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Abstract

Topological Data Analysis is a growing area of data science, which aims at computing and characterizing the geometry
and topology of data sets, in order to produce useful descriptors for subsequent statistical and machine learning tasks.
Its main computational tool is persistent homology, which amounts to track the topological changes in growing families
of subsets of the data set itself, called filtrations, and encode them in an algebraic object, called persistence module. Even
though algorithms and theoretical properties of modules are now well-known in the single-parameter case, that is, when
there is only one filtration to study, much less is known in the multi-parameter case, where several filtrations are given
at once. Though more complicated, the resulting persistence modules are usually richer and encode more information,
making them better descriptors for data science.

In this article, we present the first approximation scheme, which is based on fibered barcodes and exact matchings,
two constructions that stem from the theory of single-parameter persistence, for computing and decomposing general
multi-parameter persistence modules. Our algorithm has controlled complexity and running time, and works in arbitrary
dimension, i.e., with an arbitrary number of filtrations. Moreover, when restricting to specific classes of multi-parameter
persistence modules, namely the ones that can be decomposed into intervals, we establish theoretical results about the
approximation error between our estimate and the true module in terms of interleaving distance. Finally, we present
empirical evidence validating output quality and speed-up on several data sets.

1. Introduction

Topological Data Analysis (TDA) [Car09, EH10] is an area of data science that has been developing quite fast and that
has gathered the interest of many practitioners in the last few years, due to its success in various applications. At
its core is the use of computational tools from algebraic topology to capture multiscale shape information from data,
that require only mild assumptions about the data (e.g., a metric or similarity measure between points) in order to be
applied. Moreover, a centerpiece of the formal foundations of TDA are mathematical guarantees that ensure the resulting
descriptors are reasonably efficient to compute and robust to perturbations. As such, TDA has been applied success-
fully in a wide range of scientific fields, including bioinformatics, computer graphics, and machine learning, among others.

Persistent homology. The main computational tool of TDA is persistent homology (PH). Whereas homology is a
descriptor of a topological space X, the core idea of PH is to study how the homology groups change when computed
on a specific family of subspaces of X called a filtration of X. A filtration is a family ¥ of subspaces of X indexed over
a partially ordered set I: ¥ = {X; C X},e7, that is nested w.r.t. inclusion, i.e., it satisfies X; C X for any i < j. Then,
the functoriality of homology and these inclusion induces morphisms between the corresponding homology groups
H.(X;) — H.(X;) for each pair i < j, which allows to detect the differences in homology when going from index i to
index j. One of the most common ways to produce such filtrations is to study the sublevel sets of a continuous filter
function f : X — R", defined with ¥ = {x € X : f(x) < u},ern; where the partial order on the poset R” (denoted by
<) is defined, for any a,b € R*, asa < bifand only if a; < b; forany 1 <i < n.

Single-parameter PH. When 7 is totally ordered, e.g., when 7 C R, then applying the homology functor H,(—; k)
for a field k to a (single-parameter) filtration results in a sequence of vector spaces connected by linear transforma-
tions. This sequence is called a single-parameter persistence module and has been studied extensively in the TDA
literature [Car09, CdGO16, EH10, Oud15]. Notably, one can show that such persistence modules can always be decom-
posed into a direct sum of simple summands, which intuitively represent the appearances (birth) and disappearances
(death) of topological structures detected by homology as the index increases. Moreover, single-parameter persistence
modules can be efficiently represented in a compact descriptor called the persistence barcode, and several vectorization
methods, as well as kernels and machine learning classifiers, have been proposed for such barcodes in the litera-
ture [Bub15, AEK*17, RHBK15, CCO17, CCI*20]. As a consequence, most applications of TDA use single-parameter
persistence modules, and often use the sublevel sets of, e.g., the data set scale, as the corresponding single-parameter
filtration.

Multi-parameter PH. However, many data sets come with not just one, but multiple, possibly intertwined, salient
filtrations. For example, image data typically has both a spatial filtration and an intensity filtration. Arbitrary point



cloud data can be filtered both by feature scale and density. Unfortunately, in general, the resulting multi-parameter
persistence modules obtained by applying the homology functor to a filtration indexed over R” [Car09, Les15] are much
less tractable; contrary to the single-parameter case, there is no general decomposition theorem that can break down any
module into a direct sum of simple summands such as, e.g., interval modules.

Contributions. In this article, we build on the heuristic construction of [CB20] based on the fibered barcode [LW15]
and propose the first approximate decomposition of general multi-parameter persistence modules in arbitrary dimension.

1. We introduce a new candidate approximate decomposition, parameterized by an approximation parameter § > 0,
that can be computed for any multi-parameter persistence module with running time

1
o N3+E(N+n~2”‘l) ,

where N is the number of simplices and n is the number of filtrations (Algorithm 1 in Section 3.3),

2. When computed over interval decomposable modules, we prove that the interleaving distance between our con-
struction M and the module M it approximates is upper bounded under mild assumptions (Proposition5.5):

dr(M, M) < dp(M, M) < 6.

Even though our theoretical result only applies to interval decomposable modules, our candidate approximation
M always has the same fibered barcode and rank invariant than the module M it approximates. Moreover,
we hypothesize that our approximate decomposition is also stable for modules that are close to being interval
decomposable, while being more powerful than the rank invariant.

3. We perform numerical experiments that showcase the performance of this approximation and exhibit the trade-off
between computation time and approximation error (Section 7).

Related work. There are several works in the literature that focused on the problem of computing or approximating
multi-parameter persistence modules.

When restricted to filtrations indexed over R?, decomposition theorems have been provided under strong assumptions
about the filter functions [ABE*21, BLO20, BLO22, BL18, CO19, Les15], as well as efficient algorithms for comparing
these decompositions [KLO19, KN20, Vip20a]. Minimal presentations of bimodules of simplicial complexes can also
be computed with Rivet [LW15] in O(N3k + (N + logk)x?) operations, where N is the number of simplices, and
K = Kyky is the product of unique x and y coordinates in the support of the module. Approximation schemes and
methods to produce estimate modules have also been proposed with polynomial complexity, that are based on, e.g,
Mobius inversions [AENY19], or rectangle summands [DX21]. While these running times are comparable to ours, we
substantially generalize these approaches since our approximation can be computed for any number of filtrations.

For general multi-parameter persistence modules in dimension n, i.e., computed from filtrations indexed over R”,
alternative descriptors of the multi-parameter persistence modules (that are complete under specific assumptions) have
been presented [BOO21, CB20, CFK*19, Vip20b], and a decomposition algorithm for modules computed on simplicial
complexes and indexed over a grid has been proposed [DX22]. This algorithm has complexity O(N"(?**) where N
is the number of simplices (which can be typically more than cubic in the number of data points, depending on the
homology dimension) and w < 2.373, and is thus very limited by the size of the input. Hence, computing approximate
decompositions for multi-parameter persistence modules indexed over R” for arbitrary n € N* with controlled complexity,
running time, and approximation error is still an open and important question, which we tackle in this article.

Outline. Section 2 provides a concise review of multi-parameter persistence modules. In Section 3, we present our
approximation scheme for general multi-parameter persistence modules, and in Sections 4 and 5, we study the theoretical
properties of our construction for interval decomposable modules. We also discuss in depth the exact matching parameter
of our construction in Section 6. Finally, we illustrate the performances of our candidate in Section 7.

2. Background

In this section, we recall the basics of multi-parameter persistence modules. This section only contains the necessary
background and notations, and can be skipped if the reader is already familiar with persistence theory. A more complete
treatment of persistence modules can be found in [Oud15, CdGO16, DW22]. A more precise description of multi-parameter
persistence modules computed from filtered simplicial complexes can also be found in Section 6.3.

2.1. Multi-parameter persistence modules

In their most general form, i.e., regardless of whether they are computed from simplicial complexes, topological spaces,
etc, multi-parameter persistence modules are nothing but k-vector spaces indexed by R" and connected by linear
transformations (where k denotes a field).



Definition 2.1 (Multi-parameter persistence module). An n-multi-parameter persistence module (or n-multipersistence
module for short) is a covariant functor M from R” to the category of k-vector spaces, M : x € R" + M,. The linear
transformations {¢y : M, — My} yern x<y are called the transition maps of M. In particular, functoriality imposes the
following property on the transition maps: ¢ = ¢j, o @y forany x <y < z.

A morphism between two n-multipersistence modules M, N with transition maps ¢. and ¢ respectively, is a collection
of linear maps f = {fx : My — Nx}xern, called an n-multipersistence morphism, that commutes with transitions maps,
i.e., one has f; o o) =9 o fp,forallx < y.

Multipersistence modules can be compared with the interleaving distance [Les15], which is one of the most commonly
used distances in TDA, and which is based on the shift functor.

Definition 2.2 (Shift functor). Let v € R". The v-shift functor is the endofunctor (-)(v) that maps an n-multipersistence
module M (resp. an n-multipersistence morphism f) to M(v) (resp. f(v)) defined, for any x € R", as M(v)x = Mysy

(resp. f(v)x = frro).

Definition 2.3 (Interleaving distance). Given ¢ > 0, two n-multipersistence modules M and N are ¢-interleaved if
there exist two morphisms f: M — N(¢) and g: N — M(¢) such that g(&) o f = ¢ *?¢ and f(¢) o g = ¢ *?¢, where
£=(¢...,6) € R" and ¢ and ¢ are the transition maps of M and N respectively.

The interleaving (pseudo)distance between two multipersistence modules M and N is then defined as

di(M,N) =inf {¢ > 0 : M and N are e-interleaved} .

Another usual distance is the bottleneck distance [BL18, Section 2.3]. Intuitively, it relies on decompositions of the
modules into direct sums of summands, and is defined as the interleaving distance between these summands. As such, it
first requires the definition of a matching between summands.

Definition 2.4 (Matching). Given two multisets A and B, y: A / B is called a matching if there exist A” C Aand B’ C B
such that y: A” — B’ is a bijection. In the following, we let im(u) = B’ and coim(u) = A’

Moreover, in order to define meaningful decompositions, summands are required to be indecomposable modules.

Definition 2.5 (Indecomposable module). A multipersistence module M is indecomposable if
M=xA®B=—=M=~AorM=~B
Since decompositions of multipersistence modules are unique [Oud15], the following distance is well-defined.

Definition 2.6 (Bottleneck distance). Let M = (B, .; M; and N = (P jeq Nj be two multipersistence modules decom-

posed into indecomposable summands. Given ¢ > 0, the modules M and N are e-matched if there exists a matching
o: 1 4 g such that

1. for all i € I'\coim(o), M; is e-interleaved with the null module 0,
2. forall j € J\im(0), N; is e-interleaved with the null module 0,
3. for all i € coim(o), M; and Ny(;) are e-interleaved.

The bottleneck distance, denoted by dj, between two multipersistence modules M and N is then defined as
dp(M,N) =inf {¢ > 0 : M and N are e-matched} .

Since a matching between the decompositions of two multipersistence modules induces an interleaving between the
modules themselves, it follows that d; < dj. Note that the bottleneck distance can actually be arbitrarily larger than the
interleaving distance, as showcased in [BL18, Section 9].

2.2. Interval modules

The study of multipersistence modules is easier when restricted to a specific class called the interval modules. For instance,
all of our theoretical results presented in Sections 4 and 5 are stated for modules that can be decomposed into intervals.
Hence, in this section, we define such interval modules. Intuitively, they are modules that are trivial, except on a subset
of R" called an interval.

Definition 2.7 (Interval). A subset I of R” is called an interval if it satisfies:
« (convexity) if p,g € Iand p < r < qthenr €I, and

« (connectivity) if p, g € I, then there exists a finite sequence ry, 7y, ..., 1, € I, for some m € N, such thatp ~ r; ~
rg ~ -+ ~rm ~ ¢, where ~ can be either < or >.



Definition 2.8 (Indicator module, Interval module). An n-multipersistence module M is an n-indicator module if there
exists a set S € R", called the support of M and denoted by supp(M), such that:

kifxeS

0 otherwise

idgspifx<yeS

VxeR",sz{ and Vx,yER",qo,gz{

0 otherwise

where ¢ are the transition maps of M. If S is an interval, M is called an n-interval module.

An important consequence of modules is that whenever two points are in the support of an indicator module, then
the whole rectangle induced by those points must be in the support as well, as stated by the following lemma.

Lemma 2.9. Let I be an n-indicator module. Then one has a,b € supp(I) & Ry, C supp(l), where, given two points
a,b € R", the corresponding rectangle R, is defined as R,p == {x € R" : a < x < b}, andR,p = @ if b < a orifa and b are
not comparable in R".

Proof. Since < is trivial, we only prove =. If x £ y, then Ry, is empty and the result holds. Otherwise, if Ry, is
not empty, let z € Ry, i.e, x < z < y, and let ¢ be the transition maps of I. Since ¢; = ¢ o ¢Z = id, one has
1> dimI; > dimI, = dim], = 1 (see Definition 2.8), which means that z € supp(I). O

Note that one cannot use any set S for defining an indicator module, since transition maps of modules must satisfy
some properties coming from functoriality (see Definition 2.1). However, one can defined a module induced from a set
using the following definition.

Definition 2.10 (Induced module). Given a subset S C R”, the indicator module Ind (S) induced by S is defined as the
indicator module with support {x € R” : Ja,b € S such that a < x < b}.

Finally, interval decomposable modules are then defined as those multipersistence modules that are made of intervals.

Definition 2.11 (Interval decomposable module). An interval decomposable module M is a multipersistence module that
is isomorphic to a direct sum of interval modules.

Note that for rectangle decomposable modules, i.e., interval decomposable modules whose supports are rectangles
in R™, it is possible to control the bottleneck distance more precisely with d, < (2n — 1)d [Bje20, Theorem 4.3]. In the
following, we present a few properties of interval modules that are often very useful for their theoretical analysis.

Definition 2.12 (Discretely presented interval module). An n-interval module I is discretely presented if its support is a
locally finite union of rectangles in R", and whose boundary is an (n — 1)-submanifold of R”. More precisely, there exist
two families of points, the birth and death critical points of I, denoted by Cg(I) and Cp(I) respectively, such that:

[=1Ind U U Ree |. (1)
CGCB(I) C’ECD(I)

A useful property of interval modules is that they can be described with their upper- and lower-boundaries, also called
upsets and downsets [Mil20, Section 1.4].

Definition 2.13 (Upper- and lower-boundaries). Given an interval I, its upper-boundary U[I] and lower-boundary L[I]
are defined as:

LIl ={xel:VYyeR, y<x=yel}, Ulll ={xel:VyeR, y>x=y¢l}
Moreover, the boundary of supp(I) can be decomposed with dsupp(I) = L[I] U U[I]. See Figure 1 for an illustration.

When interval modules are discretely presented, their lower- and upper-boundaries are made of flat parts, which
are the faces of the corresponding rectangles forming the module. Hence, we call facets the subsets of the lower- and
upper-boundaries that are included in some hyperplanes of R".

Definition 2.14 (Facet). A lower (resp. upper) facet of an interval I is an (n — 1)-submanifold of dsupp(I) written as
{x e R" : x; =c} NL[I] (resp. {x € R" : x; = ¢} N U[I]) for some ¢ € R and some dimension i € [[1,n] that is called
the facet codirection. In particular, the upper- and lower-boundaries of a discretely presented interval module is a (locally)
finite union of facets.



2.3. Interval morphisms

For indicator modules, there is only one possible transition map, the identity (up to an invertible scalar). This induces a
canonical way to define morphisms between indicator modules (and thus between interval modules as well).

Deﬁnition 2 15 (Indicator module morphisms). Let I and I be two indicator modules. The collections of linear maps

(p( ) ;an nd qo between I and I are called indicator module morphisms, and defined with

(25) (25‘)
il 28] > I[2¢]

xm “ N 4

P11 ?roi

where £ = (¢,...,¢) € R" and where qo 1s defined, for x € R", by
(‘/’I(i)f)x: I = kor {0} —> Lye = k or {0}

y y if x + £ € supp(I)
0 otherwise

and vice-versa for (p Note that (p and <p( &) deﬁne an e-interleaving between I and I if they commute.

2.4. Fibered barcode

The fibered barcode [LW15] is a centerpiece of our approximation scheme, and is defined, given an n-multipersistence
module M, as a map that takes as input a line (or segment) / in R", and outputs the persistence barcode associated to the
single-parameter persistence module obtained by restricting M along [. Hence, in the following, we formalize and define
intersections between multipersistence modules and lines in R”.

Definition 2.16. Given a line I C R?, we let 1; denote the induced functor 1 : L — R2, where L is the full subcategory of
R? associated to [. The module M|l := M oy is called the restriction of M to .

Remark 2.17. When M = (B),_; M; is decomposable into indicator modules, the support of the restriction of M to [
is a set of segments called bars, and aggregated in a barcode: B(Mll) = supp(M|l) = (supp(Mi|l)) = Note that this
ic

barcode corresponds exactly to the barcode defined in the theory of single-parameter persistence, computed on the
single-parameter filtration induced by I C R2.

Definition 2.18 (Fibered Barcode). Let M = B, ; M; be a pointwise finite-dimensional n-multipersistence module.
The complete fibered barcode of M is defined as the family of barcodes CF B(M) = {B(M|l) : 1 € L}, where £ denotes
the set of diagonal lines in R”", i.e., those lines with direction vector 1 = (1,...,1) € R". Given a (possibly discrete) family
of diagonal lines L C L, we let the L-fibered barcode (or fibered barcode for short when L is clear) be the restriction of the
complete fibered barcode to L, i.e., ¥ B(M)| = {B(M|l) :lelL}.

It is also useful to characterize intersections between modules and lines using the endpoints of lines.

Definition 2.19 (Birthpoint, Deathpoint). Givenapointx € R" and an indicator module I, we call bL={x+8 : 5 eR}N
L[I] (resp. dL. = {x + & : 6 € R} N U[I]) the birthpoint (resp. deathpoint) associated to x and I (see Figure 1 for an
illustration), where & = (6, .. .,8) € R". Since it follows from the definition of L[I] and U[I] that b.. and d.. are singletons,
we slightly abuse notations and use b.. and d. to also refer to the unique element these sets contain. When these sets are
empty, or bL = dL, we say bl and d. are trivial.

Similarly, given a diagonal line I C R” (i.e., a line with direction vector (1,...,1) € R"), we define the birthpoint (resp.
deathpoint) associated to [ and I as b; := bl (resp. dlI :=dL) for any x € [.

Figure 1: Lower- and upper-boundaries of a 2-interval (Definition 2.13); and birthpoints and deathpoints b. and d.
(Definition 2.19) of a point x € R2.



Remark 2.20. The rectangle R, ;, induced by two birthpoints or deathpoints a, b of the same indicator module is always
flat, i.e., at least one of its sides has length zero, as demonstrated by Figure 2.

dy

| do

Figure 2: Two bars [by,d;] and [b,, d2] of some indicator module; if Ry, 5, is not flat then, by Lemma 2.9, b, cannot be a
birthpoint since it would be possible to find a smaller birthpoint w.r.t. the partial order of R” along the diagonal line
passing through b,.

Remark 2.21. Using birthpoints and deathpoints, the L-fibered barcode of an interval decomposable multipersistence
module M = @ie[ M; is written as:

FBM)L ={BM]) : 1€ L} = {([b;", d}" D)ier : 1 € L}. (3)

Note also that bars of the fibered barcode that are associated to lines that are close to each other must have similar
length, as stated in the lemma below, which is very similar to [Lan18, Lemma 2].
Lemma 2.22. Let I be an indicator module, let;, I, C R" be two diagonal lines and let v € R™ be a positive or negative
vector (i.e., the coordinates of v are either all positive or all negative) such thatl, = I; + 0. Assume that the barcodes B(I\ll)

and B(I\lz) are non empty, and let [b!,d' | and [b!,d" ] be the corresponding bars in R". Then, one has

l]’ 11 12’ lZ
<<l

1 1
d - dl

-t <@l and |

where we used the conventions (+o00) — (4+00) = (—00) — (—00) = 0.

I _ gl
b, - b,

Proof. If one of the endpoints is infinite, the result holds trivially, so we now assume that the endpoints of the bars are all
finite. Without loss of generality, assume that I, = [ +70 where 7 is positive. Now, since both dlI2 and dlI1 +77 belong
to I, they are comparable, so one has either aill2 > dII1 +70 or dII2 < dII1 +70. However, the first possibility would lead to
dlI2 > ollI1 +7 > dlI1 , hence dlI1 and dlI2 would be (strictly) comparable in R”, which contradicts Remark 2.20. Thus, one
must have dlI2 < dlI1 +70. Furthermore, and using the exact same arguments, dj, _T+ “_U)”oo -11is on [;, and one must

have dlI2 -7+ ”_Z))Hoo ‘1> dlIl . Finally, by combining the two previous inequalities, one has
d 7|, -1<d +7 -|[7|,-1<d] <df +7 <d +|[7], -1,

which leads to the desired inequality for deathpoints. The proof extends straightforwardly to birthpoints. O

3. General multipersistence module approximation

In this section, we present the first approximation scheme that works for any multipersistence module in arbitrary
dimension, i.e., with arbitrary number of filtrations. In particular, one does not have to assume that the underlying
module is decomposable in order to apply our method. Our candidate approximation works by sampling the underlying
module with an ordered family of diagonal lines, computing the associated fibered barcode, and finally connecting the
endpoints of bars in consecutive barcodes in a specific way. Note however that the theoretical properties that we show
for our approximation in Sections 4 and 5 are valid only when the underlying module is interval decomposable. We
first provide in Section 3.1 a few specific examples of approximation schemes based on fibered barcodes that we present
to gather intuition and motivation for our main construction, that we then present in Section 3.2. The corresponding
pseudo-code and algorithm are given in Section 3.3.



3.1. Motivation

The goal of this section is to frame the general question of reconstructing a multipersistence module from its fibered
barcode. There are many ways of doing so, but the most natural ones are not necessarily the easiest computable ones.

For the sake of simplicity, assume that the underlying module is a single interval module M = I (see Definition 2.8).
Since interval modules are characterized by their supports, the goal is to recover supp(I). Moreover, if I is discretely
presented, one can find an exact sequence of graded modules

R->G—»I1—0,

such that the critical points of supp(I) (see Equation (1)) provide bases for the modules G and R (we recall that, intuitively,
G and R represent the homology generators and relations respectively). Technical details for finding such exact sequences
can be found in, e.g., [DX22, Appendix A], and an example of such a sequence is given in Figure 3. Hence, only the facets
or critical points of supp(I) need to be captured or approximated in order to recover I when it is discretely presented.

Ys "1
Ya 2
I
T4

Y3 0

Ts5
Y2 s
U1 g3 3

Z1 T2 x3 T4

Figure 3: Let I be the interval whose support is colored in grey, and let ¢. denote the transition maps of I. The
graded modules R and G can be constructed as follows: G is defined as the free graded module G := (g1, g2, g3) (Where
the grades of g1, g2 and g; are (x1,y3), (x2,y2) and (xs, y;) respectively, i.e., they are given by their positions in the
figure), and R is defined as the (not necessarily free) graded module R := (ry,...,rs) (where the grades of the r;’s, are

also given by the figure). Since one has r; = gogi’zz;”ys_y”ez (g1), ra = gogj’Z:;J“(y“_y‘)ez (g3), 13 = (pgj’zll;”x“_m)e‘ (g3),

_(x1,y3)+(-x1)e (x2,92)+(ys—1y2)e; _(x2,y2)+(x3-x2)e (x3,y1)+(y2—y1)e; .
ry = (p(xll)ys) Y (g1) - (P(x;yz) 2(g2), and rs = (p<x2)yz) "(g2) — (p(x3,y11) % (gs), it follows that

R — G —» I — 01is an exact sequence.

There are many different ways, for a given n-interval module I, to define candidate critical points, that we call corners,
using the endpoints of its fibered barcode, e.g., by using the minimum and maximum of consecutive endpoint coordinates.
Hence, it is natural to define our candidate approximation I with model selection, i.e., by minimizing some penalty cost
pen: S — Ry, where S is the set of discretely presented interval modules having the same fibered barcode as I, or a
subset thereof. See Figure 4 for examples of sets S and corresponding candidate approximations. This penalty would
forbid, e.g., overly complicated approximations that have a lot of corners. For instance, minimizing the penalty

pen : I — #corners of supp(I). (4)

would provide a sparse approximation of I. Actually, when one assumes that the underlying interval module I is discretely
presented with facets that are large enough with respect to the family of lines L of the fibered barcode (see Proposition
4.4 for precise statements), it is easy to show that I minimizes penalty (4). Indeed, as all the facets are detected by some
endpoints of the fibered barcode, any candidate has at least the same number of facets than I.
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Figure 4: Example of candidates for a 2-interval module I with support in R?. (Left) Given the L-fibered barcode of I,
where L is the family of the four black lines, we want to approximate I with an element of S, i.e., an interval module with
the same fibered barcode. (Middle) When one further constrains the set S by asking to have at most one corner between
two consecutive endpoints of the fibered barcode, the whole set S can be computed explicitly. (Right) The set S can also
be described as the set of intervals which have to go through the blue path, and which can arbitrarily choose between
the red or green path at three different locations. Hence, the cardinality of S is 2.
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\

Remark 3.1. For n-interval modules, S is generally a set of cardinal ¢4, where c is the number of possible corners between
on-1 birthpoints or deathpoints, and d is the number of corners. For instance, in Figure 4, one has n = 2, ¢ = 2 and
d = 3. Unfortunately, ¢ grows exponentially with the dimension n, and d is difficult to control in practice, since it heavily
depends on the number of lines in the fibered barcode and the regularity of the underlying interval module I. Minimizing
a penalty over S is thus practical only for low dimension n and small number of lines in the fibered barcode. Hence, our
general approximation scheme presented in Section 3.3 does not use penalty minimization, but is rather defined with
arbitrary corner choices.

Note also that there are cases when the corner choices are canonical. For instance, any 2-multipersistence module M
with transition maps ¢! that is weakly exact, i.e., that satisfy, for any x < y

im (pY) = im ((p(yyl’xz)) N im (q)é’xhyz)) and ker (¢y) = ker ((p,(cyl’x”) + ker ((p,(cxl’w)) ,

is rectangle decomposable [BLO22]. Hence, a canonical approximation of a summand I of M is given by the interval
module whose support is the rectangle with corners (minl(b{)l, minl(bll)z) and (maxl(b;)l, maxl(bll)z), where [ goes
through the family of lines L of the fibered barcode.

3.2. Line families, corners and exact matchings

In this section, we provide three additional definitions that turn out very useful for describing our approximation scheme
in Section 3.3, as well as for proving associated guarantees for interval decomposable modules in Sections 4 and 5.

We first introduce a few notations: we let (ey, ..., e,) be the canonical basis of R", d, denote the || - || distance in
R" and, givena set A € R" and § > 0, we let A9 denote the d-offset of A, defined as A% = {x e R" : do(x,A) < 6},
and we let conv(A) denote the convex hull of A. Moreover, given a hyperplane H C R” and its two associated vectors
ag, by € R™ which satisfy H = by + {x € R" : (x, ag) = 0}, we call ay the codirection of H (similarly to the codirection
of facets, see Definition 2.14). Finally, when ag is a vector in the canonical basis of R", i.e., there exists i € [[1, n] such
that ay = e;, we slightly abuse notation and also call i the codirection of H.

Our first definition characterize those families of lines that evenly cover compact sets in R".

Definition 3.2 (§-regularly distributed lines filling a compact set). Let L be a set of diagonal lines in R” and K € R” be
a compact set. Then, we say that :

1. two diagonal lines I, I’ € L are §-consecutive (or simply consecutive when ¢ is clear) if there exists u € {0,1}" \ {0, 1}
such that I’ = [ + du.

2. two diagonal lines [, I’ € L are §-comparable if there exists a positive or negative vector € R” with ”—u)”OO <d
such that I’ = [ + %, where % is said to be positive (resp. negative), written as % > 0 (resp. @ < 0), if and only if
(&); = 0 (resp. (@); < 0) foralli € [1,n]. If & is positive (resp. negative), we write I > [ (resp. I’ < I).

3. Lis &-regularly distributed if, for any pair of lines (I, I”) € L, there exists a sequence of 5-consecutive lines {/y, ..., [}
in L suchthat! =1 and [’ = I.

4. for a given line [ in a d-regularly distributed family of lines L, we call L; := L N {I +7T: 7 €{0,1}" 1 x {0}} the
L-surrounding set of I. In particular, one has |L;| < 2" 1.

5. L §-fills K if any point of K is at distance at most §/2 from some line in L. More formally, K is included in the offset
L%/2. When § is clear from the context, we simply say that L fills K.



Remark 3.3. Let L be a set of §-regularly distributed diagonal lines that §-fills some compact set K € R". Then L is
actually distributed over a grid (along the canonical axes of R") on K. More precisely, assume that there isa / € L such
that 0 € I. Now, assume that there exist integers ay, . .., @, € Z such that x = (14, ..., a,0) € K. Then, using items (3)
and (5) of Definition 3.2, there must exist some line [, € L such that x € [,. Hence, to be more concise, we will call such a
set of lines a §-grid of K.

Families of lines that are §-grids of K allow to formally define candidate critical points, or corners, that can be used to
approximate the critical points of the true underlying interval module (see Section 3.1 above). In the following definition,
we introduce points called corners that can be defined solely from the fibered barcode of an interval module I, and that
we will use as proxies for the critical points of I (as per Equation (1)) in our approximation scheme.

Definition 3.4 (Birth and death corners). Given a discretely presented interval I with birth and death corners included
in a compact set K C R”, and a §-grid L of the offset K?®, we say that b is a finite (L-)birth corner (resp. d is a finite
(L-)death corner) if:

1. for each dimension i € [1,n]), there exists an hyperplane H; of codirection i intersecting K, and the family (H;);
satisfies (; H; = b (resp. N; H; = d),

2. there exists a line [, € L such that

(@) b € conv(Ly,) (resp. d € conv(Ly,)), where L;, is the L-surrounding set of [; (see Definition 3.2)
(b) for each line [ € L;, the endpoint b{ (resp. dll ) is non trivial,

(c) for each dimension i € [1,n]], there exists [; € L;, such that b; € H;.

and we say that b is a pseudo (L-)birth corner (resp. d is a pseudo (L-)death corner) if:

1. there exists a set J C [[1,n]), called the codirection of b (resp. d) and denoted with codir(b) (resp. codir(d)), such
that for each dimension j € 7, there exists a hyperplane of codirection j intersecting K such that (; H; 3 b (resp.
N; Hj > d). The set [1,n]]\.J is called the direction of b (resp. d) and is denoted with dir(b) (resp. dir(d)).

2. there exists a line [, € L such that

(a) b e conv(Ly) NK*\K (resp. d € conv(L;) N K*\K),
(b) for each line [ € L;,, the endpoint b{ (resp. dlI ) is non trivial,

(c) for each dimension j € 7, there exists [; € L;, such that blI_ € H;.
J

A pseudo birth (resp. death) corner b is said to be minimal (resp. maximal) if for any other pseudo birth corner b’
(resp. pseudo death corner d’) such that codir(b’) C codir(b) (and thus dir(d”) 2 dir(b)), there exists a dimension i such
that b; < b (resp. d; > d)).

Finally, we say that b (resp. d) is an infinite (L-)birth (resp. death) corner if there exists a minimal (resp. maximal)
pseudo birth (resp. death) corner b’ (resp. d’) such that b; = —oco (resp. d; = +o0) if i € dir(d’) (resp. i € dir(d’)) and
b; = b} (resp. d; = d)) if i € codir(b’).

Finally, in Section 3.1 and Definitions 3.2 and 3.4 above, we have assumed that the true underlying module was a
single interval module. In order to handle more general multipersistence modules, we need a way to be able to distinguish
between the bars of the fibered barcodes of different summands (when the module is decomposable). This is precisely
the role of exact matchings, which we define below. In other words, exact matchings are functions that connect bars
of different barcodes from the fibered barcode in a way that is consistent with the decomposition of the underlying
multipersistence module M.

Definition 3.5 (Exact matching). Let M = B, _; M; be an n-multipersistence module. Let [, be two lines in R"”. A
map m between the corresponding barcodes m: B(M|l) — .‘B(M|l,) U {o} is called a matching between [ and [’ if the
restriction of m to m™! (B(M|l,)) is injective.

Furthermore, if we also assume that M is interval decomposable, i.e., that the M;’s are interval modules, then we
say that the matching m is exact if one has 1;(b) = 1,(m(b)) for any bar b € B(M|l), where 1 : B(M\l) — 1 and
1y : B(M | ) — I are correspondences between the bars of barcodes in the fibered barcode and the interval summands of
M, obtained by Equation (3). In other words, bars that are matched under m correspond to the same underlying interval
summand of M.

There are many ways of defining exact matching functions. For instance, under some assumptions, matchings induced
by the Wasserstein distance between barcodes are exact (see Section 6.1), and we prove that the matching given by the
vineyard algorithm [CSEMO06] is exact in Section 6.3.

We are now equipped for stating our approximation scheme, which constructs a candidate module by computing
corners from the fibered barcode and exact matchings.



3.3. Algorithms for approximating modules

In this section, we provide Algorithm 1, that can approximate any multipersistence module using the fibered barcode of
an appropriate set of lines. Roughly speaking, Algorithm 1 works in three steps:

1. compute the L-fibered barcode of the underlying module,
2. match bars that correspond to the same underlying summand together using an exact matching, and

3. for each summand, use the endpoints of the corresponding bars to build compute corners, using Algorithm 2.

Step 1 can be performed using any persistent homology software (such as, e.g., Gudhi, Ripser, Phat, etc), or with
Rivet [LW15] when n = 2. Our code can be found at https://gitlab.inria.fr/dloiseau/multipers, and is based on the
vineyard update algorithm [CSEM06], which allows to run steps 1 and 2 jointly (see Section 6.3).

Note that while we can guarantee that the output is close to the underlying multipersistence module M only when M
is decomposable into interval summands (see Sections 4 and 5), Algorithm 1 makes no assumption about M at all and can
be applied generally. Note however that since Algorithm 1 always returns a multipersistence module that is interval
decomposable, the output decomposition is obviously wrong if M is not decomposable.

Algorithm 1: APPROXIMATEMODULE

Input 1: Multipersistence module M,

Input 2: Family of lines L which is a §-grid of the offset K% of a compact set K C R”
Input 3: Exact matching m

Output: Interval decomposable multipersistence module M

Compute ¥ B(M)y, i.e., the L-fibered barcode of M;

S « []; # S is the set of interval summands, intialized as the empty set

forl € Ldo

#1If S is empty, populate it with the first barcode, each bar initializing a new summand
if S==[] then
for [bM,dM] € B(M]) do
B {[b}.dM));
S.append(B);
end
end
#If S is not empty, process each bar in the current barcode
else
for [bM,dM] € B(M]) do
# Check whether it is in the image of the exact matching
if 3B € S and [b,d] € B s.t. [b?", d;”] = m([b,d]) then
‘ B.append([b?’[, d;w] ); #1f it is, attach the bar to the corresponding summand
end
# Otherwise initialize a new summand with the bar
else
B {[b},d"));
S.append(B);
end
end
end
end

# For each summand in S characterized by a set of bars, build an approximate interval summand by computing candidate corners
for Be Sdo

| I(B) « APPROXIMATEINTERVAL(B);
end

Return M := (P, I(B);

We now describe the algorithm APPROXIMATEINTERVAL, which is used at the end of Algorithm 1. Our algorithm
APPROXIMATEINTERVAL is defined in two steps:

1. first, we label birthpoints and deathpoints to identify the facets of I (Algorithm 3),

2. then, we use these labels to compute the interval corners (Algorithm 4).
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Once corners are computed, one can use them as approximate critical points and in order to output a discretely
presented interval module with Equation (1).

Algorithm 2: APPROXIMATEINTERVAL

Input: Set of bars B = {[b;,dj] : l € Lg C L}

Output: Discretely presented interval module I parameterized by a list of birth and death corners
labs < LABELENDPOINTS(B);

CL(I),CE(I) « CompUTECORNERS(B, labs);

Return I(B) := Ind (Ucecg(l) UC,E%(U RC,C,);

We first describe LABELENDPOINTS. The core idea of the algorithm is, for a given bar in I, to look at its corresponding
L-surrounding set (see item (4) in Definition 3.2). If there exists a hyperplane H such that all endpoints in this surrounding
set belong to H, we identify H as a facet, and we label the bar with the codirection of H.

Algorithm 3: LABELENDPOINTS

Input: Set of bars B = {[b;,dj] : l € Ly C L}
Output: List labs of labels for each endpoint in B
for!l € Lg do
labs(b;) « [I;
labs(d;) < [l;
end
forl € Lg do
if 3i € [1,n] andc; € R, such that VI’ € L;, (by); = c; then
for !’ € L; do
| labs(by).append(i, c;);
end

end
f 3i € [1,n] andc; € R, such that VI’ € L;, (dy); = c; then
for!” e L; do
| labs(dy).append(i, c;);
end

e

end
end
Return labs;

Note that endpoints can have zero or more than one label. For instance, an endpoint that belongs to the intersection
of several facets might have multiple labels. However, if several labels are identified, they must be associated to different
dimensions. See Figure 5 for examples of label assignments when the underlying interval module has rectangle support.

es /7 _______%,4_ ""f/' _

L/ % ng‘// // Lzs‘// //

Figure 5: Example of birthpoint labelling for an interval module I with rectangle support with three surrounding sets of
lines Ly, L;,, L;, associated to three lines Iy, I, Is. The labels of I3, I, I3 that are identified correspond to the red, blue and
grey colored facets of I respectively.

Remark 3.6. Detecting facets with 2"~ endpoints sharing the same labels is not necessarily optimal. For instance, a
rectangle module can be recovered with only three bars passing through it in R3. However, it does allow for simpler
proofs.

Finally, we describe CoMmPUTECORNERS. The core idea of the algorithm is to use the labels identified by LABELEND-
POINTS to compute candidate corners in the following way: if all birthpoints (resp. deathpoints) in a surrounding set
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have at least one associated facet, i.e., have a non-empty list of labels, then a candidate corner can be defined using
the minimum (resp. maximum) of all birthpoints (resp. deathpoints) coordinates. We only present the pseudo-code for
birthpoints since the code for deathpoints is symmetric and can be obtained by replacing min by max and —oo by +co.

Algorithm 4: ComPUTECORNERS

Input 1: Set of bars B = {[b;,d;] : l € Ly C L}

Input 2: List labs of labels for each endpoint in B

Output: List of birth corners Cp

Cp < [I;

forl e Lg do

BL[ «— {bll VAN LN LB}; # Note that By, C B by construction

# Check whether all birthpoints in the surrounding set belong to the support K of the critical points of the underlying module
if By, C K then

# Compute birth corner if all the birthpoints are labelled

if labs(b) # @,Vb € By, then

{Uscj) : jeT} UhEBLl labs(b); # 9 < |1, n] is the corresponding set of codirections

Define C! € R as
. (Cl)j:cjifjej'

. (Cl)j = min {(bp)j elin LI} otherwise

Cp.append(Ch);
end
# If the birthpoints are not all labeled, we simply keep the birthpoints themselves as corners
else
for!” e L;NnLg do
| Cp.append(by);
end

end

end

# If some birthpoints are not in K, they must correspond to infinite facets

else

Assert By, N K25\K * D

Assert labs(b) # @ for all b € By,;

{(J, Cj) 1 jEeET}) «— UbEBLl labs(b); # The cardinality of the set of codirections J C [[1, n]] must be strictly less than n
Define C! € R" as

. (Cl)jZCjiijj

. (Cl)j = —oo otherwise

Cp.append(Ch);
end

end
Return Cg;

Note that, by construction, the candidate corners computed by ComPUTECORNERS are all finite, pseudo or infinite
L-corners, as defined in Definition 3.4. Now that we have defined how to compute an approximation, in the following
sections, we will now show that the approximate multipersistence module M provided by Algorithm 1 is a good approxi-
mation of the underlying module M when M is interval decomposable.

Complexity. Computing the L-fibered barcode #8(M); on a simplicial complex, as well as assigning the corresponding
bars to their associated summands in the decomposition of M, can be done with the vineyard algorithm and match-
ing [CSEM06] with complexity O(N> + |L| - N - T), where N is the number of simplices in the simplicial complex, and
T is the maximal number of transpositions required to update the single-parameter filtrations corresponding to the
consecutive lines in L. In the worst case scenario, T = N2. Note that T usually decreases as |L| increases, and that this
computation can be easily parallelized (see Section 7).

Now, adding the complexities of Algorithms 3 and 4, the total complexity of Algorithm 1 is

ON*+|L|-N-T+|L|-n-2"1).

Of importance, the dependence on n is much better than the (exact) decomposition algorithm proposed in [DX22] whose
complexity is O(N™2@+1) 1t is also better than Rivet [LW15] (which works only when n = 2), whose complexity is
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O(N?k + (N + logk)k?), where k = kyk, is the product of unique x and y coordinates in the support of the module.
Moreover, our complexity can be controlled by the number of lines, which is user-dependent. Again, we illustrate this
useful property in Section 7.

3.4. Endpoint properties

In this section, we prove a few preliminary results about endpoints of interval modules, that will turn out very useful for
quantifying the error made by Algorithm 1 when approximating the true endpoints of a multipersistence module with
L-corners, as we do in Sections 4 and 5. Roughly speaking, we prove in this section that the location of endpoints is
related to the rectangle hull of other endpoints corresponding to lines in some specific surrounding sets.

Definition 3.7. Let S C R”. The rectangle hull of S, denoted by recthull[S], is defined with
recthull[S] := {x eR":Vie [[l,n]],migl si <x; < megx si} = Ras.vs,
SE SE

where (AS); := minges s; and (VS); := maxses s;.

Lemma 3.8 (Endpoints bound). Let I be an n-interval module. Let § > 0, K be a compact set of R" and L be a 5-grid
of K. Let x € K°, I, be the diagonal line passing through x and d. € U[I] be the associated deathpoint. Finally, let
Lys:={l €L : do(x1) <8 andly,I are 5-comparable}, which is non-empty since L fills K**. Assume that for any line
lin Ly s, one has supp(I) NI # @, and let Di}(s be the set of the associated deathpoints: D;Ic,(s = {dlI : 1 € Lys}. Then, d.

belongs to the rectangle hull ofDJI( s: one has dl e recthull[Di sl
Similarly, if bL. € L[I] is a birthpoint, then bl € recthull[Bi 5] where Bi& is the set of birthpoints associated to L. 5.

In other words, the endpoints of an interval module always belong to the rectangle hull of the endpoints associated
to neighbouring lines. See Figure 6 for an illustration.

d2 d2

d] a dl

’ ’ ’ 7
’ ’ ’ 7
’ ’ ’ ’
’ v v v

Figure 6: Example of deathpoint bound in R3, with d € U[I], and D)I“S = {d1, dz, ds, ds}. (Left) Rectangle hull of the
deathpoints Di s+ (Right) Upper-boundary U[I].

Proof. We first prove the result for deathpoints. Note that the result is trivially satisfied if d. and the deathpoints in D}IC 5
are infinite, so we assume that they are finite in the following. Let j € [ 1, n] be an arbitrary dimension. To alleviate
notations, we let d := dZ. In order to prove the result, we will show that there exist two deathpoints d and d associated to
consecutive lines of Ly,s such that d; < d; < Ej.

Construction of d, d.LetH ;i be the hyperplane H; = d + ejL. Since L fills K?® and x € K?, there exists a diagonal line
I € L such that d(x,I) < /2. Moreover, since [ and I, (the line passing through x and d) are both diagonal, one has
deo(d, 1) = deo(x,1) < §/2. Let m;(d) € I be the projection of d onto [ that achieves dw(d, [), and let &/ := [ N H;. See
Figure 7 for an illustration of these objects.

dJ

7/

Figure 7: Illustration of H;,d, I, d’.
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Since d’ and d belong to H;, they have the same j-th coordinate: dj: = d;. Moreover, both d’ and ;(d) belong
to the diagonal line [, hence they are comparable, and ||d’ — 7;(d)||cc = [(d — 7;(d));| for any i € [1,n]. Then, one
has [|d/ = dlle < |& = m(D]lw + lm(d) = dllw = [(d = m(d));] + [Im(d) = dlleo = [(d = m(d);] + m(d) = dlleo <
2||mi(d) —dleo < 6. A

Letd"=d’ +8Y cq ejandd” =d’ = § ¥ jc 4 ej, where

g’ = {i e [La]\(} : d < d{} and T = {i e [La]\(} : d; > d{}.

By construction, one has d~ < d < d* € H; and [|[d* — d||«, ||[d” — d|le < 6. Since [ and the diagonal lines [ and i passing
through d~ and d* respectively are d-consecutive, and since x € K?, the projections of x onto [ and I are in K%, and
thus [, I must belong to L, s, as by construction I, is §-comparable with the diagonal lines [ and I. Let d := dlI € land

d:= dTI € [ be their deathpoints (which exist by assumption).

Proof of inequalities. We now show that d ;i > d; > d,. We start with the second inequality. Since d* and d are one the
same diagonal line, they are comparable. Furthermore, if one had d* < d by contradiction, then the induced rectangle
Ry 4 would not be flat since d < d* < d, which would contradict Remark 2.20. As a consequence, d* > d. Taking the j-th
coordinate yields d; = d}r > d;. The first inequality holds using the same arguments.

This proof applies straightforwardly to birthpoints by symmetry. O

Using Lemma 2.22, one can generalize Lemma 3.8 above to the case where some lines in L, s have an empty
intersection with supp(I), and then define a common location for all endpoints that belong to the convex hull of the
same L-surrounding set, as we do in the following proposition.

Proposition 3.9. Let I be an n-interval module. Let § > 0, K be a compact set of R" and L be a 6-grid of K. Let ] € L such
that |L;| = 2""1. Then, there exists a set B (resp. D;) such that for any x € conv(L;) N L[I] (resp. conv(L;) N U[I]), one has
either x € By (resp. D;) or ||bL. — dL|| < 8, where B; (resp. D;) is a rectangular set in R" that can be constructed from the
birthpoints (b;,)peLl (resp. deathpoints (dlI/)l'eLl)- Moreover, one has

1 sup{t>0:x+t-1€ B} <5 (resp.sup{t >0:x+t-1€ D} <) and
2. By (resp. Dy) is included in a ball of radius 5: there exists x; such that By (resp. D;) C {y € R" : ||y — x1||, < 5}

Proof. We first construct B; and Dy, and then we will show items (1) and (2).

Definition of Bj, D;. Let first assume that x is in the interior of conv(L;), that we denote with conv(L;)°. Note that
if there is a line j that is §-comparable to I, and such that B(I | lo) = @, then by Lemma 2.22, one immediately has

IbL — dL|| < 8. Hence, we now assume that the barcodes along any line that is §-comparable to I, is not empty, which
means that the hypotheses of Lemma 3.8 are satisfied for x. Now, remark that since L is a grid, if one is able to find a line
I’ in L whose intersections with hyperplanes associated to the canonical axes of R" are d-close to x, then, since x is in
the interior of an L-surrounding set L;, I’ must belong to that surrounding set L; as well. More formally, one has that, for
any linel’ € L,

do(x,'"H)) <6 = 1l'el;, whereH;={yeR":y;=x}.

This ensures that L, s (see Lemma 3.8) is included in L; for any x € conv(L;)°, and thus that we can safely define

Dj = U recthull[Di}(S] and Bj:= U recthull[Bi’(S]-

x€conv(L;)° x€conv(Ly)°

Note that B; and D; depend only on the endpoints of the lines in L; (since Ly s € L; for all x € conv(L;)°), and that
dL € D; and bl € B, for any x € conv(L;)° by Lemma 3.8. Furthermore, if x is in the closure of conv(L;), the previous
statements still hold since D; and By are closed sets. We now show that B; and Dy satisfy items (1) and (2).

Proof of (1). By applying Lemma 3.8 and its proof for dimension j = n to all x € conv(L;), there exist deathpoints
d" and d,, that satisty (dn)n = supycp, dn and (d,)n = infuep, dn and (d,,))n < x < (dy)n for all x € conv(L;). Moreover,
these points are located on the lines [ and [ + }; <, Je;, which are are 6-consecutive. Thus, applying Lemma 2.22 on

this pair of line, we end up with D; having a diagonal smaller than §. The same goes for birthpoints.

Proof of (2). Note first that

D; C {y €R":Vi € [1n], min(d}); < y; < max(d{,)i},
I'el; el
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and that, for any pair of lines l;,l, € L, there is a vector ¥ such that b =1 + 77 with ”—Z))Hoo < §. Thus, one has

U="T+86>0and ”Tf”Oo < 28. Moreover, I, can also be written as I, = I; + u; thus any two lines /; and [, in L; are

28-consecutive. Now, for an arbitrary dimension i € [ 1, n], by applying Lemma 2.22 on the pair of lines /4, l; € L; such
that (a’ll1 )i = minpeg, (dlI,),- and (dlfz),- = maxyey, (dlI,),-, one has that the difference of the i-th coordinates between any two
points in D; is upper bounded by 24. Since this is true for any i, item (2) is true. The same goes for birthpoints. O

Remark 3.10. These bounds are sharp in dimension n > 3:

1. (1) Let & > 0 and I be the interval with support supp(I) = {x € R" : {(x,1) > &}. Let [ be the diagonal line passing
through 0. Then, one has

2

19} 1) 2 n-—2
bfz(—,...,—), bf+5ei=(0,...,5,...,0), o b = ;5,...,;5,—( )

n

o).

n n I+8e1+--+8ep—1

—p!

I
bl+(5e1 [+6e;

In particular, one has ‘ = 6 using the lines [ + de; and I + Je; that both belong to L;.

(e8]

2. (2) Let I be an interval whose support has a facet F of codirection different than n, and let [ be a diagonal line such
that {b{ e Ll} C F. Then the radius of the ball containing B; is exactly 29, as illustrated with the red and blue
facets in Figure 5.

4. Exact reconstruction

In this section, we show that, under some assumptions on the family of lines that are used and on the underlying
multipersistence module M, our approximation M computed by Algorithm 1 cannot be separated from M by both the
interleaving and bottleneck distances (see Proposition 4.4 and Corollary 4.6.1). Roughly speaking, when M is interval
decomposable, we need assumptions that ensure that all the facets of the summands of M can be identified with associated
labels by Algorithm 3. This means that the facets have to be large enough with respect to the spacing between the lines
in order to make sure that lines in surrounding sets can reach the same common facets. In addition to this, one also has
to ensure that taking the minimum (resp. maximum) of birthpoints (resp. deathpoints) in surrounding sets, as prescribed
by Algorithm 4, induces a corner that belongs indeed to the support of the multipersistence module. This means that
the support of the module cannot contain holes of small size, such that a line could go through the hole and avoid the
support, while all surrounding lines would intersect the support, which would lead to a fake corner.

We now characterize those interval modules that satisfy the aforementioned informal assumptions. Given a size
parameter § > 0, these interval modules form a subclass of the family of discretely presented interval modules, that we
call the &-discretely presented interval modules.

Definition 4.1 (5-discretely presented interval module). Let K € R” be a compact rectangle of R", and let I be a
discretely presented interval module. Given § > 0, we say that I is §-discretely presented in K if:

1. (Large facets) for each point x € L[I] (resp. U[I]) there exists, for each facet F containing x, an (n — 1)-hypercube
Q7 of side length 26 such that x € Q% and Q7 C F;

2. (Large holes) if there exists a diagonal line [ such that I N supp(I) = @, then there exists an n-hypercube R of side
length § containing 0 such that for any line I’ in [ + R, one has I’ N supp(I) = @;

3. (Locally small complexity) any co-ball of radius §, i.e., any set Bs(x) := {y € R" : do(x,y) < 8} for some x € R",
intersects at most one facet in L[I] (resp. U[I]) of any fixed codirection;

4. (Compact description) each facet of I has a non-empty intersection with K.

Assumptions 1 and 2 correspond to the assumptions mentioned at the beginning of the section, while Assumptions 3
and 4 ensure that surrounding sets of lines can detect at most one facet associated to a given codirection at a time, and
that critical points of I are all included in a rectangle respectively.

Remark 4.2. One might wonder whether Assumption 2 and Assumption 3 are redundant with Assumption 1. In other
words, one might wonder whether it is actually possible to define an interval module with large facets and small holes,
or with large facets that can share the same codirection and lie close to each other at the same time. Even though this
seems to be impossible when n = 2 (indicating that Assumption 2 and Assumption 3 might indeed be redundant with
Assumption 1), it can definitely happen in dimension n > 3, as Figure 8 shows.
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Figure 8: Example of interval module in dimension n = 3 with large facets, small holes and some facets with the same
codirection close to each other. The support of the module can be constructed by taking the (closed) red and (open) green
L-shaped sets on (Left), and glue them together as shown in (Middle). While arbitrarily large facets can be created using
this construction, the resulting interval always contains a small hole and large facets of same codirection that are close to
each other. Because of this, it is possible to find a (blue) diagonal line that goes through the support without intersecting
it, while lines in its surrounding set will detect some facets. (Right) View of the interval from the top showing the hole
and the spatially close facets (showed in bold font). This is an example where Assumptions 1 and 4 of Definition 4.1 are
satisfied, while Assumptions 2 and 3 are not.

The main advantage of §-grids and §-discretely presented modules is that they ensure that Algorithm 3 can identify
every single facet with a corresponding label.

Lemma 4.3. Let§ > 0 and K be a compact rectangle of R". Let I be a §-discretely presented interval module in K, and let L
be a 5-grid of K?°. Then, there is a bijection between the facets of I and the labels identified by Algorithm 3.

Proof. We first prove the result for birthpoints and facets of L[I].

Let F be a facet of L[I]. Let Ir € L be a diagonal line intersecting F, and br € R”" be the associated birthpoint. By
Definition 4.1, item (1), there exists an (n — 1)-hypercube fo C F of side length 26§ such that br € fo . This ensures that
for any dimension i that is not in the codirection: i € [[1, n]\codir(F), one has either bf + Je; € lef or bp — Je; € Qllff.
Since L is a §-grid of K%, and since QII;F is an (n — 1)-hypercube, there exists a line [, € L such that [r belongs to the
surrounding set L;,, and such that the birthpoints corresponding to the lines in L;, are all in lef . This means that codir(F)
is detected as a label of br by Algorithm 3.

Reciprocally, assume there exists a line [y € L such that all birthpoints associated to the lines in the surrounding set
Ly, share a coordinate along dimension i € [1,n]), so that i is a label detected by Algorithm 3. Then, the set of birthpoints
By, has a minimal element, and thus its convex hull conV(BLlo) isin L[I]. Since conv(BLlo) is an (n — 1)-hypercube of
codirection i, it must be associated to a facet of L[I] of codirection i as well.

The proof extends straightforwardly for deathpoints. O

Now that we have proved that all facets can be detected with §-grids and §-discretely presented modules, we can
state our first main result, which claims that it is possible to exactly recover the underlying module under the same
assumptions.

Proposition 4.4 (Exact recovery). Let§ > 0 and K = R, g be a compact rectangle of R", wherea < . Let I be a §-discretely
presented interval module in K, and let L be a §-grid of K?. Let CE(I) and C5(I) be the L-birth and death corners of I

computed by Algorithm 4, and let I = Ind (UCGC]I;(I) UC,E%(D Rc,cz) be the approximation computed by Algorithm 2. Then,

one has N )
di(LI) = dy(L,I) = 0. ©)

Proof. As interval modules are characterized by their support, it is enough to show that supp(I) = supp(I). In the
following, we thus assume that supp(I) is closed in R".

We first show the inclusion supp(I) C supp(I). More specifically, we have to prove that the (finite, pseudo and
infinite) L-corners computed by Algorithm 4 all belong to supp(I). A key argument that we will use several times comes
from the following lemma, which allows for a local control of the boundary of supp(I) using the hyperplanes associated
to specific L-corners.

Lemma 4.5. Let b be a birthpoint (resp. deathpoint) of I in K°, and Iy € L be the line such that b € conv(Ly,) (this line
exists since L fills K*®). Then, one has the following:

1. for any facet F of L[I] (resp. U[I]) containing b, there exists a line Iy € L;, such that b{F € F (resp. dlIF € F).
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2. for any dimension i, there exists at most one facet of codirection i intersecting the set of birthpoints (resp. deathpoints)
{blI 1l e ng} (resp. {dlI 1l e Llo}.

3. let bilo (resp. diz(,) be the the pseudo or finite L-corner generated by L;,. Then, one has:

conv(L;,) N L[I] NK» ¢ U {x ER":x; = bl’}
i€codir(b’)
(resp. conv(Ly) NU[I] NK» ¢ U {x eR":x; = dl'} ).
iecodir(d’)

Proof. We only show the result for birthpoints since the arguments for deathpoints are the same. Let b € L[I] be a
birthpoint in K°.

Proof of (1). Let F be a facet containing b. According to Definition 4.1, item (1), there exists an (n — 1)-hypercube Q}’i
of side length 26 such that Qlli CFandb e Qllf_. Since L is a grid, there exists a line [ € L with dw(b,[) < § intersecting

Qlli. Now, since b € conv(Ly,), one has dw (I N Hp, L;, N Hp) < §, where Hp is the hyperplane containing F; thus, [ € L;,
(the argument is the same than in the proof of Proposition 3.9, first paragraph).

Proof of (2). By Proposition 3.9, item (2), the birthpoints associated to lines of L;, are all contained in a ball of radius
6. Thus, the unicity of the facets with given codirection comes straightforwardly from Definition 4.1, item (3).

Proof of (3). Note that the birthpoint b is obviously included in the facets of L[I] that contain it, which is a subset of
the facets associated to the birthpoints of the lines in L;,. Now, as Lemma 4.3 ensures that the birthpoints associated to
lines in L;, are correctly labelled, the pseudo or finite L-corner generated by L;, must be on the intersection of the facets
containing b. This ensures that

be U {xeR":x;=b]}.
i€codir(b’)

Since these arguments do not depend on b € conv(Ly, ), the result follows. O

Now that we have Lemma 4.5, we can prove that finite, pseudo and infinite L-corners belong to supp(l). We will
prove the results for birth corners, but the arguments for death corners are exactly the same.

Finite and pseudo corners. Let b be a finite or pseudo L-birth corner, associated to a set of consecutive lines L;
for some line /, € L. By assumption, each birthpoint b{ ,for I € L;, is nontrivial; and thus any birthpoint in conv(L;,) is
nontrivial as well, using Definition 4.1, item (2). Let [ € conv(L;,) be the diagonal line passing through b.

Using Lemma 4.5, one has:

bl € conv(ly) NLINNK? | | ] {xeR":x=b}|nl={b}.
iecodir(b)

Thus b = b; and b € supp(I).

Infinite corners. Let b be an infinite L-birth corner, and let b” be the corresponding minimal pseudo L-birth corner,
associated to a set of consecutive lines L;, for some line [, € L. We will show that, if j is a free coordinate of b’, i.e., if
Jj €dir(d’), then b, < a; (recall that K is the rectangle R, ). The reason we want to prove such inequalities is that they
directly lead to the result. Indeed, if b’ < «; for any j € dir(b’), then b” — t 3’ ;cqir(1) €j belongs to L[I] for any t > 0,
since otherwise the line {b" — t 3. ;cair() €j : t > 0} would have to intersect a facet F C L[I] of codirection j for some
Jj € dir(b’), which would not intersect K, contradicting Definition 4.1, item (4).

Let j € dir(d’) be a free coordinate. By contradiction, assume that b} > aj, and let b’ denote the pseudo L-corner
generated by L;,_s.;. In particular, this means that, for any | € L;, I - de; € L and L;_s,; € L since L fills K% Now, if

for every line [ € Lj, such that [ = I, +70 with @ j =0, one has that blI and bL se, are on the same facets, then one has
J
bL Sei = b; — dej, and the pseudo corner b/ is equal to b’ — de; by construction, as per Algorithm 4. Moreover, one has
J

bl =b - Se ; < b’, contradicting the fact that b’ is minimal. Hence, there is at least one line [ € L;, [ = I, +70 with
K j =0, such that blI and b{_ se, are not on the same facets, in other words, there exists a facet F; of L[I] of codirection
J

Jj that intersects the (half-open) segment [b{ — de;j, b{ ). In order to locate that facet more precisely, we will prove the
following lemma:

Lemma 4.6. Foranyi € [1,n] ands, t € R such that s < &, one has (b{—te-)i < (bl )i

[-se;
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Proof. Without loss of generality, assume s = 0. Since b{ — te; € I — tey, it follows that b{ — te; and b{_ 1, @€ comparable.

1 T c .
I—te;® I—tey contradicting Remark 2.20. If

the points are equal, i.e., b{ —te; = b{_tei, then one has (bf)i > (b{_tei)i. Otherwise, if b{ —te; < b{_tei, then

Moreover, one must have b{ —te; <b otherwise one would have b{ > b; —te; > b

Vk # i, (b_,;, )k > (b))

I-te;

Moreover, since b{ and b{_te_ cannot be comparable as per Remark 2.20 one must have (blI—te-)i < (b{)i.

LetH; = {x ER":x; = cj} be the hyperplane associated to F;. Then, by Lemma 4.6, one has
(b_s,,)i < ¢j < (b))

Since the lings I 'and [ - de; both belong to the surrounding set Llo_(gej, it follows from Lemmas 4.3, and 4.5, item
(3), that codir(b’) 2 codir(b’) U {j}. Moreover, since the facets of L[I] associated to codir(b’) are unique in a d-ball
around b/, as per Definition 4.1, item (3), they all have a unique associated value c; (corresponding to their associated
hyperplanes).

Finally, we will show that b/ < b’. Let i € [[1,n] be an arbitrary dimension.

« If i € codir(d’), then b{ =b].
« Ifi € codir(b/)\codir(d’), then b{ € {ci, minleLlof&j (blI)i} < minyer, (blI)l- = b/, with a strict inequality for i = j.
. Ifi € dir(b/) C dir(b’), then b{ = minleLlo_&j (b{)l— < minleLlo(b{)i =b].

Hence, one always has b{ < b}, and thus b/ < b’, which contradicts the fact that b’ is minimal. Thus, one must have b;. <aj.

We now show that supp(I) C supp(I). Let x € supp(I). We will show that there exists an L-birth corner ¢ such
that ¢ < x. Let H be the family of hyperplanes associated to the facets of L[I]. The corner ¢ will be defined as the limit
of a se f poi (k) inR" i i ith:

quence of points {x') };cn+in R, defined by induction with:

1. x( =inf {x —t-1:¢ > 0} N supp(I). Then, one has the two following possibilities:

. either x() = —c0, and we let ¢ := xV,

« or there exists a maximal subset of hyperplanes H' ¢ H, H' # @, such that x'" € NycgnH =: H;. Let
J?! € [[1,n] be the set of free coordinates in Hj, i.e., those dimensions such that j € J! x® = ej € Hy.

2. x® =inf {xV —t- ¥ ;g1 e;: t > 0} Nsupp(I). Then, one has the two following possibilities:

. either x? is at infinity in Hj, i.e., xj(.z) =-c0if j € J' and x](.z) = xj(.l) otherwise, and we let ¢ := x®.

« or there exists a maximal subset of hyperplanes H? 2 H! such that x? € NyeqpeH =: Hy. Let 52 C [1,n]]
be the set of free coordinates in Hy, i.e., those dimensions such that j € J2 x@ — ej € Hy.

3. For k > 3, x**D = inf {x(k) — b Djegrej it > 0} N supp(I). Then, one has the two following possibilities:

. either x**D is at infinity in Hg, i.e., x}(kﬂ) =

« or there exists a maximal subset of hyperplanes H**' 2 H* such that x**V € Ny cqpun H =: Hiyy. Let T C
[1, n] be the set of free coordinates in H,,, i.e., those dimensions such that j € JkH = xk+D) _ ej € Hiy1.

—oifje J* and x](.kH) = x;k) otherwise, and we let ¢ := x**D

If this sequence stops at step one, i.e., ¢ = x = —co, then every birthpoint of I is at —co, the only birth corner is
¢ = —oo, and one trivially has ¢ < x. Hence, we assume in the following that ¢ is obtained after at least one iteration of
the sequence. Note that this sequence of points has length at most n. Let ¢~ and c be the penultimate and last elements of
the sequence respectively, and let J~ be the set of free coordinates associated to ¢~. By construction, one has:

c<e <o <x@ <x® <y

We now show that ¢ is indeed a birth corner. If ¢ is finite, then it must belong to the intersection of n hyperplanes, and
it is thus a finite birth corner. Hence, we assume now that c is not finite. We will construct a minimal pseudo birth
corner from ¢~, and show that c is its associated infinite birth corner. We will consider two different cases, depending
on whether ¢” is close to K = R, g or not. If ¢ € K?, the filling property of L and the size of the facets of L[I] ensure
that ¢~ is itself a minimal pseudo birth corner, associated to ¢, which is thus an infinite birth corner. If ¢~ ¢ K?, then let

o € R" be a vector that pushes back ¢~ into K S ie., such that, for any dimension i € J~, one has

a; — < (C_ +_U))l' < aj,

and @; = 0if i ¢ J~. Let S be the segment [¢~,c™ + 0 ]. We have the two following cases:
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1. Assume S C L[I]. Then ¢~ + 0 € supp(I) N K?, and there exists a line [ € L such that ¢c™ + o € conv(L;). Let
¢! be the pseudo birth corner associated to L;. Since one has cé. < a; for any dimension j € J, it follows that

J~ C dir(c!). Furthermore, since ¢~ + @ belongs to the same facets than ¢ and ¢, and since ¢™ + @ € conv(L;)

one has codir(c!) 2 codir(c) and dir(c) = J~. Thus, c is an infinite birth corner associated to the minimal pseudo

birth corner c’.

2. Assume S ¢ L[I]. In that case, there must be a facet of codirection j, for some j € J 7, that intersects S. Since
one has ¢; < (c” +_U>)j < a; for any j € J, this means that the facet would not intersect K, which yields to a
contradiction as per Definition 4.1, item (4).

This concludes that supp(I) € supp(I), and the equality between these supports holds. O

Proposition 4.4 extends to the following corollary, whose proof is immediate from the definition of exact matchings
(see Definition 3.5 above).

Corollary 4.6.1. Let M be an interval decomposable multipersistence module, whose interval summands all satisfy the
assumptions of Proposition 4.4. Let M be the multipersistence module computed by Algorithm 1. Then, one has

dr(M, M) = dyp(M, M) = 0.

5. Multipersistence module approximation

In this section, we propose an approximation result, which states that the bottleneck and interleaving distances between
an interval decomposable multipersistence module M and its approximation M computed with Algorithm 1 can be upper
bounded under weaker assumptions than the ones in Proposition 4.4 In order to do this, we first characterize a family of
approximation modules, that we call candidates in Section 5.1, and whose distance to a target module can be controlled.
Then, we show in Section 5.2 that the module approximation computed by Algorithm 1 belongs indeed to this family.

5.1. Candidates and approximation error

In this section, we define a family of "good” candidate multipersistence modules (see Definition 5.1) for approximating
an interval decomposable multipersistence module M, in the sense that d;(M, M) and d; (M, M) are upper bounded for
any module M in this family.

Support assumption. In order to simplify proofs, we assume in this section that supp(M) C K, where K is a compact
set in R”. This assumption is used in practice, for instance in [CB20, CFK*19, Vip20b], where multipersistence modules
are either finite or intersected with a compact set in order to generate descriptors.

Candidates. We first define candidate modules, which are, roughly speaking, modules with the same fibered barcodes
than M on a regular set of lines, paired with a candidate pairing that commutes with the exact matching induced by M.

Definition 5.1 (Candidate). Let K be a compact set of R”, § > 0 and L be a 6-grid of K%, Let M = P, Ii be an interval
decomposable multipersistence module, with L-fibered barcode ¥ B(M); = {B(M|l) i le L}. Let oy be its associated

exact matching. An interval decomposable multipersistence module M = D I; is called an L-candidate of M if:
1. B(M’l) = B(M’l) for any [ € L, i.e., their L-fibered barcodes are the same, and

2. there exists a surjection v: 7 — 7 such that i ¢ coim(v) = dj(I;,0) < 8, and such that, for any two consecutive
lines [, 1’ € L, the following diagram commutes:

BM|) == B(M|,)
\LVI \LVI/
B(M|) — B(M|,)
where v;: Ii|1 € B(M\l) — fv(i) \l € B(M|l). In other words, M and M have the same matched barcodes along L, up

to interval reordering. We call o the candidate interval pairing.

We now claim that multipersistence modules that are L-candidates of a given interval decomposable multipersistence
module M are § close to M, as stated in the following approximation result.

Proposition 5.2 (Approximation result). Let K be a compact set of R", 5 > 0 and L be a 6-grid osz‘S; Let M be an interval
decomposable multipersistence module. Then, any L-candidate M of M|, satisfies di(M, M|K) <dy(M, M|K) <4.
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Proof. Let M = EB:’ <7 liand M= @i oF fi be the interval decompositions of M and M, and o be the associated candidate
interval pairing. Without loss of generality, assume that the support of M is included in K, i.e, M = M \ K In order to
upper bound the bottleneck distance dj,(M, M), one can upper bound the interleaving distance d;(I;, fv(i)) for any index
i € I. Let I and I be two such intervals (we drop the index i to alleviate notations). Since I and I are interval modules,
and thus indicator modules, the morphisms (pl(ij: I — I[8] and (p;izlz I — I[ 8] are well-defined, as per Definition 2.15).
We thus need to show that these morphisms commute, i.e., that they induce a §-interleaving. Hence, we first show that

1 1 S
(qo,fj])m ° (qol(jj)x = (%(2 ))x, (6)
for any x € R™.

Let x € K. If x € [ for some line [ € L, Equation (6) is satisfied from supp(I) N1 = supp(I) N I, which itself comes from
the fact that M is an L-candidate of M. Hence, we assume in the following that x ¢ U;¢1[. Furthermore, if x ¢ supp(I) or
x + 28 ¢ supp(I), then Equation (6) is trivially satisfied. Hence, we also assume x, x + 28 € supp(I) € K. This means that

bfc and d,IC are well-defined, and that <¢;25)) = jdg_k. Thus we only have to show that Lis=kie,x+8¢ supp(I~ ).
X

As Lis a d-grid, let [ € L be a line such that x € conv(L;) and let I, C conv(L;) be the diagonal line passing through
x. Now, as Ry x+s C supp(I), Lemma 2.22 ensures that B(I|l) # @ for any line | € L that is §-comparable to L; and the
same holds for I since #B(I); = F B(I);. Using Proposition 3.9 on both I and I, there exist two sets B; and D; such that
d,l(, d,i( € D; and bl bl e By, with the segments I, N B; and I, N D; having length at most §. Since one also has

X UXx

bL<x<x+28 <dl,

dl - df; bl — bi < 6, one finally has bl <x+8< di, which concludes that x + & € supp([).

(o)

and

s
(e8]

Remark 5.3. This bound is sharp up to a % factor, as illustrated by Figure 9.

\V][e%}

Il I2

Figure 9: Two interval modules, one with support colored in red (Left) and the other in blue (Right). These modules
have the same barcodes (green bars) along two §-consecutive lines; and dy, (11, I) = dr(I1, Iz) = §/2. This construction can
easily be generalized in R" with n > 2 by setting I; as the union of two hypercubes of side length §/2 located on the
anti-diagonal, and I, as the standard hypercube with side length &.

5.2. Algorithm 1 provides a candidate

In this section, we first show, given an interval module I (with support included in a compact K), that the approximation
I computed by Algorithm 2 is an L-candidate of I (see Proposition 5.4). This will in turn allow us to state our final
approximation bound with Algorithm 1, that is valid for any interval decomposable multipersistence module M (see
Proposition 5.5).

Proposition 5.4. Let I be an interval module with support in a compact set K € R", § > 0, and L be a 5-grid of K. Let1
be the interval module computed with Algorithm 2. Then, I is an L-candidate of 1.

Proof. Let Cé (I) and Cé (I) be the birth and death corners computed by Algorithm 4, i.e., one has

i=Ind U U Ree |, (7)
ceCE(I) ¢’ €CE(I)
In order to show that I is an L-candidate of I, we need to show that the L-fibered barcodes of I and I are the same, i.e.,

FB(I) = FB(I);. Equivalently, we need to show that supp(I) NI = supp(f) N [ for any line [ € L. We first show that
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they share the same birthpoints, i.e., that L[I] N L = L[I] N L. Let! € L. Note that blI and blj are comparable since they
belong to the same diagonal line .

Strategy. In order to show b{ = b{ , we are going to show that 1. b < b{ and 2. bli < b{ .

1. In order to show b; < bli , we are going to show that ¢ ¢ b{ for any corner ¢ € CIL3 (I). Indeed, if one assumes b{ > b{ ,

and since there always exists a birth corner ¢ € Cé (I) such that ¢ < b{ by construction of I, one has ¢ < b{ < b{ .

2. In order to show b{ < b{ , we are going to show that there exists a corner c € C]IE;(I ) such that ¢ < b{ . Indeed, if
there is such a birth corner, and if blI > blI by contradiction, then ¢ < b{ < b{ , and Rc bl is not flat, contradicting
7l
Remark 2.20.

Proof of (2). By construction of I with Algorithm 4, if b{ is labelled, then there exists a line I’ and a corner ¢ € Cng(I )
that is smaller than b{ so we can take ¢ := ¢/ If b{ is not labelled, it belongs itself to Cf; (I), and we can take ¢ := blI .

Proof of (1). Letc € Cé(] ) be a birth corner, and let L;, be the associated surrounding set of lines for some [, € L. Let
[c]; == min [(c + (R4)"™) N 1] be the smallest element in the intersection between the positive cone on ¢ and [. Assume
[e]; = blI and ¢ < b{ . Then R, |¢), is not flat, contradicting the fact that [c]; is the smallest element. Thus, we only have to
show [c]; > b{. There are two cases.

« Either some birthpoints of L;, are not labelled by Algorithm 3, and c is equal to b{, for some I’ € L;,. Now, assume
[c]: < b{ by contradiction. Then b, = ¢ < [c]; < b{ . Thus bf, < b; and Rb;]b{ is not flat, contradicting Remark 2.20.

1
1
Hence [c]; > b;.

+ Or all the birthpoints of L;, are labelled by Algorithm 3. Again, we study two separate cases. See Figure 10 for an
illustration.

- Either [ € L;,. Then, 3i € [1, n] such that (blI)i = ¢;. This yields (bll)i =¢; < ([c]1)i, and thus [c]; > blI since
they both belong to the same diagonal line /.

— Or the line [ does not belong to L;,. Since [c]; is on the boundary of the positive cone based on c, there exists
i € [1,n] such that ([c];); = ¢;. Assume again by contradiction that b{ > [c];, and write

[cli=c+ Z((Saj)ej =c+0 < blI
j#i
with @; > 0 for j € [1,n]\{i}. Since ! ¢ L, there exists some j, such that aj, > 1. Let ¥ :=
((_v)j mod d) jef1,n)) = (([c]r — ¢)jmodd)jern) € [0,6)" < 7. Letl’ = I.,= be the diagonal line pass-
ing through ¢ + . Now, recall that the lines of L are drawn on a grid (see Remark 3.3), so I’ € L since
I’ =1+ - 7. Moreover, one has by definition, ¢ € conv(Ly,). Since the lines of L are on a grid, one has

Vi, Iy € L, ||l; N Hp, conv(Ly) N Hy)lloo < § = Iy € L, where H, = {x e R" : x, = ¢} .
Now, note that c+ @ and c + 4 —_u>n - 1 both belong to I’, and that ¢ +7 —_u>n -1 € H,. Moreover, since

e+ @ =1 =], = [~ 1], <

one has I’ € L;,. Thus, there exists i’ € [ 1, n] such that (b{,),-/ =c¢y < (c+ )y and thus blI, < (c+ W) since
b{, and ¢ + & are comparable on the diagonal line I’. Finally, b{, <c+U <c+T < blI ,and Ry B! is not flat,

b
contradicting Remark 2.20. Hence, b{ < [c];.
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Figure 10: Hllustration of I, I, ¢, [c], [¢c]r, .70, bl, bl when one assumes that [c]; < b{.

SV Y

The proof applies straightforwardly to deathpoints by symmetry. O

Proposition 5.5 (Conclusion). Let M = (P, ; I; be an interval decomposable multipersistence module. Let K be a compact
rectangle in R", § > 0, and let L be a 5-grid of K?°. Let M = D..; I; be the multipersistence module computed with
Algorithm 1. Note that7 C T by construction. Then,

1. ifa summandI; of M is 25-discretely presented, then d;(I;, I;) = 0.
2. ifa summand I; of M has a support included in K, then d;(I;, I;) < &.

3. ifasummand1l; of M is 6-trivial (i.e., d;(I;, 0) < &), then either supp(l;) N L # @ and thusi € 1 and1; is also 5-trivial,
orsupp(l;) N L = @ and M has no summand matched to I;.

In particular, if K C R" contains the supports of those summands of M whose support is precompact, and if the remaining
summands are all 6-discretely presented in K, then one has dj(M, M) < d,(M, M) < 4.

Proof. Item (1) comes from Proposition 4.4. Item (2) is a direct consequence of Propositions 5.2 and 5.4. Item (3) comes
from the construction of I;. |

6. Exact matching

The algorithms and theoretical results presented in the previous sections were all obtained using exact matchings (see
Definition 3.5). In this section, we seek to understand conditions under which a given matching function is exact. We first
present assumptions that allow for finding exact matching functions in Section 6.1). Then, we discuss these assumptions
in Section 6.2, and we finally show that the vineyard matching [CSEMO06] is exact in Section 6.3.

6.1. A naive approach to exact matching
In order to understand which matching functions are exact, we first define a notion of compatibility between bars.

Definition 6.1 (Compatible bars). Let I be an interval module, and let /1, [, € R" be two §-consecutive diagonal lines.

Assume supp(]) # @ and supp(l) # @, and let [b{l, dlI1 ] and [b{z, dlI2 ] be the corresponding bars. These bars are compatible

if the rectangles Rb{ bl > Rb{ bl > Rdlz dl and RdlI al are flat. Moreover, we say that [b!, d! | is compatible with the empty
177l 2> N 177l 27

L%
I _ gl
bll d

set in I, if l

< 26.

Remark 6.2. Tt follows from Lemma 2.9 that bars along consecutive lines that correspond to the same indicator summand
of a multipersistence module are always compatible.

Compatible bars enjoy some useful properties, that we state in the following proposition.
Lemma 6.3. Letl; and I, be two 8-consecutive lines, and let [by,d;] == B(I|ll) be the bar of an indicator module along ;.

Let [by, d2] be a bar along I, that is compatible with [by, d1]. Then, dy (resp. by) is included in a segment of size § in I, that is
independent of d, (resp. bs).

Proof. Applying Lemma 2.22, one has
d, € C:= [B5(d1) ﬂlz]\[{zeR":z > dl}U{Z eR":z< d]}]

Since C is a nonempty, totally ordered set, we can define y := minC. By construction, we know that there exists a
dimension i such that y; > (d;);, and thus C must be included in the segment [y, y + J - 1] along L.
The proof applies straightforwardly to b, by symmetry. O
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Since bars that are matched under an exact matching function are always compatible, one way to construct an exact
matching between two barcodes is therefore to isolate, among all possible matching functions, the ones such that matched
bars are compatible. If this family contains a single element, it must be the exact matching we are looking for. This
typically happens for interval decomposable multipersistence module whose summands are sufficiently separared, as we
show in the proposition below.

Proposition 6.4. Let M = (P, _; I be an interval decomposable multipersistence module. Let § > 0, and I, 1’ be two interval
summands in the decomposition of M. Assume that the two following properties are satisfied:

1. Letl c R" be a diagonal line such that supp(I) N1 # @ and supp(I’) N1 # @. Then, one has either”blI - b{”m > 6 or
”dlI - dlI’”oo > 4. In other words, the endpoints of the bar in B(I|1) and of the bar in B(I’|l) are at distance at least §.

2. The bars of length at most 28 inI and I’ are at distance at least 8, i.e., if we let ST := {l :INsupp(l) # @, ”b{ - dlI”oo < 25}

(and similarly forI'), one has
doo (ST, 8T) > §/2.

In other words, a small bar in I cannot be too close to a small bar inI’.

Let K C R" be a compact set and L be a 5-grid of K. Then, the matching function meomp, induced by matching bars that
are compatible together, is well-defined and exact.

See Figure 11 for an illustration of assumptions (1) and (2).

V4

Figure 11: (Left) Example of module whose interval summands do not satisfy assumption (2). (Right) Example of
module whose interval summands do satisfy assumptions (1) and (2). Bars corresponding to consecutive lines can only be
matched if they are compatible, which, in this figure, means that they have the same color, i.e., that they are associated to
the same interval summand.

Proof. Let I and I’ be two interval summands in the decomposition of M. Let /; and I, be two §-consecutive lines of L,
and let b := B(I | ll) be the bar corresponding to I along I;. We will show that mcom, must match b to either b’ := B(I \ lz)
if supp(I) N I # @, or the empty set if supp(I) NIz = @.

o If supp(I) NI = @, then by Lemma 2.22, the length of b is at most J, i.e.,

o} -
L I
with the empty set. Now, since do (I, ;) = §/2 and since [; € S!, assumption (2) ensures that the bar b” := B(I'ilz)

(if it exists) must be of length at least 28. In particular, it is not compatible with b, hence mcqmp cannot match b to
b”, and must match b to the empty set.

< 4. It is thus compatible

o If supp(I) NI, # @, then the bar b’ = [b{ , dlI] in B(I|lz) is compatible with b, as per Remark 6.2. According to

2

Lemma 6.3, it follows that the birthpoint and deathpoint of any bar along [, that is compatible to /; must belong

to segments sp, s4 of length § that contain b{ and dlI respectively. Let b" := [b{;, dIIZI] be the bar in B(I’|lz) (if it

exists). According to assumption (1), we either have “b{z - blI2 > § or | dlI; - dlIZ' || > §. In particular this means
(e8]

that either b{z ¢ sp or dlIZ' ¢ sq. Hence b” is not compatible with b, and mcomp must match b to b’

In both cases, Mcomp is well-defined and exact. m]

Note that, since the number of lines of L, and thus their spacing J, is controlled by the user in Algorithm 1, one can
ensure that the assumptions of Proposition 6.4 are satisfied by asking L to have a sufficient number of lines in Algorithm 1
(which obviously increases the complexity as well, unfortunately). Note also that bars matched under the vineyard
matching [CSEMO06] are always compatible (see Section 6.3), which ensures that the vineyard matching is exact when L
contains a sufficient number of lines.
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6.2. Limitations

One might wonder whether the usual distances between barcodes, such as the bottleneck or Wasserstein distances, could
be used to define exact matching functions, instead of having to look for matching functions that only match bars that
are compatible. Indeed, a major advantage of, e.g., Wasserstein distances, is that their associated matching functions is
usually unique. However, when the spacing 6 between two lines is too large, Wasserstein distances can still fail to match
bars exactly, if assumptions (1) or (2) are not satisfied, as shown in Figure 12.

Figure 12: Example interval decomposable multipersistence module with two interval summands (green and purple), and
its barcodes along two lines (here the two couples of red-blue bars). Any matching function induced by, e.g., Wasserstein
distances between the barcodes, will match the red bar with the red bar and the blue bar with the blue bar; however, this
matching is not exact.

Moreover, even when the spacing § is small, it is easy to build examples where assumptions (1) and (2) are not
satisfied. The toy example in Figure 13 shows that finding exact matching functions from bar compatibility alone can
lead to poor results in general.

Figure 13: The interval decomposable multipersistence modules on the (Left) and on the (Right) both have a yellow and
a brown summand, and have the same fibered barcodes. Since bars corresponding to lines in the middle have multiplicity
2, matching functions identified using bar compatibility can match them arbitrarily.

Furthermore, even a single mistake in the matching between consecutive barcodes can lead to arbitrary different
decompositions, as illustrated in Figure 14.

7

7 %

Figure 14: The modules on the (Left) and on the (Right) are both decomposable into two interval summands (yellow and
brown). These modules, which are at a large bottleneck distance from each other, can be obtained from a single matching
exchange in the middle of the small square.

One way to handle these issues is to use the representative chains associated to the bars of the fibered barcode in order
to find a matching. Indeed, given two bars in consecutive barcodes, one can compare representatives of their generator
chains in order to check if they correspond to the same underlying interval summand, by assessing whether one chain
can be obtained from the other through the addition of another positive chain that appeared earlier than the current
chain (in its corresponding filtration). Note that computing barcodes and matching their bars through representative
chains in two separate steps is not efficient: for simplicial complexes, the cost of computing the barcode on a given
line is O(N?®) (where N is the number of simplices), and checking if two generator chains are associated to the same
summand takes O(N?) operations (which is the cost of applying Gaussian elimination on a column of the boundary
matrix). Fortunately, the so-called vineyard algorithm [CSEMO06] can perform both operations at the same time, i.e., it can

24



reduce the boundary matrices of different lines, and retrieve matching functions between the barcodes of consecutive
lines as a byproduct. We detail these statements in the next section.

6.3. Vineyard matching

In this section, we prove that the matching induced by the vineyard algorithm [CSEMO06] is an exact matching for
multipersistence modules computed from simplicial complexes (although this seems to be common knowledge, we could
not find a proof of this result in the literature). We first recall the basic notions of persistent homology from simplicial
complexes in Section 6.3.1, and then provide an analysis of the vineyard algorithm in Section 6.3.2.

6.3.1. Persistent homology of simplicial complexes. We assume in the following that the reader is familiar with
simplicial complexes, boundary operators and homology groups, and we refer the interested reader to [Mun84, Chapter
1] for a thorough treatment of these notions. The first important definition is filtered simplicial chain complexes.

Definition 6.5. Let S be a simplicial complex, and f: S — R be a filtration function, i.e., f satisfies f(o) < f(r) when
o C 7. Then, the filtered simplicial chain complex (S, f) is defined as (S, f) = ((Ct)ser, 1), where

o C; = {0y, ...,0;) is the vector space over a field k whose basis elements are the simplices that have filtration values
smaller than t, i.e., {0y,...,0:} ={oc € S: f(0) < t}, and

. forany s < t, the map : = i‘: Cs <> C; is the canonical injection.

Note that f can be used to define an order on the simplices of S = {al-}fio, by using the ordering induced by the
filtration values. In other words, we assume in the following that f(oy) < f(o1) < -+ < f(on). We also slightly abuse
notations and define C; := {ay, ..., 0;) for any i € [0, N] and

(s,f):(CO&CI&»...‘&JCN=<5>). ®)

Then, applying the homology functor H, on this filtered simplicial chain complex yields the following one-dimensional
persistence module
H.(S,f) =0 — H.(Cy) = H.(C;) = --- = H.(Cn).

An important theorem of (one-dimensional) persistent homology states that, up to a change of basis, it is possible to
pair some chains together in order to define the so-called one-dimensional persistence barcode associated to the filtered
simplicial chain complex.

Theorem 6.6 (Persistence pairing, [dMV11, Theorem 2.6]). Given a filtered simplicial chain complex (S, f) = C; —
Cy; = -+ = Cy and associated persistence module H,. (S, f), there exists a partition [ 1, N = E LU BU D, a bijective map
Low : D — B, and a new basis 61, .. .,6n of C, called reduced basis, such that:

* Ci=<61,...,6,‘>,
e 06, =0 foranye € E,

+ foranyd € D, one has 9614w (a)y = 0, and 964 is equal to 61w (q) Up to simplification, i.e., there exists a set of indices
bd(d) such that (i) j < Low(d) < d for any j € bd(d), and (ii) 364 = GLow(d) + 2 jebd(d) Oj-

In particular, the chains {6; : j € EN[1,i]|}U{6; : j € BN[1,i] and 3d > i s.t. Low(d) = j} form a basis of the simplicial
homology groups H.(C;). Moreover, the chains {6; : j € BU E} are called generator chains while the chains {G; : j € D}
are called relation chains.

The multiset of bars B := {[f (o), f(04)] : b =Low(d)} U {[f(0e),+0) : e € E} is called the persistence barcode of
the filtered simplicial chain complex (S, f) and of the single-parameter persistence module H.(S, f).

Note that while the reduced basis {67, . . ., 68 } does not need to be unique, the pairing map Low is actually independent
of that reduced basis (see [EH10, VIL.1, Pairing Lemmal).

6.3.2. Vineyard algorithm and matching. The vineyard algorithm is a method that allows to find reduced chain
bases for filtered simplicial complexes whose simplex orderings only differ by a single transposition of consecutive
simplices, that we denote by (i i+ 1).

Proposition 6.7 ((CSEMO06]). LetS = {o1,...,0on} be a (filtered) simplicial complex (with filtration function f), and let
B ={6y,...,6N} be a corresponding reduced chain basis. Let f : S — R be a filtration function that swaps the simplices at
positions i and i + 1, i.e., that induces a new filtered simplicial complex§ = {0y, o5 0741, 04y - on}. Note that the swapped
basis swis (B) :={61,...,6i+1,6i, ..., 6N } might not be a reduced basis for (§, f), since the pairing map Low might not be
well-defined anymore. Fortunately, there exists a change of basis, called vineyard update, that turns swf (B) into a reduced
basis B of(g, f) in O(N) time, and that comes with a bijective map vine : B — B, called vineyard matching.
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Note that the vineyard matching can be straightforwardly extended to filtration functions whose induced ordering
differs by a whole permutation from the one of the initial filtration function by simply decomposing the permutation
into elementary transpositions (using, e.g., Coxeter decompositions). However, one might wonder whether the resulting
vineyard matching depends on the decomposition of the permutation or not. While the vineyard matching seems to be
independent from the decomposition that we used in our experiments, we leave this question as a conjecture for future
work.

Conjecture 6.8. Let 7 € Sy be a simplex permutation of a (filtered) simplicial complexS = {c71, ..., on}. Then, the vineyard
matching between the reduced bases of S and S = {0.(1), ..., 0-(n)} does not depend on any sequence J = {iy, ..., ix} such

that T = [1%_, (i 1; + 1).

6.3.3. Application to multipersistence. When the simplices of S are (partially) ordered from a function f : S — R",
ie., onehas f(r) < f(o) for any r C o (where < is the partial order of R"), then the function f is called a multi-parameter
filtration function of S. In that case, applying the homology functor also leads to simplicial homology groups {H;(C;) }ier,
where I C [1, N]" is the (partial) ordering associated to f, and these groups are connected by morphisms as long as
their indices are comparable in R”. These groups and maps are called the multi-parameter persistent homology associated
to the multi-filtered simplicial chain complex (S, f). Similarly to the single-parameter case, when k is a field, one can
define the multi-parameter persistence module associated to (S, f) as the family of vector spaces indexed over R” defined
with the identifications M := Hy(C) where C = Vect{oc € S: f(0) <s € R"}.

We will now show that using Conjecture 6.8, one can prove that the vineyard algorithm yields an exact matching in
the sense of Definition 3.5.

Proposition 6.9. Let M be an interval decomposable multipersistence module computed from a finite multi-filtered simplicial
chain complex (S, f) over R", with support included in a compact set K of R". Let § > 0 and L be a §-grid of K. Assume
that, for any two lines I, 1’ € L, there exists a sequencel =1y,...,I; =" such that the simplex orderings induced by I; and l;1,
differ by at most one transposition of two consecutive simplices, for anyi € [ 1,k — 1]|. Then, the vineyard matching is exact.

Proof. Let I,1’ be two diagonal lines in R”, and let F := f|l :S —> Rand F’ := f|l, — R. Up to a reordering of the
simplices of S = {0y, ...,0n}, we assume without loss of generality that F(o;) < --- < F(on). Let GIS\, C Gy be the

subset of permutations that satisfies 7 € G5 = CT)
N kkef1N]

N = (Nzk) (k) eSIX[LN]> where N; . = H.(C}) be the multipersistence module indexed over Sy, X [1, N, with arrows

= (102(1)> - - -» Or(k is a filtration of S. Finally, let
({or © D ke y

induced by inclusion. Note that the one-dimensional persistence module Nig := (Nig x)xe[1,N] is isomorphic to M | I

Now, let 7 be the simplex permutation that matches the simplex ordering induced by F to the one induced by F’. By
definition, one has 7 € 615\1' Let i be the index of the first transposition in the Coxeter decomposition of 7. Then, the
matching vine associated to the transposition (i i+ 1) induces a matching between the bars of B(M | ;) and B(M | ), or
equivalently, between the bars of 8(Njq) and B(N(;11)), as well as a morphism between Njg and N(; 41y Let us now
consider the diamond:

/ N(iiﬂ),i
oo — Nidi-1 = Ngir1),i-1 Nidi+1 = Ngir,imn —> -+ ©)
Nig,i

First, note that all maps in that diamond are either injective of corank 1 or surjective of nullity 1 (since they are all
induced by adding a positive or negative chain of the corresponding reduced bases). Moreover, by the Mayer-Vietoris
theorem, the following sequence is exact:

; ii iy (Byy—x i
Nidi-1 = N(iir1),i-1 = H.(CY) — N(ii+1),i ® Nig; = H. (C,~(”+1)) ® H (CY) ——— H.(C4)) = Nidjs1 = Nj i) i1

Such diamonds are called transposition diamonds, and it has been shown in [MO15, Theorem 2.4] that the morphism
induced by vine between the lower and upper parts of the diamond matches bars with same representative positive
chains together. Hence, bars in 8(Njq) and B(N(; ;1)) that are matched under vine are associated to the same summand
of N. Moreover, by repeating this argumentation with the other transpositions in the decomposition of 7, one has that
the same is true for bars in B(Mll) and B(M|l,).

Now, if N is interval decomposable, then, since the transition maps of M can be seen as transition maps of N, it follows
that interval summands of M correspond to interval summands of N. In that case, using a dimensionality argument
with Theorem 6.6, one can show that two bars of B(M | ;) and B(M | ;) that are matched under vine through arrows of N
also belong to the same interval summand of M. Unfortunately, even though N and M are constructed from the same
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chain complex, N contains much more arrows that M, and we cannot guarantee in the general case that N is interval
decomposable.

We will thus conclude with Conjecture 6.8. By assumption, there exists a sequence of diagonal lines between [ and I
such that the simplex orderings of two consecutive lines differ by at most a single transposition. The vineyard matching
vine associated to these transpositions induce morphisms of M that can be seen as morphisms of N, thus ensuring that it
is exact on both M and N between [ and I’. Hence, by Conjecture 6.8, the vineyard matching is unique and exact.

O

Remark 6.10. Note that the assumption of Proposition 6.9 is always satisfied when § becomes smaller than the smallest
distance (in filtration function values) between critical points of the module.

7. Experiments

In this section, we showcase the performances of Algorithm 1 on various data sets. More precisely, we evaluate the
running times and approximation errors of our approximation scheme on both synthetic and real data sets, and we
measure the empirical dependencies on the number of simplices, on the number of lines that are used, and on the
dimension n. We also compare our approach to Rivet when n = 2. All experiments were done on a laptop with AMD
Ryzen 4800 CPU. Our code is publicly available at https://gitlab.inria.fr/dloiseau/multipers, and is implemented in
C+, with Python interface.

7.1. Simple examples

In this section, we first provide examples of multipersistence module approximation when the underlying multipersistence
module is manually crafted and known. In Figures 15 and 16, we provide two examples of pairs of distinct interval
decomposable multipersistence modules that have the same pointwise Betti numbers and rank invariants. In both
examples, our approximation scheme manages to recover the correct decompositions. In Figure 17, we provide a
multipersistence module that is not interval decomposable, and our (fake) candidate decomposition.

0.00 T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Figure 15: (Top) Two distincts interval decomposable modules having the same rank invariant. (Bottom) Output of
Algorithm 1; each color corresponds to a different summand.
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Figure 16: (Top) Two distincts interval decomposable modules having the same rank invariant. (Bottom) Output of
Algorithm 1; each color corresponds to a different summand.
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Figure 17: (Top left) Filtered simplicial chain complex that leads to the (Top right) indecomposable multipersistence
module. (Bottom) Output of Algorithm 1; each color corresponds to a different summand. The decomposition is not real,
although our output still preserves the rank invariant.

7.2. Convergence

In this section, we check the empirical convergence of Algorithm 1 on real data sets. We look at a noisy circle with 1,000
points (60% of those are on the annulus, and the remaining 40% are outliers in the square) in Figure 18, as well as three
time series from the UCR archive [Che15] that were embedded in R® using time delay embedding in Figures 19, 20 and 21.
Our approximation was computed with n = 2 filtrations, the Alpha complex filtration and a log-density estimation. Since
we do not know the underlying multipersistence module, we use the Euclidean norm between (a) the multipersistence
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image [CB20] of our approximation and (b) a limit multipersistence image computed on our approximation with a
limit precision (i.e., distance between consecutive lines) of § = 10™* as a proxy to measure the distance between our
approximation and the true underlying module. In all cases, one can see that the error curve decreases fast and smoothly,
as predicted by our approximation result Proposition 5.5.
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Figure 18: (Left) Noisy annulus data set colored by log density. (Middle) Multipersistence image in dimensions 0 and 1.
(Right) Error plot showing convergence.

fl 040 - -
035 ® Dimension 0
00 30 ® Dimension 1
- Dimension 2
015 —— Confidence interval, dimension 0
010 5 20 —— Confidence interval, dimension 1
o s Confidence interval, dimension 2
2
F=]
e §
L_ e 8109 .
3 A
o o i %
0s e
00 25 50 15 10 125 150
04
0
03
02
o1
0 T r T T
10° 107! 1072 1073
Precision

Figure 19: (Left) Multipersistence image in dimensions 0 (left), 1 (up right) and 2 (bottom right). (Right) Error plot
showing convergence for the first time series of the Coffee data set.
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Figure 20: (Left) Multipersistence image in dimensions 0 (left), 1 (up right) and 2 (bottom right). (Right) Error plot
showing convergence for the first time series of the Worms data set.
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Figure 21: (Left) Multipersistence image in dimensions 0 (left), 1 (up right) and 2 (bottom right). (Right) Error plot
showing convergence for the first time series of the Wine data set.
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Figure 22: (Left) Multipersistence image in dimensions 0 (left), 1 (up right) and 2 (bottom right). (Right) Error plot
showing convergence for the first time series of the Ham data set.

7.3. Performance

In this section, we empirically check the dependencies between running time and numbers of lines, simplices and
dimensions.

7.3.1. Synthetic data with n = 2. We first focus on two synthetic data sets: (a) the noisy annulus of Section 7.2, and
(b) a random point cloud in the unit square [0, 1]? with one filtration being the usual Alpha complex filtration, and the
other being the lower star filtration of a random function on the points. We show the influence of the number of lines
and simplices on the running times for both data sets in Figure 23. As expected, the running time is linear w.r.t. the
number of lines. Furthermore, one can see that the linear coefficient depends on the complexity of the data set, as we can
see that the random filtration on the points of the square yields longer running times than the noisy annulus. As for the
number of simplices, we empirically noted a quadratic dependency with the running times.
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Figure 23: Running times for the noisy annulus (red) and the random point cloud in the unit square (blue). (Top) Running
times with respect to the number of lines of the two datasets; the number of points is here fixed at 1, 000 points. (Bottom

left) Running times with respect to the number of simplices; the number of lines is here fixed at 1, 000 lines. We also
show the curve in log-log scale in (Bottom right).

7.3.2. Higher dimension. To illustrate the fact that Algorithm 1 can run with more than two filtrations, we now focus
on a synthetic data set. We uniformly sample 300 points in the unit square [0, 1]2, and then compute its Alpha complex.
Finally, we assign to each vertex a random function value in [0, 1]”, and compute the approximate multipersistence
module (with § = 0.7) induced by the lower-star filtration of this random function. We repeated this experiment for
several numbers of dimensions n, and show the result in Figure 24. As expected, there is an exponential scaling with
respect to the dimension when § is fixed.
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Figure 24: Running time w.r.t. the number of dimensions. Note that since the precision ¢ is fixed, the number of lines
grows exponentially with the number of dimensions.

7.3.3. Comparison with Rivet when n = 2. As mentioned in the previous sections, Rivet [LW15] is a tool for
computing minimal presentations of 2-multipersistence modules. We provide performance comparisons between Rivet
and Algorithm 1 in the tables below.

In this first table, we focus on the noisy annulus of Section 7.2, with 80% of the points uniformly sampled on the
annulus, and 20% are outliers in the square; and the same filtrations than in Section 7.2.
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n #simplices | Rivet Rivet, peak RAM | Alg. 1,5 =0.01 Alg. 1,6 =0.001 Alg. 1, peak RAM
100 563 0.02s 9MB 0.004s 0.03s 140MB
1000 5943 0.49s 220MB 0.18s 0.69s 150MB
5000 29 907 22.13s 5.41GB 4.15s 8.6s 180MB
7 000 41 879 59s 10.29GB 8.00s 14.39s 187MB
10 000 59 887 OOM 12.8GB 16s 26s 204MB
20 000 119 831 - - 71s 85s 237MB

One can see that Algorithm 1 significantly outperforms Rivet both in terms of RAM usage and running time.

In our second table, we focus on the first time series from the data set Coffee, and processed it as in Section 7.2. Then,
we used the Vietoris-Rips filtration as the first filtration, and density estimation as the second one.

threshold #simplices | Rivet Rivet, peak RAM | Alg. 1,5 =0.01 Alg. 1, peak RAM
0.1 9961 0.28s 38MB 0.96s 170MB
0.2 35620 0.79s 80MB 12s 201MB
0.3 71 230 1.45s 122MB 48s 281MB
0.4 114 144 2.6s 166MB 124s 396MB
0.5 168 513 5.1s 219MB 263s 576MB

One can see that while Rivet works remarkably well on flag complexes such as Vietoris-Rips, Algorithm 1 is still able to
run in a reasonable amount of time.

8. Conclusion

In this article, we presented an algorithm for approximating any n-multipersistence module, whose complexity, running
time, and approximation error can be controlled by user-defined parameters. We then showcased the performances
of our method on synthetic and real data sets, and provided our code in an open-source package available at https:
//gitlab.inria.fr/dloiseau/multipers.

Several questions remain open for future work. While we proved that our candidate has bounded approximation
error when approximating interval decomposable modules, can we prove that it is optimal (in some way) among the
family of interval decomposable modules when the input is not interval decomposable? What are the properties of this
output in the general case, and can it be used in practice instead of the original (non interval decomposable) module?
Finally, can we use the stability results that are now becoming available for specific multipersistence modules [BL21] to
infer confidence regions and convergence rates for our candidate decompositions?
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