6→ J such that

1. for all 𝑖 ∈ I\coim(𝜎),𝑀𝑖 is 𝜺-interleaved with the null module 0,

2. for all 𝑗 ∈ J\im(𝜎), 𝑁 𝑗 is 𝜺-interleaved with the null module 0,

3. for all 𝑖 ∈ coim(𝜎),𝑀𝑖 and 𝑁𝜎 (𝑖) are 𝜺-interleaved.

�e bo�leneck distance, denoted by 𝑑𝑏 , between two multipersistence modules𝑀 and 𝑁 is then defined as

𝑑𝑏 (𝑀, 𝑁 ) = inf {𝜀 ≥ 0 : 𝑀 and 𝑁 are 𝜺-matched} .

Since a matching between the decompositions of two multipersistence modules induces an interleaving between the

modules themselves, it follows that 𝑑𝐼 ≤ 𝑑𝑏 . Note that the bo�leneck distance can actually be arbitrarily larger than the

interleaving distance, as showcased in [BL18, Section 9].

2.2. Interval modules

�e study of multipersistence modules is easier when restricted to a specific class called the interval modules. For instance,
all of our theoretical results presented in Sections 4 and 5 are stated for modules that can be decomposed into intervals.

Hence, in this section, we define such interval modules. Intuitively, they are modules that are trivial, except on a subset

of R𝑛 called an interval.

Definition 2.7 (Interval). A subset 𝐼 of R𝑛 is called an interval if it satisfies:

• (convexity) if 𝑝, 𝑞 ∈ 𝐼 and 𝑝 ≤ 𝑟 ≤ 𝑞 then 𝑟 ∈ 𝐼 , and

• (connectivity) if 𝑝, 𝑞 ∈ 𝐼 , then there exists a finite sequence 𝑟1, 𝑟2, . . . , 𝑟𝑚 ∈ 𝐼 , for some𝑚 ∈ N, such that 𝑝 ∼ 𝑟1 ∼
𝑟2 ∼ · · · ∼ 𝑟𝑚 ∼ 𝑞, where ∼ can be either ≤ or ≥.
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Definition 2.8 (Indicator module, Interval module). An 𝑛-multipersistence module𝑀 is an 𝑛-indicator module if there
exists a set 𝑆 ⊆ R𝑛 , called the support of𝑀 and denoted by supp(𝑀), such that:

∀𝑥 ∈ R𝑛, 𝑀𝑥 =

{
𝑘 if 𝑥 ∈ 𝑆
0 otherwise

and ∀𝑥,𝑦 ∈ R𝑛, 𝜑𝑦𝑥 =

{
id𝑘→𝑘 if 𝑥 ≤ 𝑦 ∈ 𝑆
0 otherwise

where 𝜑 ·· are the transition maps of𝑀 . If 𝑆 is an interval,𝑀 is called an 𝑛-interval module.

An important consequence of modules is that whenever two points are in the support of an indicator module, then

the whole rectangle induced by those points must be in the support as well, as stated by the following lemma.

Lemma 2.9. Let 𝐼 be an 𝑛-indicator module. �en one has 𝑎, 𝑏 ∈ supp(𝐼 ) ⇔ 𝑅𝑎,𝑏 ⊆ supp(𝐼 ), where, given two points
𝑎, 𝑏 ∈ R𝑛 , the corresponding rectangle 𝑅𝑎,𝑏 is defined as 𝑅𝑎,𝑏 := {𝑥 ∈ R𝑛 : 𝑎 ≤ 𝑥 ≤ 𝑏}, and 𝑅𝑎,𝑏 = ∅ if 𝑏 < 𝑎 or if 𝑎 and 𝑏 are
not comparable in R𝑛 .

Proof. Since ⇐ is trivial, we only prove ⇒. If 𝑥 6≤ 𝑦, then 𝑅𝑥,𝑦 is empty and the result holds. Otherwise, if 𝑅𝑥,𝑦 is

not empty, let 𝑧 ∈ 𝑅𝑥,𝑦 , i.e., 𝑥 ≤ 𝑧 ≤ 𝑦, and let 𝜑 ·· be the transition maps of 𝐼 . Since 𝜑
𝑦
𝑥 = 𝜑

𝑦
𝑧 ◦ 𝜑𝑧𝑥 = id, one has

1 ≥ dim 𝐼𝑧 ≥ dim 𝐼𝑥 = dim 𝐼𝑦 = 1 (see Definition 2.8), which means that 𝑧 ∈ supp(𝐼 ). �

Note that one cannot use any set 𝑆 for defining an indicator module, since transition maps of modules must satisfy

some properties coming from functoriality (see Definition 2.1). However, one can defined a module induced from a set
using the following definition.

Definition 2.10 (Induced module). Given a subset 𝑆 ⊆ R𝑛 , the indicator module Ind (𝑆) induced by 𝑆 is defined as the

indicator module with support {𝑥 ∈ R𝑛 : ∃𝑎, 𝑏 ∈ 𝑆 such that 𝑎 ≤ 𝑥 ≤ 𝑏}.

Finally, interval decomposable modules are then defined as those multipersistence modules that are made of intervals.

Definition 2.11 (Interval decomposable module). An interval decomposable module 𝑀 is a multipersistence module that

is isomorphic to a direct sum of interval modules.

Note that for rectangle decomposable modules, i.e., interval decomposable modules whose supports are rectangles

in R𝑛 , it is possible to control the bo�leneck distance more precisely with 𝑑𝑏 ≤ (2𝑛 − 1)𝑑𝐼 [Bje20, �eorem 4.3]. In the

following, we present a few properties of interval modules that are o�en very useful for their theoretical analysis.

Definition 2.12 (Discretely presented interval module). An 𝑛-interval module 𝐼 is discretely presented if its support is a

locally finite union of rectangles in R𝑛 , and whose boundary is an (𝑛 − 1)-submanifold of R𝑛 . More precisely, there exist

two families of points, the birth and death critical points of 𝐼 , denoted by 𝐶𝐵 (𝐼 ) and 𝐶𝐷 (𝐼 ) respectively, such that:

𝐼 = Ind ©­«
⋃

𝑐∈𝐶𝐵 (𝐼 )

⋃
𝑐′∈𝐶𝐷 (𝐼 )

𝑅𝑐,𝑐′
ª®¬ . (1)

A useful property of interval modules is that they can be described with their upper- and lower-boundaries, also called
upsets and downsets [Mil20, Section 1.4].

Definition 2.13 (Upper- and lower-boundaries). Given an interval 𝐼 , its upper-boundary 𝑈 [𝐼 ] and lower-boundary 𝐿[𝐼 ]
are defined as:

𝐿[𝐼 ] :=
{
𝑥 ∈ 𝐼 : ∀𝑦 ∈ R𝑛, 𝑦 < 𝑥 ⇒ 𝑦 ∉ 𝐼

}
, 𝑈 [𝐼 ] :=

{
𝑥 ∈ 𝐼 : ∀𝑦 ∈ R𝑛, 𝑦 > 𝑥 ⇒ 𝑦 ∉ 𝐼

}
Moreover, the boundary of supp(𝐼 ) can be decomposed with 𝜕supp(𝐼 ) = 𝐿[𝐼 ] ∪𝑈 [𝐼 ]. See Figure 1 for an illustration.

When interval modules are discretely presented, their lower- and upper-boundaries are made of flat parts, which

are the faces of the corresponding rectangles forming the module. Hence, we call facets the subsets of the lower- and
upper-boundaries that are included in some hyperplanes of R𝑛 .

Definition 2.14 (Facet). A lower (resp. upper) facet of an interval 𝐼 is an (𝑛 − 1)-submanifold of 𝜕supp(𝐼 ) wri�en as

{𝑥 ∈ R𝑛 : 𝑥𝑖 = 𝑐} ∩ 𝐿[𝐼 ] (resp. {𝑥 ∈ R𝑛 : 𝑥𝑖 = 𝑐} ∩𝑈 [𝐼 ]) for some 𝑐 ∈ R and some dimension 𝑖 ∈ È1, 𝑛É that is called
the facet codirection. In particular, the upper- and lower-boundaries of a discretely presented interval module is a (locally)

finite union of facets.
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2.3. Interval morphisms

For indicator modules, there is only one possible transition map, the identity (up to an invertible scalar). �is induces a

canonical way to define morphisms between indicator modules (and thus between interval modules as well).

Definition 2.15 (Indicator module morphisms). Let 𝐼 and 𝐼 be two indicator modules. �e collections of linear maps

𝜑
( ·)
𝐼→𝐼

and 𝜑
( ·)
𝐼→𝐼

between 𝐼 and 𝐼 are called indicator module morphisms, and defined with

𝐼 𝐼 [2𝜺]

𝐼 [𝜺]

𝜑
(2𝜀 )
𝐼

𝜑
(𝜀 )
𝐼→𝐼

𝜑
(𝜀 )
𝐼→𝐼

and

𝐼 𝐼 [2𝜺]

𝐼 [𝜺]

𝜑
(2𝜀 )
𝐼

𝜑
(𝜀 )
𝐼→𝐼 𝜑

(𝜀 )
𝐼→𝐼

(2)

where 𝜺 = (𝜀, . . . , 𝜀) ∈ R𝑛 and where 𝜑
(𝜀)
𝐼→𝐼

is defined, for 𝑥 ∈ R𝑛 , by

(𝜑 (𝜀)
𝐼→𝐼
)𝑥 : 𝐼𝑥 ' 𝑘 or {0} −→ 𝐼𝑥+𝜺 ' 𝑘 or {0}

𝑦 ↦−→
{
𝑦 if 𝑥 + 𝜺 ∈ supp(𝐼 )
0 otherwise

,

and vice-versa for 𝜑
(𝜀)
𝐼→𝐼

. Note that 𝜑
(𝜀)
𝐼→𝐼

and 𝜑
(𝜀)
𝐼→𝐼

define an 𝜺-interleaving between 𝐼 and 𝐼 if they commute.

2.4. Fibered barcode

�e fibered barcode [LW15] is a centerpiece of our approximation scheme, and is defined, given an 𝑛-multipersistence

module𝑀 , as a map that takes as input a line (or segment) 𝑙 in R𝑛 , and outputs the persistence barcode associated to the

single-parameter persistence module obtained by restricting𝑀 along 𝑙 . Hence, in the following, we formalize and define

intersections between multipersistence modules and lines in R𝑛 .

Definition 2.16. Given a line 𝑙 ⊆ R2, we let 𝜄𝑙 denote the induced functor 𝜄𝑙 : L→ R2, where L is the full subcategory of

R2 associated to 𝑙 . �e module𝑀
��
𝑙
:= 𝑀 ◦ 𝜄𝑙 is called the restriction of𝑀 to 𝑙 .

Remark 2.17. When 𝑀 =
⊕

𝑖∈I 𝑀𝑖 is decomposable into indicator modules, the support of the restriction of 𝑀 to 𝑙

is a set of segments called bars, and aggregated in a barcode: B(𝑀
��
𝑙
) := supp(𝑀

��
𝑙
) :=

(
supp(𝑀𝑖

��
𝑙
)
)
𝑖∈I

. Note that this

barcode corresponds exactly to the barcode defined in the theory of single-parameter persistence, computed on the

single-parameter filtration induced by 𝑙 ⊆ R2.
Definition 2.18 (Fibered Barcode). Let 𝑀 =

⊕
𝑖∈I 𝑀𝑖 be a pointwise finite-dimensional 𝑛-multipersistence module.

�e complete fibered barcode of𝑀 is defined as the family of barcodes CFB(𝑀) = {B(𝑀
��
𝑙
) : 𝑙 ∈ L}, where L denotes

the set of diagonal lines in R𝑛 , i.e., those lines with direction vector 1 = (1, . . . , 1) ∈ R𝑛 . Given a (possibly discrete) family

of diagonal lines 𝐿 ⊆ L, we let the 𝐿-fibered barcode (or fibered barcode for short when 𝐿 is clear) be the restriction of the

complete fibered barcode to 𝐿, i.e., FB(𝑀)𝐿 = {B(𝑀
��
𝑙
) : 𝑙 ∈ 𝐿}.

It is also useful to characterize intersections between modules and lines using the endpoints of lines.

Definition 2.19 (Birthpoint, Deathpoint). Given a point𝑥 ∈ R𝑛 and an indicatormodule 𝐼 , we call𝑏𝐼𝑥 := {𝑥 + 𝜹 : 𝛿 ∈ R}∩
𝐿[𝐼 ] (resp. 𝑑𝐼𝑥 = {𝑥 + 𝜹 : 𝛿 ∈ R} ∩ 𝑈 [𝐼 ]) the birthpoint (resp. deathpoint) associated to 𝑥 and 𝐼 (see Figure 1 for an

illustration), where 𝜹 = (𝛿, . . . , 𝛿) ∈ R𝑛 . Since it follows from the definition of 𝐿[𝐼 ] and𝑈 [𝐼 ] that 𝑏𝐼𝑥 and 𝑑𝐼𝑥 are singletons,
we slightly abuse notations and use 𝑏𝐼𝑥 and 𝑑𝐼𝑥 to also refer to the unique element these sets contain. When these sets are

empty, or 𝑏𝐼𝑥 = 𝑑𝐼𝑥 , we say 𝑏
𝐼
𝑥 and 𝑑

𝐼
𝑥 are trivial.

Similarly, given a diagonal line 𝑙 ⊆ R𝑛 (i.e., a line with direction vector (1, . . . , 1) ∈ R𝑛), we define the birthpoint (resp.
deathpoint) associated to 𝑙 and 𝐼 as 𝑏𝐼

𝑙
:= 𝑏𝐼𝑥 (resp. 𝑑

𝐼
𝑙
:= 𝑑𝐼𝑥 ) for any 𝑥 ∈ 𝑙 .

Figure 1: Lower- and upper-boundaries of a 2-interval (Definition 2.13); and birthpoints and deathpoints 𝑏𝐼𝑥 and 𝑑𝐼𝑥
(Definition 2.19) of a point 𝑥 ∈ R2.
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Remark 2.20. �e rectangle 𝑅𝑎,𝑏 induced by two birthpoints or deathpoints 𝑎, 𝑏 of the same indicator module is always

flat, i.e., at least one of its sides has length zero, as demonstrated by Figure 2.

Figure 2: Two bars [𝑏1, 𝑑1] and [𝑏2, 𝑑2] of some indicator module; if 𝑅𝑏1,𝑏2 is not flat then, by Lemma 2.9, 𝑏2 cannot be a

birthpoint since it would be possible to find a smaller birthpoint w.r.t. the partial order of R𝑛 along the diagonal line

passing through 𝑏2.

Remark 2.21. Using birthpoints and deathpoints, the 𝐿-fibered barcode of an interval decomposable multipersistence

module𝑀 =
⊕

𝑖∈I 𝑀𝑖 is wri�en as:

FB(𝑀)𝐿 = {B(𝑀
��
𝑙
) : 𝑙 ∈ 𝐿} = {([𝑏𝑀𝑖

𝑙
, 𝑑
𝑀𝑖

𝑙
])𝑖∈I : 𝑙 ∈ 𝐿}. (3)

Note also that bars of the fibered barcode that are associated to lines that are close to each other must have similar

length, as stated in the lemma below, which is very similar to [Lan18, Lemma 2].

Lemma 2.22. Let 𝐼 be an indicator module, let 𝑙1, 𝑙2 ⊆ R𝑛 be two diagonal lines and let −→𝑣 ∈ R𝑛 be a positive or negative
vector (i.e., the coordinates of −→𝑣 are either all positive or all negative) such that 𝑙2 = 𝑙1 + −→𝑣 . Assume that the barcodes B(𝐼

��
𝑙1
)

and B(𝐼
��
𝑙2
) are non empty, and let [𝑏𝐼

𝑙1
, 𝑑𝐼
𝑙1
] and [𝑏𝐼

𝑙2
, 𝑑𝐼
𝑙2
] be the corresponding bars in R𝑛 . �en, one has


𝑑𝐼𝑙1 − 𝑑𝐼𝑙2


∞ ≤ 

−→𝑣 


∞ and




𝑏𝐼𝑙1 − 𝑏𝐼𝑙2


∞ ≤ 

−→𝑣 


∞ ,

where we used the conventions (+∞) − (+∞) = (−∞) − (−∞) = 0.

Proof. If one of the endpoints is infinite, the result holds trivially, so we now assume that the endpoints of the bars are all

finite. Without loss of generality, assume that 𝑙2 = 𝑙1 + −→𝑣 where
−→𝑣 is positive. Now, since both 𝑑𝐼

𝑙2
and 𝑑𝐼

𝑙1
+ −→𝑣 belong

to 𝑙2, they are comparable, so one has either 𝑑𝐼
𝑙2
> 𝑑𝐼

𝑙1
+ −→𝑣 or 𝑑𝐼

𝑙2
≤ 𝑑𝐼

𝑙1
+ −→𝑣 . However, the first possibility would lead to

𝑑𝐼
𝑙2
> 𝑑𝐼

𝑙1
+ −→𝑣 > 𝑑𝐼

𝑙1
, hence 𝑑𝐼

𝑙1
and 𝑑𝐼

𝑙2
would be (strictly) comparable in R𝑛 , which contradicts Remark 2.20. �us, one

must have 𝑑𝐼
𝑙2
≤ 𝑑𝐼

𝑙1
+ −→𝑣 . Furthermore, and using the exact same arguments, 𝑑𝑙2 − −→𝑣 +



−→𝑣 


∞ · 1 is on 𝑙1, and one must

have 𝑑𝐼
𝑙2
− −→𝑣 +



−→𝑣 


∞ · 1 ≥ 𝑑

𝐼
𝑙1
. Finally, by combining the two previous inequalities, one has

𝑑𝐼
𝑙1
−



−→𝑣 


∞ · 1 ≤ 𝑑

𝐼
𝑙1
+ −→𝑣 −



−→𝑣 


∞ · 1 ≤ 𝑑

𝐼
𝑙2
≤ 𝑑𝐼

𝑙1
+ −→𝑣 ≤ 𝑑𝐼

𝑙1
+



−→𝑣 


∞ · 1,

which leads to the desired inequality for deathpoints. �e proof extends straightforwardly to birthpoints. �

3. General multipersistence module approximation

In this section, we present the first approximation scheme that works for any multipersistence module in arbitrary

dimension, i.e., with arbitrary number of filtrations. In particular, one does not have to assume that the underlying

module is decomposable in order to apply our method. Our candidate approximation works by sampling the underlying

module with an ordered family of diagonal lines, computing the associated fibered barcode, and finally connecting the

endpoints of bars in consecutive barcodes in a specific way. Note however that the theoretical properties that we show

for our approximation in Sections 4 and 5 are valid only when the underlying module is interval decomposable. We

first provide in Section 3.1 a few specific examples of approximation schemes based on fibered barcodes that we present

to gather intuition and motivation for our main construction, that we then present in Section 3.2. �e corresponding

pseudo-code and algorithm are given in Section 3.3.
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3.1. Motivation

�e goal of this section is to frame the general question of reconstructing a multipersistence module from its fibered

barcode. �ere are many ways of doing so, but the most natural ones are not necessarily the easiest computable ones.

For the sake of simplicity, assume that the underlying module is a single interval module𝑀 = 𝐼 (see Definition 2.8).

Since interval modules are characterized by their supports, the goal is to recover supp(𝐼 ). Moreover, if 𝐼 is discretely

presented, one can find an exact sequence of graded modules

𝑅 → 𝐺 � 𝐼 → 0,

such that the critical points of supp(𝐼 ) (see Equation (1)) provide bases for the modules𝐺 and 𝑅 (we recall that, intuitively,

𝐺 and 𝑅 represent the homology generators and relations respectively). Technical details for finding such exact sequences

can be found in, e.g., [DX22, Appendix A], and an example of such a sequence is given in Figure 3. Hence, only the facets

or critical points of supp(𝐼 ) need to be captured or approximated in order to recover 𝐼 when it is discretely presented.

Figure 3: Let 𝐼 be the interval whose support is colored in grey, and let 𝜑 ·· denote the transition maps of 𝐼 . �e

graded modules 𝑅 and 𝐺 can be constructed as follows: 𝐺 is defined as the free graded module 𝐺 := 〈𝑔1, 𝑔2, 𝑔3〉 (where
the grades of 𝑔1, 𝑔2 and 𝑔3 are (𝑥1, 𝑦3), (𝑥2, 𝑦2) and (𝑥3, 𝑦1) respectively, i.e., they are given by their positions in the

figure), and 𝑅 is defined as the (not necessarily free) graded module 𝑅 := 〈𝑟1, . . . , 𝑟5〉 (where the grades of the 𝑟𝑖 ’s, are
also given by the figure). Since one has 𝑟1 = 𝜑

(𝑥1,𝑦3)+(𝑦5−𝑦3)𝑒2
(𝑥1,𝑦3) (𝑔1), 𝑟2 = 𝜑

(𝑥3,𝑦1)+(𝑦4−𝑦1)𝑒2
(𝑥3,𝑦1) (𝑔3), 𝑟3 = 𝜑

(𝑥3,𝑦1)+(𝑥4−𝑥3)𝑒1
(𝑥3,𝑦1) (𝑔3),

𝑟4 = 𝜑
(𝑥1,𝑦3)+(𝑥2−𝑥1)𝑒1
(𝑥1,𝑦3) (𝑔1) − 𝜑 (𝑥2,𝑦2)+(𝑦3−𝑦2)𝑒2(𝑥2,𝑦2) (𝑔2), and 𝑟5 = 𝜑

(𝑥2,𝑦2)+(𝑥3−𝑥2)𝑒1
(𝑥2,𝑦2) (𝑔2) − 𝜑 (𝑥3,𝑦1)+(𝑦2−𝑦1)𝑒2(𝑥3,𝑦1) (𝑔3), it follows that

𝑅 → 𝐺 � 𝐼 → 0 is an exact sequence.

�ere are many different ways, for a given 𝑛-interval module 𝐼 , to define candidate critical points, that we call corners,
using the endpoints of its fibered barcode, e.g., by using the minimum and maximum of consecutive endpoint coordinates.

Hence, it is natural to define our candidate approximation 𝐼 with model selection, i.e., by minimizing some penalty cost

pen : 𝑆 → R+, where 𝑆 is the set of discretely presented interval modules having the same fibered barcode as 𝐼 , or a

subset thereof. See Figure 4 for examples of sets 𝑆 and corresponding candidate approximations. �is penalty would

forbid, e.g., overly complicated approximations that have a lot of corners. For instance, minimizing the penalty

pen : 𝐼 ↦→ #corners of supp(𝐼 ). (4)

would provide a sparse approximation of 𝐼 . Actually, when one assumes that the underlying interval module 𝐼 is discretely

presented with facets that are large enough with respect to the family of lines 𝐿 of the fibered barcode (see Proposition

4.4 for precise statements), it is easy to show that 𝐼 minimizes penalty (4). Indeed, as all the facets are detected by some

endpoints of the fibered barcode, any candidate has at least the same number of facets than 𝐼 .
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Figure 4: Example of candidates for a 2-interval module 𝐼 with support in R2. (Le�) Given the 𝐿-fibered barcode of 𝐼 ,

where 𝐿 is the family of the four black lines, we want to approximate 𝐼 with an element of 𝑆 , i.e., an interval module with

the same fibered barcode. (Middle)When one further constrains the set 𝑆 by asking to have at most one corner between

two consecutive endpoints of the fibered barcode, the whole set 𝑆 can be computed explicitly. (Right) �e set 𝑆 can also

be described as the set of intervals which have to go through the blue path, and which can arbitrarily choose between

the red or green path at three different locations. Hence, the cardinality of 𝑆 is 2
3
.

Remark 3.1. For 𝑛-interval modules, 𝑆 is generally a set of cardinal 𝑐𝑑 , where 𝑐 is the number of possible corners between

2
𝑛−1

birthpoints or deathpoints, and 𝑑 is the number of corners. For instance, in Figure 4, one has 𝑛 = 2, 𝑐 = 2 and

𝑑 = 3. Unfortunately, 𝑐 grows exponentially with the dimension 𝑛, and 𝑑 is difficult to control in practice, since it heavily

depends on the number of lines in the fibered barcode and the regularity of the underlying interval module 𝐼 . Minimizing

a penalty over 𝑆 is thus practical only for low dimension 𝑛 and small number of lines in the fibered barcode. Hence, our

general approximation scheme presented in Section 3.3 does not use penalty minimization, but is rather defined with

arbitrary corner choices.

Note also that there are cases when the corner choices are canonical. For instance, any 2-multipersistence module𝑀

with transition maps 𝜑 ·· that is weakly exact, i.e., that satisfy, for any 𝑥 ≤ 𝑦

im

(
𝜑
𝑦
𝑥

)
= im

(
𝜑
𝑦

(𝑦1,𝑥2)

)
∩ im

(
𝜑
𝑦

(𝑥1,𝑦2)

)
and ker

(
𝜑
𝑦
𝑥

)
= ker

(
𝜑
(𝑦1,𝑥2)
𝑥

)
+ ker

(
𝜑
(𝑥1,𝑦2)
𝑥

)
,

is rectangle decomposable [BLO22]. Hence, a canonical approximation of a summand 𝐼 of 𝑀 is given by the interval

module whose support is the rectangle with corners (min𝑙 (𝑏𝐼𝑙 )1,min𝑙 (𝑏𝐼𝑙 )2) and (max𝑙 (𝑏𝐼𝑙 )1,max𝑙 (𝑏𝐼𝑙 )2), where 𝑙 goes
through the family of lines 𝐿 of the fibered barcode.

3.2. Line families, corners and exact matchings

In this section, we provide three additional definitions that turn out very useful for describing our approximation scheme

in Section 3.3, as well as for proving associated guarantees for interval decomposable modules in Sections 4 and 5.

We first introduce a few notations: we let (𝑒1, . . . , 𝑒𝑛) be the canonical basis of R𝑛 , 𝑑∞ denote the ‖ · ‖∞ distance in

R𝑛 , and, given a set 𝐴 ⊆ R𝑛 and 𝛿 > 0, we let 𝐴𝛿 denote the 𝛿-offset of 𝐴, defined as 𝐴𝛿 := {𝑥 ∈ R𝑛 : 𝑑∞ (𝑥,𝐴) ≤ 𝛿},
and we let conv(𝐴) denote the convex hull of 𝐴. Moreover, given a hyperplane 𝐻 ⊆ R𝑛 and its two associated vectors

𝑎𝐻 , 𝑏𝐻 ∈ R𝑛 which satisfy 𝐻 = 𝑏𝐻 + {𝑥 ∈ R𝑛 : 〈𝑥, 𝑎𝐻 〉 = 0}, we call 𝑎𝐻 the codirection of 𝐻 (similarly to the codirection

of facets, see Definition 2.14). Finally, when 𝑎𝐻 is a vector in the canonical basis of R𝑛 , i.e., there exists 𝑖 ∈ È1, 𝑛É such
that 𝑎𝐻 = 𝑒𝑖 , we slightly abuse notation and also call 𝑖 the codirection of 𝐻 .

Our first definition characterize those families of lines that evenly cover compact sets in R𝑛 .

Definition 3.2 (𝛿-regularly distributed lines filling a compact set). Let 𝐿 be a set of diagonal lines in R𝑛 and 𝐾 ⊆ R𝑛 be

a compact set. �en, we say that :

1. two diagonal lines 𝑙, 𝑙 ′ ∈ 𝐿 are 𝛿-consecutive (or simply consecutivewhen 𝛿 is clear) if there exists u ∈ {0, 1}𝑛 \ {0, 1}
such that 𝑙 ′ = 𝑙 ± 𝛿u.

2. two diagonal lines 𝑙, 𝑙 ′ ∈ 𝐿 are 𝛿-comparable if there exists a positive or negative vector −→𝑢 ∈ R𝑛 with


−→𝑢 



∞ ≤ 𝛿
such that 𝑙 ′ = 𝑙 + −→𝑢 , where −→𝑢 is said to be positive (resp. negative), wri�en as

−→𝑢 ≥ 0 (resp.
−→𝑢 ≤ 0), if and only if

(−→𝑢 )𝑖 ≥ 0 (resp. (−→𝑢 )𝑖 ≤ 0) for all 𝑖 ∈ È1, 𝑛É. If −→𝑢 is positive (resp. negative), we write 𝑙 ′ ≥ 𝑙 (resp. 𝑙 ′ ≤ 𝑙 ).

3. 𝐿 is 𝛿-regularly distributed if, for any pair of lines (𝑙, 𝑙 ′) ∈ 𝐿, there exists a sequence of 𝛿-consecutive lines {𝑙1, . . . , 𝑙𝑘 }
in 𝐿 such that 𝑙 = 𝑙1 and 𝑙

′ = 𝑙𝑘 .

4. for a given line 𝑙 in a 𝛿-regularly distributed family of lines 𝐿, we call 𝐿𝑙 := 𝐿 ∩ {𝑙 + −→𝑣 :
−→𝑣 ∈ {0, 1}𝑛−1 × {0}} the

𝐿-surrounding set of 𝑙 . In particular, one has |𝐿𝑙 | ≤ 2
𝑛−1

.

5. 𝐿 𝛿-fills 𝐾 if any point of 𝐾 is at distance at most 𝛿/2 from some line in 𝐿. More formally, 𝐾 is included in the offset

𝐿𝛿/2. When 𝛿 is clear from the context, we simply say that 𝐿 fills 𝐾 .
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Remark 3.3. Let 𝐿 be a set of 𝛿-regularly distributed diagonal lines that 𝛿-fills some compact set 𝐾 ⊆ R𝑛 . �en 𝐿 is

actually distributed over a grid (along the canonical axes of R𝑛) on 𝐾 . More precisely, assume that there is a 𝑙 ∈ 𝐿 such

that 0 ∈ 𝑙 . Now, assume that there exist integers 𝛼1, . . . , 𝛼𝑛 ∈ Z such that 𝑥 = (𝛼1𝛿, . . . , 𝛼𝑛𝛿) ∈ 𝐾 . �en, using items (3)

and (5) of Definition 3.2, there must exist some line 𝑙𝑥 ∈ 𝐿 such that 𝑥 ∈ 𝑙𝑥 . Hence, to be more concise, we will call such a

set of lines a 𝛿-grid of 𝐾 .

Families of lines that are 𝛿-grids of 𝐾 allow to formally define candidate critical points, or corners, that can be used to

approximate the critical points of the true underlying interval module (see Section 3.1 above). In the following definition,

we introduce points called corners that can be defined solely from the fibered barcode of an interval module 𝐼 , and that

we will use as proxies for the critical points of 𝐼 (as per Equation (1)) in our approximation scheme.

Definition 3.4 (Birth and death corners). Given a discretely presented interval 𝐼 with birth and death corners included

in a compact set 𝐾 ⊆ R𝑛 , and a 𝛿-grid 𝐿 of the offset 𝐾2𝛿
, we say that 𝑏 is a finite (𝐿-)birth corner (resp. 𝑑 is a finite

(𝐿-)death corner) if:

1. for each dimension 𝑖 ∈ È1, 𝑛É, there exists an hyperplane 𝐻𝑖 of codirection 𝑖 intersecting 𝐾 , and the family (𝐻𝑖 )𝑖
satisfies

⋂
𝑖 𝐻𝑖 = 𝑏 (resp.

⋂
𝑖 𝐻𝑖 = 𝑑),

2. there exists a line 𝑙0 ∈ 𝐿 such that

(a) 𝑏 ∈ conv(𝐿𝑙0 ) (resp. 𝑑 ∈ conv(𝐿𝑙0 )), where 𝐿𝑙0 is the 𝐿-surrounding set of 𝑙0 (see Definition 3.2)

(b) for each line 𝑙 ∈ 𝐿𝑙0 , the endpoint 𝑏𝐼𝑙 (resp. 𝑑
𝐼
𝑙
) is non trivial,

(c) for each dimension 𝑖 ∈ È1, 𝑛É, there exists 𝑙𝑖 ∈ 𝐿𝑙0 such that 𝑏𝐼
𝑙𝑖
∈ 𝐻𝑖 .

and we say that 𝑏 is a pseudo (𝐿-)birth corner (resp. 𝑑 is a pseudo (𝐿-)death corner) if:

1. there exists a set J ⊆ È1, 𝑛É, called the codirection of 𝑏 (resp. 𝑑) and denoted with codir(𝑏) (resp. codir(𝑑)), such
that for each dimension 𝑗 ∈ J , there exists a hyperplane of codirection 𝑗 intersecting 𝐾 such that

⋂
𝑗 𝐻 𝑗 3 𝑏 (resp.⋂

𝑗 𝐻 𝑗 3 𝑑). �e set È1, 𝑛É\J is called the direction of 𝑏 (resp. 𝑑) and is denoted with dir(𝑏) (resp. dir(𝑑)).

2. there exists a line 𝑙0 ∈ 𝐿 such that

(a) 𝑏 ∈ conv(𝐿𝑙0 ) ∩ 𝐾2𝛿\𝐾 (resp. 𝑑 ∈ conv(𝐿𝑙0 ) ∩ 𝐾2𝛿\𝐾 ),
(b) for each line 𝑙 ∈ 𝐿𝑙0 , the endpoint 𝑏𝐼𝑙 (resp. 𝑑

𝐼
𝑙
) is non trivial,

(c) for each dimension 𝑗 ∈ J , there exists 𝑙 𝑗 ∈ 𝐿𝑙0 such that 𝑏𝐼
𝑙 𝑗
∈ 𝐻 𝑗 .

A pseudo birth (resp. death) corner 𝑏 is said to be minimal (resp. maximal) if for any other pseudo birth corner 𝑏 ′

(resp. pseudo death corner 𝑑 ′) such that codir(𝑏 ′) ⊆ codir(𝑏) (and thus dir(𝑏 ′) ⊇ dir(𝑏)), there exists a dimension 𝑖 such

that 𝑏𝑖 < 𝑏
′
𝑖 (resp. 𝑑𝑖 > 𝑑

′
𝑖 ).

Finally, we say that 𝑏 (resp. 𝑑) is an infinite (𝐿-)birth (resp. death) corner if there exists a minimal (resp. maximal)

pseudo birth (resp. death) corner 𝑏 ′ (resp. 𝑑 ′) such that 𝑏𝑖 = −∞ (resp. 𝑑𝑖 = +∞) if 𝑖 ∈ dir(𝑏 ′) (resp. 𝑖 ∈ dir(𝑑 ′)) and
𝑏𝑖 = 𝑏

′
𝑖 (resp. 𝑑𝑖 = 𝑑

′
𝑖 ) if 𝑖 ∈ codir(𝑏 ′).

Finally, in Section 3.1 and Definitions 3.2 and 3.4 above, we have assumed that the true underlying module was a

single interval module. In order to handle more general multipersistence modules, we need a way to be able to distinguish

between the bars of the fibered barcodes of different summands (when the module is decomposable). �is is precisely

the role of exact matchings, which we define below. In other words, exact matchings are functions that connect bars

of different barcodes from the fibered barcode in a way that is consistent with the decomposition of the underlying

multipersistence module𝑀 .

Definition 3.5 (Exact matching). Let 𝑀 =
⊕

𝑖∈I 𝑀𝑖 be an 𝑛-multipersistence module. Let 𝑙, 𝑙 ′ be two lines in R𝑛 . A
map𝑚 between the corresponding barcodes𝑚 : B(𝑀

��
𝑙
) → B(𝑀

��
𝑙 ′) ∪ {∅} is called a matching between 𝑙 and 𝑙 ′ if the

restriction of𝑚 to𝑚−1 (B(𝑀
��
𝑙 ′)) is injective.

Furthermore, if we also assume that 𝑀 is interval decomposable, i.e., that the 𝑀𝑖 ’s are interval modules, then we

say that the matching 𝑚 is exact if one has 𝜄1 (𝑏) = 𝜄2 (𝑚(𝑏)) for any bar 𝑏 ∈ B(𝑀
��
𝑙
), where 𝜄1 : B(𝑀

��
𝑙
) → I and

𝜄2 : B(𝑀
��
𝑙 ′) → I are correspondences between the bars of barcodes in the fibered barcode and the interval summands of

𝑀 , obtained by Equation (3). In other words, bars that are matched under𝑚 correspond to the same underlying interval

summand of𝑀 .

�ere are many ways of defining exact matching functions. For instance, under some assumptions, matchings induced

by the Wasserstein distance between barcodes are exact (see Section 6.1), and we prove that the matching given by the

vineyard algorithm [CSEM06] is exact in Section 6.3.

We are now equipped for stating our approximation scheme, which constructs a candidate module by computing

corners from the fibered barcode and exact matchings.
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3.3. Algorithms for approximating modules

In this section, we provide Algorithm 1, that can approximate any multipersistence module using the fibered barcode of

an appropriate set of lines. Roughly speaking, Algorithm 1 works in three steps:

1. compute the 𝐿-fibered barcode of the underlying module,

2. match bars that correspond to the same underlying summand together using an exact matching, and

3. for each summand, use the endpoints of the corresponding bars to build compute corners, using Algorithm 2.

Step 1 can be performed using any persistent homology so�ware (such as, e.g., Gudhi, Ripser, Phat, etc), or with
Rivet [LW15] when 𝑛 = 2. Our code can be found at https://gitlab.inria.fr/dloiseau/multipers, and is based on the

vineyard update algorithm [CSEM06], which allows to run steps 1 and 2 jointly (see Section 6.3).

Note that while we can guarantee that the output is close to the underlying multipersistence module𝑀 only when𝑀

is decomposable into interval summands (see Sections 4 and 5), Algorithm 1 makes no assumption about𝑀 at all and can

be applied generally. Note however that since Algorithm 1 always returns a multipersistence module that is interval

decomposable, the output decomposition is obviously wrong if𝑀 is not decomposable.

Algorithm 1: ApproximateModule

Input 1: Multipersistence module𝑀 ,

Input 2: Family of lines 𝐿 which is a 𝛿-grid of the offset 𝐾2𝛿
of a compact set 𝐾 ⊆ R𝑛

Input 3: Exact matching𝑚

Output: Interval decomposable multipersistence module 𝑀̃

Compute FB(𝑀)𝐿 , i.e., the 𝐿-fibered barcode of𝑀 ;

𝑆 ← []; # 𝑆 is the set of interval summands, intialized as the empty set

for 𝑙 ∈ 𝐿 do
# If 𝑆 is empty, populate it with the first barcode, each bar initializing a new summand

if S == [] then
for [𝑏𝑀

𝑙
, 𝑑𝑀
𝑙
] ∈ B(𝑀

��
𝑙
) do

𝐵 ← {[𝑏𝑀
𝑙
, 𝑑𝑀
𝑙
]};

𝑆 .append(𝐵);
end

end
# If 𝑆 is not empty, process each bar in the current barcode

else
for [𝑏𝑀

𝑙
, 𝑑𝑀
𝑙
] ∈ B(𝑀

��
𝑙
) do

# Check whether it is in the image of the exact matching

if ∃𝐵 ∈ 𝑆 and [𝑏, 𝑑] ∈ 𝐵 s.t. [𝑏𝑀
𝑙
, 𝑑𝑀
𝑙
] =𝑚( [𝑏, 𝑑]) then

𝐵.append([𝑏𝑀
𝑙
, 𝑑𝑀
𝑙
]); # If it is, a�ach the bar to the corresponding summand

end
# Otherwise initialize a new summand with the bar

else
𝐵 ← {[𝑏𝑀

𝑙
, 𝑑𝑀
𝑙
]};

𝑆 .append(𝐵);
end

end
end

end
# For each summand in 𝑆 characterized by a set of bars, build an approximate interval summand by computing candidate corners

for 𝐵 ∈ 𝑆 do
𝐼 (𝐵) ← ApproximateInterval(𝐵);

end
Return 𝑀̃ :=

⊕
𝐵∈𝑆 𝐼 (𝐵);

We now describe the algorithm ApproximateInterval, which is used at the end of Algorithm 1. Our algorithm

ApproximateInterval is defined in two steps:

1. first, we label birthpoints and deathpoints to identify the facets of 𝐼 (Algorithm 3),

2. then, we use these labels to compute the interval corners (Algorithm 4).
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Once corners are computed, one can use them as approximate critical points and in order to output a discretely

presented interval module with Equation (1).

Algorithm 2: ApproximateInterval
Input: Set of bars 𝐵 = {[𝑏𝑙 , 𝑑𝑙 ] : 𝑙 ∈ 𝐿𝐵 ⊆ 𝐿}
Output: Discretely presented interval module 𝐼 parameterized by a list of birth and death corners

labs← LabelEndpoints(𝐵);
𝐶𝐿
𝐵
(𝐼 ),𝐶𝐿

𝐷
(𝐼 ) ← ComputeCorners(𝐵, labs);

Return 𝐼 (𝐵) := Ind
(⋃

𝑐∈𝐶𝐿
𝐵
(𝐼 )

⋃
𝑐′∈𝐶𝐿

𝐷
(𝐼 ) 𝑅𝑐,𝑐′

)
;

We first describe LabelEndpoints. �e core idea of the algorithm is, for a given bar in 𝐼 , to look at its corresponding

𝐿-surrounding set (see item (4) in Definition 3.2). If there exists a hyperplane𝐻 such that all endpoints in this surrounding

set belong to 𝐻 , we identify 𝐻 as a facet, and we label the bar with the codirection of 𝐻 .

Algorithm 3: LabelEndpoints
Input: Set of bars 𝐵 = {[𝑏𝑙 , 𝑑𝑙 ] : 𝑙 ∈ 𝐿𝐵 ⊆ 𝐿}
Output: List labs of labels for each endpoint in 𝐵

for 𝑙 ∈ 𝐿𝐵 do
labs(𝑏𝑙 ) ← [];
labs(𝑑𝑙 ) ← [];

end
for 𝑙 ∈ 𝐿𝐵 do

if ∃𝑖 ∈ È1, 𝑛É and 𝑐𝑖 ∈ R, such that ∀𝑙 ′ ∈ 𝐿𝑙 , (𝑏𝑙 ′)𝑖 = 𝑐𝑖 then
for 𝑙 ′ ∈ 𝐿𝑙 do

labs(𝑏𝑙 ′).append(𝑖, 𝑐𝑖 );
end

end
if ∃𝑖 ∈ È1, 𝑛É and 𝑐𝑖 ∈ R, such that ∀𝑙 ′ ∈ 𝐿𝑙 , (𝑑𝑙 ′)𝑖 = 𝑐𝑖 then

for 𝑙 ′ ∈ 𝐿𝑙 do
labs(𝑑𝑙 ′).append(𝑖, 𝑐𝑖 );

end
end

end
Return labs;

Note that endpoints can have zero or more than one label. For instance, an endpoint that belongs to the intersection

of several facets might have multiple labels. However, if several labels are identified, they must be associated to different

dimensions. See Figure 5 for examples of label assignments when the underlying interval module has rectangle support.

Figure 5: Example of birthpoint labelling for an interval module 𝐼 with rectangle support with three surrounding sets of

lines 𝐿𝑙1 , 𝐿𝑙2 , 𝐿𝑙3 associated to three lines 𝑙1, 𝑙2, 𝑙3. �e labels of 𝑙1, 𝑙2, 𝑙3 that are identified correspond to the red, blue and

grey colored facets of 𝐼 respectively.

Remark 3.6. Detecting facets with 2
𝑛−1

endpoints sharing the same labels is not necessarily optimal. For instance, a

rectangle module can be recovered with only three bars passing through it in R3. However, it does allow for simpler

proofs.

Finally, we describe ComputeCorners. �e core idea of the algorithm is to use the labels identified by LabelEnd-

points to compute candidate corners in the following way: if all birthpoints (resp. deathpoints) in a surrounding set

11



have at least one associated facet, i.e., have a non-empty list of labels, then a candidate corner can be defined using

the minimum (resp. maximum) of all birthpoints (resp. deathpoints) coordinates. We only present the pseudo-code for

birthpoints since the code for deathpoints is symmetric and can be obtained by replacing min by max and −∞ by +∞.

Algorithm 4: ComputeCorners
Input 1: Set of bars 𝐵 = {[𝑏𝑙 , 𝑑𝑙 ] : 𝑙 ∈ 𝐿𝐵 ⊆ 𝐿}
Input 2: List labs of labels for each endpoint in 𝐵

Output: List of birth corners 𝐶𝐵
𝐶𝐵 ← [];
for 𝑙 ∈ 𝐿𝐵 do

𝐵𝐿𝑙 ← {𝑏𝑙 ′ : 𝑙 ′ ∈ 𝐿𝑙 ∩ 𝐿𝐵}; # Note that 𝐵𝐿𝑙 ⊆ 𝐵 by construction

# Check whether all birthpoints in the surrounding set belong to the support 𝐾 of the critical points of the underlying module

if 𝐵𝐿𝑙 ⊆ 𝐾 then
# Compute birth corner if all the birthpoints are labelled

if labs(𝑏) ≠ ∅,∀𝑏 ∈ 𝐵𝐿𝑙 then
{( 𝑗, 𝑐 𝑗 ) : 𝑗 ∈ J} ←

⋃
𝑏∈𝐵𝐿𝑙 labs(𝑏); # J ⊆ È1, 𝑛É is the corresponding set of codirections

Define 𝐶𝑙 ∈ R𝑛 as
• (𝐶𝑙 ) 𝑗 = 𝑐 𝑗 if 𝑗 ∈ J

• (𝐶𝑙 ) 𝑗 = min

{
(𝑏𝑙 ′) 𝑗 : 𝑙 ′ ∈ 𝐿𝑙 ∩ 𝐿𝐼

}
otherwise

𝐶𝐵 .append(𝐶𝑙 );
end
# If the birthpoints are not all labeled, we simply keep the birthpoints themselves as corners

else
for 𝑙 ′ ∈ 𝐿𝑙 ∩ 𝐿𝐵 do

𝐶𝐵 .append(𝑏𝑙 ′);
end

end
end
# If some birthpoints are not in 𝐾 , they must correspond to infinite facets

else
Assert 𝐵𝐿𝑙 ∩ 𝐾2𝛿\𝐾 ≠ ∅;
Assert labs(𝑏) ≠ ∅ for all 𝑏 ∈ 𝐵𝐿𝑙 ;
{( 𝑗, 𝑐 𝑗 ) : 𝑗 ∈ J} ←

⋃
𝑏∈𝐵𝐿𝑙 labs(𝑏); # �e cardinality of the set of codirections J ( È1, 𝑛É must be strictly less than 𝑛

Define 𝐶𝑙 ∈ R𝑛 as

• (𝐶𝑙 ) 𝑗 = 𝑐 𝑗 if 𝑗 ∈ J

• (𝐶𝑙 ) 𝑗 = −∞ otherwise

𝐶𝐵 .append(𝐶𝑙 );
end

end
Return 𝐶𝐵 ;

Note that, by construction, the candidate corners computed by ComputeCorners are all finite, pseudo or infinite

𝐿-corners, as defined in Definition 3.4. Now that we have defined how to compute an approximation, in the following

sections, we will now show that the approximate multipersistence module 𝑀̃ provided by Algorithm 1 is a good approxi-

mation of the underlying module𝑀 when𝑀 is interval decomposable.

Complexity. Computing the 𝐿-fibered barcode FB(𝑀)𝐿 on a simplicial complex, as well as assigning the corresponding

bars to their associated summands in the decomposition of 𝑀 , can be done with the vineyard algorithm and match-

ing [CSEM06] with complexity 𝑂 (𝑁 3 + |𝐿 | · 𝑁 ·𝑇 ), where 𝑁 is the number of simplices in the simplicial complex, and

𝑇 is the maximal number of transpositions required to update the single-parameter filtrations corresponding to the

consecutive lines in 𝐿. In the worst case scenario, 𝑇 = 𝑁 2
. Note that 𝑇 usually decreases as |𝐿 | increases, and that this

computation can be easily parallelized (see Section 7).

Now, adding the complexities of Algorithms 3 and 4, the total complexity of Algorithm 1 is

𝑂 (𝑁 3 + |𝐿 | · 𝑁 ·𝑇 + |𝐿 | · 𝑛 · 2𝑛−1).

Of importance, the dependence on 𝑛 is much be�er than the (exact) decomposition algorithm proposed in [DX22] whose

complexity is 𝑂 (𝑁𝑛 (2𝜔+1) ). It is also be�er than Rivet [LW15] (which works only when 𝑛 = 2), whose complexity is
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𝑂 (𝑁 3𝜅 + (𝑁 + log𝜅)𝜅2), where 𝜅 = 𝜅𝑥𝜅𝑦 is the product of unique 𝑥 and 𝑦 coordinates in the support of the module.

Moreover, our complexity can be controlled by the number of lines, which is user-dependent. Again, we illustrate this

useful property in Section 7.

3.4. Endpoint properties

In this section, we prove a few preliminary results about endpoints of interval modules, that will turn out very useful for

quantifying the error made by Algorithm 1 when approximating the true endpoints of a multipersistence module with

𝐿-corners, as we do in Sections 4 and 5. Roughly speaking, we prove in this section that the location of endpoints is

related to the rectangle hull of other endpoints corresponding to lines in some specific surrounding sets.

Definition 3.7. Let 𝑆 ⊆ R𝑛 . �e rectangle hull of 𝑆 , denoted by recthull[𝑆], is defined with

recthull[𝑆] :=
{
𝑥 ∈ R𝑛 : ∀𝑖 ∈ È1, 𝑛É,min

𝑠∈𝑆
𝑠𝑖 ≤ 𝑥𝑖 ≤ max

𝑠∈𝑆
𝑠𝑖

}
= 𝑅∧𝑆,∨𝑆 ,

where (∧𝑆)𝑖 := min𝑠∈𝑆 𝑠𝑖 and (∨𝑆)𝑖 := max𝑠∈𝑆 𝑠𝑖 .

Lemma 3.8 (Endpoints bound). Let 𝐼 be an 𝑛-interval module. Let 𝛿 > 0, 𝐾 be a compact set of R𝑛 and 𝐿 be a 𝛿-grid
of 𝐾 . Let 𝑥 ∈ 𝐾𝛿 , 𝑙𝑥 be the diagonal line passing through 𝑥 and 𝑑𝐼𝑥 ∈ 𝑈 [𝐼 ] be the associated deathpoint. Finally, let
𝐿𝑥,𝛿 := {𝑙 ∈ 𝐿 : 𝑑∞(𝑥, 𝑙) ≤ 𝛿 and 𝑙𝑥 , 𝑙 are 𝛿-comparable}, which is non-empty since 𝐿 fills 𝐾2𝛿 . Assume that for any line
𝑙 in 𝐿𝑥,𝛿 , one has supp(𝐼 ) ∩ 𝑙 ≠ ∅, and let 𝐷𝐼

𝑥,𝛿
be the set of the associated deathpoints: 𝐷𝐼

𝑥,𝛿
= {𝑑𝐼

𝑙
: 𝑙 ∈ 𝐿𝑥,𝛿 }. �en, 𝑑𝐼𝑥

belongs to the rectangle hull of 𝐷𝐼
𝑥,𝛿

: one has 𝑑𝐼𝑥 ∈ recthull[𝐷𝐼𝑥,𝛿 ].
Similarly, if 𝑏𝐼𝑥 ∈ 𝐿[𝐼 ] is a birthpoint, then 𝑏𝐼𝑥 ∈ recthull[𝐵𝐼𝑥,𝛿 ] where 𝐵

𝐼
𝑥,𝛿

is the set of birthpoints associated to 𝐿𝑥,𝛿 .

In other words, the endpoints of an interval module always belong to the rectangle hull of the endpoints associated

to neighbouring lines. See Figure 6 for an illustration.

Figure 6: Example of deathpoint bound in R3, with 𝑑 ∈ 𝑈 [𝐼 ], and 𝐷𝐼
𝑥,𝛿

= {𝑑1, 𝑑2, 𝑑3, 𝑑4}. (Le�) Rectangle hull of the
deathpoints 𝐷𝐼

𝑥,𝛿
. (Right) Upper-boundary𝑈 [𝐼 ].

Proof. We first prove the result for deathpoints. Note that the result is trivially satisfied if 𝑑𝐼𝑥 and the deathpoints in 𝐷𝐼
𝑥,𝛿

are infinite, so we assume that they are finite in the following. Let 𝑗 ∈ È1, 𝑛É be an arbitrary dimension. To alleviate

notations, we let 𝑑 := 𝑑𝐼𝑥 . In order to prove the result, we will show that there exist two deathpoints 𝑑 and 𝑑 associated to

consecutive lines of 𝐿𝑥,𝛿 such that 𝑑
𝑗
≤ 𝑑 𝑗 ≤ 𝑑 𝑗 .

Construction of 𝑑, 𝑑 . Let 𝐻 𝑗 be the hyperplane 𝐻 𝑗 = 𝑑 + 𝑒⊥𝑗 . Since 𝐿 fills 𝐾2𝛿
and 𝑥 ∈ 𝐾𝛿 , there exists a diagonal line

𝑙 ∈ 𝐿 such that 𝑑∞ (𝑥, 𝑙) ≤ 𝛿/2. Moreover, since 𝑙 and 𝑙𝑥 (the line passing through 𝑥 and 𝑑) are both diagonal, one has

𝑑∞ (𝑑, 𝑙) = 𝑑∞ (𝑥, 𝑙) ≤ 𝛿/2. Let 𝜋𝑙 (𝑑) ∈ 𝑙 be the projection of 𝑑 onto 𝑙 that achieves 𝑑∞ (𝑑, 𝑙), and let 𝑑 𝑗 := 𝑙 ∩ 𝐻 𝑗 . See
Figure 7 for an illustration of these objects.

Figure 7: Illustration of 𝐻 𝑗 , 𝑑, 𝑙, 𝑑
𝑗
.
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Since 𝑑 𝑗 and 𝑑 belong to 𝐻 𝑗 , they have the same 𝑗-th coordinate: 𝑑
𝑗

𝑗
= 𝑑 𝑗 . Moreover, both 𝑑 𝑗 and 𝜋𝑙 (𝑑) belong

to the diagonal line 𝑙 , hence they are comparable, and ‖𝑑 𝑗 − 𝜋𝑙 (𝑑)‖∞ = | (𝑑 𝑗 − 𝜋𝑙 (𝑑))𝑖 | for any 𝑖 ∈ È1, 𝑛É. �en, one

has ‖𝑑 𝑗 − 𝑑 ‖∞ ≤ ‖𝑑 𝑗 − 𝜋𝑙 (𝑑)‖∞ + ‖𝜋𝑙 (𝑑) − 𝑑 ‖∞ = | (𝑑 𝑗 − 𝜋𝑙 (𝑑)) 𝑗 | + ‖𝜋𝑙 (𝑑) − 𝑑 ‖∞ = | (𝑑 − 𝜋𝑙 (𝑑)) 𝑗 | + ‖𝜋𝑙 (𝑑) − 𝑑 ‖∞ ≤
2‖𝜋𝑙 (𝑑) − 𝑑 ‖∞ ≤ 𝛿 .

Let 𝑑+ = 𝑑 𝑗 + 𝛿 ∑
𝑗 ∈J′′ 𝑒 𝑗 and 𝑑

− = 𝑑 𝑗 − 𝛿 ∑
𝑗 ∈J′ 𝑒 𝑗 , where

J ′ =
{
𝑖 ∈ È1, 𝑛É\{ 𝑗} : 𝑑𝑖 < 𝑑 𝑗𝑖

}
and J ′′ =

{
𝑖 ∈ È1, 𝑛É\{ 𝑗} : 𝑑𝑖 > 𝑑 𝑗𝑖

}
.

By construction, one has 𝑑− ≤ 𝑑 ≤ 𝑑+ ∈ 𝐻 𝑗 and ‖𝑑+ − 𝑑 ‖∞, ‖𝑑− − 𝑑 ‖∞ ≤ 𝛿 . Since 𝑙 and the diagonal lines 𝑙 and 𝑙 passing

through 𝑑− and 𝑑+ respectively are 𝛿-consecutive, and since 𝑥 ∈ 𝐾𝛿 , the projections of 𝑥 onto 𝑙 and 𝑙 are in 𝐾2𝛿
, and

thus 𝑙, 𝑙 must belong to 𝐿𝑥,𝛿 , as by construction 𝑙𝑥 is 𝛿-comparable with the diagonal lines 𝑙 and 𝑙 . Let 𝑑 := 𝑑𝐼
𝑙
∈ 𝑙 and

𝑑 := 𝑑𝐼
𝑙
∈ 𝑙 be their deathpoints (which exist by assumption).

Proof of inequalities. We now show that 𝑑 𝑗 ≥ 𝑑 𝑗 ≥ 𝑑 𝑗 . We start with the second inequality. Since 𝑑+ and 𝑑 are one the

same diagonal line, they are comparable. Furthermore, if one had 𝑑+ < 𝑑 by contradiction, then the induced rectangle

𝑅𝑑,𝑑 would not be flat since 𝑑 ≤ 𝑑+ < 𝑑 , which would contradict Remark 2.20. As a consequence, 𝑑+ ≥ 𝑑 . Taking the 𝑗-th

coordinate yields 𝑑 𝑗 = 𝑑
+
𝑗 ≥ 𝑑 𝑗 . �e first inequality holds using the same arguments.

�is proof applies straightforwardly to birthpoints by symmetry. �

Using Lemma 2.22, one can generalize Lemma 3.8 above to the case where some lines in 𝐿𝑥,𝛿 have an empty

intersection with supp(𝐼 ), and then define a common location for all endpoints that belong to the convex hull of the

same 𝐿-surrounding set, as we do in the following proposition.

Proposition 3.9. Let 𝐼 be an 𝑛-interval module. Let 𝛿 > 0, 𝐾 be a compact set of R𝑛 and 𝐿 be a 𝛿-grid of 𝐾 . Let 𝑙 ∈ 𝐿 such
that |𝐿𝑙 | = 2

𝑛−1. �en, there exists a set 𝐵𝑙 (resp. 𝐷𝑙 ) such that for any 𝑥 ∈ conv(𝐿𝑙 ) ∩ 𝐿[𝐼 ] (resp. conv(𝐿𝑙 ) ∩𝑈 [𝐼 ]), one has
either 𝑥 ∈ 𝐵𝑙 (resp. 𝐷𝑙 ) or ‖𝑏𝐼𝑥 − 𝑑𝐼𝑥 ‖∞ ≤ 𝛿 , where 𝐵𝑙 (resp. 𝐷𝑙 ) is a rectangular set in R𝑛 that can be constructed from the
birthpoints (𝑏𝐼

𝑙 ′)𝑙 ′∈𝐿𝑙 (resp. deathpoints (𝑑
𝐼
𝑙 ′)𝑙 ′∈𝐿𝑙 ). Moreover, one has

1. sup {𝑡 ≥ 0 : 𝑥 + 𝑡 · 1 ∈ 𝐵𝑙 } ≤ 𝛿 (resp. sup {𝑡 ≥ 0 : 𝑥 + 𝑡 · 1 ∈ 𝐷𝑙 } ≤ 𝛿), and

2. 𝐵𝑙 (resp. 𝐷𝑙 ) is included in a ball of radius 𝛿 : there exists 𝑥𝑙 such that 𝐵𝑙 (resp. 𝐷𝑙 ) ⊆ {𝑦 ∈ R𝑛 : ‖𝑦 − 𝑥𝑙 ‖∞ ≤ 𝛿}.

Proof. We first construct 𝐵𝑙 and 𝐷𝑙 , and then we will show items (1) and (2).

Definition of 𝐵𝑙 , 𝐷𝑙 . Let first assume that 𝑥 is in the interior of conv(𝐿𝑙 ), that we denote with conv(𝐿𝑙 )o. Note that
if there is a line 𝑙0 that is 𝛿-comparable to 𝑙𝑥 , and such that B(𝐼

��
𝑙0
) = ∅, then by Lemma 2.22, one immediately has

‖𝑏𝐼𝑥 − 𝑑𝐼𝑥 ‖∞ ≤ 𝛿 . Hence, we now assume that the barcodes along any line that is 𝛿-comparable to 𝑙𝑥 is not empty, which

means that the hypotheses of Lemma 3.8 are satisfied for 𝑥 . Now, remark that since 𝐿 is a grid, if one is able to find a line

𝑙 ′ in 𝐿 whose intersections with hyperplanes associated to the canonical axes of R𝑛 are 𝛿-close to 𝑥 , then, since 𝑥 is in

the interior of an 𝐿-surrounding set 𝐿𝑙 , 𝑙
′
must belong to that surrounding set 𝐿𝑙 as well. More formally, one has that, for

any line 𝑙 ′ ∈ 𝐿,
𝑑∞ (𝑥, 𝑙 ′ ∩ 𝐻𝑖 ) ≤ 𝛿 =⇒ 𝑙 ′ ∈ 𝐿𝑙 , where 𝐻𝑖 = {𝑦 ∈ R𝑛 : 𝑦𝑖 = 𝑥𝑖 } .

�is ensures that 𝐿𝑥,𝛿 (see Lemma 3.8) is included in 𝐿𝑙 for any 𝑥 ∈ conv(𝐿𝑙 )o, and thus that we can safely define

𝐷𝑙 :=
⋃

𝑥 ∈conv(𝐿𝑙 )o
recthull[𝐷𝐼

𝑥,𝛿
] and 𝐵𝑙 :=

⋃
𝑥 ∈conv(𝐿𝑙 )o

recthull[𝐵𝐼
𝑥,𝛿
] .

Note that 𝐵𝑙 and 𝐷𝑙 depend only on the endpoints of the lines in 𝐿𝑙 (since 𝐿𝑥,𝛿 ⊆ 𝐿𝑙 for all 𝑥 ∈ conv(𝐿𝑙 )o), and that

𝑑𝐼𝑥 ∈ 𝐷𝑙 and 𝑏𝐼𝑥 ∈ 𝐵𝑙 for any 𝑥 ∈ conv(𝐿𝑙 )o by Lemma 3.8. Furthermore, if 𝑥 is in the closure of conv(𝐿𝑙 ), the previous
statements still hold since 𝐷𝑙 and 𝐵𝑙 are closed sets. We now show that 𝐵𝑙 and 𝐷𝑙 satisfy items (1) and (2).

Proof of (1). By applying Lemma 3.8 and its proof for dimension 𝑗 = 𝑛 to all 𝑥 ∈ conv(𝐿𝑙 ), there exist deathpoints
𝑑
𝑛
and 𝑑

𝑛
that satisfy (𝑑𝑛)𝑛 = sup𝑑∈𝐷𝑙

𝑑𝑛 and (𝑑
𝑛
)𝑛 = inf𝑑∈𝐷𝑙

𝑑𝑛 and (𝑑
𝑛
)𝑛 ≤ 𝑥𝑛 ≤ (𝑑𝑛)𝑛 for all 𝑥 ∈ conv(𝐿𝑙 ). Moreover,

these points are located on the lines 𝑙 and 𝑙 +∑
1≤ 𝑗<𝑛 𝛿𝑒 𝑗 , which are are 𝛿-consecutive. �us, applying Lemma 2.22 on

this pair of line, we end up with 𝐷𝑙 having a diagonal smaller than 𝛿 . �e same goes for birthpoints.

Proof of (2). Note first that

𝐷𝑙 ⊆
{
𝑦 ∈ R𝑛 : ∀𝑖 ∈ È1, 𝑛É,min

𝑙 ′∈𝐿𝑙
(𝑑𝐼
𝑙 ′)𝑖 ≤ 𝑦𝑖 ≤ max

𝑙 ′∈𝐿𝑙
(𝑑𝐼
𝑙 ′)𝑖

}
,
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and that, for any pair of lines 𝑙1, 𝑙2 ∈ 𝐿𝑙 , there is a vector
−→𝑣 such that 𝑙2 = 𝑙1 + −→𝑣 with



−→𝑣 


∞ ≤ 𝛿 . �us, one has

−→𝑢 :=
−→𝑣 + 𝜹 ≥ 0 and



−→𝑢 


∞ ≤ 2𝛿 . Moreover, 𝑙2 can also be wri�en as 𝑙2 = 𝑙1 + −→𝑢 ; thus any two lines 𝑙1 and 𝑙2 in 𝐿𝑙 are

2𝛿-consecutive. Now, for an arbitrary dimension 𝑖 ∈ È1, 𝑛É, by applying Lemma 2.22 on the pair of lines 𝑙1, 𝑙2 ∈ 𝐿𝑙 such
that (𝑑𝐼

𝑙1
)𝑖 = min𝑙 ′∈𝐿𝑙 (𝑑𝐼𝑙 ′)𝑖 and (𝑑

𝐼
𝑙2
)𝑖 = max𝑙 ′∈𝐿𝑙 (𝑑𝐼𝑙 ′)𝑖 , one has that the difference of the 𝑖-th coordinates between any two

points in 𝐷𝑙 is upper bounded by 2𝛿 . Since this is true for any 𝑖 , item (2) is true. �e same goes for birthpoints. �

Remark 3.10. �ese bounds are sharp in dimension 𝑛 ≥ 3:

1. (1) Let 𝛿 > 0 and 𝐼 be the interval with support supp(𝐼 ) = {𝑥 ∈ R𝑛 : 〈𝑥, 1〉 ≥ 𝛿}. Let 𝑙 be the diagonal line passing
through 0. �en, one has

𝑏𝐼
𝑙
=

(
𝛿

𝑛
, . . . ,

𝛿

𝑛

)
, 𝑏𝐼

𝑙+𝛿𝑒𝑖 = (0, . . . , 𝛿, . . . , 0), . . . , 𝑏𝐼
𝑙+𝛿𝑒1+···+𝛿𝑒𝑛−1 =

(
2

𝑛
𝛿, . . . ,

2

𝑛
𝛿,− (𝑛 − 2)

𝑛
𝛿

)
.

In particular, one has




𝑏𝐼
𝑙+𝛿𝑒1 − 𝑏

𝐼
𝑙+𝛿𝑒2





∞
= 𝛿 using the lines 𝑙 + 𝛿𝑒1 and 𝑙 + 𝛿𝑒2 that both belong to 𝐿𝑙 .

2. (2) Let 𝐼 be an interval whose support has a facet 𝐹 of codirection different than 𝑛, and let 𝑙 be a diagonal line such

that

{
𝑏𝐼
𝑙 ′ : 𝑙

′ ∈ 𝐿𝑙
}
⊆ 𝐹 . �en the radius of the ball containing 𝐵𝑙 is exactly 2𝛿 , as illustrated with the red and blue

facets in Figure 5.

4. Exact reconstruction

In this section, we show that, under some assumptions on the family of lines that are used and on the underlying

multipersistence module𝑀 , our approximation 𝑀̃ computed by Algorithm 1 cannot be separated from𝑀 by both the

interleaving and bo�leneck distances (see Proposition 4.4 and Corollary 4.6.1). Roughly speaking, when𝑀 is interval

decomposable, we need assumptions that ensure that all the facets of the summands of𝑀 can be identified with associated

labels by Algorithm 3. �is means that the facets have to be large enough with respect to the spacing between the lines

in order to make sure that lines in surrounding sets can reach the same common facets. In addition to this, one also has

to ensure that taking the minimum (resp. maximum) of birthpoints (resp. deathpoints) in surrounding sets, as prescribed

by Algorithm 4, induces a corner that belongs indeed to the support of the multipersistence module. �is means that

the support of the module cannot contain holes of small size, such that a line could go through the hole and avoid the

support, while all surrounding lines would intersect the support, which would lead to a fake corner.

We now characterize those interval modules that satisfy the aforementioned informal assumptions. Given a size

parameter 𝛿 > 0, these interval modules form a subclass of the family of discretely presented interval modules, that we

call the 𝛿-discretely presented interval modules.

Definition 4.1 (𝛿-discretely presented interval module). Let 𝐾 ⊆ R𝑛 be a compact rectangle of R𝑛 , and let 𝐼 be a

discretely presented interval module. Given 𝛿 > 0, we say that 𝐼 is 𝛿-discretely presented in 𝐾 if:

1. (Large facets) for each point 𝑥 ∈ 𝐿[𝐼 ] (resp. 𝑈 [𝐼 ]) there exists, for each facet 𝐹 containing 𝑥 , an (𝑛 − 1)-hypercube
𝑄𝑥
𝐹
of side length 2𝛿 such that 𝑥 ∈ 𝑄𝑥

𝐹
and 𝑄𝑥

𝐹
⊆ 𝐹 ;

2. (Large holes) if there exists a diagonal line 𝑙 such that 𝑙 ∩ supp(𝐼 ) = ∅, then there exists an 𝑛-hypercube 𝑅 of side

length 𝛿 containing 0 such that for any line 𝑙 ′ in 𝑙 + 𝑅, one has 𝑙 ′ ∩ supp(𝐼 ) = ∅;

3. (Locally small complexity) any∞-ball of radius 𝛿 , i.e., any set 𝐵𝛿 (𝑥) := {𝑦 ∈ R𝑛 : 𝑑∞ (𝑥,𝑦) ≤ 𝛿} for some 𝑥 ∈ R𝑛 ,
intersects at most one facet in 𝐿[𝐼 ] (resp. 𝑈 [𝐼 ]) of any fixed codirection;

4. (Compact description) each facet of 𝐼 has a non-empty intersection with 𝐾 .

Assumptions 1 and 2 correspond to the assumptions mentioned at the beginning of the section, while Assumptions 3

and 4 ensure that surrounding sets of lines can detect at most one facet associated to a given codirection at a time, and

that critical points of 𝐼 are all included in a rectangle respectively.

Remark 4.2. One might wonder whether Assumption 2 and Assumption 3 are redundant with Assumption 1. In other

words, one might wonder whether it is actually possible to define an interval module with large facets and small holes,

or with large facets that can share the same codirection and lie close to each other at the same time. Even though this

seems to be impossible when 𝑛 = 2 (indicating that Assumption 2 and Assumption 3 might indeed be redundant with

Assumption 1), it can definitely happen in dimension 𝑛 ≥ 3, as Figure 8 shows.
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Figure 8: Example of interval module in dimension 𝑛 = 3 with large facets, small holes and some facets with the same

codirection close to each other. �e support of the module can be constructed by taking the (closed) red and (open) green

𝐿-shaped sets on (Le�), and glue them together as shown in (Middle). While arbitrarily large facets can be created using

this construction, the resulting interval always contains a small hole and large facets of same codirection that are close to

each other. Because of this, it is possible to find a (blue) diagonal line that goes through the support without intersecting

it, while lines in its surrounding set will detect some facets. (Right) View of the interval from the top showing the hole

and the spatially close facets (showed in bold font). �is is an example where Assumptions 1 and 4 of Definition 4.1 are

satisfied, while Assumptions 2 and 3 are not.

�e main advantage of 𝛿-grids and 𝛿-discretely presented modules is that they ensure that Algorithm 3 can identify

every single facet with a corresponding label.

Lemma 4.3. Let 𝛿 > 0 and 𝐾 be a compact rectangle of R𝑛 . Let 𝐼 be a 𝛿-discretely presented interval module in 𝐾 , and let 𝐿
be a 𝛿-grid of 𝐾2𝛿 . �en, there is a bijection between the facets of 𝐼 and the labels identified by Algorithm 3.

Proof. We first prove the result for birthpoints and facets of 𝐿[𝐼 ].
Let 𝐹 be a facet of 𝐿[𝐼 ]. Let 𝑙𝐹 ∈ 𝐿 be a diagonal line intersecting 𝐹 , and 𝑏𝐹 ∈ R𝑛 be the associated birthpoint. By

Definition 4.1, item (1), there exists an (𝑛 − 1)-hypercube𝑄𝑏𝐹
𝐹
⊆ 𝐹 of side length 2𝛿 such that 𝑏𝐹 ∈ 𝑄𝑏𝐹𝐹 . �is ensures that

for any dimension 𝑖 that is not in the codirection: 𝑖 ∈ È1, 𝑛É\codir(𝐹 ), one has either 𝑏𝐹 + 𝛿𝑒𝑖 ∈ 𝑄𝑏𝐹𝐹 or 𝑏𝐹 − 𝛿𝑒𝑖 ∈ 𝑄𝑏𝐹𝐹 .

Since 𝐿 is a 𝛿-grid of 𝐾2𝛿
, and since 𝑄

𝑏𝐹
𝐹

is an (𝑛 − 1)-hypercube, there exists a line 𝑙0 ∈ 𝐿 such that 𝑙𝐹 belongs to the

surrounding set 𝐿𝑙0 , and such that the birthpoints corresponding to the lines in 𝐿𝑙0 are all in𝑄
𝑏𝐹
𝐹
. �is means that codir(𝐹 )

is detected as a label of 𝑏𝐹 by Algorithm 3.

Reciprocally, assume there exists a line 𝑙0 ∈ 𝐿 such that all birthpoints associated to the lines in the surrounding set

𝐿𝑙0 share a coordinate along dimension 𝑖 ∈ È1, 𝑛É, so that 𝑖 is a label detected by Algorithm 3. �en, the set of birthpoints

𝐵𝐿𝑙
0

has a minimal element, and thus its convex hull conv(𝐵𝐿𝑙
0

) is in 𝐿[𝐼 ]. Since conv(𝐵𝐿𝑙
0

) is an (𝑛 − 1)-hypercube of
codirection 𝑖 , it must be associated to a facet of 𝐿[𝐼 ] of codirection 𝑖 as well.

�e proof extends straightforwardly for deathpoints. �

Now that we have proved that all facets can be detected with 𝛿-grids and 𝛿-discretely presented modules, we can

state our first main result, which claims that it is possible to exactly recover the underlying module under the same

assumptions.

Proposition 4.4 (Exact recovery). Let 𝛿 > 0 and𝐾 = 𝑅𝛼,𝛽 be a compact rectangle of R𝑛 , where 𝛼 ≤ 𝛽 . Let 𝐼 be a 𝛿-discretely
presented interval module in 𝐾 , and let 𝐿 be a 𝛿-grid of 𝐾2𝛿 . Let 𝐶𝐿

𝐵
(𝐼 ) and 𝐶𝐿

𝐷
(𝐼 ) be the 𝐿-birth and death corners of 𝐼

computed by Algorithm 4, and let 𝐼 = Ind
(⋃

𝑐∈𝐶𝐿
𝐵
(𝐼 )

⋃
𝑐′∈𝐶𝐿

𝐷
(𝐼 ) 𝑅𝑐,𝑐′

)
be the approximation computed by Algorithm 2. �en,

one has
𝑑𝐼 (𝐼 , 𝐼 ) = 𝑑𝑏 (𝐼 , 𝐼 ) = 0. (5)

Proof. As interval modules are characterized by their support, it is enough to show that supp(𝐼 ) = supp(𝐼 ). In the

following, we thus assume that supp(𝐼 ) is closed in R
𝑛
.

We first show the inclusion supp(𝐼 ) ⊆ supp(𝐼 ). More specifically, we have to prove that the (finite, pseudo and

infinite) 𝐿-corners computed by Algorithm 4 all belong to supp(𝐼 ). A key argument that we will use several times comes

from the following lemma, which allows for a local control of the boundary of supp(𝐼 ) using the hyperplanes associated

to specific 𝐿-corners.

Lemma 4.5. Let 𝑏 be a birthpoint (resp. deathpoint) of 𝐼 in 𝐾𝛿 , and 𝑙0 ∈ 𝐿 be the line such that 𝑏 ∈ conv(𝐿𝑙0 ) (this line
exists since 𝐿 fills 𝐾2𝛿 ). �en, one has the following:

1. for any facet 𝐹 of 𝐿[𝐼 ] (resp. 𝑈 [𝐼 ]) containing 𝑏, there exists a line 𝑙𝐹 ∈ 𝐿𝑙0 such that 𝑏𝐼
𝑙𝐹
∈ 𝐹 (resp. 𝑑𝐼

𝑙𝐹
∈ 𝐹 ).
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2. for any dimension 𝑖 , there exists at most one facet of codirection 𝑖 intersecting the set of birthpoints (resp. deathpoints){
𝑏𝐼
𝑙
: 𝑙 ∈ 𝐿𝑙0

}
(resp.

{
𝑑𝐼
𝑙
: 𝑙 ∈ 𝐿𝑙0

}
.

3. let 𝑏 ′
𝐿𝑙

0

(resp. 𝑑 ′
𝐿𝑙

0

) be the the pseudo or finite 𝐿-corner generated by 𝐿𝑙0 . �en, one has:

conv(𝐿𝑙0 ) ∩ 𝐿[𝐼 ] ∩ 𝐾2𝛿 ⊆
⋃

𝑖∈codir(𝑏′)

{
𝑥 ∈ R𝑛 : 𝑥𝑖 = 𝑏

′
𝑖

}
(resp. conv(𝐿𝑙0 ) ∩𝑈 [𝐼 ] ∩ 𝐾2𝛿 ⊆

⋃
𝑖∈codir(𝑑′)

{
𝑥 ∈ R𝑛 : 𝑥𝑖 = 𝑑

′
𝑖

}
).

Proof. We only show the result for birthpoints since the arguments for deathpoints are the same. Let 𝑏 ∈ 𝐿[𝐼 ] be a
birthpoint in 𝐾𝛿 .

Proof of (1). Let 𝐹 be a facet containing 𝑏. According to Definition 4.1, item (1), there exists an (𝑛 − 1)-hypercube𝑄𝑏
𝐹

of side length 2𝛿 such that 𝑄𝑏
𝐹
⊆ 𝐹 and 𝑏 ∈ 𝑄𝑏

𝐹
. Since 𝐿 is a grid, there exists a line 𝑙 ∈ 𝐿 with 𝑑∞ (𝑏, 𝑙) < 𝛿 intersecting

𝑄𝑏
𝐹
. Now, since 𝑏 ∈ conv(𝐿𝑙0 ), one has 𝑑∞ (𝑙 ∩𝐻𝐹 , 𝐿𝑙0 ∩𝐻𝐹 ) < 𝛿 , where 𝐻𝐹 is the hyperplane containing 𝐹 ; thus, 𝑙 ∈ 𝐿𝑙0

(the argument is the same than in the proof of Proposition 3.9, first paragraph).

Proof of (2). By Proposition 3.9, item (2), the birthpoints associated to lines of 𝐿𝑙0 are all contained in a ball of radius

𝛿 . �us, the unicity of the facets with given codirection comes straightforwardly from Definition 4.1, item (3).

Proof of (3). Note that the birthpoint 𝑏 is obviously included in the facets of 𝐿[𝐼 ] that contain it, which is a subset of

the facets associated to the birthpoints of the lines in 𝐿𝑙0 . Now, as Lemma 4.3 ensures that the birthpoints associated to

lines in 𝐿𝑙0 are correctly labelled, the pseudo or finite 𝐿-corner generated by 𝐿𝑙0 must be on the intersection of the facets

containing 𝑏. �is ensures that

𝑏 ∈
⋃

𝑖∈codir(𝑏′)

{
𝑥 ∈ R𝑛 : 𝑥𝑖 = 𝑏

′
𝑖

}
.

Since these arguments do not depend on 𝑏 ∈ conv(𝐿𝑙0 ), the result follows. �

Now that we have Lemma 4.5, we can prove that finite, pseudo and infinite 𝐿-corners belong to supp(𝐼 ). We will

prove the results for birth corners, but the arguments for death corners are exactly the same.

Finite and pseudo corners. Let 𝑏 be a finite or pseudo 𝐿-birth corner, associated to a set of consecutive lines 𝐿𝑙0
for some line 𝑙0 ∈ 𝐿. By assumption, each birthpoint 𝑏𝐼

𝑙
, for 𝑙 ∈ 𝐿𝑙0 , is nontrivial; and thus any birthpoint in conv(𝐿𝑙0 ) is

nontrivial as well, using Definition 4.1, item (2). Let 𝑙 ∈ conv(𝐿𝑙0 ) be the diagonal line passing through 𝑏.

Using Lemma 4.5, one has:

𝑏𝐼
𝑙
∈ conv(𝐿𝑙0 ) ∩ 𝐿[𝐼 ] ∩ 𝐾2𝛿 ⊆ ©­«

⋃
𝑖∈codir(𝑏)

{𝑥 ∈ R𝑛 : 𝑥𝑖 = 𝑏𝑖 }
ª®¬ ∩ 𝑙 = {𝑏} .

�us 𝑏 = 𝑏𝐼
𝑙
and 𝑏 ∈ supp(𝐼 ).

Infinite corners. Let 𝑏 be an infinite 𝐿-birth corner, and let 𝑏 ′ be the corresponding minimal pseudo 𝐿-birth corner,

associated to a set of consecutive lines 𝐿𝑙0 for some line 𝑙0 ∈ 𝐿. We will show that, if 𝑗 is a free coordinate of 𝑏 ′, i.e., if
𝑗 ∈ dir(𝑏 ′), then 𝑏 ′𝑗 < 𝛼 𝑗 (recall that 𝐾 is the rectangle 𝑅𝛼,𝛽 ). �e reason we want to prove such inequalities is that they

directly lead to the result. Indeed, if 𝑏 ′𝑗 < 𝛼 𝑗 for any 𝑗 ∈ dir(𝑏 ′), then 𝑏 ′ − 𝑡
∑
𝑗 ∈dir(𝑏′) 𝑒 𝑗 belongs to 𝐿[𝐼 ] for any 𝑡 > 0,

since otherwise the line {𝑏 ′ − 𝑡 ∑𝑗 ∈dir(𝑏′) 𝑒 𝑗 : 𝑡 > 0} would have to intersect a facet 𝐹 ⊆ 𝐿[𝐼 ] of codirection 𝑗 for some

𝑗 ∈ dir(𝑏 ′), which would not intersect 𝐾 , contradicting Definition 4.1, item (4).

Let 𝑗 ∈ dir(𝑏 ′) be a free coordinate. By contradiction, assume that 𝑏 ′𝑗 ≥ 𝛼 𝑗 , and let 𝑏 𝑗 denote the pseudo 𝐿-corner

generated by 𝐿𝑙0−𝛿𝑒 𝑗 . In particular, this means that, for any 𝑙 ∈ 𝐿𝑙0 , 𝑙 − 𝛿𝑒 𝑗 ∈ 𝐿 and 𝐿𝑙−𝛿𝑒 𝑗 ⊆ 𝐿 since 𝐿 fills 𝐾2𝛿
. Now, if

for every line 𝑙 ∈ 𝐿𝑙0 such that 𝑙 = 𝑙0 + −→𝑣 with
−→𝑣 𝑗 = 0, one has that 𝑏𝐼

𝑙
and 𝑏𝐼

𝑙−𝛿𝑒 𝑗 are on the same facets, then one has

𝑏𝐼
𝑙−𝛿𝑒 𝑗 = 𝑏

𝐼
𝑙
− 𝛿𝑒 𝑗 , and the pseudo corner 𝑏 𝑗 is equal to 𝑏 ′ − 𝛿𝑒 𝑗 by construction, as per Algorithm 4. Moreover, one has

𝑏 𝑗 = 𝑏 ′ − 𝛿𝑒 𝑗 ≤ 𝑏 ′, contradicting the fact that 𝑏 ′ is minimal. Hence, there is at least one line 𝑙 ∈ 𝐿𝑙0 , 𝑙 = 𝑙0 + −→𝑣 with

−→𝑣 𝑗 = 0, such that 𝑏𝐼
𝑙
and 𝑏𝐼

𝑙−𝛿𝑒 𝑗 are not on the same facets, in other words, there exists a facet 𝐹 𝑗 of 𝐿[𝐼 ] of codirection
𝑗 that intersects the (half-open) segment [𝑏𝐼

𝑙
− 𝛿𝑒 𝑗 , 𝑏𝐼𝑙 ). In order to locate that facet more precisely, we will prove the

following lemma:

Lemma 4.6. For any 𝑖 ∈ È1, 𝑛É and 𝑠, 𝑡 ∈ R such that 𝑠 < 𝑡 , one has (𝑏𝐼
𝑙−𝑡𝑒𝑖 )𝑖 ≤ (𝑏

𝐼
𝑙−𝑠𝑒𝑖 )𝑖 .
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Proof. Without loss of generality, assume 𝑠 = 0. Since 𝑏𝐼
𝑙
− 𝑡𝑒𝑖 ∈ 𝑙 − 𝑡𝑒𝑖 , it follows that 𝑏𝐼𝑙 − 𝑡𝑒𝑖 and 𝑏

𝐼
𝑙−𝑡𝑒𝑖 are comparable.

Moreover, one must have 𝑏𝐼
𝑙
− 𝑡𝑒𝑖 ≤ 𝑏𝐼𝑙−𝑡𝑒𝑖 , otherwise one would have 𝑏𝐼

𝑙
> 𝑏𝐼

𝑙
− 𝑡𝑒𝑖 > 𝑏𝐼𝑙−𝑡𝑒𝑖 , contradicting Remark 2.20. If

the points are equal, i.e., 𝑏𝐼
𝑙
− 𝑡𝑒𝑖 = 𝑏𝐼𝑙−𝑡𝑒𝑖 , then one has (𝑏𝐼

𝑙
)𝑖 ≥ (𝑏𝐼𝑙−𝑡𝑒𝑖 )𝑖 . Otherwise, if 𝑏

𝐼
𝑙
− 𝑡𝑒𝑖 < 𝑏𝐼𝑙−𝑡𝑒𝑖 , then

∀𝑘 ≠ 𝑖, (𝑏𝐼
𝑙−𝑡𝑒𝑖 )𝑘 > (𝑏𝐼

𝑙
)𝑘 .

Moreover, since 𝑏𝐼
𝑙
and 𝑏𝐼

𝑙−𝑡𝑒𝑖 cannot be comparable as per Remark 2.20 one must have (𝑏𝐼
𝑙−𝑡𝑒𝑖 )𝑖 ≤ (𝑏

𝐼
𝑙
)𝑖 .

�

Let 𝐻 𝑗 =
{
𝑥 ∈ R𝑛 : 𝑥 𝑗 = 𝑐 𝑗

}
be the hyperplane associated to 𝐹 𝑗 . �en, by Lemma 4.6, one has

(𝑏𝐼
𝑙−𝛿𝑒 𝑗 ) 𝑗 ≤ 𝑐 𝑗 < (𝑏

𝐼
𝑙
) 𝑗 .

Since the lines 𝑙 and 𝑙 − 𝛿𝑒 𝑗 both belong to the surrounding set 𝐿𝑙0−𝛿𝑒 𝑗 , it follows from Lemmas 4.3, and 4.5, item

(3), that codir(𝑏 𝑗 ) ⊇ codir(𝑏 ′) ∪ { 𝑗}. Moreover, since the facets of 𝐿[𝐼 ] associated to codir(𝑏 𝑗 ) are unique in a 𝛿-ball

around 𝑏 𝑗 , as per Definition 4.1, item (3), they all have a unique associated value 𝑐𝑖 (corresponding to their associated

hyperplanes).

Finally, we will show that 𝑏 𝑗 ≤ 𝑏 ′. Let 𝑖 ∈ È1, 𝑛É be an arbitrary dimension.

• If 𝑖 ∈ codir(𝑏 ′), then 𝑏 𝑗
𝑖
= 𝑏 ′𝑖 .

• If 𝑖 ∈ codir(𝑏 𝑗 )\codir(𝑏 ′), then 𝑏 𝑗
𝑖
∈

{
𝑐𝑖 ,min𝑙 ∈𝐿𝑙

0
−𝛿𝑒𝑗
(𝑏𝐼
𝑙
)𝑖
}
≤ min𝑙 ∈𝐿𝑙

0

(𝑏𝐼
𝑙
)𝑖 = 𝑏 ′𝑖 , with a strict inequality for 𝑖 = 𝑗 .

• If 𝑖 ∈ dir(𝑏 𝑗 ) ⊆ dir(𝑏 ′), then 𝑏 𝑗
𝑖
= min𝑙 ∈𝐿𝑙

0
−𝛿𝑒𝑗
(𝑏𝐼
𝑙
)𝑖 ≤ min𝑙 ∈𝐿𝑙

0

(𝑏𝐼
𝑙
)𝑖 = 𝑏 ′𝑖 .

Hence, one always has𝑏
𝑗

𝑖
≤ 𝑏 ′𝑖 , and thus𝑏 𝑗 < 𝑏 ′, which contradicts the fact that𝑏 ′ is minimal. �us, onemust have𝑏 ′𝑗 < 𝛼 𝑗 .

We now show that supp(𝐼 ) ⊆ supp(𝐼 ). Let 𝑥 ∈ supp(𝐼 ). We will show that there exists an 𝐿-birth corner 𝑐 such

that 𝑐 ≤ 𝑥 . LetH be the family of hyperplanes associated to the facets of 𝐿[𝐼 ]. �e corner 𝑐 will be defined as the limit

of a sequence of points {𝑥 (𝑘) }𝑘∈N∗ in R
𝑛
, defined by induction with:

1. 𝑥 (1) = inf {𝑥 − 𝑡 · 1 : 𝑡 ≥ 0} ∩ supp(𝐼 ). �en, one has the two following possibilities:

• either 𝑥 (1) = −∞, and we let 𝑐 := 𝑥 (1) .

• or there exists a maximal subset of hyperplanes H 1 ⊂ H , H 1 ≠ ∅, such that 𝑥 (1) ∈ ∩𝐻 ∈H1𝐻 =: 𝐻1. Let

J 1 ⊆ È1, 𝑛É be the set of free coordinates in 𝐻1, i.e., those dimensions such that 𝑗 ∈ J 1 ⇐⇒ 𝑥 (1) − 𝑒 𝑗 ∈ 𝐻1.

2. 𝑥 (2) = inf

{
𝑥 (1) − 𝑡 ·∑𝑗 ∈J1 𝑒 𝑗 : 𝑡 ≥ 0

}
∩ supp(𝐼 ). �en, one has the two following possibilities:

• either 𝑥 (2) is at infinity in 𝐻1, i.e., 𝑥
(2)
𝑗

= −∞ if 𝑗 ∈ J 1
and 𝑥

(2)
𝑗

= 𝑥
(1)
𝑗

otherwise, and we let 𝑐 := 𝑥 (2) .

• or there exists a maximal subset of hyperplanesH 2 ) H 1
such that 𝑥 (2) ∈ ∩𝐻 ∈H2𝐻 =: 𝐻2. Let J 2 ⊆ È1, 𝑛É

be the set of free coordinates in 𝐻2, i.e., those dimensions such that 𝑗 ∈ J 2 ⇐⇒ 𝑥 (2) − 𝑒 𝑗 ∈ 𝐻2.

3. For 𝑘 ≥ 3, 𝑥 (𝑘+1) = inf

{
𝑥 (𝑘) − 𝑡 ·∑𝑗 ∈J𝑘 𝑒 𝑗 : 𝑡 ≥ 0

}
∩ supp(𝐼 ). �en, one has the two following possibilities:

• either 𝑥 (𝑘+1) is at infinity in 𝐻𝑘 , i.e., 𝑥
(𝑘+1)
𝑗

= −∞ if 𝑗 ∈ J𝑘 and 𝑥 (𝑘+1)
𝑗

= 𝑥
(𝑘)
𝑗

otherwise, and we let 𝑐 := 𝑥 (𝑘+1) .

• or there exists a maximal subset of hyperplanesH𝑘+1 ) H𝑘
such that 𝑥 (𝑘+1) ∈ ∩𝐻 ∈H𝑘+1𝐻 =: 𝐻𝑘+1. LetJ𝑘+1 ⊆

È1, 𝑛É be the set of free coordinates in 𝐻𝑘+1, i.e., those dimensions such that 𝑗 ∈ J𝑘+1 ⇐⇒ 𝑥 (𝑘+1) −𝑒 𝑗 ∈ 𝐻𝑘+1.

If this sequence stops at step one, i.e., 𝑐 = 𝑥 (1) = −∞, then every birthpoint of 𝐼 is at −∞, the only birth corner is

𝑐 = −∞, and one trivially has 𝑐 ≤ 𝑥 . Hence, we assume in the following that 𝑐 is obtained a�er at least one iteration of

the sequence. Note that this sequence of points has length at most 𝑛. Let 𝑐− and 𝑐 be the penultimate and last elements of

the sequence respectively, and let J− be the set of free coordinates associated to 𝑐−. By construction, one has:

𝑐 ≤ 𝑐− ≤ · · · ≤ 𝑥 (2) ≤ 𝑥 (1) ≤ 𝑥 .

We now show that 𝑐 is indeed a birth corner. If 𝑐 is finite, then it must belong to the intersection of 𝑛 hyperplanes, and

it is thus a finite birth corner. Hence, we assume now that 𝑐 is not finite. We will construct a minimal pseudo birth

corner from 𝑐−, and show that 𝑐 is its associated infinite birth corner. We will consider two different cases, depending

on whether 𝑐− is close to 𝐾 = 𝑅𝛼,𝛽 or not. If 𝑐
− ∈ 𝐾𝛿 , the filling property of 𝐿 and the size of the facets of 𝐿[𝐼 ] ensure

that 𝑐− is itself a minimal pseudo birth corner, associated to 𝑐 , which is thus an infinite birth corner. If 𝑐− ∉ 𝐾𝛿 , then let

−→𝑣 ∈ R𝑛 be a vector that pushes back 𝑐− into 𝐾𝛿 , i.e., such that, for any dimension 𝑖 ∈ J−, one has

𝛼𝑖 − 𝛿 ≤ (𝑐− + −→𝑣 )𝑖 < 𝛼𝑖 ,

and
−→𝑣 𝑖 = 0 if 𝑖 ∉ J−. Let 𝑆 be the segment [𝑐−, 𝑐− + −→𝑣 ]. We have the two following cases:
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1. Assume 𝑆 ⊆ 𝐿[𝐼 ]. �en 𝑐− + −→𝑣 ∈ supp(𝐼 ) ∩ 𝐾𝛿 , and there exists a line 𝑙 ∈ 𝐿 such that 𝑐− + −→𝑣 ∈ conv(𝐿𝑙 ). Let
𝑐𝑙 be the pseudo birth corner associated to 𝐿𝑙 . Since one has 𝑐

𝑙
𝑗 < 𝛼 𝑗 for any dimension 𝑗 ∈ J−, it follows that

J− ⊆ dir(𝑐𝑙 ). Furthermore, since 𝑐− + −→𝑣 belongs to the same facets than 𝑐 and 𝑐−, and since 𝑐− + −→𝑣 ∈ conv(𝐿𝑙 )
one has codir(𝑐𝑙 ) ⊇ codir(𝑐) and dir(𝑐) = J−. �us, 𝑐 is an infinite birth corner associated to the minimal pseudo

birth corner 𝑐𝑙 .

2. Assume 𝑆 * 𝐿[𝐼 ]. In that case, there must be a facet of codirection 𝑗 , for some 𝑗 ∈ J−, that intersects 𝑆 . Since
one has 𝑐−𝑗 ≤ (𝑐− +

−→𝑣 ) 𝑗 < 𝛼 𝑗 for any 𝑗 ∈ J−, this means that the facet would not intersect 𝐾 , which yields to a

contradiction as per Definition 4.1, item (4).

�is concludes that supp(𝐼 ) ⊆ supp(𝐼 ), and the equality between these supports holds. �

Proposition 4.4 extends to the following corollary, whose proof is immediate from the definition of exact matchings

(see Definition 3.5 above).

Corollary 4.6.1. Let 𝑀 be an interval decomposable multipersistence module, whose interval summands all satisfy the
assumptions of Proposition 4.4. Let 𝑀̃ be the multipersistence module computed by Algorithm 1. �en, one has

𝑑𝐼 (𝑀, 𝑀̃) = 𝑑𝑏 (𝑀, 𝑀̃) = 0.

5. Multipersistence module approximation

In this section, we propose an approximation result, which states that the bo�leneck and interleaving distances between

an interval decomposable multipersistence module𝑀 and its approximation 𝑀̃ computed with Algorithm 1 can be upper

bounded under weaker assumptions than the ones in Proposition 4.4 In order to do this, we first characterize a family of

approximation modules, that we call candidates in Section 5.1, and whose distance to a target module can be controlled.

�en, we show in Section 5.2 that the module approximation computed by Algorithm 1 belongs indeed to this family.

5.1. Candidates and approximation error

In this section, we define a family of ”good” candidate multipersistence modules (see Definition 5.1) for approximating

an interval decomposable multipersistence module𝑀 , in the sense that 𝑑𝐼 (𝑀, 𝑀̃) and 𝑑𝑏 (𝑀, 𝑀̃) are upper bounded for

any module 𝑀̃ in this family.

Support assumption. In order to simplify proofs, we assume in this section that supp(𝑀) ⊆ 𝐾 , where 𝐾 is a compact

set in R𝑛 . �is assumption is used in practice, for instance in [CB20, CFK
+
19, Vip20b], where multipersistence modules

are either finite or intersected with a compact set in order to generate descriptors.

Candidates. We first define candidate modules, which are, roughly speaking, modules with the same fibered barcodes

than𝑀 on a regular set of lines, paired with a candidate pairing that commutes with the exact matching induced by𝑀 .

Definition 5.1 (Candidate). Let 𝐾 be a compact set of R𝑛 , 𝛿 > 0 and 𝐿 be a 𝛿-grid of 𝐾2𝛿
. Let𝑀 =

⊕
𝑖∈I 𝐼𝑖 be an interval

decomposable multipersistence module, with 𝐿-fibered barcode FB(𝑀)𝐿 =
{
B(𝑀

��
𝑙
) : 𝑙 ∈ 𝐿

}
. Let 𝜎𝑀 be its associated

exact matching. An interval decomposable multipersistence module 𝑀̃ =
⊕

𝑖∈ ˜I 𝐼𝑖 is called an 𝐿-candidate of𝑀 if:

1. B(𝑀
��
𝑙
) = B(𝑀̃

��
𝑙
) for any 𝑙 ∈ 𝐿, i.e., their 𝐿-fibered barcodes are the same, and

2. there exists a surjection 𝜈 : I → ˜I such that 𝑖 ∉ coim(𝜈) ⇒ 𝑑𝐼 (𝐼𝑖 , 0) ≤ 𝛿 , and such that, for any two consecutive

lines 𝑙, 𝑙 ′ ∈ 𝐿, the following diagram commutes:

B(𝑀
��
𝑙
) B(𝑀

��
𝑙 ′)

B(𝑀̃
��
𝑙
) B(𝑀̃

��
𝑙 ′)

𝜎𝑀

𝜈𝑙 𝜈𝑙′

𝜎
𝑀̃

where 𝜈𝑙 : 𝐼𝑖
��
𝑙
∈ B(𝑀

��
𝑙
) ↦→ 𝐼𝜈 (𝑖)

��
𝑙
∈ B(𝑀̃

��
𝑙
). In other words,𝑀 and 𝑀̃ have the same matched barcodes along 𝐿, up

to interval reordering. We call 𝜎 the candidate interval pairing.

We now claim that multipersistence modules that are 𝐿-candidates of a given interval decomposable multipersistence

module𝑀 are 𝛿 close to𝑀 , as stated in the following approximation result.

Proposition 5.2 (Approximation result). Let 𝐾 be a compact set of R𝑛 , 𝛿 > 0 and 𝐿 be a 𝛿-grid of 𝐾2𝛿 . Let𝑀 be an interval
decomposable multipersistence module. �en, any 𝐿-candidate 𝑀̃ of𝑀

��
𝐾
satisfies 𝑑𝐼 (𝑀̃,𝑀

��
𝐾
) ≤ 𝑑𝑏 (𝑀̃,𝑀

��
𝐾
) ≤ 𝛿 .
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Proof. Let𝑀 =
⊕

𝑖∈I 𝐼𝑖 and 𝑀̃ =
⊕

𝑖∈ ˜I 𝐼𝑖 be the interval decompositions of𝑀 and 𝑀̃ , and 𝜎 be the associated candidate

interval pairing. Without loss of generality, assume that the support of 𝑀 is included in 𝐾 , i.e., 𝑀 = 𝑀
��
𝐾
. In order to

upper bound the bo�leneck distance 𝑑𝑏 (𝑀, 𝑀̃), one can upper bound the interleaving distance 𝑑𝐼 (𝐼𝑖 , 𝐼𝜈 (𝑖) ) for any index

𝑖 ∈ I. Let 𝐼 and 𝐼 be two such intervals (we drop the index 𝑖 to alleviate notations). Since 𝐼 and 𝐼 are interval modules,

and thus indicator modules, the morphisms 𝜑
(𝛿)
𝐼→𝐼

: 𝐼 → 𝐼 [𝜹] and 𝜑 (𝛿)
𝐼→𝐼

: 𝐼 → 𝐼 [𝜹] are well-defined, as per Definition 2.15).

We thus need to show that these morphisms commute, i.e., that they induce a 𝛿-interleaving. Hence, we first show that(
𝜑
(𝛿)
𝐼→𝐼

)
𝑥+𝜹
◦

(
𝜑
(𝛿)
𝐼→𝐼

)
𝑥
=

(
𝜑
(2𝛿)
𝐼

)
𝑥
, (6)

for any 𝑥 ∈ R𝑛 .

Let 𝑥 ∈ 𝐾 . If 𝑥 ∈ 𝑙 for some line 𝑙 ∈ 𝐿, Equation (6) is satisfied from supp(𝐼 ) ∩ 𝑙 = supp(𝐼 ) ∩ 𝑙 , which itself comes from

the fact that 𝑀̃ is an 𝐿-candidate of𝑀 . Hence, we assume in the following that 𝑥 ∉ ∪𝑙 ∈𝐿𝑙 . Furthermore, if 𝑥 ∉ supp(𝐼 ) or
𝑥 + 2𝜹 ∉ supp(𝐼 ), then Equation (6) is trivially satisfied. Hence, we also assume 𝑥, 𝑥 + 2𝜹 ∈ supp(𝐼 ) ⊆ 𝐾 . �is means that

𝑏𝐼𝑥 and 𝑑
𝐼
𝑥 are well-defined, and that

(
𝜑
(2𝛿)
𝐼

)
𝑥
� id𝑘→𝑘 . �us we only have to show that 𝐼𝑥+𝜹 � 𝑘 , i.e., 𝑥 + 𝜹 ∈ supp(𝐼 ).

As 𝐿 is a 𝛿-grid, let 𝑙 ∈ 𝐿 be a line such that 𝑥 ∈ conv(𝐿𝑙 ) and let 𝑙𝑥 ⊆ conv(𝐿𝑙 ) be the diagonal line passing through

𝑥 . Now, as 𝑅𝑥,𝑥+𝜹 ⊆ supp(𝐼 ), Lemma 2.22 ensures that B(𝐼
��
𝑙
) ≠ ∅ for any line 𝑙 ∈ 𝐿 that is 𝛿-comparable to 𝑙𝑥 ; and the

same holds for 𝐼 since FB(𝐼 )𝐿 = FB(𝐼 )𝐿 . Using Proposition 3.9 on both 𝐼 and 𝐼 , there exist two sets 𝐵𝑙 and 𝐷𝑙 such that

𝑑𝐼𝑥 , 𝑑
𝐼
𝑥 ∈ 𝐷𝑙 and 𝑏𝐼𝑥 , 𝑏𝐼𝑥 ∈ 𝐵𝑙 , with the segments 𝑙𝑥 ∩ 𝐵𝑙 and 𝑙𝑥 ∩ 𝐷𝑙 having length at most 𝛿 . Since one also has

𝑏𝐼𝑥 ≤ 𝑥 ≤ 𝑥 + 2𝜹 ≤ 𝑑𝐼𝑥 ,

and




𝑑𝐼𝑥 − 𝑑𝐼𝑥


∞ , 


𝑏𝐼𝑥 − 𝑏𝐼𝑥


∞ ≤ 𝛿 , one finally has 𝑏𝐼𝑥 ≤ 𝑥 + 𝜹 ≤ 𝑑𝐼𝑥 , which concludes that 𝑥 + 𝜹 ∈ supp(𝐼 ).
�

Remark 5.3. �is bound is sharp up to a
1

2
factor, as illustrated by Figure 9.

Figure 9: Two interval modules, one with support colored in red (Le�) and the other in blue (Right). �ese modules

have the same barcodes (green bars) along two 𝛿-consecutive lines; and 𝑑𝑏 (𝐼1, 𝐼2) = 𝑑𝐼 (𝐼1, 𝐼2) = 𝛿/2. �is construction can

easily be generalized in R𝑛 with 𝑛 > 2 by se�ing 𝐼1 as the union of two hypercubes of side length 𝛿/2 located on the

anti-diagonal, and 𝐼2 as the standard hypercube with side length 𝛿 .

5.2. Algorithm 1 provides a candidate

In this section, we first show, given an interval module 𝐼 (with support included in a compact 𝐾 ), that the approximation

𝐼 computed by Algorithm 2 is an 𝐿-candidate of 𝐼 (see Proposition 5.4). �is will in turn allow us to state our final

approximation bound with Algorithm 1, that is valid for any interval decomposable multipersistence module 𝑀 (see

Proposition 5.5).

Proposition 5.4. Let 𝐼 be an interval module with support in a compact set 𝐾 ⊆ R𝑛 , 𝛿 > 0, and 𝐿 be a 𝛿-grid of 𝐾2𝛿 . Let 𝐼
be the interval module computed with Algorithm 2. �en, 𝐼 is an 𝐿-candidate of 𝐼 .

Proof. Let 𝐶𝐿
𝐵
(𝐼 ) and 𝐶𝐿

𝐷
(𝐼 ) be the birth and death corners computed by Algorithm 4, i.e., one has

𝐼 = Ind ©­«
⋃

𝑐∈𝐶𝐿
𝐵
(𝐼 )

⋃
𝑐′∈𝐶𝐿

𝐷
(𝐼 )

𝑅𝑐,𝑐′
ª®¬ , (7)

In order to show that 𝐼 is an 𝐿-candidate of 𝐼 , we need to show that the 𝐿-fibered barcodes of 𝐼 and 𝐼 are the same, i.e.,

FB(𝐼 )𝐿 = FB(𝐼 )𝐿 . Equivalently, we need to show that supp(𝐼 ) ∩ 𝑙 = supp(𝐼 ) ∩ 𝑙 for any line 𝑙 ∈ 𝐿. We first show that
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they share the same birthpoints, i.e., that 𝐿[𝐼 ] ∩ 𝐿 = 𝐿[𝐼 ] ∩ 𝐿. Let 𝑙 ∈ 𝐿. Note that 𝑏𝐼
𝑙
and 𝑏𝐼

𝑙
are comparable since they

belong to the same diagonal line 𝑙 .

Strategy. In order to show 𝑏𝐼
𝑙
= 𝑏𝐼

𝑙
, we are going to show that 1. 𝑏𝐼

𝑙
≤ 𝑏𝐼

𝑙
and 2. 𝑏𝐼

𝑙
≤ 𝑏𝐼

𝑙
.

1. In order to show 𝑏𝐼
𝑙
≤ 𝑏𝐼

𝑙
, we are going to show that 𝑐 ≮ 𝑏𝐼

𝑙
for any corner 𝑐 ∈ 𝐶𝐿

𝐵
(𝐼 ). Indeed, if one assumes 𝑏𝐼

𝑙
> 𝑏𝐼

𝑙
,

and since there always exists a birth corner 𝑐 ∈ 𝐶𝐿
𝐵
(𝐼 ) such that 𝑐 ≤ 𝑏𝐼

𝑙
by construction of 𝐼 , one has 𝑐 ≤ 𝑏𝐼

𝑙
< 𝑏𝐼

𝑙
.

2. In order to show 𝑏𝐼
𝑙
≤ 𝑏𝐼

𝑙
, we are going to show that there exists a corner 𝑐 ∈ 𝐶𝐿

𝐵
(𝐼 ) such that 𝑐 ≤ 𝑏𝐼

𝑙
. Indeed, if

there is such a birth corner, and if 𝑏𝐼
𝑙
> 𝑏𝐼

𝑙
by contradiction, then 𝑐 ≤ 𝑏𝐼

𝑙
< 𝑏𝐼

𝑙
, and 𝑅

𝑐,𝑏𝐼
𝑙

is not flat, contradicting

Remark 2.20.

Proof of (2). By construction of 𝐼 with Algorithm 4, if 𝑏𝐼
𝑙
is labelled, then there exists a line 𝑙 ′ and a corner 𝑐𝑙

′ ∈ 𝐶𝐿
𝐵
(𝐼 )

that is smaller than 𝑏𝐼
𝑙
so we can take 𝑐 := 𝑐𝑙

′
. If 𝑏𝐼

𝑙
is not labelled, it belongs itself to 𝐶𝐿

𝐵
(𝐼 ), and we can take 𝑐 := 𝑏𝐼

𝑙
.

Proof of (1). Let 𝑐 ∈ 𝐶𝐿
𝐵
(𝐼 ) be a birth corner, and let 𝐿𝑙0 be the associated surrounding set of lines for some 𝑙0 ∈ 𝐿. Let

[𝑐]𝑙 := min [(𝑐 + (R+)𝑛) ∩ 𝑙] be the smallest element in the intersection between the positive cone on 𝑐 and 𝑙 . Assume

[𝑐]𝑙 ≥ 𝑏𝐼𝑙 and 𝑐 < 𝑏
𝐼
𝑙
. �en 𝑅𝑐, [𝑐 ]𝑙 is not flat, contradicting the fact that [𝑐]𝑙 is the smallest element. �us, we only have to

show [𝑐]𝑙 ≥ 𝑏𝐼𝑙 . �ere are two cases.

• Either some birthpoints of 𝐿𝑙0 are not labelled by Algorithm 3, and 𝑐 is equal to 𝑏𝐼
𝑙 ′ for some 𝑙 ′ ∈ 𝐿𝑙0 . Now, assume

[𝑐]𝑙 < 𝑏𝐼𝑙 by contradiction. �en 𝑏𝐼
𝑙 ′ = 𝑐 ≤ [𝑐]𝑙 < 𝑏

𝐼
𝑙
. �us 𝑏𝐼

𝑙 ′ < 𝑏
𝐼
𝑙
and 𝑅𝑏𝐼

𝑙′ ,𝑏
𝐼
𝑙
is not flat, contradicting Remark 2.20.

Hence [𝑐]𝑙 ≥ 𝑏𝐼𝑙 .

• Or all the birthpoints of 𝐿𝑙0 are labelled by Algorithm 3. Again, we study two separate cases. See Figure 10 for an

illustration.

– Either 𝑙 ∈ 𝐿𝑙0 . �en, ∃𝑖 ∈ È1, 𝑛É such that (𝑏𝐼
𝑙
)𝑖 = 𝑐𝑖 . �is yields (𝑏𝐼

𝑙
)𝑖 = 𝑐𝑖 ≤ ([𝑐]𝑙 )𝑖 , and thus [𝑐]𝑙 ≥ 𝑏𝐼𝑙 since

they both belong to the same diagonal line 𝑙 .

– Or the line 𝑙 does not belong to 𝐿𝑙0 . Since [𝑐]𝑙 is on the boundary of the positive cone based on 𝑐 , there exists

𝑖 ∈ È1, 𝑛É such that ( [𝑐]𝑙 )𝑖 = 𝑐𝑖 . Assume again by contradiction that 𝑏𝐼
𝑙
> [𝑐]𝑙 , and write

[𝑐]𝑙 = 𝑐 +
∑︁
𝑗≠𝑖

(𝛿𝛼 𝑗 )𝑒 𝑗 =: 𝑐 + −→𝑣 < 𝑏𝐼
𝑙

with 𝛼 𝑗 ≥ 0 for 𝑗 ∈ È1, 𝑛É\ {𝑖}. Since 𝑙 ∉ 𝐿𝑙0 , there exists some 𝑗0 such that 𝛼 𝑗0 > 1. Let
−→𝑢 :=

((−→𝑣 𝑗 mod𝛿) 𝑗 ∈È1,𝑛É) = (( [𝑐]𝑙 − 𝑐) 𝑗 mod𝛿) 𝑗 ∈È1,𝑛É ∈ [0, 𝛿)𝑛 ≤ −→𝑣 . Let 𝑙 ′ := 𝑙𝑐+−→𝑢 be the diagonal line pass-

ing through 𝑐 + −→𝑢 . Now, recall that the lines of 𝐿 are drawn on a grid (see Remark 3.3), so 𝑙 ′ ∈ 𝐿 since

𝑙 ′ = 𝑙 + −→𝑢 − −→𝑣 . Moreover, one has by definition, 𝑐 ∈ conv(𝐿𝑙0 ). Since the lines of 𝐿 are on a grid, one has

∀𝑙1, 𝑙2 ∈ 𝐿, ‖𝑙1 ∩ 𝐻𝑛, conv(𝐿𝑙2 ) ∩ 𝐻𝑛)‖∞ < 𝛿 =⇒ 𝑙1 ∈ 𝐿𝑙2 where 𝐻𝑛 = {𝑥 ∈ R𝑛 : 𝑥𝑛 = 𝑐𝑛} .

Now, note that 𝑐 + −→𝑢 and 𝑐 + −→𝑢 − −→𝑢 𝑛 · 1 both belong to 𝑙 ′, and that 𝑐 + −→𝑢 − −→𝑢 𝑛 · 1 ∈ 𝐻𝑛 . Moreover, since

(𝑐 + (−→𝑢 − −→𝑢 𝑛 · 1)) − 𝑐

∞ =


−→𝑢 − −→𝑢 𝑛 · 1

∞ < 𝛿,

one has 𝑙 ′ ∈ 𝐿𝑙0 . �us, there exists 𝑖 ′ ∈ È1, 𝑛É such that (𝑏𝐼
𝑙 ′)𝑖′ = 𝑐𝑖′ ≤ (𝑐 +

−→𝑢 )𝑖′ and thus 𝑏𝐼
𝑙 ′ ≤ (𝑐 +

−→𝑢 ) since
𝑏𝐼
𝑙 ′ and 𝑐 +

−→𝑢 are comparable on the diagonal line 𝑙 ′. Finally, 𝑏𝐼
𝑙 ′ ≤ 𝑐 +

−→𝑢 ≤ 𝑐 + −→𝑣 < 𝑏𝐼
𝑙
, and 𝑅𝑏𝐼

𝑙′ ,𝑏
𝐼
𝑙
is not flat,

contradicting Remark 2.20. Hence, 𝑏𝐼
𝑙
≤ [𝑐]𝑙 .
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Figure 10: Illustration of 𝑙, 𝑙 ′, 𝑐, [𝑐]𝑙 , [𝑐]𝑙 ′,−→𝑢 ,−→𝑣 , 𝑏𝐼𝑙 , 𝑏
𝐼
𝑙 ′ when one assumes that [𝑐]𝑙 < 𝑏𝐼𝑙 .

�e proof applies straightforwardly to deathpoints by symmetry. �

Proposition 5.5 (Conclusion). Let𝑀 =
⊕

𝑖∈I 𝐼𝑖 be an interval decomposable multipersistence module. Let 𝐾 be a compact
rectangle in R𝑛 , 𝛿 > 0, and let 𝐿 be a 𝛿-grid of 𝐾2𝛿 . Let 𝑀̃ =

⊕
𝑖∈ ˜I 𝐼𝑖 be the multipersistence module computed with

Algorithm 1. Note that ˜I ⊆ I by construction. �en,

1. if a summand 𝐼𝑖 of𝑀 is 2𝛿-discretely presented, then 𝑑𝐼 (𝐼𝑖 , 𝐼𝑖 ) = 0.

2. if a summand 𝐼𝑖 of𝑀 has a support included in 𝐾 , then 𝑑𝐼 (𝐼𝑖 , 𝐼𝑖 ) < 𝛿 .

3. if a summand 𝐼𝑖 of𝑀 is 𝛿-trivial (i.e., 𝑑𝐼 (𝐼𝑖 , 0) ≤ 𝛿), then either supp(𝐼𝑖 ) ∩𝐿 ≠ ∅ and thus 𝑖 ∈ ˜I and 𝐼𝑖 is also 𝛿-trivial,
or supp(𝐼𝑖 ) ∩ 𝐿 = ∅ and 𝑀̃ has no summand matched to 𝐼𝑖 .

In particular, if 𝐾 ⊆ R𝑛 contains the supports of those summands of𝑀 whose support is precompact, and if the remaining
summands are all 𝛿-discretely presented in 𝐾 , then one has 𝑑𝐼 (𝑀, 𝑀̃) ≤ 𝑑𝑏 (𝑀, 𝑀̃) ≤ 𝛿 .
Proof. Item (1) comes from Proposition 4.4. Item (2) is a direct consequence of Propositions 5.2 and 5.4. Item (3) comes

from the construction of 𝐼𝑖 . �

6. Exact matching

�e algorithms and theoretical results presented in the previous sections were all obtained using exact matchings (see

Definition 3.5). In this section, we seek to understand conditions under which a given matching function is exact. We first

present assumptions that allow for finding exact matching functions in Section 6.1). �en, we discuss these assumptions

in Section 6.2, and we finally show that the vineyard matching [CSEM06] is exact in Section 6.3.

6.1. A naive approach to exact matching

In order to understand which matching functions are exact, we first define a notion of compatibility between bars.

Definition 6.1 (Compatible bars). Let 𝐼 be an interval module, and let 𝑙1, 𝑙2 ⊆ R𝑛 be two 𝛿-consecutive diagonal lines.
Assume supp(𝐼 ) ≠ ∅ and supp(𝐼 ) ≠ ∅, and let [𝑏𝐼

𝑙1
, 𝑑𝐼
𝑙1
] and [𝑏𝐼

𝑙2
, 𝑑𝐼
𝑙2
] be the corresponding bars. �ese bars are compatible

if the rectangles 𝑅𝑏𝐼
𝑙
1

,𝑏𝐼
𝑙
2

, 𝑅𝑏𝐼
𝑙
2

,𝑏𝐼
𝑙
1

, 𝑅𝑑𝐼
𝑙
1

,𝑑𝐼
𝑙
2

and 𝑅𝑑𝐼
𝑙
2

,𝑑𝐼
𝑙
1

are flat. Moreover, we say that [𝑏𝐼
𝑙1
, 𝑑𝐼
𝑙1
] is compatible with the empty

set in 𝑙2 if



𝑏𝐼
𝑙1
− 𝑑𝐼

𝑙1





∞
≤ 2𝛿 .

Remark 6.2. It follows from Lemma 2.9 that bars along consecutive lines that correspond to the same indicator summand

of a multipersistence module are always compatible.

Compatible bars enjoy some useful properties, that we state in the following proposition.

Lemma 6.3. Let 𝑙1 and 𝑙2 be two 𝛿-consecutive lines, and let [𝑏1, 𝑑1] := B(𝐼
��
𝑙1
) be the bar of an indicator module along 𝑙1.

Let [𝑏2, 𝑑2] be a bar along 𝑙2 that is compatible with [𝑏1, 𝑑1]. �en, 𝑑2 (resp. 𝑏2) is included in a segment of size 𝛿 in 𝑙2 that is
independent of 𝑑2 (resp. 𝑏2).

Proof. Applying Lemma 2.22, one has

𝑑2 ∈ 𝐶 :=
[
𝐵𝛿 (𝑑1) ∩ 𝑙2

]
\
[
{𝑧 ∈ R𝑛 : 𝑧 > 𝑑1} ∪ {𝑧 ∈ R𝑛 : 𝑧 < 𝑑1}

]
Since 𝐶 is a nonempty, totally ordered set, we can define 𝑦 := min𝐶 . By construction, we know that there exists a

dimension 𝑖 such that 𝑦𝑖 ≥ (𝑑1)𝑖 , and thus 𝐶 must be included in the segment [𝑦,𝑦 + 𝛿 · 1] along 𝑙2.
�e proof applies straightforwardly to 𝑏2 by symmetry. �
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Since bars that are matched under an exact matching function are always compatible, one way to construct an exact

matching between two barcodes is therefore to isolate, among all possible matching functions, the ones such that matched

bars are compatible. If this family contains a single element, it must be the exact matching we are looking for. �is

typically happens for interval decomposable multipersistence module whose summands are sufficiently separared, as we

show in the proposition below.

Proposition 6.4. Let𝑀 =
⊕

𝐼 ∈I 𝐼 be an interval decomposable multipersistence module. Let 𝛿 > 0, and 𝐼 , 𝐼 ′ be two interval
summands in the decomposition of𝑀 . Assume that the two following properties are satisfied:

1. Let 𝑙 ⊂ R𝑛 be a diagonal line such that supp(𝐼 ) ∩ 𝑙 ≠ ∅ and supp(𝐼 ′) ∩ 𝑙 ≠ ∅. �en, one has either


𝑏𝐼
𝑙
− 𝑏𝐼 ′

𝑙




∞ > 𝛿 or

𝑑𝐼

𝑙
− 𝑑𝐼 ′

𝑙




∞ > 𝛿 . In other words, the endpoints of the bar in B(𝐼

��
𝑙
) and of the bar in B(𝐼 ′

��
𝑙
) are at distance at least 𝛿 .

2. �e bars of length atmost 2𝛿 in 𝐼 and 𝐼 ′ are at distance at least𝛿 , i.e., if we let 𝑆 𝐼 :=
{
𝑙 : 𝑙 ∩ supp(𝐼 ) ≠ ∅,



𝑏𝐼
𝑙
− 𝑑𝐼

𝑙




∞ ≤ 2𝛿

}
(and similarly for 𝐼 ′), one has

𝑑∞ (𝑆 𝐼 , 𝑆 𝐼
′) > 𝛿/2.

In other words, a small bar in 𝐼 cannot be too close to a small bar in 𝐼 ′.

Let 𝐾 ⊆ R𝑛 be a compact set and 𝐿 be a 𝛿-grid of 𝐾 . �en, the matching function𝑚comp, induced by matching bars that
are compatible together, is well-defined and exact.

See Figure 11 for an illustration of assumptions (1) and (2).

Figure 11: (Le�) Example of module whose interval summands do not satisfy assumption (2). (Right) Example of

module whose interval summands do satisfy assumptions (1) and (2). Bars corresponding to consecutive lines can only be

matched if they are compatible, which, in this figure, means that they have the same color, i.e., that they are associated to

the same interval summand.

Proof. Let 𝐼 and 𝐼 ′ be two interval summands in the decomposition of𝑀 . Let 𝑙1 and 𝑙2 be two 𝛿-consecutive lines of 𝐿,

and let 𝑏 := B(𝐼
��
𝑙1
) be the bar corresponding to 𝐼 along 𝑙1. We will show that𝑚comp must match 𝑏 to either 𝑏 ′ := B(𝐼

��
𝑙2
)

if supp(𝐼 ) ∩ 𝑙2 ≠ ∅, or the empty set if supp(𝐼 ) ∩ 𝑙2 = ∅.

• If supp(𝐼 ) ∩ 𝑙2 = ∅, then by Lemma 2.22, the length of 𝑏 is at most 𝛿 , i.e.,




𝑏𝐼
𝑙1
− 𝑑𝐼

𝑙1





∞
≤ 𝛿 . It is thus compatible

with the empty set. Now, since 𝑑∞ (𝑙1, 𝑙2) = 𝛿/2 and since 𝑙1 ∈ 𝑆 𝐼 , assumption (2) ensures that the bar 𝑏 ′′ := B(𝐼 ′
��
𝑙2
)

(if it exists) must be of length at least 2𝛿 . In particular, it is not compatible with 𝑏, hence𝑚comp cannot match 𝑏 to

𝑏 ′′, and must match 𝑏 to the empty set.

• If supp(𝐼 ) ∩ 𝑙2 ≠ ∅, then the bar 𝑏 ′ = [𝑏𝐼
𝑙2
, 𝑑𝐼
𝑙2
] in B(𝐼

��
𝑙2
) is compatible with 𝑏, as per Remark 6.2. According to

Lemma 6.3, it follows that the birthpoint and deathpoint of any bar along 𝑙2 that is compatible to 𝑙1 must belong

to segments 𝑠𝑏, 𝑠𝑑 of length 𝛿 that contain 𝑏𝐼
𝑙2
and 𝑑𝐼

𝑙2
respectively. Let 𝑏 ′′ := [𝑏𝐼 ′

𝑙2
, 𝑑𝐼

′

𝑙2
] be the bar in B(𝐼 ′

��
𝑙2
) (if it

exists). According to assumption (1), we either have




𝑏𝐼
𝑙2
− 𝑏𝐼 ′

𝑙2





∞
> 𝛿 or




𝑑𝐼 ′
𝑙2
− 𝑑𝐼 ′

𝑙2





∞
> 𝛿 . In particular this means

that either 𝑏𝐼
′

𝑙2
∉ 𝑠𝑏 or 𝑑

𝐼 ′

𝑙2
∉ 𝑠𝑑 . Hence 𝑏

′′
is not compatible with 𝑏, and𝑚comp must match 𝑏 to 𝑏 ′.

In both cases,𝑚comp is well-defined and exact. �

Note that, since the number of lines of 𝐿, and thus their spacing 𝛿 , is controlled by the user in Algorithm 1, one can

ensure that the assumptions of Proposition 6.4 are satisfied by asking 𝐿 to have a sufficient number of lines in Algorithm 1

(which obviously increases the complexity as well, unfortunately). Note also that bars matched under the vineyard

matching [CSEM06] are always compatible (see Section 6.3), which ensures that the vineyard matching is exact when 𝐿

contains a sufficient number of lines.
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6.2. Limitations

One might wonder whether the usual distances between barcodes, such as the bo�leneck or Wasserstein distances, could

be used to define exact matching functions, instead of having to look for matching functions that only match bars that

are compatible. Indeed, a major advantage of, e.g., Wasserstein distances, is that their associated matching functions is

usually unique. However, when the spacing 𝛿 between two lines is too large, Wasserstein distances can still fail to match

bars exactly, if assumptions (1) or (2) are not satisfied, as shown in Figure 12.

Figure 12: Example interval decomposable multipersistence module with two interval summands (green and purple), and

its barcodes along two lines (here the two couples of red-blue bars). Any matching function induced by, e.g., Wasserstein

distances between the barcodes, will match the red bar with the red bar and the blue bar with the blue bar; however, this

matching is not exact.

Moreover, even when the spacing 𝛿 is small, it is easy to build examples where assumptions (1) and (2) are not

satisfied. �e toy example in Figure 13 shows that finding exact matching functions from bar compatibility alone can

lead to poor results in general.

Figure 13: �e interval decomposable multipersistence modules on the (Le�) and on the (Right) both have a yellow and

a brown summand, and have the same fibered barcodes. Since bars corresponding to lines in the middle have multiplicity

2, matching functions identified using bar compatibility can match them arbitrarily.

Furthermore, even a single mistake in the matching between consecutive barcodes can lead to arbitrary different

decompositions, as illustrated in Figure 14.

Figure 14: �e modules on the (Le�) and on the (Right) are both decomposable into two interval summands (yellow and

brown). �ese modules, which are at a large bo�leneck distance from each other, can be obtained from a single matching

exchange in the middle of the small square.

One way to handle these issues is to use the representative chains associated to the bars of the fibered barcode in order

to find a matching. Indeed, given two bars in consecutive barcodes, one can compare representatives of their generator

chains in order to check if they correspond to the same underlying interval summand, by assessing whether one chain

can be obtained from the other through the addition of another positive chain that appeared earlier than the current

chain (in its corresponding filtration). Note that computing barcodes and matching their bars through representative

chains in two separate steps is not efficient: for simplicial complexes, the cost of computing the barcode on a given

line is 𝑂 (𝑁 3) (where 𝑁 is the number of simplices), and checking if two generator chains are associated to the same

summand takes 𝑂 (𝑁 2) operations (which is the cost of applying Gaussian elimination on a column of the boundary

matrix). Fortunately, the so-called vineyard algorithm [CSEM06] can perform both operations at the same time, i.e., it can
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reduce the boundary matrices of different lines, and retrieve matching functions between the barcodes of consecutive

lines as a byproduct. We detail these statements in the next section.

6.3. Vineyard matching

In this section, we prove that the matching induced by the vineyard algorithm [CSEM06] is an exact matching for

multipersistence modules computed from simplicial complexes (although this seems to be common knowledge, we could

not find a proof of this result in the literature). We first recall the basic notions of persistent homology from simplicial

complexes in Section 6.3.1, and then provide an analysis of the vineyard algorithm in Section 6.3.2.

6.3.1. Persistent homology of simplicial complexes. We assume in the following that the reader is familiar with

simplicial complexes, boundary operators and homology groups, and we refer the interested reader to [Mun84, Chapter

1] for a thorough treatment of these notions. �e first important definition is filtered simplicial chain complexes.

Definition 6.5. Let 𝑆 be a simplicial complex, and 𝑓 : 𝑆 → R be a filtration function, i.e., 𝑓 satisfies 𝑓 (𝜎) ≤ 𝑓 (𝜏) when
𝜎 ⊆ 𝜏 . �en, the filtered simplicial chain complex (𝑆, 𝑓 ) is defined as (𝑆, 𝑓 ) = ((𝐶𝑡 )𝑡 ∈R, 𝜄), where

• 𝐶𝑡 = 〈𝜎0, . . . , 𝜎𝑖〉 is the vector space over a field 𝑘 whose basis elements are the simplices that have filtration values

smaller than 𝑡 , i.e., {𝜎0, . . . , 𝜎𝑖 } = {𝜎 ∈ 𝑆 : 𝑓 (𝜎) ≤ 𝑡}, and

• for any 𝑠 ≤ 𝑡 , the map 𝜄 = 𝜄𝑡𝑠 : 𝐶𝑠 ↩→ 𝐶𝑡 is the canonical injection.

Note that 𝑓 can be used to define an order on the simplices of 𝑆 = {𝜎𝑖 }𝑁𝑖=0, by using the ordering induced by the

filtration values. In other words, we assume in the following that 𝑓 (𝜎0) ≤ 𝑓 (𝜎1) ≤ · · · ≤ 𝑓 (𝜎𝑁 ). We also slightly abuse

notations and define 𝐶𝑖 := 〈𝜎0, . . . , 𝜎𝑖〉 for any 𝑖 ∈ È0, 𝑁É and

(𝑆, 𝑓 ) =
(
𝐶0

𝜄0
↩→ 𝐶1

𝜄1
↩→ . . .

𝜄𝑁−1
↩→ 𝐶𝑁 = 〈𝑆〉

)
. (8)

�en, applying the homology functor𝐻∗ on this filtered simplicial chain complex yields the following one-dimensional

persistence module

𝐻∗ (𝑆, 𝑓 ) = 0→ 𝐻∗ (𝐶0) → 𝐻∗ (𝐶1) → · · · → 𝐻∗ (𝐶𝑁 ).
An important theorem of (one-dimensional) persistent homology states that, up to a change of basis, it is possible to

pair some chains together in order to define the so-called one-dimensional persistence barcode associated to the filtered

simplicial chain complex.

�eorem 6.6 (Persistence pairing, [dMV11, �eorem 2.6]). Given a filtered simplicial chain complex (𝑆, 𝑓 ) = 𝐶1 ↩→
𝐶2 ↩→ · · · ↩→ 𝐶𝑁 and associated persistence module 𝐻∗ (𝑆, 𝑓 ), there exists a partition È1, 𝑁É = 𝐸 t 𝐵 t 𝐷 , a bijective map
Low : 𝐷 → 𝐵, and a new basis 𝜎̂1, . . . , 𝜎̂𝑁 of 𝐶 , called reduced basis, such that:

• 𝐶𝑖 = 〈𝜎̂1, . . . , 𝜎̂𝑖〉,

• 𝜕𝜎̂𝑒 = 0 for any 𝑒 ∈ 𝐸,

• for any 𝑑 ∈ 𝐷 , one has 𝜕𝜎̂Low(𝑑) = 0, and 𝜕𝜎̂𝑑 is equal to 𝜎̂Low(𝑑) up to simplification, i.e., there exists a set of indices
bd(𝑑) such that (𝑖) 𝑗 < Low(𝑑) ≤ 𝑑 for any 𝑗 ∈ bd(𝑑), and (𝑖𝑖) 𝜕𝜎̂𝑑 = 𝜎̂Low(𝑑) +

∑
𝑗 ∈bd(𝑑) 𝜎̂ 𝑗 .

In particular, the chains {𝜎̂ 𝑗 : 𝑗 ∈ 𝐸 ∩È1, 𝑖É}∪ {𝜎̂ 𝑗 : 𝑗 ∈ 𝐵∩È1, 𝑖É and ∃𝑑 > 𝑖 s.t. Low(𝑑) = 𝑗} form a basis of the simplicial
homology groups 𝐻∗ (𝐶𝑖 ). Moreover, the chains {𝜎̂ 𝑗 : 𝑗 ∈ 𝐵 t 𝐸} are called generator chains while the chains {𝜎̂ 𝑗 : 𝑗 ∈ 𝐷}
are called relation chains.

�e multiset of bars B := {[𝑓 (𝜎𝑏), 𝑓 (𝜎𝑑 )] : 𝑏 = Low(𝑑)} ∪ {[𝑓 (𝜎𝑒 ), +∞) : 𝑒 ∈ 𝐸} is called the persistence barcode of
the filtered simplicial chain complex (𝑆, 𝑓 ) and of the single-parameter persistence module 𝐻∗ (𝑆, 𝑓 ).

Note that while the reduced basis {𝜎̂1, . . . , 𝜎̂𝑁 } does not need to be unique, the pairingmap Low is actually independent

of that reduced basis (see [EH10, VII.1, Pairing Lemma]).

6.3.2. Vineyard algorithm and matching. �e vineyard algorithm is a method that allows to find reduced chain

bases for filtered simplicial complexes whose simplex orderings only differ by a single transposition of consecutive

simplices, that we denote by (𝑖 𝑖 + 1).

Proposition 6.7 ([CSEM06]). Let 𝑆 = {𝜎1, . . . , 𝜎𝑁 } be a (filtered) simplicial complex (with filtration function 𝑓 ), and let
𝐵 = {𝜎̂1, . . . , 𝜎̂𝑁 } be a corresponding reduced chain basis. Let ˜𝑓 : 𝑆 → R be a filtration function that swaps the simplices at
positions 𝑖 and 𝑖 + 1, i.e., that induces a new filtered simplicial complex 𝑆 = {𝜎1, . . . , 𝜎𝑖+1, 𝜎𝑖 , . . . , 𝜎𝑁 }. Note that the swapped
basis sw𝑆𝑖 (𝐵) := {𝜎̂1, . . . , 𝜎̂𝑖+1, 𝜎̂𝑖 , . . . , 𝜎̂𝑁 } might not be a reduced basis for (𝑆, ˜𝑓 ), since the pairing map Low might not be
well-defined anymore. Fortunately, there exists a change of basis, called vineyard update, that turns sw𝑆𝑖 (𝐵) into a reduced
basis 𝐵̃ of (𝑆, ˜𝑓 ) in 𝑂 (𝑁 ) time, and that comes with a bijective map vine : 𝐵 → 𝐵̃, called vineyard matching.
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Note that the vineyard matching can be straightforwardly extended to filtration functions whose induced ordering

differs by a whole permutation from the one of the initial filtration function by simply decomposing the permutation

into elementary transpositions (using, e.g., Coxeter decompositions). However, one might wonder whether the resulting

vineyard matching depends on the decomposition of the permutation or not. While the vineyard matching seems to be

independent from the decomposition that we used in our experiments, we leave this question as a conjecture for future

work.

Conjecture 6.8. Let 𝜏 ∈ 𝔖𝑁 be a simplex permutation of a (filtered) simplicial complex 𝑆 = {𝜎1, . . . , 𝜎𝑁 }. �en, the vineyard
matching between the reduced bases of 𝑆 and 𝑆 = {𝜎𝜏 (1) , . . . , 𝜎𝜏 (𝑁 ) } does not depend on any sequence 𝐽 = {𝑖1, . . . , 𝑖𝑘 } such
that 𝜏 =

∏𝑘
𝑗=1 (𝑖 𝑗 𝑖 𝑗 + 1).

6.3.3. Application to multipersistence. When the simplices of 𝑆 are (partially) ordered from a function 𝑓 : 𝑆 → R𝑛 ,
i.e., one has 𝑓 (𝜏) ≤ 𝑓 (𝜎) for any 𝜏 ⊆ 𝜎 (where ≤ is the partial order of R𝑛), then the function 𝑓 is called amulti-parameter
filtration function of 𝑆 . In that case, applying the homology functor also leads to simplicial homology groups {𝐻𝑑 (𝐶𝑖 )}𝑖∈𝐼 ,
where 𝐼 ⊆ È1, 𝑁É𝑛 is the (partial) ordering associated to 𝑓 , and these groups are connected by morphisms as long as

their indices are comparable in R𝑛 . �ese groups and maps are called the multi-parameter persistent homology associated

to the multi-filtered simplicial chain complex (𝑆, 𝑓 ). Similarly to the single-parameter case, when 𝑘 is a field, one can

define the multi-parameter persistence module associated to (𝑆, 𝑓 ) as the family of vector spaces indexed over R𝑛 defined

with the identifications𝑀𝑠 := 𝐻𝑑 (𝐶) where 𝐶 = Vect{𝜎 ∈ 𝑆 : 𝑓 (𝜎) ≤ 𝑠 ∈ R𝑛}.
We will now show that using Conjecture 6.8, one can prove that the vineyard algorithm yields an exact matching in

the sense of Definition 3.5.

Proposition 6.9. Let𝑀 be an interval decomposable multipersistence module computed from a finite multi-filtered simplicial
chain complex (𝑆, 𝑓 ) over R𝑛 , with support included in a compact set 𝐾 of R𝑛 . Let 𝛿 > 0 and 𝐿 be a 𝛿-grid of 𝐾2𝛿 . Assume
that, for any two lines 𝑙, 𝑙 ′ ∈ 𝐿, there exists a sequence 𝑙 = 𝑙1, . . . , 𝑙𝑘 = 𝑙 ′ such that the simplex orderings induced by 𝑙𝑖 and 𝑙𝑖+1
differ by at most one transposition of two consecutive simplices, for any 𝑖 ∈ È1, 𝑘 − 1É. �en, the vineyard matching is exact.

Proof. Let 𝑙, 𝑙 ′ be two diagonal lines in R𝑛 , and let 𝐹 := 𝑓
��
𝑙
: 𝑆 → R and 𝐹 ′ := 𝑓

��
𝑙 ′ → R. Up to a reordering of the

simplices of 𝑆 = {𝜎1, . . . , 𝜎𝑁 }, we assume without loss of generality that 𝐹 (𝜎1) ≤ · · · ≤ 𝐹 (𝜎𝑁 ). Let𝔖𝑆
𝑁
⊆ 𝔖𝑁 be the

subset of permutations that satisfies 𝜏 ∈ 𝔖𝑆
𝑁
=⇒

(
𝐶𝜏
𝑘

)
𝑘∈È1,𝑁É

=
({
𝜎𝜏 (1) , . . . , 𝜎𝜏 (𝑘)

})
𝑘∈È1,𝑁É is a filtration of 𝑆 . Finally, let

𝑁 = (𝑁𝜏,𝑘 ) (𝜏,𝑘) ∈𝔖𝑆
𝑁
×È1,𝑁É, where 𝑁𝜏,𝑘 = 𝐻∗ (𝐶𝜏𝑘 ) be the multipersistence module indexed over𝔖𝑆

𝑁
× È1, 𝑁É, with arrows

induced by inclusion. Note that the one-dimensional persistence module 𝑁id := (𝑁id,𝑘 )𝑘∈È1,𝑁É is isomorphic to𝑀
��
𝑙
.

Now, let 𝜏 be the simplex permutation that matches the simplex ordering induced by 𝐹 to the one induced by 𝐹 ′. By
definition, one has 𝜏 ∈ 𝔖𝑆

𝑁
. Let 𝑖 be the index of the first transposition in the Coxeter decomposition of 𝜏 . �en, the

matching vine associated to the transposition (𝑖 𝑖 + 1) induces a matching between the bars of B(𝑀
��
𝑙
) and B(𝑀

��
𝑙 ′), or

equivalently, between the bars of B(𝑁id) and B(𝑁 (𝑖 𝑖+1) ), as well as a morphism between 𝑁id and 𝑁 (𝑖 𝑖+1) . Let us now
consider the diamond:

𝑁 (𝑖 𝑖+1),𝑖

· · · 𝑁id,𝑖−1 = 𝑁 (𝑖 𝑖+1),𝑖−1 𝑁id,𝑖+1 = 𝑁 (𝑖 𝑖+1),𝑖+1 · · ·

𝑁id,𝑖

(9)

First, note that all maps in that diamond are either injective of corank 1 or surjective of nullity 1 (since they are all

induced by adding a positive or negative chain of the corresponding reduced bases). Moreover, by the Mayer-Vietoris

theorem, the following sequence is exact:

𝑁id,𝑖−1 = 𝑁 (𝑖 𝑖+1),𝑖−1 = 𝐻∗ (𝐶 id

𝑖−1) → 𝑁 (𝑖 𝑖+1),𝑖 ⊕ 𝑁id,𝑖 = 𝐻∗ (𝐶 (𝑖 𝑖+1)𝑖
) ⊕ 𝐻∗ (𝐶 id

𝑖 )
(𝑥,𝑦) ↦→𝑦−𝑥
−−−−−−−−−→ 𝐻∗ (𝐶 id

𝑖+1) = 𝑁id,𝑖+1 = 𝑁 (𝑖 𝑖+1),𝑖+1.

Such diamonds are called transposition diamonds, and it has been shown in [MO15, �eorem 2.4] that the morphism

induced by vine between the lower and upper parts of the diamond matches bars with same representative positive

chains together. Hence, bars in B(𝑁id) and B(𝑁 (𝑖 𝑖+1) ) that are matched under vine are associated to the same summand

of 𝑁 . Moreover, by repeating this argumentation with the other transpositions in the decomposition of 𝜏 , one has that

the same is true for bars in B(𝑀
��
𝑙
) and B(𝑀

��
𝑙 ′).

Now, if 𝑁 is interval decomposable, then, since the transition maps of𝑀 can be seen as transition maps of 𝑁 , it follows

that interval summands of 𝑀 correspond to interval summands of 𝑁 . In that case, using a dimensionality argument

with �eorem 6.6, one can show that two bars of B(𝑀
��
𝑙
) and B(𝑀

��
𝑙 ′) that are matched under vine through arrows of 𝑁

also belong to the same interval summand of𝑀 . Unfortunately, even though 𝑁 and𝑀 are constructed from the same
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chain complex, 𝑁 contains much more arrows that𝑀 , and we cannot guarantee in the general case that 𝑁 is interval

decomposable.

We will thus conclude with Conjecture 6.8. By assumption, there exists a sequence of diagonal lines between 𝑙 and 𝑙 ′

such that the simplex orderings of two consecutive lines differ by at most a single transposition. �e vineyard matching

vine associated to these transpositions induce morphisms of𝑀 that can be seen as morphisms of 𝑁 , thus ensuring that it

is exact on both𝑀 and 𝑁 between 𝑙 and 𝑙 ′. Hence, by Conjecture 6.8, the vineyard matching is unique and exact.

�

Remark 6.10. Note that the assumption of Proposition 6.9 is always satisfied when 𝛿 becomes smaller than the smallest

distance (in filtration function values) between critical points of the module.

7. Experiments

In this section, we showcase the performances of Algorithm 1 on various data sets. More precisely, we evaluate the

running times and approximation errors of our approximation scheme on both synthetic and real data sets, and we

measure the empirical dependencies on the number of simplices, on the number of lines that are used, and on the

dimension 𝑛. We also compare our approach to Rivet when 𝑛 = 2. All experiments were done on a laptop with AMD

Ryzen 4800 CPU. Our code is publicly available at https://gitlab.inria.fr/dloiseau/multipers, and is implemented in

C++, with Python interface.

7.1. Simple examples

In this section, we first provide examples of multipersistence module approximation when the underlying multipersistence

module is manually cra�ed and known. In Figures 15 and 16, we provide two examples of pairs of distinct interval

decomposable multipersistence modules that have the same pointwise Be�i numbers and rank invariants. In both

examples, our approximation scheme manages to recover the correct decompositions. In Figure 17, we provide a

multipersistence module that is not interval decomposable, and our (fake) candidate decomposition.

𝑘 𝑘2

𝑘

(
1

0

)
(
1

0

) 𝑘 𝑘2

𝑘

(
1

0

)
(
0

1

)

Figure 15: (Top) Two distincts interval decomposable modules having the same rank invariant. (Bottom) Output of
Algorithm 1; each color corresponds to a different summand.
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Figure 16: (Top) Two distincts interval decomposable modules having the same rank invariant. (Bottom) Output of
Algorithm 1; each color corresponds to a different summand.

𝑘 𝑘2 𝑘

0 𝑘 𝑘

(
1

1

)
(0 1)

0

0

(
0

1

)
1

1

Figure 17: (Top le�) Filtered simplicial chain complex that leads to the (Top right) indecomposable multipersistence

module. (Bottom) Output of Algorithm 1; each color corresponds to a different summand. �e decomposition is not real,

although our output still preserves the rank invariant.

7.2. Convergence

In this section, we check the empirical convergence of Algorithm 1 on real data sets. We look at a noisy circle with 1, 000

points (60% of those are on the annulus, and the remaining 40% are outliers in the square) in Figure 18, as well as three

time series from the UCR archive [Che15] that were embedded in R3 using time delay embedding in Figures 19, 20 and 21.

Our approximation was computed with 𝑛 = 2 filtrations, the Alpha complex filtration and a log-density estimation. Since

we do not know the underlying multipersistence module, we use the Euclidean norm between (a) the multipersistence
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image [CB20] of our approximation and (b) a limit multipersistence image computed on our approximation with a

limit precision (i.e., distance between consecutive lines) of 𝛿 = 10
−4

as a proxy to measure the distance between our

approximation and the true underlying module. In all cases, one can see that the error curve decreases fast and smoothly,

as predicted by our approximation result Proposition 5.5.

Figure 18: (Le�) Noisy annulus data set colored by log density. (Middle) Multipersistence image in dimensions 0 and 1.

(Right) Error plot showing convergence.

Figure 19: (Le�) Multipersistence image in dimensions 0 (le�), 1 (up right) and 2 (bo�om right). (Right) Error plot
showing convergence for the first time series of the Coffee data set.

Figure 20: (Le�) Multipersistence image in dimensions 0 (le�), 1 (up right) and 2 (bo�om right). (Right) Error plot
showing convergence for the first time series of the Worms data set.
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Figure 21: (Le�) Multipersistence image in dimensions 0 (le�), 1 (up right) and 2 (bo�om right). (Right) Error plot
showing convergence for the first time series of the Wine data set.

Figure 22: (Le�) Multipersistence image in dimensions 0 (le�), 1 (up right) and 2 (bo�om right). (Right) Error plot
showing convergence for the first time series of the Ham data set.

7.3. Performance

In this section, we empirically check the dependencies between running time and numbers of lines, simplices and

dimensions.

7.3.1. Synthetic data with 𝒏 = 2. We first focus on two synthetic data sets: (a) the noisy annulus of Section 7.2, and

(b) a random point cloud in the unit square [0, 1]2 with one filtration being the usual Alpha complex filtration, and the

other being the lower star filtration of a random function on the points. We show the influence of the number of lines

and simplices on the running times for both data sets in Figure 23. As expected, the running time is linear w.r.t. the

number of lines. Furthermore, one can see that the linear coefficient depends on the complexity of the data set, as we can

see that the random filtration on the points of the square yields longer running times than the noisy annulus. As for the

number of simplices, we empirically noted a quadratic dependency with the running times.
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Figure 23: Running times for the noisy annulus (red) and the random point cloud in the unit square (blue). (Top) Running
times with respect to the number of lines of the two datasets; the number of points is here fixed at 1, 000 points. (Bottom
le�) Running times with respect to the number of simplices; the number of lines is here fixed at 1, 000 lines. We also

show the curve in log-log scale in (Bottom right).

7.3.2. Higher dimension. To illustrate the fact that Algorithm 1 can run with more than two filtrations, we now focus

on a synthetic data set. We uniformly sample 300 points in the unit square [0, 1]2, and then compute its Alpha complex.

Finally, we assign to each vertex a random function value in [0, 1]𝑛 , and compute the approximate multipersistence

module (with 𝛿 = 0.7) induced by the lower-star filtration of this random function. We repeated this experiment for

several numbers of dimensions 𝑛, and show the result in Figure 24. As expected, there is an exponential scaling with

respect to the dimension when 𝛿 is fixed.

Figure 24: Running time w.r.t. the number of dimensions. Note that since the precision 𝛿 is fixed, the number of lines

grows exponentially with the number of dimensions.

7.3.3. Comparison with Rivet when 𝒏 = 2. As mentioned in the previous sections, Rivet [LW15] is a tool for

computing minimal presentations of 2-multipersistence modules. We provide performance comparisons between Rivet
and Algorithm 1 in the tables below.

In this first table, we focus on the noisy annulus of Section 7.2, with 80% of the points uniformly sampled on the

annulus, and 20% are outliers in the square; and the same filtrations than in Section 7.2.
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𝑛 #simplices Rivet Rivet, peak RAM Alg. 1, 𝛿 = 0.01 Alg. 1, 𝛿 = 0.001 Alg. 1, peak RAM

100 563 0.02s 9MB 0.004s 0.03s 140MB

1 000 5 943 0.49s 220MB 0.18s 0.69s 150MB

5 000 29 907 22.13s 5.41GB 4.15s 8.6s 180MB

7 000 41 879 59s 10.29GB 8.00s 14.39s 187MB

10 000 59 887 OOM 12.8GB 16s 26s 204MB

20 000 119 831 - - 71s 85s 237MB

One can see that Algorithm 1 significantly outperforms Rivet both in terms of RAM usage and running time.

In our second table, we focus on the first time series from the data set Coffee, and processed it as in Section 7.2. �en,

we used the Vietoris-Rips filtration as the first filtration, and density estimation as the second one.

threshold #simplices Rivet Rivet, peak RAM Alg. 1, 𝛿 = 0.01 Alg. 1, peak RAM

0.1 9 961 0.28s 38MB 0.96s 170MB

0.2 35 620 0.79s 80MB 12s 201MB

0.3 71 230 1.45s 122MB 48s 281MB

0.4 114 144 2.6s 166MB 124s 396MB

0.5 168 513 5.1s 219MB 263s 576MB

One can see that while Rivet works remarkably well on flag complexes such as Vietoris-Rips, Algorithm 1 is still able to

run in a reasonable amount of time.

8. Conclusion

In this article, we presented an algorithm for approximating any 𝑛-multipersistence module, whose complexity, running

time, and approximation error can be controlled by user-defined parameters. We then showcased the performances

of our method on synthetic and real data sets, and provided our code in an open-source package available at https:
//gitlab.inria.fr/dloiseau/multipers.

Several questions remain open for future work. While we proved that our candidate has bounded approximation

error when approximating interval decomposable modules, can we prove that it is optimal (in some way) among the

family of interval decomposable modules when the input is not interval decomposable? What are the properties of this

output in the general case, and can it be used in practice instead of the original (non interval decomposable) module?

Finally, can we use the stability results that are now becoming available for specific multipersistence modules [BL21] to

infer confidence regions and convergence rates for our candidate decompositions?
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