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ABSTRACT
Tidal dissipation due to turbulent viscosity in the convective regions of giant stars plays an important role in shaping the orbits
of pre-common-envelope systems. Such systems are possible sources of transients and close compact binary systems that will
eventually merge and produce detectable gravitational wave signals. Most previous studies of the onset of common envelope
episodes have focused on circular orbits and synchronously rotating donor stars under the assumption that tidal dissipation
can quickly spin-up the primary and circularize the orbit before the binary reaches Roche lobe overflow (RLO). We test this
assumption by coupling numerical models of the post-main-sequence stellar evolution of massive stars with the model for tidal
dissipation in convective envelopes developed in Vick & Lai – a tidal model that is accurate even for highly eccentric orbits
with small pericentre distances. We find that, in many cases, tidal dissipation does not circularize the orbit before RLO. For a
10 M� (15 M�) primary star interacting with a 1.4 M� companion, systems with pericentre distances within 3 au (6 au) when the
primary leaves the main sequence will retain the initial orbital eccentricity when the primary grows to the Roche radius. Even in
systems that tidally circularize before RLO, the donor star may be rotating subsynchronously at the onset of mass transfer. Our
results demonstrate that some possible precursors to double neutron star systems are likely eccentric at the Roche radius. The
effects of pre-common-envelope eccentricity on the resulting compact binary merit further study.
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1 INTRODUCTION

Common envelope phases occur in binary systems when one star
evolves and grows in radius such that it impinges on the orbit of
its companion. As the two stellar cores become subsumed within
a shared envelope, they spiral closer under the influence of drag
forces (Paczynski 1976). Thus, common envelope phases represent
a brief but transformative episode in the evolution of many binary or
multiple stellar systems (for reviews, see Iben & Livio 1993; Taam &
Sandquist 2000; Ivanova et al. 2013; De Marco & Izzard 2017). In
transforming wide binaries into much more compact ones, common
envelope phases are thought to be a crucial element in the assembly of
compact binaries that merge and produce gravitational wave sources
(e.g. Taam & Sandquist 2000; Belczynski, Kalogera & Bulik 2002;
Kalogera et al. 2007; Belczynski et al. 2008; Dominik et al. 2012;
Ivanova et al. 2013).

As recent work has focused on the common envelope phases that
may lead to the formation of merging compact object binaries, it
has become clear that some of the details of massive-star common
envelope phases may be different from those in the previously
emphasized lower-mass systems (as described in the reviews of
Taam & Sandquist 2000; Ivanova et al. 2013). In particular, Kruckow
et al. (2016) and Klencki et al. (2020) have studied pre-common-
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envelope tar structures, with a focus on determining the binding
energy of their envelopes, and Vigna-Gómez et al. (2020) have
performed a binary population synthesis study of all the common
envelope phases that lead to merging double neutron star systems
within the COMPAS suite (Stevenson et al. 2017; Vigna-Gómez
et al. 2018).

This focus on massive-star evolution in close binaries has revealed
the significance of tidal interactions in shaping these objects (e.g.
Kushnir et al. 2016). In particular, in pre-common-envelope systems,
as the giant star evolves and grows in radius, there will be a period
of time during which strong tides are active followed by eventual
Roche lobe overflow (RLO). In the massive-star progenitors of
merging compact objects, it is not clear that tides will have sufficient
time to act to always synchronize and circularize a system to the
classic Roche lobe geometry prior to RLO (Vigna-Gómez et al.
2020). This paper applies new, more sophisticated models of tidal
dissipation in giant star convective envelopes to study the impact of
pre-common-envelope tidal evolution. Our results, therefore, are of
critical importance, and set the initial conditions for the subsequent
common envelope or mass-transferring interaction.

There are two tidal dissipation mechanisms that can be important
in a massive giant star with a radiative core and convective envelope.
The first is turbulent viscosity, where the shearing of tidally driven
fluid oscillations (fundamental and inertial modes) in the envelope is
dissipated as heat (e.g. Zahn 1977; Goodman & Oh 1997; Ogilvie &
Lin 2007). The other is radiative dissipation in the stellar interior
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(e.g. Goodman & Dickson 1998; Savonije & Witte 2002). This
second mechanism is important when gravity waves are excited at
the radiative–convective boundary and grow in amplitude as they
propagate inward. Eventually non-linear wave-braking dissipates all
of the energy and angular momentum carried by the in-going gravity
wave (Goodman & Dickson 1998; Barker & Ogilvie 2010, 2011;
Chernov, Papaloizou & Ivanov 2013; Ivanov, Papaloizou & Chernov
2013; Bolmont & Mathis 2016; Weinberg et al. 2017; Sun et al.
2018). Even when gravity waves do not become non-linear, radiative
damping can cause significant dissipation if the spectrum of g- modes
in the core is very dense, and waves that are excited at the radiative–
convective boundary damp before reaching the centre (Ivanov et al.
2013; Chernov, Ivanov & Papaloizou 2017). In the absence of these
effects, dissipation in the convective envelope drives the orbital and
spin evolution.

A large body of work has focused on orbital circularization due to
tidal dissipation in the convective envelope of a star of a close binary.
An analytical treatment for tidal dissipation via turbulent viscosity
was first developed by Zahn (1977). Verbunt & Phinney (1995)
presented a similar expression for the tidal circularization time-scale
for nearly circular binaries. The weak friction approximation (Hut
1981) can be used more broadly to study the tidal evolution of binaries
with any eccentricity (as in Hurley, Tout & Pols 2002). This model
assumes that the star is tidally deformed into a static shape that lags
behind the equipotential surface – an approximation that holds when
the tidal forcing frequency, ω, is much lower than the dynamical
frequency of the star ∼ (GM1/R

3
1)−1/2 (for a star with mass M1 and

radius R1).
The weak friction model also assumes that turbulent viscosity is

equally effective at dissipating energy for all tidal forcing frequen-
cies. In reality, the turbulent viscosity is reduced when the time-
scale for tidal forcing ∼ω−1 is shorter than the turnover time for the
largest convective eddies in the star τ eddy. Two conflicting scaling
laws have been suggested for the form of the viscosity reduction.
Zahn (1989) proposed the linear reduction 1/(1 + ωτ eddy), while
Goldreich & Nicholson (1977) favoured 1/[1 + (ωτ eddy)2]. The latter
is the standard result for a damped harmonic oscillator with frequency
ω and damping time τ eddy. Ivanov & Papaloizou (2004) used a normal
mode decomposition to explore the effects of viscosity reduction
with the general form 1/[1 + (ωτ eddy)p], and found that when p
> 1, the binary could evolve through multiple resonances between
the stellar rotation period and the orbital period. Recently, numerical
and analytical studies have generally supported a quadratic reduction
factor (Penev & Sasselov 2011; Penev, Barranco & Sasselov 2011;
Ogilvie & Lesur 2012; Duguid, Barker & Jones 2020a), although
numerical simulations from Vidal & Barker (2020) and Duguid,
Barker & Jones (2020b) suggest that both scaling relations may be
correct in different regimes of the tidal forcing frequency.

Vick & Lai (2020, hereafter VL20) presented a general formalism
for tidal evolution in an eccentric binary. The theory can be applied to
various types of binaries where viscous dissipation in the convection
zone dominates the tidal evolution. The formalism uses a normal
mode decomposition, including the effect of stellar rotation (see also
Ivanov & Papaloizou 2004, who adopted an approximate treatment
of rotation in mode decomposition). It allows for general tidal
frequencies (compared to the dynamical frequency of the star)
and accounts for frequency-dependent damping of tidally driven
oscillations. Although, for a giant star in a close binary, viscosity
reduction typically is not important. VL20 shows that the rate of tidal
circularization can be orders of magnitude faster than predicted by
the weak friction approximation for highly eccentric binaries where
the ratio of the pericentre distance rp to stellar radius is of order a few.

In this paper, we study the coupled roles of stellar evolution
and tidal dissipation in shaping pre-common-envelope systems by
applying the tidal theory of VL20. In Section 2, we introduce the
tools that we use to tackle this problem – MESA generated stellar
evolution models (Paxton et al. 2011) and the formalism from VL20
– and discuss how we couple the two. In Section 3, we present
and categorize the outcomes of concurrent stellar evolution and tidal
orbital circularization. We focus on the orbital eccentricity and the
primary star rotation rate at the onset of RLO. We also explore how
tidal dissipation affects the distribution of those properties at the
onset of binary mass transfer given an initial distribution of orbital
parameters when the primary star leaves the main sequence. We
discuss the limitations and significance of our results in Section 4,
and we summarize and conclude in Section 5.

2 THEORY OF TIDAL DISSIPATION IN
ECCENTRIC BINARIES

In order to understand the coupled roles of stellar evolution and tidal
dissipation, we need (i) a time-dependent model of the structure of the
massive star after it has left the main sequence; (ii) an understanding
of how the time-scale for tidal dissipation changes with the stellar
structure; and (iii) a framework for calculating the tidal energy and
angular momentum transfer rates given the current orbit and tidal
dissipation rate.

The weak friction model (Alexander 1973; Hut 1981) is commonly
used to describe equilibrium tidal interactions. In this model, the
gravitational potential of a companion raises a tidal bulge on the
primary star. When the binary orbit is eccentric or the primary is not
synchronously rotating, the bulge lags behind the axis connecting
the two bodies. The magnitude of the lag angle depends on the rate
at which the star can dissipate the energy in tidally excited fluid
motion. The weak friction theory assumes that the lag angle is the
tidal frequency multiplied by a constant lag time. This constant-lag-
time assumption is usually not correct.

When the primary star evolves off of the main sequence, the
binary separation is large compared to the stellar radius, and tidal
interactions are weak. However, as the stellar radius expands, the
primary experiences a stronger tidal potential from its companion.
Additionally, the time-scale for strong tidal interactions in the binary
(roughly the duration of a pericentre passage) begins to approach
the dynamical time (R3

1/GM1)1/2 of the giant star. Under these
conditions, the standard weak friction model of tides breaks down,
and can severely underestimate the strength of tidal interactions.
We use the theory of dissipation in a giant star in an eccentric orbit
developed in VL20 to study how stellar evolution and tidal dissipation
jointly shape the orbital evolution of the binary.

2.1 Stellar models

We have used version 11701 of the MESA stellar evolution code to
calculate the structural evolution of 10 and 15 M� stars from the end
of the main sequence to carbon depletion (Paxton et al. 2011). We
assumed an initial metallicity of Z = Z� = 0.0142 (Asplund et al.
2009), and used the ‘Dutch’ wind scheme. The inlist to reproduce
our calculations will be made available at the MESA marketplace
(http://cococubed.asu.edu/mesa market/inlists.html). The result is a
suite of stellar profiles at different time stamps in the star’s evolution.
The time interval between profiles ranges from 10 yr (during periods
of rapid radius expansion) to 5 × 105 yr when the stellar structure is
relatively static.
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At each time-step, we used the code GYRE to calculate the
eigenfrequency and mode profile of the stellar l = 2 f-mode for
a given MESA model assuming no rotation (Townsend & Teitler
2013). We implemented a vacuum outer boundary and a zero radial
displacement inner boundary. For models with a convective envelope,
the transition between the core and envelope was used as the location
of the inner boundary. We used the condition on the convective
velocity vc(r) > 103 cm s−1 to identify rc, the start of the envelope.
Note that, after a deep convective envelope has developed, rc/R1

� 1. For models from earlier in the star’s evolution, before the
development of deep convection, we chose an inner boundary just
outside of the composition transition from predominantly hydrogen
to predominantly helium.

2.2 Calculation of the tidal dissipation rate in a giant star

As the primary M1 transitions to core helium burning, the star
develops a deep convective envelope. Within this outer region,
turbulent viscosity can dissipate tidally excited fluid motion, sapping
energy, and angular momentum from the orbit.

2.2.1 Order of magnitude calculation

A simple estimate of the tidal circularization time for a nearly
circular binary is provided in, e.g. Zahn (1977), Phinney (1992),
and Verbunt & Phinney (1995). Adopting a typical value ν0 for the
viscosity in the convective envelope, the damping rate of a tidally
forced oscillation is

γest ∼ Menv

M1

( ν0

H 2

)
∼ Menv

M1

(
L

MenvR
2
1

)1/3

, (1)

where H is the pressure scale height (and the length-scale of the
largest convective eddies), Menv is the mass of the envelope, and L is
the convective luminosity. We have used ν0 ∼ H (L/4πρR2

1)1/3 and
Menv ∼ 4πρH 3, where ρ is the average density in the convective
envelope. For a nearly circular orbit, this damping rate is related to
the binary circularization time τ circ via,

tcirc ≡
∣∣∣ e
ė

∣∣∣ ∼ 1

γest

(
M1

M2

)(
M1

Mt

)(
a

R1

)8

, (2)

with M2 the mass of the companion, Mt = M1 + M2 and semimajor
axis a (see Phinney 1992).

With a given stellar profile, we can calculate the damping rate γ f

for a forced f-mode oscillation more precisely. The response of M1

to the tidal potential of M2 is dominated by the quadrupolar l = 2
terms (if the binary is sufficiently separated). In general, the damping
rate γ f depends on the tidal forcing frequency ω [see equation 19
of VL20]. When the turnover time for the largest convective eddies
is shorter than the time-scale for tidal forcing, the viscosity in the
envelope is not reduced. In a red giant star, the eddy turnover time in
the convective envelope is typically short relative to the tidal forcing
period, and this condition is satisfied while ω � (GM1R

−3
1 )1/2 (see

the top panel of fig. 2 in VL20).

2.2.2 Weak friction approximation and nearly circular orbits

When the viscous damping rate in the envelope is independent of the
tidal forcing frequency, the tidal evolution equations can be framed
in terms of the stellar tidal Love number and lag time. If the tidal
forcing period is much longer than the dynamical time of the star,
this treatment is equivalent to the weak friction approximation. For

an l = 2 f-mode oscillation in a slowly rotating body, the real part of
the tidal Love number is,

k2 � 4π

5

(
Qf

ω̄f

)2

, (3)

where Qf is an overlap integral defined in equation (12) of VL20,
normalized such that G = M1 = R1 = 1, and ωf ≡ ω̄f (GM1/R

3
1)1/2

is the f-mode frequency. The tidal lag time is given by,

τ ≡ γf

ω2
f

, (4)

with γ f the damping rate of the l = 2 f-mode due to turbulent
viscosity (equation 19 of VL20).

Under the condition that the tidal forcing frequency ω � ωf, we
can express the circularization rate for a synchronously rotating star
in a nearly circular binary as (Darwin 1880; Alexander 1973; Hut
1981)

ė

e
= −21

2
k2τ	2 M2

M1

(
R1

a

)5

, (5)

where 	 = (GMt/a3)1/2 is the orbital frequency. By comparing
equation (5) to equation (2), we find that the effective damping rate
from tidal dissipation is,

γeff ≡ 21

2
k2τ

(
GM1

R3
1

)
. (6)

2.2.3 Theory of tides and dissipation in an eccentric binary

VL20 developed a general formalism for the treatment of tidal
dissipation in the convective envelope of a star in an eccentric binary.
For an eccentric orbit, the quadrupolar tidal potential experienced by
the primary star M1 from the companion M2 can be decomposed
into a sum over many forcing frequencies. The tidal response of M1

is a weighted sum of the response to each frequency term in the
tidal potential. Using this formalism, VL20 derived expressions for
the tidal torque and energy transfer rate (see their equations 43, 44,
51, and 52). We use their results in the orbital evolution equations
presented in the following subsection (Section 2.3).

VL20 allowed for viscosity reduction when the tidal forcing time
is shorter than the turnover time for convective eddies in the primary
star. For a giant star, the tidal forcing time is often longer than
the eddy turnover time, and viscosity reduction is negligible. Thus
γ f is a constant for a given stellar model. In this case, VL20 also
demonstrated that their treatment yields equivalent orbital evolution
equations to the weak friction approximation (equations 9–11 of Hut
1981] in the limit that ω � ωf. However, for highly eccentric orbits
with small pericentre distances rp, the tidal forcing frequency ω can
be comparable to ωf. Under these conditions, VL20 found that the
torque and energy transfer rate can be orders of magnitude larger
than the weak friction calculation suggests (see fig. 5 of VL20).

2.3 Coupling the stellar and orbital evolution

In order to couple the stellar evolution and orbital evolution, we use
the stellar oscillation code GYRE to calculate the properties of the f-
mode (e.g. γ f, ω̄f , and Qf). We then use spline interpolation to obtain
the stellar mass, radius, and mode properties as a function of time.

The time evolution of a, e, and 	s is given by the following
equations:

ȧ

a
= ȧ

a

∣∣
Tides

+ ȧ
a

∣∣
Wind

(7)
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	̇s

	s
= 	̇s

	s

∣∣∣
Tides

− İ
I
, (8)

ė

e
= ė

e

∣∣
Tides

, (9)

where I = ηM1R
2
1 is the moment of inertia of the primary, and the

time evolution of η,M1, andR1 is taken from the MESA stellar models.
The tidal energy transfer and torque can be combined to determine
the tidal contributions to the orbital evolution,

ȧ

a

∣∣∣∣
Tides

= − 6
td (1−e2)15/2 FE(e, 	s/	, rp/R1), (10)

	̇s

	s

∣∣∣∣
Tides

= 3
td (1−e2)6

(
μa2	

I	s

)
FT (e, 	s/	, rp/R1), (11)

ė

e

∣∣∣∣
Tides

= − 27
td (1−e2)13/2 Fecc(e, 	s/	, rp/R1), (12)

where μ = M1M2/Mt is the reduced mass of the binary and,

t−1
d ≡ T0

μa2
k2τ = 2

21

(
M2

M1

)(
M1 + M2

M1

)(
R1

a

)8

γeff . (13)

The dimensionless functions FE, FT, and Fecc are provided in
equations (51)–(53) of VL20. Again, we have used the frequency
independent γ f as the f-mode viscous damping rate. In the weak
friction limit, FE, FT, and Fecc can be simplified to equations (46)–
(48) of VL20.

We assume isotropic wind mass-loss, such that the wind-driven
secular time evolution of the semimajor axis is,

ȧ

a

∣∣∣∣
Wind

= −Ṁ1

Mt

, (14)

and the eccentricity is unchanged. We define the circularization time
of the binary as,

tcirc ≡
∣∣∣ e
ė

∣∣∣ . (15)

As the binary circularizes, the tidal torque will cause the star
to spin-up to the pseudo-synchronous rotation rate, where the star
experiences no net torque. In the weak friction approximation, the
pseudo-synchronous rotation rate is given by,

	ps = f2

f5(1 − e2)3/2
	, (16)

For a highly eccentric orbit, the true pseudo-synchronous rotation
rate, where 	̇s is zero, can occur at slightly faster rotation rates than
given by equation (16) (VL20). In a circular orbit, f2 and f5 are 1,
and the synchronous rotation rate is the orbital frequency.

When the binary is sufficiently close, mass transfer will become
important, and equations (10)–(12) will no longer capture the orbital
evolution. The onset of mass transfer occurs when the primary is
Roche lobe filling. A precise calculation of the Roche radius depends
on both the stellar spin and orbital eccentricity (e.g. Sepinsky,
Willems & Kalogera 2007a). For simplicity, we use a common
approximation adapted from Eggleton (1983),

rRoche = rp
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
, (17)

where rp is the pericentre distance and q = M1/M2 is the mass ratio.
For a binary with a companion of mass M2 = 1.4 M�, the primary
fills its Roche lobe when rp ≈ 1.8R1 for M1 = 10 M� and when rp

≈ 1.7R1 for M1 = 15 M�.

3 RESULTS

3.1 Tidal dissipation rate as a function of stellar evolution

We have used the MESA-generated stellar models introduced in
Section 2.3 to understand the tidal dissipation time-scale of a star
after it leaves the main sequence.

Fig. 1 displays changes in the stellar radius and structure of the
10 and 15 M� stellar models as they evolve from core hydrogen
burning to carbon depletion (at which point the collapse of the core
is imminent). The top panel shows that the bulk of the radius evolution
occurs in two bursts. On the giant branch, the radius expands by a
factor of ∼40 for the 10 M� model and ∼60 for the 15 M� model. As
the radius expands, the structure of the star changes significantly. The
middle panels of Fig. 1 show that the stars develop deep convective
envelopes during the first episode of radius expansion. Once the
envelope has developed, turbulent viscosity in the envelope is the
most efficient mechanism for tidal dissipation in the star. The bottom
panels of Fig. 1 display the damping rate from viscous dissipation,
calculated via equation (6) together with equations (3) and (4) and γ f

from equation (19) of VL20. This calculation assumes a significant
convection zone within the star, and likely does not capture the tidal
dissipation rate of the star before the envelope begins to develop. We
can compare the more precise calculation of γ eff with the convenient
estimate from Zahn (1975), Phinney (1992), and Verbunt & Phinney
(1995) provided in equation (1), and find that, while γ eff is smaller
than γ est, they agree within a factor of a few.

For many binaries, the timing of when deep convection of the outer
envelope develops in the primary will determine whether tides can
play an important role in circularizing the orbit before the onset of
RLO. Before the convective envelope forms, tidal dissipation cannot
circularize the orbit efficiently because the time-scale for viscous
dissipation is longer than the stellar evolution time-scale. Fig. 2
provides a zoom-in of the first episode of radius expansion in Fig. 1.
The vertical black lines indicate the development of a significant
convective envelope with Menv > 0.1M1. For the 10 M� (15 M�)
stellar model, this criterion is met when the radius has expanded by a
factor of ∼18 (∼26). Following helium ignition in the core, the stellar
radius will further expand to ∼43 (∼66) times its value at the end of
the main sequence over the course of about 2 × 105 yr (2 × 104 yr).

3.2 Tidal circularization time-scale and the binary orbit

The tidal circularization time-scale depends not only on the stellar
structure, but also on the binary orbital parameters and the spin
rate of the primary. Fig. 3 shows the tidal circularization time tcirc

(see equations 12 and 15) as a function of the orbital eccentricity
for a variety of pericentre values. The time-scale is calculated
for a non-rotating 10 M� primary that has already ascended the
giant branch and developed deep convection in a binary with a
1.4 M� companion. We have used γ eff = 0.4 yr−1, and set the f-
mode frequency and damping rate to ωf = 1.75(GM1/R

3
1)1/2 and

γf = 0.04(GM1/R
3
1)1/2.

The circularization time depends very strongly on rp/R. For a
given rp, this time-scale is shortest for small orbital eccentricities. In
Fig. 3, the circularization time-scales for the two smallest pericentre
distances, rp/R1 = 1.5 and rp/R1 = 2.0, have a complicated depen-
dence on the orbital eccentricity. This arises due to enhanced tidal
dissipation at resonances between the orbital period and the f-mode
frequency in the inertial frame.

Fig. 3 also displays the standard weak friction calculation of the
circularization time-scale tcirc,WF in the top panel (dashed lines). The
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Figure 1. The evolution of the stellar structure and the effective tidal damping rate (from viscous dissipation in the convective envelope) for a M1 = 10 M�
(left) and M1 = 15 M� (right) MESA-generated stellar model. The top panels show the evolution of the radius. The middle panels illustrate the convective regions
in the stars. The bottom panels show the tidal damping rates for the stellar models calculated with equation (6), together with equations (3) and (4) and compared
with the estimate from equation (1).

Figure 2. The same as Fig. 1 but zoomed-in on the first episode of radius expansion. The vertical black lines mark the development of a convective envelope
with Menv > 0.1M1. The viscous dissipation rates shown in the bottom panels likely do not capture tidal dissipation to the left of the black line before the
development of the envelope.

bottom panel shows the ratio of tcirc to tcirc,WF. The weak friction time-
scale is given by equation (12), but calculated with the dimensionless
functions FT and FE from equations (46) and (47) of VL20. The
weak friction approximation is valid when the dominant tidal forcing
frequency, of order the pericentre frequency 	p = 	(1 + e)1/2/(1
− e)3/2, is much slower than the f-mode frequency, which is of
order (GM1/R

3
1)1/2. At large rp/R1 and small eccentricity, where

	p � (GM1/R
3
1)1/2, the two time-scales tcirc and tcirc,WF are in good

agreement. However, for larger e and smaller rp the weak friction
calculation overestimates the circularization time-scale by a few
orders of magnitude.

As the radius of the primary expands, rp/R1 rapidly decreases.
Fig. 4 shows tcirc for the 10 M� stellar model assuming a fixed orbit
with e = 0.8 and a given pericentre distances (rp = 1.9, 3.8, or
5.7 au), and a non-rotating but evolving primary. The convective
envelope does not develop until a little after 2.6 × 107 yr (indicated
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Figure 3. Circularization time-scale (|e/ė|) from equation (12) at a variety
of pericentre distances for a binary with a 1.4 M� companion as a function
of eccentricity. The time-scales were calculated with γ eff = 0.4 yr−1,
ωf = 1.75(GM1/R

3
1)1/2, and γf = 0.04(GM1/R

3
1)1/2. The bottom panel

shows the ratio of the time-scale to the weak friction time-scale, given by
equation (12) with Fecc from equation (48) of VL20. As rp increases, the
ratio asymptotes to 1.

with a dotted black line in Fig. 4). The dashed black red in the bottom
panel is the Roche limit. The small black diamond indicates the onset
of RLO for the rp = 1.9 au binary. In this system, the star reaches
rRoche within ∼2 × 103 yr of developing a convective envelope.
This time-scale is faster than tcirc for the binary (before crossing the
red dashed line). Although the tidal circularization time is shortest
for small rp/R, tight binaries also have the shortest time-scales for
reaching RLO. Systems where rp is too small will not have time to
tidally circularize before the primary grows to rRoche.

3.3 Outcomes of coupled stellar and orbital evolution

Next, we present the results of coupled stellar and orbital evolution
for binaries using the 10 and 15 M� stellar models and the method
described in Section 2.3. We assume a compact companion with
M2 = 1.4 M�. Fig. 5 highlights three possible outcomes of coupled
orbital and stellar evolution. These are

(i) a binary that does not circularize before reaching the Roche-
radius;

(ii) a binary that is tidally circularized before the primary evolves
to R1 = rRoche; and

(iii) a system that is too wide to undergo RLO.

In each case, the initial orbital eccentricity is e0 = 0.8 and the
initial stellar rotation period is 1 d. This choice of rotation period is
motivated by the observation that the average surface rotation rate

Figure 4. Top panel: The circularization time-scale (τcirc = |e/ė|) for a binary with M = 10 M� primary, a 1.4 M� companion, and initial eccentricity e0 =
0.8. Each solid line shows the timescale calculated via equations (12) and (15), and dashed lines of the same colour show the weak friction result for comparison.
The black dotted line indicates when the convective envelope develops (Menv > 0.1M1). This calculation considers only changes in the stellar structure and
radius. Bottom panel: The pericentre distance in units of the evolving stellar radius. The horizontal red dashed line is the condition for RLO.
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Tidal dissipation in massive binary star systems 5575

Figure 5. The orbital evolution of binary with a 10 M� primary star, initial eccentricity e0 = 0.8, and the same initial pericentre values rp,0 as in Fig. 4. The
cases are numbered according to the outcomes listed at the start of Section 3.3. The top two panels are a and e. The third panel is rp/R1, with the Roche radius
rp = rRoche indicated by the red dashed line. The bottom panel shows the rotation period of the star (solid lines) and the weak friction pseudo-synchronous
rotation rate from equation (16) (dashed lines). The diamonds in each panel indicate when a given binary reaches the criterion for RLO.

of B stars is ∼ 25 per cent of breakup (Abt, Levato & Grosso 2002).
The three different values of the initial pericentre separation rp,0 are
the same as those used in Fig. 4.

For the smallest value of rp,0, the orbit does not circularize before
the star grows to R1 = rRoche. There is not enough time between
the development of the convective envelope and reaching the Roche
radius for tidal dissipation in the envelope to circularize the orbit.
The black diamonds in Fig. 5 mark the binary parameters and stellar
rotation rate when R1 = rRoche. At this point the semimajor axis and
eccentricity are essentially unchanged, while the rotation rate has
slowed to conserve the spin angular momentum of the star as the
radius expands.

In the intermediate case where e0 = 0.8 and rp,0 = 70R1,0, the orbit
circularizes significantly as the primary climbs the giant branch.
The orbit continues circularizing when the primary ascends the
asymptotic branch. In this case, the binary is nearly circular when

R1 = rRoche. The rotation period of the primary is slightly longer
than the predicted pseudo-synchronous rate from the weak friction
theory. As the star expands, its rotation slows down. This effect
is in competition with the tidal torque, which acts to spin-up the
convective envelope. The resulting stellar rotation rate at R1 = rRoche

is ∼1.5 times slower than the orbital frequency (which is the expected
pseudo-synchronous rotation rate for a nearly circular orbit).

In the final case, displayed as a pink line in Fig. 5, the initial
pericentre distance is quite large. The binary cannot reach the
criterion for RLO within the lifetime of the primary star. If we take
the Roche radius as a hard limit for mass transfer, this binary is too
widely separated to undergo a common envelope episode.

With an understanding of the main categories of outcomes, we can
survey results from a range of orbital configurations. Figs 6 and 7
display the binary eccentricity at the onset of RLO, eRoche, for a
variety of ‘initial’ orbital parameters when the primary star evolves
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5576 M. Vick et al.

Figure 6. Left: Eccentricity at the Roche radius for a 10 M� primary star with a 1.4 M� companion (rp = 1.8R1). Right: The ratio of the stellar rotation rate
	s to the weak friction pseudo-synchronous rate 	ps (see equation 16). Both panels are shown in the parameter space of the initial (main-sequence) pericentre
distance and eccentricity. Systems above the solid black line are too wide to merge within the lifetime of the primary star. Below the dashed white line, rp,0 is
too small for the star to develop a convective envelope before rp = rRoche.

Figure 7. Same as in Fig. 6 but for the 15 M� stellar model.

off of the main sequence. We have assumed that stellar rotation
period at this point is 1 d, but found that altering the initial spin has
a negligible effect on eRoche. For the 10 M� stellar model, binaries
with rp,0 � 3 au on the main sequence do not circularize before
reaching the Roche radius. The same is true of binaries with rp,0

� 6 au for the 15 M� stellar model. The orbital evolution of these
binaries looks something like the black line from Fig. 5. Though
the time-scale for tidal circularization can become very short as the
stellar radius expands, it is still longer than the time between when the
primary develops a convective envelope and when the radius grows
to the Roche limit. In some cases, the star cannot even develop a
convective envelope before mass transfer begins (systems below the
white dashed line in Figs 6 and 7). These binaries retain their initial
eccentricity from before the primary leaves the main sequence.

In contrast, many binaries with an initial separation greater than
∼4 au for a 10 M� primary or ∼7 au for M1 = 15 M� circularize
completely before RLO begins. In these binaries, the time-scale
between the onset of deep convection in the primary and radius
growth to R1 = rRoche is longer than the tidal circularization time-

scale. The green line in Fig. 5 is an example of a system in this
category.

Some binaries with large pericentre distances and high eccentric-
ities will never undergo RLO. In Figs 6 and 7, these systems lie
above the solid black lines. They have the longest time-scales for
tidal circularization.

Figs 6 and 7 also display the rotation rate of the primary at
the Roche radius as a fraction of the pseudo-synchronous rotation
rate (see equation 16). Before the primary develops a convective
envelope, tides are inefficient at transferring angular momentum
between the orbit and the star. The spin angular momentum of the star
is effectively conserved, so the stellar rotation rate slows as the radius
expands. For the 10 M� (15 M�) stellar model, in a binary with rp,0

� 3 au (6 au) the stellar rotation rate at the Roche radius is given
by 	s = (k0M1,0R

2
1,0)	s,0/(kM1R

2
1), where the 0 subscript indicates

the value when the star leaves the main sequence. When the star
develops a convective envelope, its structure changes significantly as
does the moment of inertia constant k. This change accounts for the
sharp transition in the stellar rotation rate across the white dashed
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Tidal dissipation in massive binary star systems 5577

Figure 8. The cumulative distribution function of the binary eccentricities at the Roche radius for the 10 M� stellar model (left) and 15 M� stellar model (right)
given a thermal initial eccentricity distribution. The light pink line is the eccentricity distribution of binaries for which rRoche is smaller than the stellar radius at
which the star develops a convective envelope (Menv > 0.1M1).

line in the right-hand panels of Figs 6 and 7. Both Figs 6 and 7 show
a light green curve in e0 and rp,0 below the black line that separates
wide binaries (though this feature is far more obvious in Fig. 6).
Systems above this ridge are nearly pseudo-synchronous at the onset
of RLO. Below the ridge, the primary star grows to the Roche radius
while on the giant branch. Above, the primary reaches R1 = rRoche

on the asymptotic branch.
When rp,0 is slightly larger, tidal dissipation can alter the orbit be-

foreR1 = rRoche, and the tidal torque spins up the star to a rotation rate
of order the orbital frequency. Note that this effect acts in opposition
to the radius expansion, which decreases the stellar spin rate.

3.4 Tidal circularization and the eccentricity distribution of
pre-common-envelope stellar binaries

We use the results from the Section 3.3 to understand how tidal
dissipation should affect the distribution of binary eccentricities and
stellar rotation rates at the onset of RLO.

For simplicity, we begin with a thermal distribution in eccentricity
(Jeans 1919) and a log-uniform distribution in semimajor axis (Öpik
1924) (i.e. e2 is drawn uniformly from [0, 1] and log10(a/au) from
[−1, 3]). We then reject any set of initial conditions with an
eccentricity and pericentre outside of the range spanned by the grid
of results in Figs 6 and 7. This provides an initial distribution of rp,0

and e within the ranges 7.5R1,0 < rp,0 < 122.5R1,0 and 0.025 < e <

0.925. The initial eccentricity distribution is shown as the blue line in
Fig. 8. We then group the initial orbital parameters into bins of width
0.05 in eccentricity and 5R1,0 in pericentre distance that correspond
to the grid in Figs 6 and 7. We use the corresponding value of eRoche

for each bin in Fig. 6 or 7 to create a distribution of eccentricities
at the Roche radius. Binaries that never reach RLO are removed
from both the initial eccentricity distribution and the Roche radius
distribution. The resulting cumulative distribution functions for the
two stellar models are shown as the light pink lines in Fig. 8. The
dark red line shows the contribution to the eccentricity distribution
from binaries where rp,0 is too small for the primary to develop a
convective envelope before R1 = rRoche.

For both the 10 and 15 M� stellar models, the distribution of
eRoche is shifted towards lower eccentricities. For our choice of initial
distribution of binary properties, eRoche < 0.1 for ∼ 13 per cent

of systems that reach RLO for the 10 M� star (∼ 4 per cent for
the 15 M� star). However, higher values of eRoche still contribute
significantly to the distribution. This is consistent with the fact that
many binaries will not have time to circularize before reaching the
RLO criterion.

In Fig. 9, we provide the distribution of rotation rates for binaries
that have circularized (eRoche < 0.01) before the primary reaches the
Roche radius. This distribution was obtained in the same way as for
eRoche but by using results for 	s rather than the orbital eccentricity.
In the top row, we assume an initial stellar rotation period of Ps,0 =
1 d when the star leaves the main sequence. In the bottom row, Ps,0 =
10 d. Note that almost all systems are rotating subsynchronously
(i.e. 	s/	orb < 1) at rp = rRoche. This is true regardless of the initial
rotation period of the star. The subsynchronous rotation rates can be
explained by competition between the tidal torque spinning up the
star, and stellar expansion spinning the star down. Our results suggest
that many giant stars may be rotating more slowly than expected at
the onset of binary mass transfer.

4 DISCUSSION

Next, we discuss some caveats associated with our analysis and the
implications of our results for common envelope phases and their
outcomes.

4.1 Possible limitations

Throughout this paper, we focus on dissipation through turbulent
viscosity in the convective envelope. In particular we use a linear
treatment, and consider only the dissipation of the tidally excited
l = 2 fundamental mode. This formalism is most accurate when
the binary separation is larger than a few times the stellar radius
and when the primary star is slowly rotating. As the binary
separation decreases (and becomes less than ∼2R1), higher degree
fundamental modes contribute more and more significantly to
the tidal response of the star. When the binary orbital period is
resonant with a fundamental mode period, these higher degree
oscillations can dominate the tidal response of the star (MacLeod
et al. 2019), resulting in enhanced tidal dissipation. Including
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5578 M. Vick et al.

Figure 9. A histogram of the rotation rate as a fraction of the orbital frequency for systems with an eccentricity at the Roche radius of eRoche < 0.01. The
left-hand and right-hand panels show the rotation rate for the M1 = 10 M� and M1 = 15 M� stellar models, respectively. The top and bottom panels show
results for an initial rotation period of 1 and 10 d, respectively.

f-modes with higher l in our calculation would likely decrease the
tidal circularization time at small orbital separations.

We have not included the contribution from inertial modes in our
study of tidal dissipation in a giant star. Inertial modes are restored
by the Coriolis force, and can be excited when the tidal forcing
frequency ω is less than 2	s (e.g. Ogilvie & Lin 2007). In a circular
orbit, the forcing frequency is 2	 − 2	s. We expect that giant
stars will be slowly rotating after expanding, and for many systems,
inertial waves will not contribute to tidal dissipation. In cases where
the tidal synchronization time is short enough that the primary is
spun-up close to 	s ∼ 	, the presence of inertial waves may result
in enhanced dissipation.

We have also ignored possible tidal dissipation within the radiative
core. This is important when ingoing gravity waves excited at the
radiative-convective boundary can damp within a group velocity
traveltime to the centre and back. In the ‘travelling wave’ regime, the
dissipation rate is given by the luminosity of the ingoing wave. The
calculation of the tidal torque from gravity waves in the radiative
core was first carried out by Goodman & Dickson (1998) and later
re-expressed in Kushnir et al. (2017). The form of the tidal torque in
Kushnir et al. (2017) reveals a strong dependence on the radius of
the core/envelope boundary, rc. The strength of the torque scales as

(rc/R1)9, where R1 is the radius of the star. In the massive giant stars
that we are considering, rc/R1 ∼ a few per cent after the convective
envelope has fully developed. In consequence, the tidal dissipation
rate from damped internal gravity waves is negligible compared to
dissipation in the envelope.

Radiative damping can also lead to significant dissipation when
gravity waves excited at the radiative-core boundary are damped
before they can travel to the centre of the star. Ivanov et al. (2013)
derived a criterion for determining when a star is in this ‘moderately
large damping’ regime. To evaluate whether this regime could apply
to our stellar models, we used the stellar oscillation code GYRE

(Townsend & Teitler 2013) to calculate the eigenfrequencies ωα

and profiles of a few g-modes for each model. We then estimated
the radiative damping rate γ rad of the modes via equation (18) of
Fuller & Lai (2012) (see also Burkart et al. 2012). We found that, for
both the 10 and 15 M� stellar models, γ rad > ωα , even for higher-
frequency g-modes that approach the dynamical frequency of the
star. This failure of the quasi-adiabatic approximation (γ rad � ωα)
implies that g-modes would not be excited in these evolved, massive
stars. In any case, because of the small size of the radiative core,
we expect these g-modes to have a negligible contribution to the net
tidal dissipation in the star.
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Tidal dissipation in massive binary star systems 5579

Our study did not include the effect of orbital decay due to
hydrodynamical drag on the neutron star as it moves through the
stellar wind. In some cases, this orbital decay could be comparable
to the orbital expansion rate due to wind-driven mass-loss, given in
equation (14). For a circular orbit with Keplerian velocity vk, we esti-
mate the drag force as F ∼ (π/2)ρwR2

BHv2
k , where ρw = Ṁ1/(4πa2)

is the wind density and RBH is the Bondi–Hoyle radius. This gives an
estimate for the ratio of the decay rates due to hydrodynamical drag
and due to the stellar wind of

f ∼ 1

4

(
RBH

a

)2
vk

vw

M1

M2
, (18)

Assuming that the wind velocity vw is a few 10s of kms, f can be
of order unity for massive star orbiting a neutron star at a few au.
The stellar mass-loss rate, Ṁ1, determines whether hydrodynamical
drag affects the orbital evolution of the neutron star. For the 10 M�
stellar model, the minimum time-scale for mass-loss during core
helium burning is M1/Ṁ1 ≈ 3 × 107 yr. In this case, neither stellar
mass-loss nor hydrodynamical drag has a large effect on the binary
orbital evolution. However, for the 15 M� stellar model, the mass-
loss time-scale reaches M1/Ṁ1 ≈ 3 × 106 yr, which suggests that
hydrodynamical drag may significantly circularize the orbit of
binaries that do not reach RLO when the stellar radius first expands.

Lastly, when the binary has reached RLO, the magnitude of
the tidal distortion can be of order ∼ 10 per cent the size of the
object (depending on the eccentricity), and we assume that mass-
loss takes over as the primary driver of subsequent orbital evolution.
Under these conditions, our formalism is not expected to remain
accurate. However, tidal dissipation may continue to play a large
role in circularizing the binary. As the binary separation continues to
decrease, the interaction between the two bodies will only become
much stronger. For instance, in Fig. 5, when we extend our calculation
beyond the Roche limit for the small separation case (the black
line), the orbit fully circularizes before rp = R1. Eventually, the tidal
distortion of the primary can no longer be treated as a perturbation,
and tidally excited oscillations will likely damp non-linearly through,
e.g. coupling between multiple oscillation modes. In cases where the
donor star is not synchronously rotating, the strong distortion of the
primary may have an interesting effect on mass transfer (e.g. as seen
in the simulations of oscillating stars in MacLeod et al. 2019).

4.2 Implications for common envelope phases

Traditionally, we have imagined that common envelope phases
largely result from unstable RLO in circular orbits (e.g. for recent
examples of simulations of the onset of common envelope phases in
circular orbits, see Ricker & Taam 2008, 2012; Nandez, Ivanova &
Lombardi 2014; Nandez & Ivanova 2016; Iaconi et al. 2017;
MacLeod, Ostriker & Stone 2018a, b; MacLeod & Loeb 2020a,
b). This assumption is likely motivated by the fact that many near-
contact binaries are largely circular, and by the simplicity associated
with the circular-orbit limit. Further, circularized orbits are likely in
common envelope systems involving lower-mass giants (e.g. Ivanova
et al. 2013; Nandez et al. 2014), because the stellar evolution time-
scale is slow compared to the tidal circularization time-scale, which
scales relatively weakly with stellar mass (as indicated, for example,
by equation 1). The population synthesis models of Vigna-Gómez
et al. (2020) and the more detailed analysis of this work, however,
indicate that in many systems involving massive donors with lower-
mass companions, the orbit does not circularize prior to the onset of
mass exchange.

This conclusion has several implications for the subsequent evolu-
tion of the system. Critically, the dynamics of eccentric mass transfer
in binary systems are an area of active study, including analytic
predictions (Sepinsky et al. 2007b, 2009, 2010; Dosopoulou &
Kalogera 2016a, b; Dosopoulou, Naoz & Kalogera 2017; Hamers &
Dosopoulou 2019) and gas dynamical modelling (Church et al. 2009;
Lajoie & Sills 2011a, b; Staff et al. 2016; Bobrick, Davies & Church
2017). In particular, the mass lost from the donor during each periapse
passage and the angular momentum imparted to it determine the
orbital evolution. It remains unclear whether systems are expected
to circularize following the onset of mass removal from the donor,
or remain eccentric as the interaction proceeds. Because of these
modifications in mass and angular momentum exchange, it is very
likely that the binary eccentricity will affect the subsequent stability
of mass exchange and thus determine whether or not the binary will
undergo a common envelope phase.

The outcomes of common envelope phases may depend on the
initial dynamics and eccentricity of the orbit in ways that are not yet
clear. One hydrodynamic study of a common envelope phase with an
eccentric onset has been carried out by Staff et al. (2016). In these
models, the binary typically consisted of a 3.05 M� asymptotic giant
branch donor interacting with a 1.7 M� point-mass accretor, implying
a mass ratio of approximately 0.55. The periapse was chosen such
that the donor lost on the order of 10 per cent of its own mass in
the first passage, which had eccentricities varying between 0.33 and
0.7 across the models considered. Staff et al. (2016) found that after
2–3 passages, the donor’s envelope had inflated sufficiently and the
eccentricity had decreased such that the accretor particles did not
leave the donor’s envelope. After this point, Staff et al. (2016) argued
that the ensuing common envelope phase carries qualitative similarity
to models of common envelope phases that are initialized in circular
orbits. Finally, Staff et al. (2016) noted that they are not able to
estimate how eccentricity affects the final separation of their common
envelope models, because it is limited by spatial resolution in their
simulations.

It is worth noting that many simulations of common envelope
phases that are initialized with circular orbits develop eccentricity as
the objects plunge together (for some recent examples, see Ohlmann
et al. 2016; Chamandy et al. 2018; Prust & Chang 2019). This
may be due to artificial initial conditions in which the accretor is
placed in a non-equilibrium configuration near the surface of the
donor (see fig. 4 of Iaconi et al. 2017, for example). However, the
subsequent behaviour that is observed is that this eccentricity is
either maintained or is slow to dissipate as the orbital separation
tightens (e.g. fig. 1 of Ohlmann et al. 2016). At the simplest level,
the details of these dynamics have to do with the relative drag forces
at periapse and apoapse, which depend on the density profile of the
common envelope as well as the relative velocities determined by
the eccentric orbit.

These previous simulation results are suggestive that some ec-
centricity may be maintained by a common envelope system as
it coalesces. In subsequent phases, as the orbital tightening slows,
previous modelling suggests that the remaining eccentricity may be
reduced. The implications of this eccentricity for the orbital inspiral
dynamics may lie largely in the way that the eccentric orbit impinges
upon and modifies the structure of the common envelope. This will
be particularly true if an accretion disc forms around the accretor
following each periapse passage (Staff et al. 2016), which might
supply energetic feedback to the surroundings via a disc wind or jet
(Shishkin & Soker 2020). The extreme case of this scenario, outlined
by Shishkin & Soker (2020) is that the envelope is continuously
removed and the objects never fully immerse into a shared envelope.
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In some rare systems with very high eccentricity, the neutron star may
even enter and escape a common envelope episode (Gilkis, Soker &
Kashi 2019). The neutron star accretion of envelope material and
subsequent launching of jets could result in a repeating transient,
and ultimately a ‘common envelope jets supernova’ (Soker & Gilkis
2018), a proposed explanation for supernova iPTF14hls. Even in less
extreme scenarios, as the objects spiral through a modified envelope
structure we might expect variations in the resultant dynamics and
common envelope outcome (e.g. as discussed in the context of drag
forces by Chamandy et al. 2019).

The answers to many of these questions surrounding the impor-
tance of eccentricity in common envelope phase dynamics await
future, more systematic study. Our present results indicate, however,
that the eccentric onset of common envelope phases involving
massive-star donors may be the norm, rather than a special case.

Our results may seem in tension with the population synthesis of
Hurley et al. (2002) which coupled weak tidal friction and binary
evolution, and found that most binaries will tidally circularize before
RLO. However, our investigation differs from theirs in that we focus
on the case of massive stars that reach the Roche radius during a
phase of rapid radius expansion.

4.3 Implications for the formation of gravitational-wave
mergers

The LIGO and VIRGO network of gravitational wave detectors
have demonstrated that long-posited mergers of binary black holes
and neutron stars occur with remarkable frequency in the local
Universe (LIGO Scientific Collaboration & Virgo Collaboration
2017, 2019). While there are many conclusions to draw from this
new abundance of empirical data, one of the remaining uncertainties
is how these populations of stellar remnants are assembled into tight
orbits. For both black hole and, especially, neutron star systems,
common envelope phases are one of the key possible assembly
channels (as discussed by, e.g. van den Heuvel & De Loore 1973;
Paczynski 1976; van den Heuvel & Taam 1984; Webbink 1984;
Iben & Livio 1993; Tauris 1994; Belczynski et al. 2002; Kalogera
et al. 2007; Belczynski et al. 2008; Dominik et al. 2012; Ivanova
et al. 2013). Black holes have other plausible assembly channels,
including dynamical interactions in hierarchical multiple stars or
dense clusters (e.g. Thompson 2011; Pejcha et al. 2013; Antognini
et al. 2014; Samsing, MacLeod & Ramirez-Ruiz 2014; Morscher
et al. 2015; Antonini et al. 2016; Breivik et al. 2016; Rodriguez,
Chatterjee & Rasio 2016a; Rodriguez et al. 2016b), isolated evolution
in initially close binaries (de Mink & Mandel 2016; Mandel & de
Mink 2016; Silsbee & Tremaine 2017; Hamers et al. 2018; Liu & Lai
2018; Liu & Lai 2019; Liu, Lai & Wang 2019a, b), or a combination
of cluster dynamics and binary stellar evolution (e.g. Mapelli &
Zampieri 2014; Ziosi et al. 2014; Giacobbo, Mapelli & Spera 2018;
Mapelli & Giacobbo 2018; Di Carlo et al. 2019; Mapelli et al. 2019;
Spera et al. 2019).

Enriching our understanding of the gravitational-wave source
population requires more detailed study of their assembly channels.
Recently, Belczynski et al. (2018) have compared estimated rates
for double neutron star systems from various channels (also see the
excellent review double neutron star assembly of Tauris et al. 2017).
Population models of binary neutron star mergers due to common
envelope phases have trouble reproducing the currently estimated
merger rate (LIGO Scientific Collaboration & Virgo Collaboration
2017, 2019) on the basis of the GW170817 merger (Belczynski
et al. 2018; Mapelli & Giacobbo 2018; Vigna-Gómez et al. 2018;
Andrews & Mandel 2019; Andrews et al. 2020). This alone indicates

that more detailed work is needed to understand these sources
evolutionary history.

In our modelling of tidal evolution, we have focused on pre-
common-envelope binary parameter combinations relevant to the
formation of double neutron star systems, as studied by Vigna-Gómez
et al. (2020). The interaction of giant stars with 1.4 M� companion is
representative of the evolutionary stage following the first supernova.
Such binaries inevitably have high eccentricities because of the large
supernova kicks (a few 100s of km s−1 or more; see e.g. Cordes &
Chernoff 1998; Lai, Chernoff & Cordes 2001) after the formation of
the first neutron star. The ensuing common envelope phase is thought
to be crucial to the assembly of double neutron star systems into
tight orbits (for a helpful evolutionary schematic, see the cartoons
of Vigna-Gómez et al. (2020)’s or Belczynski et al. (2018)’s fig. 1).
Our findings demonstrate that the majority of these systems will not
circularize prior to the onset of these common envelope phases.

The expected impact of pre-common-envelope eccentricity on
these common envelope phases remains uncertain, as discussed
above. It is, however, clear that these phases merit further study, with
attention to the ways in which pre-common-envelope eccentricity
may affect the post-common envelope system that emerges. These
results could then be applied to next-generation binary population
models to study the statistical impacts on the merging compact object
rate and population.

5 SUMMARY AND CONCLUSION

In this paper, we have studied how coupled stellar evolution and tidal
dissipation affect the orbital parameters of binaries with a primary
star that has left the main sequence and a compact star companion.
These systems may undergo subsequent mass transfer or common
envelope phases, and eventually form compact object binaries that
produce a gravitational wave signal as they merge. Although we
define a more general methodology, we have focused our analysis
on systems similar to those that undergo common envelope phases
leading to the formation of merging double neutron stars (Vigna-
Gómez et al. 2020).

Our analysis was performed by coupling models of evolving giant
star primaries with the tidal evolution of the eccentric binary, based
on the theory recently developed in VL20. We generated two stellar
models with MESA (one 10 and one 15 M�) to describe the stellar
radius and viscous damping rates as functions of time as the primary
star develops a convective envelope (see Section 2.2 and Figs 1 and
2). We considered a neutron star companion of mass 1.4 M�. We
then used the orbital evolution equations (10)–(12) and the time-
dependent stellar structure to calculate the binary a and e and the
stellar spin rate 	s on the way to RLO. Our tidal evolution model
is accurate even for close pericentre distances and highly eccentric
orbits, going beyond the commonly used weak friction tidal model
that underestimates the strength of dissipation (VL20 and Fig. 3).
Our main findings are as follows:

(i) We identify three main outcomes of the coupled stellar and
orbital evolution, which are highlighted in Fig. 5:

(a) The binary does not circularize before the primary over-
flows its Roche lobe.

(b) The binary completely circularizes before the onset of
RLO.

(c) The binary is too wide to undergo RLO.

The initial properties of the binary orbital configuration largely
determine which of these outcomes arises.
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(ii) We find that orbital eccentricity at RLO depends very sen-
sitively on the initial pericentre distance, rp,0 and eccentricity e0,
before the primary leaves the main sequence. For the 10 M� (15 M�)
primaries interacting with 1.4 M� companions, systems with rp,0

� 3 au (6 au) retain their initial eccentricity at the onset of RLO
(Section 3.3 and Figs 6 and 7).

(iii) For 10 M� (15 M�) plus 1.4 M� binaries that eventually
overflow their Roche lobes, given an initially thermal eccentricity dis-
tribution and a log-uniform semimajor axis distribution, 75 per cent
(63 per cent) of the systems overflow their Roche lobes before a
convective envelope develops at eccentricities similar to their initial
eccentricity values, 12 per cent (33 per cent) develop a convective
envelope but overflow their Roche lobes at e > 0.1, and 13 per cent
(4 per cent) develop a convective envelope and circularize prior to
RLO at e < 0.1 (see Figs 6–8).

(iv) For systems that do not develop a convective envelope prior
to RLO, tidal dissipation has little effect on the stellar spin, and these
donors are likely to spin at a rate similar to the initial value at the end
of the main sequence (Figs 6 and 7). For systems that do develop a
convective envelope prior to RLO, the stellar spin slows significantly
due to structural changes in the star. In general, the spin rate at
RLO correlates with the degree of tidal circularization. For systems
that do not circularize, tides do not have a significant effect on the
stellar spin rate; these systems rotate significantly subsynchronously
at RLO (Figs 6 and 7). In binaries that do tidally circularize, the
stellar rotation period approaches synchronicity, but remains longer
than the orbital period, typically by a factor of a few because tidal
dissipation and stellar evolution are acting at similar rates (Figs 6, 7,
and 9).

Our results suggest that a detailed analysis of the interaction of
tides and stellar evolution is needed in systems containing evolving
massive stars because the evolutionary (for example radius growth)
time-scale is similar to the tidal dissipation time-scale. Our modelling
further indicates the critical importance of the phases just prior
to RLO, when tides are at their strongest. In this regime our tidal
evolution model (VL20) predicts dissipation rates up to 102 times
greater than that of the more commonly applied weak friction model.

Our analysis reveals that it is likely that many systems that undergo
common envelope phases involving massive donor stars do so with
initially eccentric orbits at the time of RLO (Vigna-Gómez et al.
2020). These eccentric interactions remain poorly understood and
deserve further study.
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lowski P., 2016, A&A, 596, A58
Kushnir D., Zaldarriaga M., Kollmeier J. A., Waldman R., 2016, MNRAS,

462, 844

MNRAS 503, 5569–5582 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/4/5569/6188381 by guest on 30 Septem
ber 2022

http://cococubed.asu.edu/mesa_market/inlists.html
http://dx.doi.org/10.1086/340590
http://dx.doi.org/10.1007/BF00645172
http://dx.doi.org/10.3847/2041-8213/ab2ed1
http://dx.doi.org/10.3847/2041-8213/ab5b9a
http://dx.doi.org/10.1093/mnras/stu039
http://dx.doi.org/10.3847/0004-637X/816/2/65
http://dx.doi.org/10.1146/annurev.astro.46.060407.145222
http://dx.doi.org/10.1111/j.1365-2966.2010.16400.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19322.x
http://dx.doi.org/10.1086/340304
http://dx.doi.org/10.1086/521026
http://dx.doi.org/10.1051/0004-6361/201732428
http://dx.doi.org/10.1093/mnras/stx312
http://dx.doi.org/10.1007/s10569-016-9690-3
http://dx.doi.org/10.3847/2041-8205/830/1/L18
http://dx.doi.org/10.1111/j.1365-2966.2011.20344.x
http://dx.doi.org/10.1093/mnras/sty1950
http://dx.doi.org/10.1093/mnras/stz2813
http://dx.doi.org/10.1093/mnras/stt1042
http://dx.doi.org/10.1093/mnras/stx1234
http://dx.doi.org/10.1111/j.1365-2966.2009.14619.x
http://dx.doi.org/10.1086/306138
http://dx.doi.org/10.1017/pasa.2016.52
http://dx.doi.org/10.1093/mnras/stw1219
http://dx.doi.org/10.1093/mnras/stz1453
http://dx.doi.org/10.1088/0004-637X/759/1/52
http://dx.doi.org/10.3847/0004-637X/825/1/70
http://dx.doi.org/10.3847/0004-637X/825/1/71
http://dx.doi.org/10.3847/1538-4357/aa7a05
http://dx.doi.org/10.1093/mnras/stz2899
http://dx.doi.org/10.1093/mnras/staa2216
http://dx.doi.org/10.1086/160960
http://dx.doi.org/10.1111/j.1365-2966.2011.20237.x
http://dx.doi.org/10.1093/mnras/stx2933
http://dx.doi.org/10.1093/mnras/sty3008
http://dx.doi.org/10.1016/0019-1035(77)90163-4
http://dx.doi.org/10.1086/306348
http://dx.doi.org/10.1086/304505
http://dx.doi.org/10.3847/1538-4357/ab001d
http://dx.doi.org/10.3847/1538-4357/aadae2
http://dx.doi.org/10.1046/j.1365-8711.2002.05038.x
http://dx.doi.org/10.1093/mnras/stw2377
http://dx.doi.org/10.1086/133321
http://dx.doi.org/10.1111/j.1365-2966.2004.08136.x
http://dx.doi.org/10.1093/mnras/stt595
http://dx.doi.org/10.1007/s00159-013-0059-2
http://dx.doi.org/10.1093/mnras/79.6.408
http://dx.doi.org/10.1016/j.physrep.2007.02.008
http://dx.doi.org/10.1051/0004-6361/201629420
http://dx.doi.org/10.1093/mnras/stw1684


5582 M. Vick et al.

Kushnir D., Zaldarriaga M., Kollmeier J. A., Waldman R., 2017, MNRAS,
467, 2146

LIGO Scientific Collaboration, Virgo Collaboration, 2017, Phys. Rev. Lett.,
119, 161101

LIGO Scientific Collaboration, Virgo Collaboration, 2019, Phys. Rev. X, 9,
031040

Lai D., Chernoff D. F., Cordes J. M., 2001, ApJ, 549, 1111
Lajoie C.-P., Sills A., 2011a, ApJ, 726, 66
Lajoie C.-P., Sills A., 2011b, ApJ, 726, 67
Liu B., Lai D., 2018, ApJ, 863, 68
Liu B., Lai D., 2019, MNRAS, 483, 4060
Liu B., Lai D., Wang Y.-H., 2019a, ApJ, 881, 41
Liu B., Lai D., Wang Y.-H., 2019b, ApJ, 883, L7
MacLeod M., Loeb A., 2020a, ApJ, 893, 106
MacLeod M., Loeb A., 2020b, ApJ, 895, 29
MacLeod M., Ostriker E. C., Stone J. M., 2018a, ApJ, 863, 5
MacLeod M., Ostriker E. C., Stone J. M., 2018b, ApJ, 868, 136
MacLeod M., Vick M., Lai D., Stone J. M., 2019, ApJ, 877, 28
Mandel I., de Mink S. E., 2016, MNRAS, 458, 2634
Mapelli M., Giacobbo N., 2018, MNRAS, 479, 4391
Mapelli M., Zampieri L., 2014, ApJ, 794, 7
Mapelli M., Giacobbo N., Santoliquido F., Artale M. C., 2019, MNRAS, 487,

2
Morscher M., Pattabiraman B., Rodriguez C., Rasio F. A., Umbreit S., 2015,

ApJ, 800, 9
Nandez J. L. A., Ivanova N., 2016, MNRAS, 460, 3992
Nandez J. L. A., Ivanova N., Lombardi J. C. J., 2014, ApJ, 786, 39
Ogilvie G. I., Lesur G., 2012, MNRAS, 422, 1975
Ogilvie G. I., Lin D. N. C., 2007, ApJ, 661, 1180
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