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a b s t r a c t

We provide evidence of the existence of KAM quasi-periodic attractors for a dissipa-
tive model in Celestial Mechanics. We compute the attractors extremely close to the
breakdown threshold.

We consider the spin–orbit problem describing the motion of a triaxial satellite
around a central planet under the simplifying assumption that the center of mass of the
satellite moves on a Keplerian orbit, the spin-axis is perpendicular to the orbit plane
and coincides with the shortest physical axis. We also assume that the satellite is non-
rigid; as a consequence, the problem is affected by a dissipative tidal torque that can be
modeled as a time-dependent friction, which depends linearly upon the velocity.

Our goal is to fix a frequency and compute the embedding of a smooth attractor with
this frequency. This task requires to adjust a drift parameter.

We have shown in Calleja et al. (2020) that it is numerically efficient to study
Poincaré maps; the resulting spin–orbit map is conformally symplectic, namely it trans-
forms the symplectic form into a multiple of itself. In Calleja et al. (2020), we have
developed an extremely efficient (quadratically convergent, low storage requirements
and low operation count per step) algorithm to construct quasi-periodic solutions and
we have implemented it in extended precision. Furthermore, in Calleja et al. (2020) we
have provided an ‘‘a-posteriori’’ KAM theorem that shows that if we have an embedding
and a drift parameter that satisfy the invariance equation up to an error which is small
enough with respect to some explicit condition numbers, then there is a true solution of
the invariance equation. This a-posteriori result is based on a Nash–Moser hard implicit
function theorem, since the Newton method incurs losses of derivatives.

The goal of this paper is to provide numerical calculations of the condition numbers
and verify that, when they are applied to the numerical solutions, they will lead to the
existence of the torus for values of the parameters extremely close to the parameters
of breakdown. Computing reliably close to the breakdown allows to discover several
interesting phenomena, which we will report in Calleja et al. (2020).
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The numerical calculations of the condition numbers presented here are not com-
pletely rigorous, since we do not use interval arithmetic to estimate the round off error
and we do not estimate rigorously the truncation error, but we implement the usual
standards in numerical analysis (using extended precision, checking that the results
are not affected by the level of precision, truncation, etc.). Hence, we do not claim
a computer-assisted proof, but the verification is more convincing than a standard
numerics. We hope that our work could stimulate a computer-assisted proof.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Kolmogorov–Arnold–Moser (hereafter KAM) theory [1–3] concerns the existence of quasi-periodic motions in non-
integrable dynamical systems. In its original formulation, it was applied to nearly-integrable Hamiltonian systems.

An important recent development is the a-posteriori KAM theory (see [4,5]) that does not require that the system is
close to integrable, but rather that there is an approximate solution of an invariance equation that satisfies some non-
degeneracy conditions. Given an a-posteriori KAM theorem, one does not need to justify the way that the approximate
solution is constructed (it could be done by formal expansions or just by numerical tries), but one must provide rigorous
estimates on the error of the invariance equation and the condition numbers involved in the theorem statement.

The KAM theory has been extended to general systems (see, e.g., [6]). This theory fixes the frequency of the quasi-
periodic orbit searched, but adjusting parameters in the system. This general KAM theory is even more effective if the
system preserves some geometric structures [7–9]. From the mathematical point of view, the number of parameters to
adjust may be reduced (e.g., in the Hamiltonian case, there are no parameters to be adjusted). Numerically, one can
use identities coming from the geometry to develop fast algorithms that also require small storage space and enjoy
good stability properties. For the purposes of our paper, the most relevant development is [10], which established an
a-posteriori KAM theorem and presented efficient numerical algorithms for conformally symplectic systems (that is, systems
that transform the symplectic form into a multiple of itself). Conformally symplectic systems appear in a variety of
applications, including Euler–Lagrange equations of exponentially discounted Lagrangians, thermostats, etc.

The goal of this paper is to study the applicability of a-posteriori KAM theory for a specific model of Celestial Mechanics
known as the spin–orbit problem with tidal torque. This model describes the rotational motion of a non-rigid triaxial
ellipsoid orbiting around a point-mass planet. We assume that the planet moves in a Keplerian orbit, the rotation axis is
perpendicular to the orbital plane and aligned with the shortest physical axis of the satellite. Furthermore, we assume that
the system experiences a tidal force proportional to the velocity, which makes it into a conformally symplectic system.
This model has been studied in [11–13].

Efficient numerical methods to find quasi-periodic orbits in the spin–orbit model were implemented in [14]. Taking
advantage of the extreme efficiency of the methods, modern programming tools and the power of modern hardware, the
calculations of [14] were run in high precision and produced the parameterization of quasi-periodic orbits and adjusted
parameters that solve the invariance equations with very high accuracy, even very close to the breakdown1.

The goal of this paper is to study the application of the a-posteriori theorem in [10] to the calculations in [14]. We
take the calculations in [14], and evaluate numerically the condition numbers required in [10]. Similar results for an
explicitly given mapping appear in [15]. In the present problem, the map considered is not given by an explicit formula,
but is obtained by integrating an ordinary differential equation. This requires new analysis and numerical studies of the
variational equations.

The results presented here come short of a full computer-assisted proof, since the evaluation of the error and the
condition numbers are not completely rigorous. We do not take into account round-off or truncation errors.

We certainly hope that the present effort could serve as inspiration for others to close the gap and provide a true
computer-assisted proof and, needless to say, we would be happy to provide detailed data and encouragement. Even
if not the final word on existence, we think that the work presented goes beyond the regular standards of numerical
computations and is a significant progress in the area of the computations of tori, even close to the breakdown. We think
that it is rather remarkable that the algorithms inspired by the theory are also the most efficient ones.

Computing close to the breakdown and being able to trust the computation is not just an affectation, but uncovers
new phenomena that present a challenge to mathematics.

1 As a matter of fact, there is no alternative numerical method that can compute as close to the breakdown, so that the estimates of this paper
are the best estimates for the threshold, since the solutions we can compute have all the signs of being very deteriorated.

2



R. Calleja, A. Celletti, J. Gimeno et al. Communications in Nonlinear Science and Numerical Simulation 106 (2022) 106099

We note that, even if the computation is doable, but delicate for values of the perturbation close to the threshold, it
remains extremely reliable and easy for many values of astronomical interest, so that KAM theory and their algorithms
become a relevant tool to astronomers, overcoming the concerns – relevant at the time they were written – of [16].

This paper is organized as follows. The equation of motion describing the dissipative spin–orbit problem is shortly
recalled in Section 2. We study the Poincaré map associated to such a model in Section 3; in this way we obtain a spin–
orbit map, which is conformally symplectic, and we compute the corresponding conformally symplectic factor, which is
the term by which the symplectic form gets multiplied, when the map is applied to the symplectic form. Then, we use
the KAM theorem for conformally symplectic maps formulated in [15] (see Section 4). Contrary to the implementation
to the standard map, the application of the theorem to the spin–orbit problem is more complex and it requires a careful
computation of some constants as described in Section 5. This procedure leads to the final results that we present in
Section 6 for two different frequencies: the golden ratio and a second frequency between one and the golden ratio.

2. The spin–orbit problem with tidal torque

For the sake of motivation, in this section we present the physical basis of the model considered. Even if this motivates
the questions asked, it is logically independent of the analysis.

Consider the motion of a non-rigid satellite S that we assume to have a triaxial shape and principal moments of inertia
A < B < C. We assume that the barycenter of the satellite S moves on an elliptic Keplerian orbit with semimajor axis a,
eccentricity e, and with the planet P in one focus. The satellite rotates around the smallest physical axis, in such a way
that the spin-axis is perpendicular to the orbit plane (see, e.g., [17–21]).

We normalize the units of measure of time so that the orbital period Torb is equal to 2π , which implies that the mean
motion is n = 2π/Torb = 1; we introduce the perturbative parameter ε, which measures the equatorial ellipticity of the
satellite:

ε :=
3

2

B − A

C
. (1)

We denote by x the angle between the largest physical axis of the triaxial satellite and the periapsis line. The equation of
motion of the spin–orbit problem, using the formulation in [22,23] for the tidal torque, is given by

d2x(t)

dt2
+ ε

(
a

r(t)

)3

sin
(
2x(t)− 2f (t)

)
= −η

(
a

r(t)

)6(
dx(t)

dt
−

df (t)

dt

)
, (2)

where r(t) = r(t; e) and f (t) = f (t; e) are the orbital radius and the true anomaly of the Keplerian ellipse, and η > 0 is
the dissipative constant depending on the physical features of the satellite. Denoting by u the eccentric anomaly, then

r = a(1− e cos u) , tan

(
f

2

)
=
√

1+ e

1− e
tan

(
u

2

)
.

For η = 0 the model becomes conservative and takes a nearly-integrable form with ε being the perturbing parameter. We
also introduce the spin–orbit problem with tidal torque averaged over one orbital period (see, e.g., [14,23]) as given by
the equation

d2x(t)

dt2
+ ε

( a

r(t)

)3
sin
(
2x(t)− 2f (t)

)
= −ηL̄(e)

(
dx(t)

dt
−

N̄(e)

L̄(e)

)
, (3)

where

L̄(e) :=
1

(1− e2)9/2

(
1+ 3e2 +

3

8
e4
)
,

N̄(e) :=
1

(1− e2)6

(
1+

15

2
e2 +

45

8
e4 +

5

16
e6
)
.

3. The conformally symplectic spin–orbit map

Following [14], we introduce a discrete system, which is obtained by computing the Poincaré map Pe associated to (2).
Precisely, setting y = ẋ, we can write the map as

Pe(x0, y0; ε) :=
(
x(2π; x0, y0, ε)
y(2π; x0, y0, ε)

)
, (4)

where x(2π; x0, y0, ε) and y(2π; x0, y0, ε) denote the solution of (2) at time t = 2π with initial conditions (x0, y0) at
t = 0. Writing Pe in components, say Pe ≡ (P (1)

e , P
(2)
e ), the spin–orbit Poincaré map becomes:

x̄ = P (1)
e (x, y; ε) ,

ȳ = P (2)
e (x, y; ε) .

(5)
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For numerical reasons, it is better to consider the change of coordinates

Ψe := 2π

(
1 0
0 1− e

)
(6)

and define the map Ge := Ψe ◦ Pe ◦ Ψ−1e which can be computed accurately by numerical integrators such as [24,25].
The map (5), equivalently Ge, inherits several properties of the continuous system (2). In particular, the map is

conformally symplectic, which means that it transforms the symplectic form into a multiple of itself, according to the
following definition.

Definition 3.1. Let M = T
n × U with U ⊆ R

n an open and simply connected domain with smooth boundary. We
endow M with a symplectic form Ω . A diffeomorphism f :M→M is conformally symplectic, if there exists a function
λ :M→ R such that

f ∗Ω = λΩ , (7)

where f ∗ denotes the pull–back of f .

We will call λ the conformal factor. For λ = 1 we have a symplectic diffeomorphism. In the following, we will consider
the family Pe :M→M, defined in (4), of diffeomorphisms depending on a parameter e ∈ [0, 1) to which we refer as the
drift parameter. In this case (7) is replaced by

P∗eΩ = λΩ . (8)

The definition of conformally symplectic continuous systems is given as follows.

Definition 3.2. A vector field X is a conformally symplectic flow if, denoting by LX the Lie derivative, there exists a
function λ :R2n → R such that

LXΩ = λΩ . (9)

If Φt denotes the flow at time t , then (9) implies that

(Φt )
∗Ω = exp(λt)Ω .

The dissipative spin–orbit model (2) is an example of a conformally symplectic vector field. An important result for our
purposes is that the Poincaré map associated to a conformally symplectic vector field is a conformally symplectic map.
As a consequence, the spin–orbit Poincaré map defined in (5) is conformally symplectic with the conformally symplectic
factor given by

λ(x, y) = σ | detDPe(x, y; ε)|, σ = ±1 , (10)

where σ denotes the orientation of Pe.
As shown in [14], the conformal factor is given explicitly in terms of the orbital eccentricity and the dissipative

parameter:

λ = exp

(
−ηπ

3e4 + 24e2 + 8

4
(
1− e2

)9/2
)
. (11)

When η > 0 we have a contractive system, if η < 0 we have an expansive system and if η = 0 we have a symplectic
system. In the following we will just consider the contractive case with η > 0.

4. KAM theorem and invariant attractors

The statement of the KAM theorem that we will apply to the spin–orbit problem requires a set of preliminary notations
and notions. We start to give, in Section 4.1, the definition of the norms and some results on Cauchy estimates on the
derivatives. In Section 4.2 we give the definition of Diophantine frequency and we present some results on the solution
of the cohomology equation. The definition of KAM attractor and the invariance equation to be satisfied is given in
Section 4.3. Finally, the statement of the KAM theorem, borrowed from [15], is given in Section 4.4.

4.1. Norms and Cauchy estimates

The norm of a vector v =
(
v1
v2

)
∈ R

2 is defined as

‖v‖ := |v1| + |v2| .
The norm of a matrix A =

(
a11 a12
a21 a22

)
∈ R

2 × R
2 is defined as

‖A‖ := max
{
|a11| + |a21|, |a12| + |a22|

}
.
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Next, we consider the norm of functions and vector functions. To this end, for ρ > 0 we introduce the complex extensions
of a torus T, a set B and the manifold M = T× B as

Tρ := {x+ iy ∈ C/Z : x ∈ T , |y| ≤ ρ} , (12)

Bρ := {x+ iy ∈ C : x ∈ B , |y| ≤ ρ} ,
Mρ := Tρ × Bρ .

By Aρ we denote the set of functions analytic in the interior of Tρ and extending continuously to the boundary of Tρ .
This set is endowed with the norm

‖f ‖ρ := sup
z∈Tρ
|f (z)| . (13)

Similarly, for a vector valued function f = (f1, f2, . . . , fn), n ≥ 1, we define the norm ‖f ‖ρ := supz∈Tρ
(|f1(z)| + · · · + |fn(z)|) that we bound as

‖f ‖ρ ≤ ‖f1‖ρ + ‖f2‖ρ + · · · + ‖fn‖ρ . (14)

If F denotes an n1 × n2 matrix valued function, then we define its norm for columns as ‖F‖ρ := supz∈Tρ |F (z)| that we
bound as

‖F‖ρ ≤ max

{
n1∑

i=1
sup
z∈Tρ
|Fi1(z)|, . . . ,

n1∑

i=1
sup
z∈Tρ
|Fin2 (z)|

}
. (15)

The following classical lemma gives a bound on the derivatives on smaller domains than the initial function (see,
e.g., [15] for its proof).

Lemma 4.1. Given a function h ∈ Aρ , its first derivative can be bounded as

‖Dh‖ρ−δ ≤ δ−1 ‖h‖ρ , (16)

where 0 < δ < ρ .

4.2. Diophantine frequency and the cohomology equation

One of the main assumptions in KAM theory is that the frequency satisfies a Diophantine assumption that, in view of
the application of KAM theory to the spin–orbit map (5), we introduce as follows.

Definition 4.2. Let ω ∈ R and let τ ≥ 1, ν > 0. The number ω is said Diophantine of class τ and constant ν, ω ∈ D(ν, τ ),
if for all q ∈ Z and k ∈ Z\{0}, it satisfies the following inequality

|ω k− q| ≥ ν|k|−τ . (17)

Another important ingredient at the basis of the proof of the KAM theorem is the solution of a cohomology equation
of the form

ϕ(θ + ω)− λϕ(θ ) = ϑ(θ ) , (18)

where θ ∈ T and ϑ is a Lebesgue measurable function.
The following lemmas yield the existence of a solution of (18) given by a Lebesgue measurable function ϕ. The first

result, Lemma 4.3, is valid when |λ| 6= 1 and ω ∈ R. It gives an estimate on the solution which depends on λ and indeed
explodes as |λ| tends to 1. The second result, Lemma 4.4, is valid for any λ and Diophantine frequency ω. It provides a
uniform estimate of the solution. We refer to [10,15] for the proofs of Lemmas 4.3 and 4.4.

In [10], one can find also estimates that are uniform for λ ∈ [A−1, A] for A > 1 and, hence allow to study the (singular)
limit of zero dissipation. These estimates are very similar to the estimates in Lemma 4.4 (they use the Diophantine
condition and they entail a loss of domain).

Lemma 4.3. Let |λ| 6= 1 and ω ∈ R. Given any Lebesgue measurable function ϑ , there exists a Lebesgue measurable function
ϕ which satisfies (18) and which is bounded by

‖ϕ‖ρ ≤
∣∣ |λ| − 1

∣∣−1‖ϑ‖ρ .
The derivatives of ϕ with respect to λ are bounded by

‖Dj
λϕ‖ρ ≤

j!
∣∣ |λ| − 1

∣∣j+1 ‖ϑ‖ρ , j ≥ 1 .

5
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Lemma 4.4. Assume that λ ∈ [A0, A
−1
0 ] for some 0 < A0 < 1 in (18) and let ω ∈ D(ν, τ ). Let ϑ ∈ Aρ , ρ > 0, be a function

such that∫

T

ϑ(θ ) dθ = 0 .

Then, there exists one, and only one, solution of (18) with zero average:
∫

T

ϕ(θ ) dθ = 0 .

Moreover, if ϕ ∈ Aρ−δ for 0 < δ < ρ , then we have

‖ϕ‖ρ−δ ≤ C0 ν
−1 δ−τ‖ϑ‖ρ , (19)

where

C0 =
1

(2π )τ
π

2τ (1+ λ)

√
Γ (2τ + 1)

3
(20)

and Γ denotes the gamma function.

We remark that [26] provides a better estimate for the constant C0 in the symplectic case. Its expression is more
complicated than (20). However, for our parameter values, it seems that the estimate (20) suffices to reach the final
result of getting analytic estimates close to the break-down.

4.3. KAM attractor and the invariance equation

In this Section, we introduce the definition of a KAM attractor with Diophantine frequency ω for a family fe of
conformally symplectic maps. We call e the drift parameter, since we recognize that the drift is related to the eccentricity,
although the drift might in principle coincide with a different parameter. This will require to satisfy the invariance Eq. (21)
below, which will be the centerpiece of the KAM theorem of Section 4.4.

Definition 4.5. Let fe :M → M be a family of conformally symplectic maps. A KAM attractor with frequency ω is an
invariant torus which is described by an embedding K : T → M and a drift parameter e, which satisfy the following
invariance equation for θ ∈ T:

fe ◦ K (θ ) = K (θ + ω) . (21)

We remark that solving Eq. (21) will require to determine both K and e.
Denoting by Tω the shift by ω such that for a function K , we have (K ◦Tω)(θ ) = K (θ+ω), then the invariance equation

(21) can be written as

fe ◦ K = K ◦ Tω .

4.4. The KAM theorem

The KAM statement provided in [15] applies to two-dimensional maps and, although it has been applied to the
dissipative standard map, the formulation of the KAM theorem was given for a general system. Therefore, we can apply
the main theorem stated in [15] to the Poincaré map of the spin–orbit problem (2).

The KAM theorem in [15] gives explicit conditions that ensure that, given an approximate solution, there is a true
solution. This requires the computation of several constants that we list in Appendix A to make the paper self contained.
If the map was given by an explicit formula (as it was the case in [15]) some of the constants can be obtained using
calculus. In our case, since the map is obtained integrating an ODE, we obtain the estimates integrating the equation in a
complex domain.

Having fixed a Diophantine frequency ω and after computing the value of the conformal factor λ, we look for an
embedding K and a drift parameter e which satisfy the invariance equation (21). The solution can be obtained under a
non-degeneracy condition (see H3 in Theorem 4.6).

In the spin–orbit problem, the description of the computation of the solution is given in Section 4.6, while the
verification of the KAM conditions is provided in Section 6.

Let us assume that we start with an approximate solution (K0, e0) which satisfies the invariance Eq. (21) up to an error
term E0, that is,

E0(θ ) = fe0 ◦ K0(θ )− K0(θ + ω) . (22)

6
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Before stating the main theorem, we need to introduce the following auxiliary quantities:

N0(θ ) := (DK0(θ )
⊤DK0(θ ))

−1 ,

M0(θ ) := [DK0(θ ) | J−1 ◦ K0(θ ) DK0(θ )N0(θ )] ,

S0(θ ) := ((DK0N0) ◦ Tω)⊤(θ )Dfe0 ◦ K0(θ )J
−1 ◦ K0(θ )DK0(θ )N0(θ ) ,

(23)

where the superscript ⊤ denotes transposition and the matrix J is the matrix representation of the symplectic form,

Ωz(u, v) = 〈u, J(z)v〉,

with z ∈M. For the applications we have in mind, J is constant and it is defined as

J =
(

0 1
−1 0

)
. (24)

Theorem 4.6 is a constructive version of Theorem 20 in [10] and it applies to mapping systems, like the Poincaré map Pe

defined in (4) associated to (2). In this case the conformal factor λ only depends on the dissipation η and the eccentricity

e, and the map Pe depends on the three parameter η, ε, and e.

Theorem 4.6. Let Λ be an open subset of R and for all e ∈ Λ, let fe :M→M be a conformally symplectic map defined on

the manifold M = B× T; here B ⊂ R denotes an open and simply connected domain with smooth boundary. Assume that fe

is analytic on an open connected domain C ⊂ C× C/Z. Assume the following hypotheses.

H1. The frequency ω is Diophantine as in (17), namely ω ∈ D(ν, τ ).
H2. The approximate solution (K0, e0), K0 ∈ Aρ0 for some ρ0 > 0 and e0 ∈ Λ, satisfies (21) up to an error function

E0 = E0(θ ) as in (22). We denote by ε0 the size of the error function, that is,

ε0 := ‖E0‖ρ0 .

H3. Assume that the following non-degeneracy condition is fulfilled:

det

(
S0 S0(Bb0)0 + Ã

(1)
0

λ− 1 Ã
(2)
0

)
6= 0 ,

where S0 is defined in (23), Ã(1)
0 , Ã

(2)
0 are the first and second elements of

Ã0 = M−10 ◦ TωDefe0 ◦ K0 ,

(Bb0)0 is the solution (with zero average in the λ = 1 case) of the equation

λ(Bb0)
0 − (Bb0)

0 ◦ Tω = −(̃A(2)
0 )0 ,

and (̃A(2)
0 )0 is the zero average part of Ã

(2)
0 .

Then, let T0 be the twist constant defined as

T0 :=

∥∥∥∥∥∥

(
S0 S0(Bb0)0 + Ã

(1)
0

λ− 1 Ã
(2)
0

)−1∥∥∥∥∥∥
.

H4. Assume that for some ζ > 0 we have

dist(e0, ∂Λ) ≥ ζ , dist(K0(Tρ0 ), ∂C) ≥ ζ .

H5. Let δ0 be such that 0 < δ0 < ρ0. Introduce the quantity κe := 4Cσ0 with Cσ0 constant (see Appendix A). Define the

quantities

7
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Qz := sup
z∈C
|Dfe0 (z)| ,

Qe := sup
z∈C,e∈Λ,|e−e0|<2κeε0

|Defe(z)| ,

Qzz := sup
z∈C
|D2fe0 (z)| ,

Qez := sup
z∈C
|DDefe0 (z)| ,

Qzzz := sup
z∈C
|D3fe0 (z)| ,

Qezz := sup
z∈C,e∈Λ,|e−e0|<2κeε0

|D2Defe(z)| ,

Qze := sup
z∈C,e∈Λ,|e−e0|<2κeε0

|DeDfe(z)| ,

Qee := sup
z∈C,e∈Λ,|e−e0|<2κeε0

|D2
e fe(z)| ,

Qzze := sup
z∈C,e∈Λ,|e−e0|<2κeε0

|DeD
2fe(z)| ,

Qeez := sup
z∈C,e∈Λ,|e−e0|<2κeε0

|DD2
e fe(z)| ,

Qeee := sup
z∈C,e∈Λ,|e−e0|<2κeε0

|D3
e fe(z)| ,

QE0 :=
1

2
max

{
‖D2E0‖ρ0−δ0 , ‖DDeE0‖ρ0−δ0 , ‖D

2
eE0‖ρ0−δ0

}
.

(25)

Assume that ε0 is such that the following smallness conditions are satisfied for real constants Cη0, CE0, Cd0, Cσ0, Cσ , CW0,
CW and CR (see Appendix A):

Cη0 ν
−1δ−τ0 ε0 < ζ , (26)

23τ+4 CE0 ν
−2 δ−2τ0 ε0 ≤ 1 , (27)

4Cd0ν
−1δ−τ0 ε0 < ζ , (28)

4Cσ0ε0 < ζ , (29)

‖N0‖ρ0 (2‖DK0‖ρ0 + DK ) DK < 1 , (30)

4Qze0Cσ0ε0 < Qz , (31)

4QeeCσ0ε0 < Qe , (32)

Cσ DK ≤ Cσ0 , (33)

DK (CW0 + ‖M0‖ρ0CW + CWDK ) ≤ Cd0 , (34)

DK

(
CW νδ−1+τ0 + CR

)
≤ CE0 , (35)

where DK is given by

DK := 4Cd0 ν
−1δ−τ−10 ε0 . (36)

Then, there exists an exact solution (K∗, e∗) of (21) satisfying

fe∗ ◦ K∗ − K∗ ◦ Tω = 0 .

The following inequalities show that the quantities (K∗, e∗) are close to (K0, e0):

‖K∗ − K0‖ρ0−δ0 ≤ 4Cd0ν
−1δ−τ0 ‖E0‖ρ0 ,

|e∗ − e0| ≤ 4Cσ0‖E0‖ρ0 ,
(37)

where Cd0 and Cσ0 are given explicitly in Appendix A.

For simplicity of exposition, we report the explicit expressions of the constants entering Theorem 4.6 in Appendix A.
They are obtained making a constructive version of the KAM proof given in [10]. We refer to [15] for the proof of
Theorem 4.6.

4.5. A sketch of the proof of Theorem 4.6

We present a sketch of the proof of Theorem 4.6 that we split into five main steps, all of them giving explicit estimates
of the quantities involved. Although we do not enter into the details of the proof, which is quite long and technical

8
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(see [15]), we provide an overview of the proof which motivates the assumptions H1–H5 as well as the smallness
conditions (26)-(35).

4.5.1. Step 1: the approximate solution
We denote by (K , e) an embedding function and a drift term satisfying approximately the invariance equation with an

error term E:

fe ◦ K (θ )− K (θ + ω) = E(θ ) . (38)

All one-dimensional tori are Lagrangian invariant tori, namely they satisfy K ∗Ω = 0, which in coordinates is given by

DK T (θ ) J ◦ K (θ ) DK (θ ) = 0 .

This expression implies that the tangent space can be decomposed as the sum of the range of DK (θ ) and the range of
V (θ ), where V is given by

V (θ ) = J−1 ◦ K (θ ) DK (θ )N(θ )

with N(θ ) = (DK (θ )⊤DK (θ ))−1.
Next, we define the quantity M as a juxtaposition of DK and V , i.e.,

M(θ ) = [DK (θ ) | V (θ )] . (39)

Then, it can be shown that, up to a remainder R, the action of the derivative of the map over M is just a shift of M
multiplied by a matrix. Precisely, one can prove that [15]:

Dfe ◦ K (θ ) M(θ ) = M(θ + ω)
(

Id S(θ )
0 λId

)
+ R(θ ) . (40)

This result will be used in Step 2 to reduce (38) to a constant coefficient equation, that will be solved under assumptions
H1 and H3.

4.5.2. Step 2: a new approximation
Starting from the initial approximation (K , e), we introduce a new approximation (K ′, e′) defined adding to (K , e) some

corrections (W , σ ) as K ′ = K +MW and e′ = e+ σ . We denote by E ′ the error function associated to (K ′, e′), satisfying
the equation:

fe′ ◦ K ′(θ )− K ′(θ + ω) = E ′(θ ) . (41)

Next, we proceed to expand (41) in Taylor series, which gives:

fe ◦ K (θ )+ Dfe ◦ K (θ ) M(θ )W (θ )+ Defe ◦ K (θ )σ
−K (θ + ω)−M(θ + ω) W (θ + ω)+ h.o.t. = E ′(θ ).

Using (38), we can guarantee that E ′ is quadratically smaller provided that the following relation is satisfied:

Dfe ◦ K (θ ) M(θ )W (θ )−M(θ + ω) W (θ + ω)+ Defe ◦ K (θ )σ = −E(θ ) . (42)

We remark that condition (26) provides an estimate of the error E ′ associated to (K ′, e′).
Using (42) and (40), we obtain that

Dfe ◦ K (θ ) M(θ ) = M(θ + ω)
(

Id S(θ )
0 λId

)
+ R(θ ) ,

which provides the following equations for W and e:

M(θ + ω)
(

Id S(θ )
0 λId

)
W (θ )−M(θ + ω) W (θ + ω) = −E(θ )− Defe ◦ K (θ )σ . (43)

Next, we multiply by M(θ + ω)−1 and write (43) for the components W1, W2, Ẽ1, Ẽ2, Ã1, Ã2, of W , Ẽ, and Ã as
(

Id S(θ )
0 λId

)(
W1(θ )
W2(θ )

)
−
(

W1(θ + ω)
W2(θ + ω)

)
=
(
−Ẽ1(θ )− Ã1(θ )σ
−Ẽ2(θ )− Ã2(θ )σ

)
, (44)

where we define

Ẽj(θ ) = −(M(θ + ω)−1E)j
Ãj(θ ) = (M(θ + ω)−1Defe ◦ K )j ,

for j = 1, 2. We now make explicit (44) for the components W1, W2 and σ , so to obtain the following cohomological
equations:

W1(θ )−W1(θ + ω) = −Ẽ1(θ )− S(θ )W2(θ )− Ã1(θ ) σ

λW2(θ )−W2(θ + ω) = −Ẽ2(θ )− Ã2(θ ) σ .
(45)

9
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4.5.3. Step 3: Determination of the new approximate solution
The solution of equations (45) allow us to determine the unknownsW1,W2 and σ that give the corrections to determine

the new approximate solution.
To solve the first equation of (45), we use assumption H1 on the Diophantine property of the frequency and assumption

H3, expressing the non-degeneracy that allows us to solve the linear system (46) below. The second equation of (45) can
instead be solved by an elementary contraction mapping argument for any |λ| 6= 1 and for all real frequencies.

Let us write W2 as W2 = 〈W2〉 + B0 + B̃0σ . Taking the average of both equations (45), we obtain the equations
(
〈S〉 〈SB0〉 + 〈̃A1〉

(λ− 1)Id 〈̃A2〉

)(
〈W2〉
σ

)
=
(
−〈SB̃0〉 − 〈̃E1〉
−〈Ẽ2〉

)
, (46)

which can be solved to give 〈W2〉 and σ under the non-degeneracy condition H3.
Once the solution of (46) is obtained, we proceed to solve the second of (45) to determine W2; such equation can be

solved for any |λ| 6= 1 by a contraction mapping argument.
Then, we proceed to solve the first equation of (45) for W1: since it involves small divisors, we can solve the equation

under the Diophantine assumption H1. The quantities ‖W1‖ρ−δ and ‖W2‖ρ−δ can be bounded by ‖E‖ρ by using Cauchy
estimates for the cohomological equations (45).

The error E ′ associated to the new solution can be bounded on a domain of size ρ − δ by the square of the error E on
the domain of size ρ as

‖E ′‖ρ−δ ≤ CEδ
−2τ‖E‖2ρ , CE > 0 ,

showing that the new error of the procedure is quadratic in the original error. Assumption H4 is needed to obtain such
a bound.

4.5.4. Step 4: iteration and convergence
We proceed to iterate the procedure presented in Step 3 to obtain a sequence of new solutions, say {Kj, ej}, and their

associated invariance equation error, say Ej. We prove that the errors tends to zero (in suitable norms) as j→∞ and thus
the solution sequence converges to the true solution. The proof consists in implementing an abstract implicit function
theorem, alternating the iteration with carefully chosen smoothing operators for analytic functions. The smoothing is
obtained by rescaling domains where the functions are defined at each step. In particular, we can define as ρj the size of
the analyticity domain associated to the solution {Kj, ej} by introducing a shrinking parameter δj and setting

ρ0 = ρ , δj =
ρ0

2j+2 , ρj+1 = ρj − δj , j ≥ 0 .

Then, we can show that for a, b > 0 and C ′E > 0, we have

‖Ej+1‖ρj+1 ≤ C ′E ν
aδbj ‖Ej‖2ρj .

If the quantity ε0 ≡ ‖E0‖ρ0 is sufficiently small, then we conclude that

‖Kj − K0‖ρj ≤ CKε0 , |ej − e0| ≤ Cµε0 (47)

for some constants CK , Cµ > 0. The inequalities (26)-(35) of Theorem 4.6 allow to obtain (47) as well as to ensure that
the procedure can be iterated and that it converges to the true solution.

4.5.5. Step 5: local uniqueness
Under smallness conditions, one can prove that, if there exist two solutions (Ka, ea), (Kb, eb), then there exists ψ ∈ R

such that

Kb(θ ) = Ka(θ + ψ) and ea = eb .

4.6. The algorithm and the initial invariant curve

Theorem 4.6 provides an explicit algorithm working as follows: for a fixed frequency ω and from an approximate
solution (K0, e0) satisfying the invariance equation with error term E0, one can construct a new approximation (K1, e1)
satisfying the invariance equation with a new error term E1 which is quadratically smaller than E0, just taking derivatives
and performing algebraic operations. The new approximation is obtained by solving suitable cohomological equations,
under the non-degeneracy condition H3. The algorithm is presented in detail in [14] for the spin–orbit problem and it is
recalled in Appendix B.

In the following, we will consider two frequencies defined as

ω1 := γ+g (48)

and

ω2 := 1+
1

2+ γ−g
, (49)

10
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where γ±g :=
√
5±1
2 . Both frequencies are Diophantine, in the sense of Definition 4.2, with constant ν = ( 3−

√
5

2 )−1 and
exponent τ = 1.

The application of Theorem 4.6 consists in the steps given below.

(i) We fix the Diophantine frequency as one of the choices in (48) or (49).
(ii) We provide the initial values K0 and e0, selecting the eccentricity and the initial condition as follows. First, we select

the eccentricity by choosing the value that corresponds to the fixed frequency. This is achieved by integrating Eq. (2)
with an initial guess of e0 and initial conditions x(0) = 0 and we fix y(0) = N̄(e0)/L̄(e0), which is the value that
we obtain when the dissipation disappears in the averaged model (3). After a transient time t (so that the system
evolves on the attractor), we compute the frequency over Nit additional iterations as ω = 1

Nit

∑Nit
j=1 y(t + 2π j).

Once the approximated initial eccentricity for the desired frequency has been obtained, we iterate the Poincaré
map (after another suitable transient) and we obtain the initial approximation of the invariant curve by fitting the
discrete points.

(iii) We iterate Algorithm B.1 to obtain a more accurate approximation (Ka, ea) satisfying the invariance equation with
an error whose norm is sufficiently small.

(iv) We compute the norms of the quantities appearing in Theorem 4.6 and detailed in Appendix D for ω1 and
Appendix E for ω2.

(v) We check the conditions (26)-(35) in Theorem 4.6. If they are satisfied, we conclude the procedure, otherwise we
change some of the parameters (e.g., ρ and δ) and we try to optimize the final result.

Further details of the steps (ii) and (iii) can be found in [14], which contains also the computation of the variational
equations with respect to the initial conditions and the parameter e in (2). The rotation number in (ii) can be computed
more efficiently (with smaller Nit ) by [27]. The variational equations are needed in step 7 of the Algorithm B.1 in
Appendix B as well as for some of the quantities in (iv).

4.7. Continuation method

Algorithm B.1 can be used as a corrector for a continuation method of the invariant torus and its drift. In the spin–orbit
problem, we use the eccentricity e as the adjustable parameter required by the quasi-Newton method and the perturbative
parameter ε in (2) as the continuation parameter.

The continuation consists in increasing ε by a stepsize, say εh, and run the Algorithm B.1 again with a given Newton’s
tolerance ǫ̃. Thus at each continuation step, it succeed, we obtain a new embedding of the torus and a new corrected
eccentricity.

If ε+ εh converges, we increase εh for the next continuation step. Otherwise, we do not accept ε+ εh as a solution, we
decrease εh, and we use Algorithm B.1 with the new value of ε + εh. In both cases we perform a Lagrange interpolation
of the previous two or three steps in order to provide a better initial guess of K and e for the next iteration.

In all the above process, a refinement of the grid in the coordinate θ may be required. In our implementation, we
consider necessary to increase the number of Fourier coefficients when some of the following two cases arise.

The first one is when the accuracy tests, detailed in Section 5.3 of [14], fail. In short, the accuracy tests are aimed to
control different sources of error, precisely:

(1) the error of the invariance equation on a table of values;
(2) the error in the numerical integration, for which we introduce absolute and relative tolerances;
(3) the error in the grid over the coordinate θ , which is controlled by checking the last coefficients of the truncated

Fourier series as well as the Sobolev norm of the tail;
(4) the interpolation error, which is controlled by providing an estimate of it and by changing the size of the grid, when

the error becomes too large.

The second situation is when the continuation step fails consecutively two times which may require to decrease the
stepsize εh, especially when we are getting close to the breakdown. Thus, the continuation procedure will stop when the
maximum number of remeshing is reached, in our case 214 Fourier modes.

Fig. 1 displays the results of the KAM torus (black curve) after a continuation starting at ε = 10−4 and a fixed dissipation
η = 10−3. The computation has been done with a multi-precision arithmetic with 170 bits, i.e. around 50 digits of
accuracy, a Newton’s tolerance of ǫ̃ = 10−35, and a parallelization of the integration of the Poincaré map as detailed
in Section 5.5 of [14].

We emphasize that we checked the final result by changing the number of digits of accuracy; in other words, keeping
the same Newton’s tolerance ǫ̃ and the same integration’s tolerance, we have performed the last continuation step,
checking that it is satisfied with 50, 55, and 60 digits of accuracy.

11
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Fig. 1. Basins of rotation number given by color-scale for the parameters in (51) (left) and (50) (right) joined with the of Algorithm B.1 that show
the invariant attractor (in black) after a continuation of ε starting with ε = 10−4 and e = 0.3150628 (left) and e = 0.2502068 (right).

The values of the Fourier modes nθ , the dissipation η, the eccentricity e, and the perturbing parameter ε are reported
below for the Diophantine frequencies ω1 in (48) and ω2 in (49).

For ω1, the last successful Newton continuation step was reached in less than 3 min using 32 CPUs with final values:

nθ = 16384 ,

η = 10−3 ,

e = 0.31675286891174832107186084513865661761571784973618 ,

ε = 0.011632963641877116367716112642948530559675531382297 .

(50)

For ω2 we got the last successful torus in less than 5 min using 35 CPUs and with values:

nθ = 4096 ,

η = 10−3 ,

e = 0.24824740823563165902227100091869770425731996450084 ,

ε = 0.012697630024415883032123830013667613509009950826168 .

(51)

Fig. 1 provides also the basins of the rotation numbers, namely the frequency given through a color scale for different
initial conditions (x0, y0). In particular, we take a grid of 500 × 500 initial conditions within the window [0, 2π )× [1, 2]
and we compute the frequency as described in step (ii) of Section 4.6. We remark that the computation of the frequency
has been optimized using the method described in [27] which is implemented and detailed for the spin–orbit case in the
companion paper [28].

5. Estimates on the Q quantities of the KAM Theorem 4.6

The main difference in the explicit derivation of the KAM estimates presented in [15] between the standard map and
the spin–orbit problem is the computation of the Q constants defined in (25) of Theorem 4.6. Almost all of them are zero
for the standard map, while for the spin–orbit problem we need to compute them as detailed in Sections 5.1 and 5.2
below.

It is also important to describe carefully the boundary of the domain C and, in particular, the value ζ in H4 which is
needed for the inequalities (26)–(35).

5.1. The computation of QE0

We need to give a bound of the quantity

QE0 :=
1

2
max

{
‖D2E0‖ρ0−δ0 , ‖DeDE0‖ρ0−δ0 , ‖D

2
eE0‖ρ0−δ0

}
, (52)
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where E0 is defined in terms of the numerical approximated solution (K0, e0) of Theorem 4.6. In the case of the spin–orbit
problem, E0 is given by

E(θ ) := (Ψ−1e0
◦ Ge0 )

1(Ψe0 ◦ K0(θ ))− K 1
0 (θ + ω) ,

E1
0 (θ ) := E(θ )− ⌊E(θ )+ 0.5⌋ , (53)

E2
0 (θ ) := (Ψ−1e0

◦ Ge0 )
2(Ψe0 ◦ K0(θ ))− K 2

0 (θ + ω) , (54)

where ⌊ · ⌋ denotes the floor function, e0 is the eccentricity value, Ge0 = Ψe0 ◦Pe0 ◦Ψ−1e0
with Pe0 being the 2π-time flow of

(2) and Ψe0 given in (6). The superscripts 1 and 2 mean the components of the vectors in R
2. Note that the floor function

in (53) is needed since x(t) in (2) is given modulus 2π , that due to Ψe0 , in fact, it is modulus 1. Therefore E1
0 gives values

in [−1/2, 1/2].
To compute D2E0 we can either differentiate the Fourier series with respect to θ or to use jet transport, which, roughly

speaking, means to overload the numerical integrator with a multivariate polynomial manipulator. We are going to use
the jet transport because we also need to get the variation with respect to the eccentricity, i.e., DeDE0 and DeE0. In order
to get the quantities automatically, we use jets2 of 2 symbols, say (s1, s2), and up to degree 2, see Appendix F. Indeed, for
each θ in a mesh of T, we compute the flow given by

Ψ−1e0+s2 ◦ Ge0+s2 ◦ Ψe0+s2 (K0(θ + s1)) , (55)

where

K0(θ + s1) = K0(θ )+ ∂θK0(θ )s1 + 1
2∂

2
θ K0(θ )s

2
1 .

Remark 5.1. Jet transport will provide the normalized derivative of (55), so the 1/2 in (52) is automatically included in the
coefficients of degree 2 of (55). Notice that here, we can use the ad hoc polynomial manipulator described in Appendix F.

Remark 5.2. The term ⌊ ·+0.5 ⌋ in (53) refers to the round function, namely the function that returns the nearest integer,
but round halfway cases away from zero, regardless of the current rounding direction, and instead of the nearest integer
in the rint function.

Note that round has zero derivative except in ( 12Z) \ {0}, where the derivative is not well-defined. However, we will
consider (numerically) derivative zero also in these discontinuity points.

Remark 5.3. About the 2nd derivatives for the term K0(θ + ω), the ones with respect to e are zero and the computation
of ∂2θ K0(θ + ω) is straightforward in the Fourier representation.

Remark 5.4. The computation of (55) is fully parallelizable for each of the different values of θ , which gives us a clear
speed-up in the performance. Specially when the quantity is computed near to the breakdown parameter value that,
generically, requires more Fourier modes.

5.2. The computation of the complex Q ’s in Theorem 4.6

The quantities in the hypothesis H5 of Theorem 4.6 require to perform the integration of complex numbers, since
the initial conditions are in the complex domain C, in fact, in its boundary. The complexification of the spin–orbit model
leads to the complex spin–orbit problem, see Section 5.2.1, which is given as a real 4-dimensional ODE system. This system
describes the evolution in time of the real and imaginary parts of each of the variables in (2).

To address some of the freedoms in Theorem 4.6, we devote our attention in Section 5.2.2 to provide a definition of a
possible domain C such that we can fulfill the hypothesis H4. The strategy will be to move this original freedom on C to
two new parameters, ξ and α, which are going to be easier to handle.

Finally, we detail in Section 5.3 the different steps to approximate the Q quantities of H5.

5.2.1. Complex spin–orbit problem

The Q quantities in (25) are considered over the complex domain C of Theorem 4.6. This implies the need of the
complexification of the spin–orbit problem (2), which leads to a new system called the complex spin–orbit problem given

2 We follow the convention that a jet is encoded by the Taylor’s coefficients at 0.
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by the real ODE system

d

dt
xR(t) = yR(t) ,

d

dt
xI(t) = yI(t) ,

d

dt
yR(t) = −ε

( a

r(t)

)3
sin
(
2xR(t)− 2f (t)

)
cosh(2xI(t))− η

( a

r(t)

)5(
yR(t)−

d

dt
f (t)

)
,

d

dt
yI(t) = −ε

( a

r(t)

)3
cos
(
2xR(t)− 2f (t)

)
sinh(2xI(t))− η

( a

r(t)

)5
yI(t) ,

(56)

where (56) has been deduced by taking the complex numbers x = xR + iyI and y = xR + iyI in (2). To obtain the above
equations, we use the relation

sin(αR + iαI) = sinαR coshαI + i cosαR sinhαI .

Similarly to the real spin–orbit problem, see [14], we consider the temporal change of coordinates t = u− e sin u to make
u the independent variable, i.e.,

xR(u− e sin u) =: βR(u) , yR(u− e sin u) =: γR(u)/(1− e cos u) ,

xI(u− e sin u) =: βI(u) , yI(u− e sin u) =: γI(u)/(1− e cos u) .
(57)

Thus, if Ĝe is the 2π-time flow of the complex spin–orbit problem with the coordinates (βR, βI, γR, γI), then we can
recover the normalized 2π-time flow P̂e of (56) by the conjugacy given by

Ψ̂e := 2π



1 0 0 0
0 1 0 0
0 0 1− e 0
0 0 0 1− e


 .

Explicitly, we obtain:

P̂e := Ψ̂−1e ◦ Ĝe ◦ Ψ̂e . (58)

Therefore to get the different high variational flows involved in the Q quantities of H5, we can use the jet transport
technique, see [14], with jets of 5 symbols and up to order 3.

5.2.2. Definition of the boundary of the complex domain C

The Q quantities of the hypothesis H5 depend on the boundary ∂C, because the ODE (2) as well as (56) are analytic.
The only restriction on this set ∂C is given in H4 which relates the distance of the set

K0(Tρ0 ) :=
{(
θ + iσ

0

)
+ K 0(θ + iσ ) : θ ∈ T and |σ | ≤ ρ0

}

with K 0 denoting the periodic part of the mapping K0 which is continuously extended to the boundary of the set Tρ0
defined in (12).

Recall that the distance between sets is defined by

dist(K0(Tρ0 ), ∂C) := inf{d(x, y) : x ∈ K0(Tρ0 ) and y ∈ ∂C} .
Hence, we consider C given in terms of a real region Ξ in the plane and a real value α > 0, as

C := {(z1, z2) ∈ C/Z× C : (z1, z2) ∈ Ξ , |z1| ≤ α, |z2| ≤ α} .
The region Ξ is bounded and we assume to be of the form

Ξ := {(θ, σ ) ∈ T× R :ψ−(θ ) ≤ σ ≤ ψ+(θ )}
for some real curves ψ− and ψ+ such that

ψ− ◦ K 1
0 (θ ) ≤ K 2

0 (θ ) ≤ ψ+ ◦ K 1
0 (θ ) for all θ ∈ T .

For instance, fixed ξ > 0, one can try to find ψ± solving

ψ± ◦ K 1
0 (θ ) = K 2

0 (θ )± ξ for all θ ∈ T .

Then, K0(θ ) ∈ Ξ for all θ in T. Heuristically, K 1
0 (θ ) = θ + K

1
0(θ ) ≈ θ , if K

1
0 is small and the composition by K 1

0 may be
neglected. In fact, if we allow constant values for ψ±, we can just consider

ψ− := min
θ∈T

K 2
0 (θ )− ξ , ψ+ := max

θ∈T
K 2
0 (θ )+ ξ (59)

14



R. Calleja, A. Celletti, J. Gimeno et al. Communications in Nonlinear Science and Numerical Simulation 106 (2022) 106099

with a suitable value of ξ .
Let us assume that (depending on α and ψ±)

∂C := A± ∪ B± ∪ C± , (60)

where

A± := {(θ + ix, ψ±(θ )+ iy) : θ ∈ T, |x| ≤ α, |y| ≤ α} ,
B± := {(θ ± iα, v + iw) : θ ∈ T, ψ−(θ ) ≤ v ≤ ψ+(θ ), |w| ≤ α} ,
C± := {(θ + iσ , v ± iα) : θ ∈ T, ψ−(θ ) ≤ v ≤ ψ+(θ ), |σ | ≤ α} .

We have different cases to get a lower bound on dist(K0(Tρ0 ), ∂C). Let us consider generic points

x =
(
θ + iσ + K

1
0(θ + iσ ) , K

2
0(θ + iσ )

)
∈ K0(Tρ0 ) ,

a±1 = (θ1 + ix1, ψ±(θ1)+ iy1) ∈ A± ,

b±1 = (θ1 ± iα, v1 + iw1) ∈ B± ,

c±1 = (θ1 + iσ1, v1 ± iα) ∈ C± .

If we use ψ± constants, as those defined in (59), then we need to compute the Υi quantities given by

|x− a+1 | ≥ inf
θ+iσ∈Tρ0

|K 2
0 (θ + iσ )− ψ+| =: Υ1 ,

|x− a−1 | ≥ inf
θ+iσ∈Tρ0

|K 2
0 (θ + iσ )− ψ−| =: Υ2 ,

|x− b+1 | ≥ inf
θ+iσ∈Tρ0

|K 1
0 (θ + iσ )− α| =: Υ3 ,

|x− b−1 | ≥ inf
θ+iσ∈Tρ0

|K 1
0 (θ + iσ )+ α| =: Υ4 ,

|x− c+1 | ≥ inf
θ+iσ∈Tρ0

|K 2
0 (θ + iσ )− α| =: Υ5 ,

|x− c−1 | ≥ inf
θ+iσ∈Tρ0

|K 2
0 (θ + iσ )+ α| =: Υ6 .

(61)

Thus, if we take Υ := min{Υ1,Υ2,Υ3,Υ4,Υ5,Υ6}, then

dist(K0(Tρ0 ), ∂C) ≥ Υ . (62)

Therefore, we can choose ζ so that Υ ≥ ζ > 0. Finally, we can set Λ := (e0 − ϕ, e0 + ϕ) with ϕ ≥ max{ζ , 2κeε0} and κe
given in H5.

Note that the computation of Υi in (61) does not need to be rigorous, because we can take ζ further smaller than the
approximated Υ .

A second remark in the computation of Υi is that we can use the complex version of the FFT to make the computation
faster. Indeed, using Appendix C, we complexify the real representation of the Fourier coefficients of K0 and then use the
FFT to get the corresponding table of values in an equispaced complex plane Tρ0 . This process makes the computation of
an approximated Υ efficient, easily running in a today’s laptop without a strong need of concurrency.

5.3. Steps to approximate the Q quantities

Once we obtain the initial numerical approximate solution (K0, e0) of the invariance Eq. (21) via the Newton
Algorithm B.1, we choose 0 < ρ0 < 1 to compute the different quantities involved in the KAM estimates of Theorem 4.6.
That means to compute the quantities of H5 and the constants in Appendix A. The constants only depend on norms of
functions from the Algorithm B.1 like ‖DK0‖ρ0 , ‖DK

−1
0 ‖ρ0 , ‖N‖ρ0 , ‖S‖ρ0 , etc. The Q quantities require more effort and we

will use the procedure described in Section 5.2.
The first Q quantity QE0 in Section 5.1 requires to choose 0 < δ0 < ρ0. For the other Q quantities in Section 5.2 we

need first to choose ξ to get ψ± from (59) and α for (60). Then we compute the Υ such that (62) is satisfied. Finally, we
can choose ζ which is the last crucial value that fixes all the other quantities to check the inequalities (26)–(35).

We note that the complex quantities of Q , which in fact are the hardest ones, do not need to be extremely rigorous
because especially for those involving high order variational flows, they are always affected by the multiplication of small
values, like the ε0, as one can realize looking at (26)–(35) and Appendix A. Therefore, our approach will just consider the
quantities in a mesh of the six sets in (60), rather than a rigorous enclosure. In fact, we also compensate the correctness of
our numbers using multiprecision, that was already needed to reach parameter values close to the numerical break-down.
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6. KAM estimates for the spin–orbit problem

The application of Theorem 4.6 requires to check the conditions (26)–(35) that depend on the choice of some
parameters. We did not found a general procedure to select ρ0, δ0, ξ , α and ζ , so that we can ensure a priori that the
inequalities will be fulfilled. Nevertheless, we provide the values of these numbers for the cases ω1 and ω2 with respective
spin–orbit parameters given in (50) and (51).

In the two cases ω1 in (50) and ω2 in (51), by trial and error we have made the following choice:

ρ0 = 7.629394531250000 · 10−6 = 2−17 ,

δ0 = 9.536743164062500 · 10−7 = 2−20 ,

ξ = 0.0054 ,

α = 0.000016 ,

ζ = 9.3132257461547851562500 · 10−10 = 2−30 .

(63)

Note that ρ0, δ0, and ζ are just a power of 2, which means that they have an exact numerical representation in a computer.
From the choice of values in (63), we compute ψ± and Υ in Section 5.2.2 using just double precision:

ω1 ω2

ψ− 2.468595425049463e− 01 2.093861593414215e− 01
ψ+ 2.682454746721682e− 01 2.306499653402554e− 01
Υ 1.833012143471895e− 06 1.842114896678543e− 06

Then, the Q quantities can be computed following Section 5.3. In this computation, we parallelize the different
evaluations in a grid of 16 × 16 × 16 points with a final CPU time of around 33 h with 31 threads and 18 h with
54 threads. As in the solution computed in Section 4.7, we perform all the computations with 170 bits of precision. In
particular, we know that the error in the invariance equation, the ε0 in Theorem 4.6, is at most 10−45 because it is the
requested tolerance in the Newton’s process. Moreover, once all the Q quantities are computed, we perform the final
checks of inequalities (26)–(35) using a little bit more bits, say 250, to prevent possible overflows in the comparisons.

We conclude by saying that the conditions of the theorem are satisfied for the values given in (50) for ω1 and (51) for
ω2. The values of the quantities needed to prove Theorem 4.6 for ω1 and ω2 are listed, respectively, in Appendix D and
E. The values of ε that we obtain are essentially coinciding with the numerical break-down values, which are computed
in [28]. This result shows the efficacy of KAM theorem in providing a constructive method to follow the invariant attractors
up to break-down.
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Appendix A. List of the constants of Theorem 4.6

The explicit expressions of the constants used in Theorem 4.6 are given below (see [15] for their derivation).

Cσ0 := T0

[
|λ− 1|

( 1

‖ λ| − 1|
‖S0‖ρ0 + 1

)
+ ‖S0‖ρ0

]
‖M−10 ‖ρ0 ,

CW20 :=
1

‖ λ| − 1|

(
1+ Cσ0Qe

)
‖M−10 ‖ρ0 ,

CW20 := 2T0

( 1

‖ λ| − 1|
‖S0‖ρ0 + 1

)
Qe ‖M−10 ‖2ρ0 ,

CW10 := C0

(
‖S0‖ρ0 (CW20 + CW20)+ ‖M

−1
0 ‖ρ0 + Qe‖M−10 ‖ρ0Cσ0

)
,

CW0 := CW10 + (CW20 + CW20)νδ
τ
0 ,

Cη0 := CW0‖M0‖ρ0 + Cσ0νδ
τ
0 ,

CR0 := QE0(‖M0‖2ρ0C
2
W0 + C2

σ0ν
2δ2τ0 ) ,

CE0 := CW0νδ
−1+τ
0 + CR0 ,

Cd0 := CW0 ‖M0‖ρ0 ,
κe := 4Cσ0 ,

DK := 4Cd0 ν
−1δ−τ−10 ε0 ,

D2K := 4 Cd0ν
−1δ−τ−20 ε0 ,
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CN := ‖N0‖2ρ0
2‖DK0‖ρ0 + DK

1− ‖N0‖ρ0DK (2‖DK0‖ρ0 + DK )
,

CM := 1+ Je

[
CN (‖DK0‖ρ0 + DK )+ ‖N0‖ρ0

]
,

CMinv := CN (‖DK0‖ρ0 + DK )+ ‖N0‖ρ0 + Je ,

CS := 2JeQz

{
(‖N0‖ρ0 + CNDK )

[
DK (‖N0‖ρ0 + CNDK )

+‖DK0‖ρ0‖N0‖ρ0 + ‖DK0‖ρ0CNDK

]

+CN‖DK0‖ρ0
[
DK (‖N0‖ρ0 + CNDK )+ ‖DK0‖ρ0‖N0‖ρ0 + ‖DK0‖ρ0CNDK

]

+‖N0‖ρ0‖DK0‖ρ0 (‖N0‖ρ0 + CNDK )+ CN‖N0‖ρ0‖DK0‖2ρ0
}
,

CSB :=
1

‖ λ| − 1|
Qe‖M−10 ‖ρ0CS + 2JeQz ‖N0‖2ρ0 ‖DK0‖2ρ0

1

‖ λ| − 1|
CMinv Qe

+2CS

1

‖ λ| − 1|
CMinv Qe DK ,

Cτ := max
{
CS, CSB + 2CMinvQe

}
DK ,

CT :=
T

2
0

1− T0Cτ
max

{
CS, CSB + 2CMinvQe

}
,

Cσ := CT

{
|λ− 1|

[ 1

‖ λ| − 1|
(‖S0‖ρ0 + CSDK )+ 1

]

+
(
‖S0‖ρ0 + CSDK

)} (
‖M−10 ‖ρ0 + CMinvDK

)

+T0

{
|λ− 1|

[ 1

‖ λ| − 1|
(‖S0‖ρ0 + CSDK )+ 1

]
CMinv

+|λ− 1|
1

‖ λ| − 1|
‖M−10 ‖ρ0CS + CS

(
‖M−10 ‖ρ0 + CMinvDK

)
+ CMinv‖S0‖ρ0

}
,

CW2 := 4CT

[ 1

‖ λ| − 1|
(‖S0‖ρ0 + CSDK )+ 1

]
Qe(‖M−10 ‖ρ0 + DK )

2

+4T0Qe

1

‖ λ| − 1|
CS (‖M−10 ‖ρ0 + DK )

2

+4T0 Qe

[ 1

‖ λ| − 1|
(‖S0‖ρ0 + CSDK )+ 1

]
(DK + 2‖M−10 ‖ρ0 )

CR := QE0

[
(2CM‖M0‖ρ0 + C2

MDK )(CW0 + CWDK )
2 + ‖M0‖2ρ0 (C

2
WDK + 2CW0 CW )

+(C2
σDK + 2Cσ0Cσ )ν

2δ2τ0

]
+ CQ

[
(‖M0‖ρ0 + CMDK )

2(CW0 + CWDK )
2

+(Cσ0 + CσDK )
2ν2δ2τ0

]
δ−10 ,

CW2 :=
1

‖ λ| − 1|

[
1+ 2Qe‖M−10 ‖ρ0Cσ + 2QeCσ0 + 2QeCσDK

]
,

CW1 := C0

[
‖S0‖ρ0CW2 + CSCW20 + CSCW2DK + ‖S0‖ρ0CW2

+CSCW20 + CSCW2DK + 1+ 2Qe‖M−10 ‖ρ0Cσ + 2QeCσ0 + 2QeCσDK

]
,

CW := CW1 + CW2νδ
τ
0 + CW2νδ

τ
0

CQ :=
1

2
max

{
1+ sup

z∈C
|D3fe0 (z)| ‖DK0‖2ρ0δ

2
0

+ sup
z∈C,e∈Λ,|e−e0|<2κeε0

|DeD
2fe(z)| ‖DK0‖2ρ0

Cσ0

Cd0
δτ+20

+ sup
z∈C
|D2fe0 (z)| ‖DK0‖ρ0 δ0

+ sup
z∈C
|D3fe0 (z)| ‖DK0‖ρ0 4Cd0ν

−1δ−τ+10 ε0
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+ sup
z∈C,e∈Λ,|e−e0|<2κeε0

|DeD
2fe(z)| ‖DK0‖ρ0 4Cσ0δ0ε0

+ sup
z∈C
|D2fe0 (z)| ‖D

2K0‖2ρ0 δ
2
0

+ sup
z∈C,e∈Λ,|e−e0|<2κeε0

|DeDfe(z)| ‖D2K0‖ρ0
Cσ0

Cd0
νδτ+20

+ sup
z∈C
|D2fe0 (z)| (‖DK0‖ρ0 + DK ) δ0

+ sup
z∈C
|D3fe0 (z)| (‖DK0‖ρ0 + DK )4Cd0 ν

−1δ−τ+10 ε0

+ sup
z∈C,e∈Λ,|e−e0|<2κeε0

|DeD
2fe(z)| (‖DK0‖ρ0 + DK ) 4Cσ0δ0ε0

+ sup
z∈C
|Dfe0 (z)| + sup

z∈C
|D2fe0 (z)| (4Cd0ν

−1δ−τ0 ) ε0

+ sup
z∈C,e∈Λ,|e−e0|<2κeε0

|DeDfe(z)| κeε0 ,

sup
z∈C
|DDefe0 (z)| δ0 + sup

z∈C
|D2Defe0 (z)| δ

2
0 (‖DK0‖ρ0 + DK )

+ sup
z∈C,e∈Λ,|e−e0|<2κeε0

|DD2
e fe(z)|

Cσ0

Cd0
νδτ+20 (‖DK0‖ρ0 + DK ),

sup
z∈C,e∈Λ,|e−e0|<2κeε0

|D3
e fe(z)|

Cσ0

Cd0
νδτ+20

}
.

Appendix B. Newton’s algorithm

In this Section, we provide Newton’s algorithm for finding an invariant attractor of the spin–orbit problem; the
algorithm is fully detailed in [14].

Algorithm B.1 (Newton’s Method for Finding a Torus in the Spin–Orbit Problem).

⋆ Inputs: A fixed frequency ω, the conformally symplectic map Pe given in (4) for fixed values of the parameters ε
and η. Initial values of the unknowns; the eccentricity e and the embedding K :T→ T× R.

⋆ Output: New K and e satisfying the invariance equation (21) up to a given tolerance.
⋆ Notation: If A is a function defined in T, A :=

∫
T
A and A0 := A− A.

1. E ← Pe ◦ K − K ◦ Tω denote the components E := (E1, E2),
E1 ← E1 − round(E1).

2. α← DK .
3. N ← (αtα)−1.
4. M ←

[
α J−1αN

]
.

5. Ẽ ← (M−1 ◦ Tω)E.
6. λ given in (11).
7. P ← αN ,

S ← (P ◦ Tω)tDPe ◦ KJ−1P ,
Ã← M−1 ◦ TωDePe ◦ K denote the components Ã := (̃A1, Ã2).

8. (Ba)0 solving λ(Ba)0 − (Ba)0 ◦ Tω = −(̃E2)0,
(Bb)0 solving λ(Bb)0 − (Bb)0 ◦ Tω = −(̃A2)0.

9. Find W 2, σ solving the linear system
(

S S(Bb)0 + Ã1

λ− 1 Ã2

)(
W 2

σ

)
=
(
−Ẽ1 − S(Ba)0

−Ẽ2

)

10. (W2)0 ← (Ba)0 + σ (Bb)0.
11. W2 ← (W2)0 +W 2.
12. (W1)0 solving (W1)0 − (W1)0 ◦ Tω = −(SW2)0 − (̃E1)0 − (̃A1)0σ .
13. K ← K +MW ,

e← e+ σ .
14. Iterate from 1 until convergence in E with a prescribed tolerance ǫ̃.
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Appendix C. Complexification of a Fourier series

If x :T→ R is a periodic and smooth mapping of period 1, it admits an Nth order truncated Fourier series with Fourier
coefficients {xk}N−1k=0 ⊂ R:

x(θ ) =
x0

2
+

xN/2

2
cos(πNθ )+

N/2−1∑

k=1
x2k cos(2πkθ )+ x2k+1 sin(2πkθ ) . (64)

For simplicity and easy notation we assume N to be an even positive integer in (64). The complexification process of the
map x consists in lifting the spaces T and R to the complex numbers such that it coincides with x when it is restricted
to the real values.

To make it simpler, it is convenient to extend the quantity of real numbers in (64) and make explicit the symmetry in
the complex version. In other words, (64) is equivalent to

x(θ ) = x0 + 2

N/2∑

k=1
(x2k − ix2k+1)e

2πkiθ + (x2k + ix2k+1)e
−2πkiθ

with xN+1 = 0. Now, if ρ > 0, then

x(θ + iρ) = x0 + 2

N/2∑

k=1
(x2k − ix2k+1)e

2πki(θ+iρ) + (x2k + ix2k+1)e
−2πki(θ+iρ),

which allows one to provide the Fourier coefficients {(x2k± ix2k+1)e±2πkρ} making the initial real Fourier expression to a
complex one.

Appendix D. KAM quantities for the frequency ω1

We list below the quantities needed to implement Theorem 4.6 to get the existence of an invariant attractor with
frequency ω1.

N = 16384 ,

ε = 1.1632963641877116367716112642948530559675531382297e− 02 ,

η = 10−3 ,

e = 3.1675286891174832107186084513865661761571784973618e− 01 ,

ρ0 = 2−17 ,

δ0 = 2−20 ,

‖DK‖ρ0 = 6.2076969839032564048438325650777912419214845002300e+ 00 ,

‖DK−1‖ρ0 = 1.8328129957258449874460075408233923038434712690096e+ 05 ,

‖D2K‖ρ0 = 1.1686089945113448858821651745887573374665126081719e+ 02 ,

QE0 = 1.9132315264792576102165122788680383078808432879626e+ 00 ,

‖N‖ρ0 = 9.8051171808495981670035137469708799108365949325248e+ 00 ,

‖N−1‖ρ0 = 1.0113946410899826227827056006594783412357401114959e+ 01 ,

‖S‖ρ0 = 5.7223321830936249091412643788103653938262105245420e+ 01 ,

‖E0‖ρ0 = 5.7356559781857403764979281930553140398186337716656e− 48 ,

λ = 9.8689359923042965027116069623508749107899367134535e− 01 ,

‖M‖ρ0 = 1.2040958250027560141817737598227413458417075907998e+ 01 ,

‖M−1‖ρ0 = ‖M‖ρ0 ,
T0 = 9.9819949009440259228900924748534932771289016437641e+ 01 ,

8Cσ‖E0‖ρ0 = 6.3125418322117269519458608993574236031175483317508e− 42 ,

ζ = 2−30 ,

Qz = 6.6101300016209423195423975547239258176432851802452e+ 00 ,

Qe = 1.4175899711779293156363275537004756604799008098606e− 01 ,

Qzz = 2.7720843711101391648970926156205952547296169675164e+ 01 ,

Qez = 1.8953747809385677544688739634954194030662439685438e+ 00 ,

Qzzz = 1.0724765398115262597036815561828324853342846787822e+ 03 ,
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Qezz = 3.5749217993717541990122718539427749511142822626074e+ 02 ,

Qze = 1.8953747809385677544688739634954194030663082259039e+ 00 ,

Qee = 5.0662817916743259572206058032898398336985496305233e− 01 ,

Qzze = 3.5749217993717541990122718539427749511143316805187e+ 02 ,

Qeez = 6.5647293504204776520816015502477982907961893178051e+ 01 ,

Qeee = 1.1476657592536890159871266106814665145940757444159e+ 00 .

Appendix E. KAM quantities for the frequency ω2

We list below the quantities needed to implement Theorem 4.6 to get the existence of an invariant attractor with
frequency ω2.

N = 4096 ,

ε = 1.2697630024415883032123830013667613509009950826168e− 02 ,

η = 10−3 ,

e = 2.4824740823563165902227100091869770425731996450084e− 01 ,

ρ0 = 2−17 ,

δ0 = 2−20 ,

‖DK‖ρ0 = 6.2401368092989368560939911390480948796213323884872e+ 00 ,

‖DK−1‖ρ0 = 9.7663343052106062599854114524341354648300957997991e+ 04 ,

‖D2K‖ρ0 = 1.2599262190633202679574003877751236478676849823924e+ 02 ,

QE0 = 3.7283183855924988259949473978598408908275342300333e+ 00 ,

‖N‖ρ0 = 9.7219870102188805011710709653101075119387149314734e+ 00 ,

‖N−1‖ρ0 = 1.0224486155736666017813494196253391421224297676866e+ 01 ,

‖S‖ρ0 = 5.6566290718009094885071045850417592994899924965064e+ 01 ,

‖E0‖ρ0 = 4.5110963829895625372478056855241916107240582063354e− 45 ,

λ = 9.9012510148807761346816298772561891586174978261238e− 01 ,

‖M‖ρ0 = 1.2040013601997889491301308242283364695245420720597e+ 01 ,

‖M−1‖ρ0 = ‖M‖ρ0 ,
T0 = 6.0557474279802520066531787357919583737990862560932e+ 01 ,

8Cσ‖E0‖ρ0 = 2.9770931760274406778788288754482772991065644242739e− 39 ,

ζ = 2−30 ,

Qz = 6.5592165251990406445369341061622617126571276578225e+ 00 ,

Qe = 1.5083817512231203986293089732663386692582367665897e− 01 ,

Qzz = 2.7092396727127668081914126144670011929964472351248e+ 01 ,

Qez = 2.7606921497436169824355915345916507538567998407721e+ 00 ,

Qzzz = 1.0002777586041620153665189720104193672993532271333e+ 03 ,

Qezz = 3.3342591953472067178883965733680645576645107571111e+ 02 ,

Qze = 2.7606921497436169824355915345916507538735860805555e+ 00 ,

Qee = 2.8395238802380805094507234385691115589067408070788e− 01 ,

Qzze = 3.3342591953472067178883965733680645576942037378572e+ 02 ,

Qeez = 7.2062924226872994236028388252435296803169026567968e+ 01 ,

Qeee = 5.7795906592094838240953693819846769451926848120880e− 01 .

Appendix F. Multivariate polynomials of degree 2

Let us consider a polynomial with d variables and degree 2, namely

p(x) = p0 +
∑

|k|=1
pkx

k +
∑

|k|=2
pkx

k, k ∈ N
d, x = (x0, . . . , xd−1) (65)
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Table 1

Bijection encoding between the exponent xk with x = (x0, . . . , xd−1), k = ei + ej , i ≥ j, where
el = (0, . . . , 1, . . . 0) and the location on the array containing the terms pk of (65).

Monomial Multi-index Index

χ (1) = 1 x20 e0 + e0 0

χ (2) = 3
x1x0 e1 + e0 1
x21 e1 + e1 2

χ (3) = 6
x2x0 e2 + e0 3
x2x1 e2 + e1 4
x22 e2 + e2 5

χ (4) = 10

x3x0 e3 + e0 6
x3x1 e3 + e1 7
x3x2 e3 + e2 8
x23 e3 + e3 9

χ (5) = 15

x4x0 e4 + e0 10
x4x1 e4 + e1 11
x4x2 e4 + e2 12
x4x3 e4 + e3 13
x24 e4 + e4 14

with the multi-index conventions |k| = k0 + · · · + kd−1 and

xk = x
k0
0 x

k1
1 · · · x

kd−1
d−1 . (66)

Note that in the case of degree 2, the multi-index k can be encoded with the canonical vector el = (0, . . . , 1, . . . , 0) with
0 ≤ l < d in R

d. That is, either ei for |k| = 1 or ei + ej with i ≥ j for |k| = 2.
Let us now define χ (i) = #{k ∈ N

i : |k| = 2}, which is computable by the recurrence

χ (0) = 0,

χ (i) = χ (i− 1)+ i, i ≥ 1.
(67)

Thus the number of elements to store in a computer for (65) is χ (d)+ d+ 1.
The crucial operation for an arithmetic of elements like (65) is the product, in which the key step is the product of

the two homogeneous polynomials of degree 1, since the other terms are just multiplications by the independent term of
each of the polynomials involved. To this end, we must fix a monomial order to encode the physical index of each of the
monomials of degree 2. Among all of them, we consider the reverse lexicographical order, which is illustrated in Table 1
up to 5 variables.

Thus, the location in the array corresponding to k = ei+ej with i ≥ j is given by χ (i)+ j. We implement this procedure
in the function ex2pl(i,j) given below.

On the other hand, to know the i and j for a given index l in the vector of coefficients, one first performs a binary
search to know k such that χ (k) ≤ l < χ (k+ 1), then i = k and j = l− χ (k).

A possible pseudo code to compute the product pq of two homogeneous polynomials p and q with d variables and of
degree 1 can then be

int ex2pl(i,j): return chi(max(i,j)) + min(i,j)

void php1(d,p,q,flag,pq):
if (flag==0) for (i = 0; i < chi[d]; i++) pq[i]=0
for (i = 0; i < d; i++) for (j = 0; j < d; j++)
pq[ex2pl(i,j)]+= p[i] * q[j]

Once the product of multivariate polynomials of degree 2 is clear, the other elementary operations such as division,
power, trigonometric operations and hyperbolic trigonometric operations can be derived in a recurrence manner, see [29].
For instance, the division of r(x) = p(x)/q(x) has the following terms

r0 =
p0

q0
,

rk =
pk − r0qk

q0
, |k| = 1 ,

rk =
1

q0

[
pk − r0qk −

(∑

|j|=1
qjx

j

)(∑

|j|=1
rjx

j

)

︸ ︷︷ ︸
call to the php1 function

]
, |k| = 2 .

(68)
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