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ABSTRACT

Interacting binaries are of general interest as laboratories for investigating the physics of accretion,
which gives rise to the bulk of high-energy radiation in the Galaxy. They allow us to probe stellar
evolution processes that cannot be studied in single stars. Understanding the orbital evolution of

binaries is essential in order to model the formation of compact binaries. Here we focus our attention
on studying orbital evolution driven by angular momentum loss through stellar winds in massive
binaries. We run a suite of hydrodynamical simulations of binary stars hosting one mass losing star

with varying wind velocity, mass ratio, wind velocity profile and adiabatic index, and compare our
results to analytic estimates for drag and angular momentum loss. We find that, at leading order,
orbital evolution is determined by the wind velocity and the binary mass ratio. Small ratios of wind to

orbital velocities and large accreting companion masses result in high angular momentum loss and a
shrinking of the orbit. For wider binaries and binaries hosting lighter mass-capturing companions, the
wind mass-loss becomes more symmetric, which results in a widening of the orbit. We present a simple
analytic formula that can accurately account for angular momentum losses and changes in the orbit,

which depends on the wind velocity and mass ratio. As an example of our formalism, we compare the
effects of tides and winds in driving the orbital evolution of high mass X-ray binaries, focusing on Vela
X-1 and Cygnus X-1 as examples.

1. INTRODUCTION

Low-mass main sequence stars like our Sun lose only
a tiny fraction of their mass through stellar winds over
their main sequence evolution. In contrast, massive stars
can produce stellar winds a billion times stronger and,
during their much swifter evolution, will shed up to half
of their mass. This large mass loss can have profound
consequences for the evolution of the star alone, but
even more so when the star is a member of a binary
system (Vink et al. 2015; Woosley & Heger 2015; Vink
2018; Duchêne & Kraus 2013). Winds interacting with
the binary induce drag forces strong enough to change
the orbit of the stars (Lin 1977; Brookshaw & Tavani
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1993; Chen et al. 2018; Saladino et al. 2018, 2019; Sal-
adino & Pols 2019). The strength of the drag forces can
determine whether the stars go through a dynamically
unstable mass transfer phase and either merge or form
a compact binary, or grow so far apart that they evolve
essentially as single stars.

In a seminal work Jahanara et al. (2005) attempted
to build a general framework for the wind-driven drag
force in binary systems. In order to take into account
the complicated wind launching mechanism, Jahanara
et al. (2005) considered three models that approximate
mechanically injected, thermally driven, and radiation-
driven winds. The key result derived by Jahanara et al.

(2005), which has been confirmed in follow up studies
(e.g. Saladino et al. 2018, 2019), is that the resultant
torque on the binary is most sensitively dependent on
the wind velocity.
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Radiation-driven winds are expected for giant stars,
where radiation is absorbed by dust grains, and for
massive stars, where Compton scattering of electrons
and line absorption are the primary wind accelera-
tion mechanisms (Puls et al. 2008). A challenging
aspect of the simulating wind interactions in binary
systems is modeling the launching and subsequent ac-
celeration of the wind. This is particularly true in the
case of radiation-driven winds, where multi-frequency
radiation-hydrodynamic simulations remain very com-
putationally demanding for three-dimensional models.
Realistic massive-star winds are likely clumpy (e.g.
Calderón et al. 2020; El Mellah et al. 2020b), and may
be inhibited by photoionization feedback from an ac-
creting compact object companion (e.g. Blondin et al.
1990; Bozzo et al. 2016; El Mellah et al. 2018; Krtička
et al. 2018).

For the purposes of modeling wind effects on binary
orbital evolution, the inclusion of all of these poten-

tial processes is unrealistically complex. Approximate,
phenomenological models can be adopted in lieu of a
full treatment. One simple model involves partially or
completely turning off the gravitational influence of the

donor star as a function of radial distance, an idea that
can be traced to the early work of Lucy & Solomon
(1970); Castor et al. (1975). This approximation results

in a β-law profile, vw/v∞ ≈ (1− rs/r)β , where β = 0.5
and rs is the sonic radius marking the transition from a
subsonic to a supersonic wind. More recent studies have

suggested values where β ∼ 0.7 or non-monotonic pro-
files (Müller & Vink 2008; Poniatowski et al. 2021). On
the other hand the simplicity of implementing β = 0.5
winds via a reduced gravitational force in three dimen-

sional studies makes it more tractable when studying
the wind interaction in the context of a binary system
and hence we choose to adopt this simplification.

In this paper, we use hydrodynamic simulations to
study the effects of stellar winds on a binary whose sep-
aration is compact, such that it lies within the region
where the wind is still accelerating toward its termi-
nal velocity. We examine winds with different termi-
nal velocities, winds with different velocities measured
at the binary separation but identical asymptotic veloc-
ities, and winds with matched velocities but differing
acceleration profiles in order to assess the relative im-
portance of these differing properties. Through these

experiments, we attempt to ascertain what is the fun-
damental characteristic of the velocity of winds that de-
termines their effect on their host binary.

In Section 2 we derive relations for changes in binary
star orbits for varying wind velocities and binary mass
ratios. In Section 3 we describe the setup in Athena++.

In Section 4 we present the results of our simulations
with different wind velocity, mass ratio and wind ac-
celeration prescriptions. In Section 5 we compare our
results to previous work and present a discussion of our
salient findings. Finally, in Section 6, we describe how
we plan to use the simulations to build a model for bi-
nary evolution including wind gas drag and provide our
conclusions.

2. THEORETICAL BACKGROUND

In this Section we describe how a binary orbit changes
due to mass and angular momentum loss carried by stel-
lar winds. We arrive at the dimensionless parameter
γdrag, which describes the orbital angular momentum
lost due to interaction between the gaseous wind and
the stars. We then use the analytic theory of Bondi-
Hoyle-Lyttleton (BHL) drag to derive an expected value
of γdrag, which will serve as a baseline for comparison to

our hydrodynamic simulations in Section 4.

2.1. Orbital Angular Momentum

In a circular-orbit binary of two non-spinning stars

with masses M1 and M2, reduced mass µ, total mass
M , semimajor axis a, the total angular momentum is
given by

J = µvorba =

√
G(M1M2)2a

M
(1)

where vorb =
√
GM/a is the Keplerian orbital velocity.

Changes in M1, M2 and a thus can all change the an-
gular momentum of the orbit. To understand how the
orbit evolves when each of these parameters is altered,

it is customary to take the time derivative of the orbital
angular momentum squared,

˙(J2)

J2
= 2

J̇

J
= 2

(
Ṁ1

M1
+
Ṁ2

M2

)
− Ṁ

M
+
ȧ

a
. (2)

A parallel analysis can be carried out including terms
for orbits of non-zero eccentricity or stellar component
spin.

2.2. A Single Mass-losing Star

We now simplify equation (2) because we focus in this
paper on how the binary separation evolves when star
M1 is losing mass through a stellar wind Ṁ1 < 0. There-
fore, we adopt Ṁ2 = 0 and Ṁ = Ṁ1,we then solve for
the time derivative of the binary separation, ȧ in equa-
tion 2. The assumption of a non-accreting companion is
an oversimplification, however with our spatial resolu-
tion it is difficult to determine the qualitative outcome

of accretion versus mass loss from the system. Also, for
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systems like Cyg X-1, the fraction of accreted material
is expected to be minimal. Estimates from Gies et al.
(2003) of the wind mass loss rates from the donor star
of Cyg X-1 is found to be 2.5× 10−6M�/yr. The X-ray
luminosity of Cyg X-1 is observed to be 2.4× 1037 erg/s
in Sugimoto et al. (2017). If we assume the X-ray lumi-
nosity is due to disk accretion, so that L = ηṀBHc

2 with
η = 0.1 being the accretion efficiency parameter, we get
an accretion rate for the companion ∼ 5× 10−9M�/yr.
The fraction of accreted material is then very small,
and the assumption of a non-accreting companion more
valid.

The value of J̇ is a sum of two components. The angu-
lar momentum lost from the donor star through winds is
J̇1 = Ṁ1r1v1, where r1 and v1 are position and velocity
relative to the system center of mass. This is the angu-
lar momentum content of the gas when it was released
from the (non-rotating) stellar surface. Note that Ṁ1 is
negative, so that J̇1 is also negative. This is assuming a
spherically symmetric wind, which might not be the case

for a tidally deformed star in a close binary (Hadrava &
Čechura 2012). In practice, the donor star in a close bi-
nary is likely to be spun up by tides. But to understand

the pure dynamics of the angular momentum in the or-
bit without including the moment of inertia of the donor
star, we use a non-rotating donor star. For a discussion

of the effect of donor star spin see Appendix B.
The second component is the binary’s torque on the

circumbinary wind material. The gas that flows within
the focusing radii of the companion is compressed in

a wake behind M2 making the flow around the binary
asymmetric. The torque from the binary is proportional
to the gas density, so this asymmetric mass distribution

results in a net torque from the binary on the gas. The
torque transfers angular momentum from the binary to
the gas, effectively dragging the binary. We call this

loss of angular momentum J̇drag and we will calculate
this contribution in section 4 from hydrodynamic simu-
lations.

Thus, the total change in angular momentum is J̇ =
J̇1+J̇drag. To include J̇ in the equation for the evolution
of the orbit, we introduce

γloss =
J̇1 + J̇drag

Ṁ1

M

J
=

M

Ṁ1

J̇

J
, (3)

so that γloss represents the specific angular momentum

of the ejected gas in units of the specific angular mo-
mentum of the binary. Substituting this into equation
2, we get

ȧ

a
= −2

Ṁ1

M1

[
1− (γloss +

1

2
)
M1

M

]
, (4)

which applies under the restricted conditions of a circu-
lar orbit, non-spinning stars, Ṁ2 = 0, Ṁ = Ṁ1.

Notice that since Ṁ1 is negative, ȧ is positive if the
term in the square parenthesis is positive, and the binary
separation will grow. A critical value γloss,crit, can be
defined such that ȧ = 0,

γloss,crit = q +
1

2
, (5)

where q = M2/M1. It is useful to compare this to the
dimensionless specific angular momentum of the wind-
losing donor star in units of the binary’s total angular
momentum, γdonor = M2/M1. If J̇drag = 0, then the
wind angular momentum is unmodified by gravitational
interaction with the binary, and γloss = γdonor. This
limiting case of no gravitational drag is often referred to
as Jeans mode mass loss, in which case,

ȧ

a
= −Ṁ1

M
, (6)

which shows that as M1 loses mass, the binary separa-
tion widens in response to the fractional mass lost.

In general, J̇drag can have positive or negative sign.

In practice, it is typically negative, opposing the orbital
motion, and increasing the value of γloss. This implies
that if J̇drag is large enough in magnitude, γloss can ex-

ceed γloss,crit, so that the sign of the orbital evolution
reverses from expanding with mass loss to contracting
with mass loss. In the following section, we use the
theory of BHL flows to show that the wind velocity is

an important parameter in determining which behavior
results.

2.3. Expectations from BHL theory

When the wind from M1 passes by M2, M2’s grav-
ity focuses the wind in a wake behind it. The gravita-
tional force of this wake on M2 acts as a dynamical drag,
opposing the orbital motion and applying a net torque
that changes the orbital angular momentum. The BHL
approximation describes this gravitational focusing and
the development of a wake (Hoyle & Lyttleton 1939;
Bondi & Hoyle 1944; Edgar 2004). It has been used
to estimate the mass accretion rate onto the compan-
ion (Davidson & Ostriker 1973) and the accompanying
torques on the orbit (e.g. Chen et al. 2018; Saladino
et al. 2019). As we will discuss below, the velocity of
the wind is a key parameter, but its interpretation has

been complicated in the literature by the accelerating
profile of the expanding wind.

The material that is gravitationally captured by the
companion passes through the accretion radius

Ra =
2GM2

(v2
w + v2

orb)
, (7)
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which depends on the relative velocity between the star
and the wind.

In what follows, we will assume that the wind velocity
vw refers specifically to vw(r = a), the velocity of the
unperturbed spherical wind at the radius of the binary
separation – thus representing the speed of the wind as
it passes M2. This choice is motivated by the results of
our hydrodynamic simulations, which suggest that the
wind velocity as it passes the companion (rather than
the wind velocity slope or terminal velocity) plays the
strongest role in setting the resulting gas flow around
the companion object. Finally, we note that the simple
expression above initially derived by Hoyle & Lyttleton
(1939), and refined by Bondi & Hoyle (1944), ignores
the gas internal energy, which was added later by Bondi
(1952). The reader is refer to Edgar (2004) for an in-
sightful review.

The gravitational drag force can then be estimated as

Fdrag,BHL = CdπR
2
aρw(v2

w + v2
orb)

= Cd
4π(GM2)2ρw
(v2
w + v2

orb)
, (8)

where Cd is an order unity drag coefficient (e.g. Shima
et al. 1985). Using the continuity equation to substitute

the spherical wind density at r = a, which gives ρw =
−Ṁ1

4πa2vw
, the drag force can be rewritten as

Fdrag,BHL = Cd
(GM2)2Ṁ1

a2vw(v2
w + v2

orb)
. (9)

This drag force exerts a torque on the companion star
around the center of mass. Assuming that the drag force

is perpendicular to the orbit, the torque is

τBHL = r × Fdrag,BHL

=
M1

M

Cd(GM2)2Ṁ1

avw(v2
w + v2

orb)
(10)

From this definition of τBHL we define a corresponding

γdrag,BHL by replacing J̇drag = τBHL in equation 3. In
this case, γdrag,BHL can be written as

γdrag,BHL =
M

Ṁ1

J̇drag,BHL

J
,

=
CdG

3/2

a3/2
M1/2 M2

vw(v2
w + v2

orb)
,

γdrag,BHL =
Cd

(
1
q + 1

)−1

vw
vorb

[(
vw
vorb

)2

+ 1

] . (11)

The form of the final expression above indicates that
BHL theory predicts a dependence of the drag force on

two dimensionless parameters: the mass ratio, q, and
the wind velocity ratio at the orbital separation, vw(r =
a)/vorb.

Figure 1 depicts the change in ȧ when γloss = γdonor +
γdrag. The crosses indicate the simulations discussed in
Section 4. When ȧ

Ṁ1
is positive the orbit is shrinking

and when ȧ
Ṁ1

is negative the orbit is widening. The

dashed black line shows the critical contour where this
transition happens. For ȧ

Ṁ1

M
a = −1, the orbit changes

as in the Jeans mass loss case. Figure 1 demonstrates
that this limit is achieved when the wind velocity is high
relative to the orbital velocity. In what follows, we use
these predictions of BHL theory as a baseline for com-
parison for our hydrodynamic simulation results.

3. NUMERICAL SETUP IN ATHENA++

In this section we present the setup we have developed
to explore the effects of mass loss in binaries within the
Athena++ code (Stone et al. 2020). Athena++ is a re-

cently developed Eulerian (magneto)hydrodynamic code
descending from Athena (Stone et al. 2008).

3.1. Fluid equations

Athena++ solves the equations for inviscid hydrody-
namics

∂tρ+∇ · (ρv) = 0

∂t(ρv) +∇ · (ρvv + P I) =−ρaext

∂tE +∇ · ([E + P ]v) =−ρaext · v (12)

simultaneously demanding conservation of mass, mo-
mentum and energy. Here ρ is the density, ρv the mo-

mentum, P the pressure, I the three dimensional iden-
tity matrix, E = ε + ρvv/2 is the sum of internal and
kinetic energy density and aext is an external acceler-
ation that represents the source terms associated with
the binary and accelerating wind.

In our setup, a spherical-polar mesh is centered on
the one star that has a wind M1, and we therefore run

our simulations in the frame of M1. There are three
contributions to aext: the gravitational and radiative
acceleration from the central star and its wind a1, the
gravitational acceleration from the companion a2, and
the inverted acceleration on M1 in the orbital inertial
frame a1i,

aext = a1 + a2 + a1i, (13)

we do not include the acceleration from the gas on the

binary in the integration of the position of M1 and M2.
This keeps the binary at the same separation, so we can
average the drag from the wind over a longer time for a
specific separation and wind velocity.
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Figure 1: Upper panel: schematic cartoon showing
wind morphology and resulting orbital evolution in cases
of higher and lower wind velocity relative to the or-

bital velocity. Lower panel: the BHL prediction for the
change in orbit per mass lost. The dashed line show
where ȧ

Ṁ1

M
a = −1, where the orbit changes from shrink-

ing (brown) to expanding (green) as in the Jeans mass
loss case. High velocity winds and low q yield small grav-
itational drags, and we approach the Jeans mass loss
case of γloss −→ γdonor. In the opposite limit of higher-

mass companions (high q) and low velocity winds, γdrag

can be high enough to drive the orbit inward rather than
outward with mass loss. The black crosses indicate the
parameter combinations explored in our hydrodynamic
simulations discussed in the subsequent sections.

3.2. Source Terms

The use of acceleration source terms on the hydrody-
namics allows us to model the binary motion and the
radiative driving of the stellar wind.

3.2.1. Mass-Losing Star and Wind

We begin by discussing the source term for the grav-
ity and radiative acceleration of the mass-losing star M1.
We adopt a simplified version of the Castor et al. (1975)
(CAK) approximation for line-driven winds to create the
accelerating wind velocity profile for M1. The radial

acceleration term for M1 has a term from the gravity

of star gM1
, the force on electrons from continuum ra-

diation ge and the force from Doppler-broadened line
absorption gL. For the full derivation of the wind accel-
eration term and the following wind profile see Castor
et al. (1975) equation 20 − 47. Here we give a short
summery.

In general, gL arises from the local velocity gradient
and Doppler-broadened optical depth. This is shown, for
example, in Figure 1 of Abbott et al. (1980), and more
thoroughly described in sections 8.6 and 8.7 of Lamers
& Cassinelli (1999). However, if we adopt a spherically-
symmetric steady state solution for the wind velocity
structure, along with the assumption of a homogeneous
ionization state (and thus electron-scattering cross sec-
tion σe), we are able to write a simplified version of
the gL acceleration term that reproduces the wind ve-
locity structure in spherical symmetry. This simplifica-
tion implies that the driving force has no backreaction
depending on the distortion of the wind by the binary

gravity, but instead remains spherical. It should thus be
regarded as a first-order approximation of the properties
of an accelerating wind in a binary system. Under these
conditions, we adopt

a1 = (gM1
+ ge + gL)r̂,

=

(
−GM1

r2
+
GM1

r2
Γe +

1

1− α
GM1(1− Γe)

r2

)
r̂,

=
α

1− α
GM1(1− Γe)

r2
r̂, (14)

where Γe = σeL∗/(4πcGM1) < 1 is the ratio of the star’s
electron-scattering Eddington luminosity to its gravity,
and σe = σT

ne

ρ is the electron scattering opacity. We set

σe = 0.28cm2g−1 following Lamers & Cassinelli (1999)
equation 8.93. The dimensionless parameter α sets the
collective strength of the radiation force on Doppler-
broadened lines, specifically it is the powerlaw index

that relates radiative force to Doppler-broadened opti-
cal depth, as described by Castor et al. (1975), Abbott
et al. (1980), and Lamers & Cassinelli (1999, sections
8.6 and 8.7). We apply α = 0.73, which implies that
α/(1− α) ≈ 2.7 (Castor et al. 1975).

We note that each of gM1
, ge, and gL have r−2 scaling,

allowing their combination into a composite term. The
effect of the (1 − Γe) term is to scale the effective mass
of M1, such that we define

Meff = M1(1− Γe), (15)

and the effective escape velocity of the system is simi-
larly reduced to,

veff =

√
2GM1(1− Γe)

R1
. (16)
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where R1 is the radius of M1, which assumes that the
wind is launched from the surface of the star.

Crucially, the effect of the gL term is to change the sign
of a1, such that the composite term is positive (note that
a1 · r̂ > 0). Line driving implies that gas is repelled from
M1, rather than retained by it. Under these conditions,
there is no hydrostatic atmosphere solution, only wind
solutions (except at exactly the Eddington Luminosity).

In isolation from the forces of a companion, we can
derive the spherically-symmetric wind velocity profile by
integrating

vw(r)
dvw(r)

dr
≈ a1 · r̂, (17)

from vw = 0 at R1. We have neglected terms associated
with wind gas pressure gradients, an assumption that
is valid when the wind is highly supersonic and mostly
driven by lines rather than its thermal content (see sec-
tion 8.7 of Lamers & Cassinelli 1999). We find,

vw(r) ≈

√
α

1− α
2GM1(1− Γe)

(
1

R1
− 1

r

)
. (18)

From equation 18, we note that√
α

1− α
=
v∞
veff

(19)

sets the ratio of the wind velocity at infinity, v∞, and
the effective escape velocity of the star. This implies

v∞ ≈ 1.64veff for α = 0.73, this ratio is somewhat lower
than its observed counterpart (as, for example, shown in
Figure 9 of Abbott 1982), an effect that is at least partly

explained by relaxing the point-source approximation
for the radiation field (Friend & Abbott 1986; Lamers
& Cassinelli 1999).

While this simple acceleration term captures some of

the crucial features of a line-driven wind, it ignores many
elements that are essential in a completely realistic de-
scription. Some of these, including multiple scatterings
of photons, heating of the stellar photosphere by scat-
tering from the wind, and the instability of solutions
in which the radiative force is based on the velocity
gradient are discussed in detail in sections 8.10 to 8.13
of Lamers & Cassinelli (1999). The three-dimensional
manifestation of instability is a propensity for winds to
become clumpy (e.g. Bozzo et al. 2016; Krtička et al.

2018; El Mellah et al. 2018; Calderón et al. 2020). In
binary systems with an accreting compact object, an
even more crucial effect may be that high-energy irradi-
ation changes the ionization structure of the metals in
the wind, reducing the total line equivalent width and
line-driving force (e.g. Blondin et al. 1990; Krtička et al.
2018). We discuss the potential impact of some of these

simplifications further in Section 5.

3.2.2. Companion and Reference frame

The companion is modeled as a point mass M2 located
at the binary separation a. The gravitational force from
the companion is

a2 =− GM2

|r− r2|3
(r− r2)

'−GM2|r− r2|fspline(|r− r2|, rsoft) (20)

where r2 is the position of M2 and rsoft is the softening
radius around M2 used in the code. The softening kernel
fspline is from Hernquist & Katz (1989) and the position
of the companion is integrated based on the accelera-
tion from M1 and the additional acceleration from the
non-inertial frame. For a longer description of the how
the companion is modelled see MacLeod et al. (2018)
equation 9.

The simulations are done in the frame of the donor
star M1. To stay in the frame of M1, the entire system
is accelerated by

a1i =
GM2

|r2|3
r2, (21)

which reflects the acceleration of M1 by M2 in the iner-
tial frame.

3.3. Domain and Boundaries

The simulations are performed in spherical polar co-

ordinates, originating from the center of M1. The inner-
r boundary is set at the Roche Lobe radius (Eggle-
ton 1983) rin of M1, and imposes the wind condi-

tions. For simulations with q = 1 and s = 3, we get
R1/rRL = 0.8, and we will keep this for all simula-
tions. We specify the wind on the basis of Ṁ1, such
that ρin = −Ṁ1/(4πr

2
invw(r), with vw(rin)) specified by

equation (18). This allows us to not specify the mass loss
rate and makes the final results scalable to any mass loss
rate.

We set the background isothermal sound speed cs
at the inner boundary, and for simulations wit a non
barotropic equation of state the non barotropic sound

speed is cs′ = cs/γ. We calculate cs by assuming black
body radiation on the surface of a standardized setup
with a 15M� star with radius 8R�:

cs =

√
2kB

mH

(
cGM1Γe
R2

1σσe

)1/4

(22)

where kB is Boltzmann’s constant, mH is the pro-
ton mass, σ is Stefan-Boltzmann’s constant and σe =
σTne/ρ = 0.28cm2g−1 is the electron opacity in accor-
dance with Lamers & Cassinelli (1999). Our assumed
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wind profile is only applicable for super sonic winds. By
choosing the inner boundary to be the Roche Lobe ra-
dius of M1, we make sure that vw(rin)/cs(r) > 1 so the
wind in all our simulations have supersonic values at the
injection radius.

The outer boundary in the r-direction is set up as a
diode at r = 10a, where gas is only allowed to flow out
of the grid.

The θ and φ domain covers the full 4π of solid angle.
For the θ-direction boundaries, we employ the “polar”
boundary, while the φ-direction boundary is periodic
from π to −π, allowing gas to move through the full
sphere.

3.4. Code Units and Dimensionless Parameters

We run our simulations using a set of dimensionless
units. This way the measured values of gravitational
gas drag can be scaled to fit any set of stellar binary
parameters. The unit of mass is the total mass of the

system M = M1 +M2 = 1. Then the mass of each star
is set by the mass ratio q = M2/M1, so that the mass
of the donor star is M1 = (1 + q)−1 and the mass of the

companion is M2 =
(
1 + q−1

)−1
. The unit of length is

set to the separation of the binary a = 1, and together
with the gravitational constant, G = 1, the remaining

units are set.
The emergent wind from the donor star depends on

the donor’s radius and luminosity in addition to its mass
(equation 18). We use the dimensionless Eddington ra-

tio, Γe, to characterize the luminosity. To describe the
star’s radius relative to the orbital separation, we define,

s =
a

R1
. (23)

Together, these properties can be used to calculate the

dimensionless parameter f = vw(r = a)/vorb, or, using
equation 18,

f =

√
α

1− α
2(1− Γe)

1 + q
(s− 1). (24)

Equivalently, this also sets f∞ = vw(r =∞)/vorb,

f∞=
√

α
1−α

2(1−Γe)
(1+q) s = f

√
1 + 1

s−1 , (25)

the dimensionless wind velocity as r →∞.
In what follows, we explore binary systems of varying

dimensionless properties defined by q, s, Γe, and f in
order to assess how each affects a binary’s orbital evo-
lution in the presence of a mass-losing star.

4. DRAG FORCES FROM WINDS

Name q Γe s f f∞ γdrag
γloss
γdonor

A 1 0.4 3 1.8 2.2 0.10 1.10

B 1 0.5 3 1.6 2.0 0.13 1.13

C 1 0.6 3 1.5 1.8 0.17 1.17

D 1 0.7 3 1.3 1.6 0.24 1.24

E 1 0.8 3 1.0 1.3 0.38 1.38

F 1 0.9 3 0.7 0.9 0.70 1.70

G 1/3 0.4 2.4 1.8 2.4 0.05 1.15

H 1/3 0.5 2.4 1.7 2.2 0.06 1.19

I 1/3 0.6 2.4 1.5 2.0 0.09 1.26

J 1/3 0.7 2.4 1.3 1.7 0.13 1.38

K 1/3 0.8 2.4 1.1 1.4 0.21 1.62

L 1/3 0.9 2.4 0.8 1.0 0.41 2.23

M 3 0.4 3.9 1.5 1.8 0.20 1.07

N 3 0.5 3.9 1.4 1.6 0.25 1.08

O 3 0.6 3.9 1.3 1.5 0.33 1.11

P 3 0.7 3.9 1.1 1.3 0.47 1.16

Q 3 0.8 3.9 0.9 1.0 0.61 1.20

R 3 0.9 3.9 0.6 0.7 1.02 2.34

Table 1: Parameters and key dimensionless properties
of hydrodynamic simulations. For each model, we list

the three defining parameters mass ratio, q, Eddington
factor, Γe and stellar compactness, s. The following
parameters are then derived from these and the simula-

tions: velocity ratio at the orbital separation, f , asymp-
totic velocity ratio, f∞, wind angular momentum added
by drag, γdrag, and total wind angular momentum com-
pared to its initial angular momentum when launched,

γloss/γdonor.

In the following subsections we present three-dimensional
simulations following the methodology described in Sec-

tion 3. A table showing the chosen simulation parame-
ters is given in Table 1. We explore varying Γe at several
fixed values of the mass ratio, q, which has the effect of

modifying the wind velocity ratio, f , equation (24). The
resultant torques of all these simulations are compared
with the analytical predictions of BHL theory, described
in Section 2.3.

4.1. Winds in binaries with varying Γe

In this section we present simulations with varying Γe
between 0.4 and 0.9 for binaries with q = 1, s = 3 and
gas adiabatic index, γad = 4/3. The choice of γad was
found to have little affect on our the overall results of
our simulations, as described in Appendix C. The mesh
is constructed with 13 (r) × 11 (θ) × 22 (φ) mesh
blocks, each of 163 zones on the base level. We then
add 2 levels of adaptive mesh refinement (AMR) in the
immediate vicinity of the companion mass, M2. For the
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Figure 2: Wind velocity as a function of distance from
the center of the donor star for q = 1 and s = 3, and

varying Γe. The value of wind velocity compared to or-
bital velocity is calculated by dividing equation 18 with
the orbital velocity. The companion is placed at r/a = 1,

where the wind is still accelerating. The dashed line
shows the position of the primary star’s Roche Lobe
and the position of the inner boundary.

companion we set rsoft/a = 0.03. For numerical tests
that include variations in rsoft and spatial resolution,

we refer the reader to Appendix D. We run simulations
for two full orbits after steady state is reached, and all
derived values are averaged over the two steady orbits.
The radial velocity profiles for the unperturbed wind are

plotted in Figure 2 from equation (18). As Γe increases,
wind velocities decrease, reducing both f and f∞.

These spherical wind profiles are altered in our simula-

tions by the gravity of the companion, which introduces
a perturbation in the otherwise radial flow. The grav-
ity of M2 redirects gas into a converging tail behind it,
which expands outwards and forms a spiral around the

binary. The resultant modifications of the wind is visu-
alized in Figure 3. The various panels show the steady-
state density distribution in the orbital plane for six sim-
ulations with increasing values of Γe (A–F in Table 1).
Density is shown in units of density at the inner bound-
ary at the donor’s Roche lobe, ρin. All panels in Figure

3 are shown in a rotated coordinate system with origin
at the center of mass and the binary components along
y′ = 0. The left open circle denotes the location of the
donor, M1, while the smaller circle shows the location
of M2, which is responsible for deflecting the wind. As
Γe is increased from simulation A to F, the wind veloc-
ity decreases at all radii. This allows allowing for larger
wind deviations by the companion object. The outcome
of increasing Γe results in a more tightly wound spiral,

realized as the wind expands more slowly relative to the
orbital motion. A second spiral arm appears in the wake
for Γe & 0.8. As described by Saladino et al. (2018), the
extended inner spiral arm is formed from wind mate-
rial rotating around the companion in counterclockwise
motion that collides with the continuous flux of new
wind material from the leading side of the companion
object. The size and density concentration of the wakes
increase with increasing Γe and decreasing wind velocity.
As we discussed qualitatively in Section 2.3, we expect
the more massive wake to generate a larger drag force
on the binary.

At low wind velocities the gas flow morphology is
sometimes discussed as “wind Roche lobe overflow”
(Mohamed & Podsiadlowski 2011). Winds in this regime
expand at low, subsonic radial velocities and gas in the
failed wind forms a pressure-supported envelope until

it starts mass transferring through L1. Morphologies
like this are never observed in our models (even at high
Γe and low relative velocity) because the wind is su-

personic and subject to positive acceleration at all radii
(as discussed in Section 3.2, the radiation-driving term
is always larger than the local gravitational term), thus

no pressure-supported or quasi-hydrostatic solutions ex-
ist. We emphasize that this is a qualitative difference in
wind morphology that relates to the nature of the wind
driving.

4.2. Winds in binaries with varying q

We also investigate wind interactions in binary sys-
tems with varying q. We run two extra sets of six sim-

ulations (G–L and M–N), varying Γe within the same
range as was done in Section 4.1. For one of the sets we
use q = 1/3 while for the other one we use q = 3. As

described in section 3.3 we keep the ratio R1/rRL = 0.8
the same as in the simulations presented in Section 4.1.
Given the different sizes of the Roche lobe radius for the
different q, we get that s = 2.4 for q = 1/3 and s = 3.9
for q = 3.

The resolution around different companions is kept as
close to constant as possible by changing the base mesh
dimension to match the new domains, 10 (r) × 11 (θ) ×
22 (φ) mesh blocks for simulations with q = 1/3, and
12 (r) × 11 (θ) × 22 (φ) mesh blocks for simulations
with q = 3. All simulations have continue to use 163

zones on the base level and two levels of AMR around
the companion.

The wind acceleration mechanism employed here de-

pends on M1. This implies that even for the same value
of Γe a greater radiation force corresponds to a heavier
donor star (smaller q). This results in different veloc-
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Figure 3: Slice of density divided by density at rin in the x,y-plane for the six different velocity profiles shown in

figure 2. In all cases a tail of focused material is formed behind the companion as it orbits the donor star. But as the
value of Γe increases, the ratio of wind velocity over orbital velocity decreases, and the wake of focused gas forms an
continuously tighter and tighter spiral around the binary.

ity ratios as characterized by f and f∞, as tabulated in
Table 1.

In Figure 4 we plot the mid-plane density for the two

sets of simulations with varying q. Similar behavior with
changing Γe is observed in the simulations with q =
1/3 and q = 3 as was discussed above for q = 1. A
noteworthy difference between the q = 1/3 and q = 3
cases is the difference in wind density at the companion
location relative to ρin. This difference arises because
the characteristic scale length for the density gradient is

the set by the size of the donor star and not the orbit.
The smaller donors (larger s) of our q = 3 cases imply
more rapid density fall-off on the scale of the binary.

The gas focusing behind the companion is weaker for
a lighter companion, as we can observe by comparing
the panels of Figure 4. The spiral structure is again
primarily driven by the value of Γe, with a more tightly
wound spiral for slower winds. But the wake behind
M2 is broader and more extended for simulations with
q = 3. A change in q implies that the gravitational

cross section of the companion is thus much bigger for

simulations with q = 3, so more of the wind material is
captured, as analytically described by (7).

The appearance of a second spiral arm in the wake
depends on q, with the larger gravitational capture ra-

dius of the q = 3 models, equation (7), netting material
with a broader range of angular momenta relative to
M2. As rotating flow around the companion is estab-

lished at higher velocities, we see the emergence of the
the double-spiral structure in more of the q = 3 mod-
els. However, while we expect this trend to be universal,
we expect wind capture disks to exist at smaller scales
than our companion softening length even when they are
not captured in our global models (given a sufficiently
compact physical companion). The dynamics of these
disks have been recently explored in zoomed-in hydro-
dynamic simulations by Huarte-Espinosa et al. (2013);
Xu & Stone (2019); El Mellah et al. (2019).

4.3. Torques and drag forces

In Figure 5 we plot the z-component of the winds’
specific angular momentum around the binary center of
mass for simulations A–F with q = 1. In our code units,
the specific angular momentum of the donor is 1/4 when
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Figure 4: Same as Figure 3, but top panel has q = 1/3 (lighter companion) and bottom panel has q = 3 (heavier
companion).
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Figure 5: Plot of z-component of the gas’ specific angular momentum around the binary center of mass in a slice in
the x,y-plane. The panels are for the same six simulations as shown in Figure 3. In our setup, the mass losing star is
not rotating. For the slower winds, the specific angular momentum turns predominantly positive, because the gas is
effectively torqued and, as a result, the gas receives some of the binary’s angular momentum as it expands.
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Figure 6: Torque per unit volume calculated with equa-
tion 27 and Equation 28 for the simulation with q = 1

and Γe = 0.9 (f = 0.75).

q = 1. Gas ejected in the direction of the orbital motion

of M1 has a positive angular momentum (orange color),
while gas ejected in the opposite direction has negative
value (purple color).

In the fast wind case (Γe = 0.4), the distribution of
specific angular momentum has almost equal amounts
of gas with positive and negative values, yet the mean

is positive (approaching the specific angular momentum
of the donor as wind speeds to go infinity). Wind that
intersects the wake of the companion gains additional
angular momentum through gravitational torques. As

Γe increases and the wind velocity decreases, the range
of specific angular momenta within the wind as it is
launched narrows (due to the lower wind velocities at

the Roche lobe). Additionally, a larger portion of the
outflowing wind is captured and torqued to higher an-
gular momentum in the extended wake.

The transfer of angular momentum between the wind

and orbit is mediated by the gravitational influence from
the gas on both M1 and M2. The force felt by each star
per unit volume of gas is given by

Fi,gas

Vol
=

GMiρ

|r− ri|3
(r− ri), (26)

where i refers to M1 and M2. The resultant force gener-
ates a torque on the binary around the center of mass,
whose value per cell volume is given by

τi,gas

Vol
= (ri − rcom)× (r− ri)

GMiρ

|r− ri|3
ẑ. (27)

In Figure 6 we show the torque per unit volume from

Equation 28 in the binary orbital plane for simulation
model F. Regions of the wind contribute both positive

and negative torques on the binary. The change in an-
gular momentum of the binary is the sum of the torque
on each star

J̇drag

Vol
=
τ1,gas

Vol
+
τ2,gas

Vol
. (28)

The torque on the orbit changes the angular momentum
of the binary. Positive drag on M1 pulls the binary
forward, while negative drag on M2 pulls it backwards.
Figure 6 shows that the highest torques per volume are
located near the binary, in the gas focused behind M2

and in the gas just ejected from M1. Close to M1 the
gas is still very symmetric, so the sum of the torque is
still minimal. Areas within the high density in the spiral
arm also have increased values of the torque. This is not
spherically symmetric and will exert a net torque on the
binary.

To determine J̇drag, we compute the sum of the torque
from the gas in the entire computational domain as the

simulation proceeds and average over three complete or-
bits. With J̇drag we then can calculate γdrag. The angu-
lar momentum lost from the donor is calculated making
use of equation 6 in order to derive J̇1. Equation 3 can

then be used to calculate γloss, which can then be com-
pared to our analytical predictions (Section 2.3).

The comparison between our numerical results and

the analytical predictions is plotted in Figure 7 for all
simulations with different values of f , f∞ and q. The
comparison of the upper and lower panels of Figure 7

demonstrates that f , rather than f∞, is the key di-
mensionless parameter in determining the dimensionless
drag as a function of velocity. This implies that it is not
the velocity to which the wind will eventually accelerate

that determines its interaction with the binary, but the
velocity at distances similar to the binary separation.

In Figure 7, we have scaled the calculated drag term

by the mass of the companion, and we have plotted the
expected Cd

f(f2+1) dependency from equation 11. By fit-
ting the simulations to our estimate of the drag, we find
that a factor of Cd = 1.5 best describes the data. The
change in angular momentum due to wind mass loss can
then be effectively described by the following relation

γloss = γdonor + γdrag = q +
1.5
(

1
q + 1

)−1

f(f2 + 1)
, (29)

which is the BHL relation augmented with the numerical
drag coefficient.

Broadly speaking, the BHL results of equation (29)
effectively capture the general trend with q and f . How-
ever, differences are most pronounced at lower velocities,

f . 1.2. This is related to the fact that the analyti-
cal prescription assumes instantaneous acceleration and
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Figure 7: Here we plot γdrag · (1 + 1/q) for all simu-

lations A–R. The upper panel shows models plotted as
a function of wind asymptotic velocity ratio, f∞, while
the lower panel scales to the velocity ratio at the bi-
nary separation, f . The dimensionless drag is plotted

together with the expected 1
f(f2+1) dependency from

Equation (11) multiplied with factor Cd = 1.5. We ob-
serve from this comparison that the wind velocity ratio
at the orbital separation, f , is the primary controlling
parameter in the resulting drag force.

thus neglects the velocity profile of the wind, which is
a progressively worse assumption over the gravitational
capture length scale for lower f values. The velocity
slope results in a radially varying density, which is ex-
pected to increase the drag (De et al. 2020; MacLeod
et al. 2017). We explore and quantify this effect further
in Appendix A.

After calculating γloss we use equation 4 to work out
the binary’s orbital change. Figure 8 shows the value of
ȧ per unit mass loss. The dashed lines show our best fit
to the analytical formalism from equation 29. For a fixed
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Figure 8: The evolution of the binary’s orbit. Shown
is the calculation of ȧ from equation 4 for all simula-

tions with varying f and q. Dashed lines show fit from
equation 29.

q, drag forces are most important at low f . As predicted
by the analytical formalism (Section 2.3), the drag force
needed in order to change the sign of ȧ from positive to

negative, is smaller for higher values of q, and the change
in the binary’s orbit increases with decreasing f . As can
be seen in Figure 8, there is a critical value of f for a

fixed q when the torque is able to reverse the sign of the
orbital evolution, that arises when γdrag = 1/2. This
critical value, fcrit(q), increases for higher q. As such,
binary inspiral driven by mass loss takes place when the

wind focusing companion is massive and/or the wind is
slow.

5. DISCUSSION

In this paper we develop a set of simulations in or-
der to understand the effects of stellar mass loss in bi-
nary systems when one of the stars gradually loses ma-

terial. We designed the set of simulations to systemat-
ically cover a wide range of mass ratios and wind ve-
locity profiles. In all calculations, the wind material is
focused into a wake behind the companion and forms
a spiral arm around the binary that expands outwards.
The exact structure varies with q and f . The velocity
of the wind determines how tightly the spiral arm coils
around the binary while the wind velocity profile com-
bined with the mass ratio determine how much gas is
effectively focused. For slow winds and massive com-
panions the nature of the wake is altered. This happens

when the circularization radius of the wind material be-
comes similar to the focusing radius of the companion.
In this case, a large-scale centrifugally supported struc-
ture begins to form and a second spiral arm appears.
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For even slower winds a more prominent disk-like struc-
ture is formed and, as a result, the gas distribution near
the companion becomes more symmetric.

In general, the more asymmetric the distribution of
material around the binary is, the stronger is the corre-
sponding torque, which then causes the binary to shrink.
In the absence of any gas accumulation, the binary’s
orbit will naturally expand. As such, slower winds or
higher values of q can alter the orbit of the binary trans-
forming it from an expanding one into a shrinking one.
This behavior can be deduced from analytical calcula-
tions that make use of the BHL formalism (Hoyle & Lyt-
tleton 1939; Bondi & Hoyle 1944), although, as shown
by our study, this formalism seems to systematically un-
der predict the resultant drag if one assumes Cd = 1 (see
Section 4.3). The discrepancy is particularly large when
the wind is slow compared to the binary’s orbital veloc-
ity.

5.1. Simplifying Assumptions

We made a number of simplifications in the analysis
and models described above. Some of these are justifi-
able in wide binaries, but not necessarily in close bina-

ries in which the donor fills a significant fraction of its
Roche lobe and the donor’s rotation is tidally locked to
the orbit, precisely the regime of slow winds that we are
interested in. We briefly summarise these here.

We generally assumed that the donor was not rotat-
ing. In fact, a tidally synchronised donor will lose extra
angular momentum in winds, since each ejected particle

carries both the orbital and rotational specific angular
momenta. This is analysed in the model described in
Appendix B.

More generally, we ignored the reservoir of angular
momentum in the donor’s moment of intertia and rota-
tion. A tidally synchronised donor will feed back angular
momentum into a binary that is widened by winds, ex-
acerbating the widening. However, since the gyration
radius is typically small relative to the orbital radius,
this is often a small correction.

A more significant effect is due to ongoing stellar evo-
lution in detached binaries. The moment of inertia of the
donor will typically increase as the donor evolves (until
it loses its hydrogen envelope through winds). There-
fore, more angular momentum will be required to keep
the star tidally synchronised. As this angular momen-
tum is taken out of the binary’s orbit, the orbital pe-

riod will decay, an effect that can mimic the response to
interacting winds that we explored. Many neutron-star
HMXBs are observed to have a decreasing period deriva-
tive (Falanga et al. 2015). This has been attributed to

the growing moment inertia of the donors (Levine et al.
2000, see section 5.2 for further discussion).

The internal structure of a donor and its moment of
inertia might also be changed by tidal energy deposition,
but since tidal dissipation will generally release energy
at a much slower rate than the donor’s luminosity for
scenarios of interest, this is typically a second-order ef-
fect.

We made a number of simplifying assumptions about
the wind profile. We relax some of these in Appendices
A and C, where we consider winds with different accel-
eration profiles and clumpy winds. We also neglect any
feedback on the wind profile from the accreting com-
panion, or interaction between two wind fronts if both
binary components are losing mass through winds.

Another significant simplification is the assumption
of spherically symmetric winds. In practice, as the

donor star is significantly distorted in close binaries, a
spherically symmetric approximation is no longer ade-
quate, and the morphology of the winds will be affected

by the donor’s asphericity, including gravity darkening
(Hadrava & Čechura 2012; El Mellah et al. 2020a). This
is likely to impact both the predicted evolution of the

system and the observationally inferred wind parame-
ters.

We neglected accretion of some of the material in the
winds by the companion, but that is likely insignificant

for the typical binaries we consider (see Section 2.2).
We consider the impact of some of these assumptions

below. In section 5.2, we discuss the validity of our

assumptions regarding the equation of state of the wind
and compare our results to previous work. In section 5.3,
we discuss observational constraints from two particular
HMXBs, Vela X-1 and Cygnus X-1.

5.2. Comparison to Previous Studies

When comparing to previous work, it is important
for us to highlight some key differences in approaches,
which can be broadly classified in two categories. One
relates to the efficiency of cooling of the gas in the wind
interaction region while other one relates to the specific
wind acceleration profile assumed in the simulations.

A simple prescription to assess whether the shock in-

teraction region between the stars will be radiative can
be obtained using the formalism derived by Rodŕıguez-
González et al. (2008), which compares the cooling
length λcool with the separation a of the binary. The
shock interaction region will be radiative provided that
(λcool/a) < 1. λcool can be written as (Rodŕıguez-
González et al. 2008)

λcool

a
= 5.5× 10−7

(
10−6M�yr−1

Ṁw

)( a

1AU

)
h(vw),
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where

h(vw) =

[
1 +

(
135km s−1

vw

)10.7
]
×{

1− exp

[
−
( vw

200km s−1

)6
]}( vw

100km s−1

)5.2

.

For vw = 1000 km/s, Ṁw = 10−6M�yr−1 and a = 1AU,
we get λcool

a = 0.09. This clearly demonstrates that most
close binaries will have (λcool/a) < 1, thus justifying the
use of a more compressible equation of state (γad → 1
as the gas approaches isothermal).

In Appendix C we study the role that the equation of
state has on the evolution of the binary. That is, we sim-
ulate winds with varying adiabatic index γgas, which are
used here to broadly simulate the cooling in the interac-
tion region for γgas < 5/3. By applying this commonly
used method we can effectively generalized our results

to a broad range of binaries. While the addition of a
cooling function makes the results more accurate, the
conclusions derived from such an analysis can unfortu-
nately only be applicable to the very specific physical

values of a particular system. The results presented in
Appendix C clearly show that the effects of varying γgas

are small when compared to those resulting from vary-

ing q and f . One implication of this conclusion is that
the dimensionless character of our simplified models is
sufficient for application to real systems for the purposes

of estimating wind-driven orbital evolution.
We also note here that our simulations make use of

a simplified wind velocity profile, whereas real winds
might follow varying acceleration schemes. This would

result in different velocity structures, which are explored
in Appendix A. Motivated by the results in Appendices
C and A, which show that the key parameters driving

the evolution of the binary are q and f , in what follows
we present a detailed comparison of our results with
those of others. It is important to highlight that al-
though there are clear differences in approaches taken
by the various groups, the results appear broadly consis-
tent, which is encouraging when thinking of constructing
generalized prescriptions.

In Figure 9 we compare our results with those from
Saladino et al. (2019) (diamonds), Chen et al. (2018)
(triangles) and Jahanara et al. (2005) (their radiation-
driven cases; stars). Jahanara et al. (2005) run hy-
drodynamical simulations using an Eularian setup with
γgas = 5/3 and drive the wind acceleration by turning
off the gravity of the donor star. Chen et al. (2018)
run radiation hydrodynamic simulations with the Eu-
lerian code ASTROBEAR using γgas = 5/3 with prescrip-
tions for dust formation, gas cooling and pulsations in
the mass loss rate, all of which affect the acceleration of
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Figure 9: Comparison with previous work. In the top
panel we show γloss as a function of f for our simula-
tions in the context of those performed by Saladino et al.

(2019), Chen et al. (2018) and Jahanara et al. (2005).
The data points from Saladino et al. (2019) have been
translated to values of γloss using equation 12 of Sal-
adino et al. (2018). Saladino et al. (2019) and Chen

et al. (2018) do not explicitly give f but instead give the
value of the wind velocity at the RL of the donor star,
which can be easily translated. Jahanara et al. (2005)

give their results for γloss as a function of f∞ rather than
f . Both Chen et al. (2018) and Jahanara et al. (2005)
run simulations in the corotating frame, which implies
that the wind material is ejected with higher angular
momentum due to the spin of the donor star. The sim-
ulations performed here as well as those carried out by
Saladino et al. (2019) are not computed in the corotat-
ing frame. In these cases we apply a correction similar
to that given in Saladino et al. (2019) in order to derive
γloss and γdrag. In the bottom panel we show the values

of the drag component given by γdrag = γloss − γdonor,
and multiply with (1 + 1/q) to get the same quantity as
Figure 7.
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the wind material. Saladino et al. (2019) run SPH sim-
ulations and similarly to Jahanara et al. (2005), have a
setup with γgas = 5/3 and drive the wind acceleration
by turning off the gravity of the donor star. They also
include terms for cooling and heating due to gas and
dust opacity.

In Figure 9 we also include the fit given by equation
(29), which provides a relatively accurate description
of the simulations for f & 1. It is clear that for low
wind velocities, there are marked differences between
the various approaches. As shown by Saladino et al.
(2019), the strength of the torque increases significantly
for slower winds and the mass transfer transitions to a
Roche lobe overflow as the wind velocity decrease below
≈ 0.9vorb. In this regime, differences in the acceleration
thermodynamics of the wind become relevant, while this
is largely not the case at higher velocities.

5.3. Relevance for observed systems

The orbital period evolution of a binary system con-
tains critical information about the physics of the binary

components and their mutual interactions. In most bi-
naries, the evolution of the orbital period is too sluggish
to be discernible but among HMXBs this evolution is ap-

parent in a number of cases (Bildsten et al. 1997; Levine
et al. 2000; Falanga et al. 2015).

Since their discovery, HMXBs have been intensively
monitored, which has allowed wind accretion models to

be tested. Several mechanisms have been invoked to ex-
plain the orbital evolution in HMXBs, including tidal
interaction between the compact accretor and the mas-

sive companion as well as wind mass transfer from the
massive component to the compact accretor. The dis-
cussion that follows contrasts the evolution of two clas-

sical systems: Vela X-1 and Cyg X-1.
Vela X-1 is a well-studied high mass X-ray binary con-

sisting of a 2.12M� neutron star in a tight orbit with
a 26M� donor star (q = 0.08) with a radius of 29R�
(Falanga et al. 2015). It has an orbital period of ≈ 9
days (van Kerkwijk et al. 1995). Here we assume a mass
loss rate of Ṁ ≈ 10−6M�/yr. The terminal wind veloc-
ity v∞ has been estimated using a wide range of meth-
ods, where different studies find values between 600 and
1700 km/s (for a review see Fürst et al. 2010). For this
discussion we assume that the wind velocity is equal to
the donor star’s escape velocity vesc = 538 km/s , which
gives f = 1.8. The effective escape velocity from the
star includes the effect of luminosity and is likely lower,

so this refers to the maximum velocity needed to escape
the donor star.

Cyg X-1 has a period of ≈ 5.6 days, and recent mea-
surements have uncovered that this binary system con-

sists of a 41M� star in orbit with a 21M� black hole
(q = 0.5) at a separation of 0.24AU (Miller-Jones et al.
2021). The size of the donor star was inferred to be
22R�, and the mass loss rate of the donor star was es-
timated by Gies et al. (2003) to be 2.5 × 10−6M�/yr.
We again assume that the wind velocity is equal to the
donor star’s escape velocity, here vesc = 843 km/s giving
f = 1.7.

As we have described in this paper, winds can either
shrink or expand an orbit depending on f and q. The
characteristic timescale for winds to alter the orbital pe-
riod can be written as

τw ≈
a

ȧw
= −1

2

M1

Ṁ1

[
1− (γloss +

1

2
)
M1

M

]−1

, (30)

which is the inverse of equation (4). Here γloss is the
fractional change in orbital angular momentum per unit
mass loss and is given by equation (3). For both systems
we expect the orbital period to increase. For Vela X-1

we find τw ≈ 2 × 107 yrs while for Cyg X-1 we infer
τw ≈ 3× 107 yrs.

The corresponding period derivative due to winds can

then be written as

Ṗ

P
=

3

2

ȧw

a
− 1

2

Ṁ1

M1 +M2
. (31)

For Vela X-1 we find Ṗ
P = 8 × 10−8yr−1, and for Cyg

X-1 we find Ṗ
P = 7 × 10−8yr−1. For both systems we

derive increasing periods. This is because the chosen
wind velocities are faster than the orbital velocity and
these systems have small mass ratios (see e.g. Figure 8).

Observations of Vela X-1 indicate that the period deriva-
tive is, however, negative, implying that the system is
shrinking (Falanga et al. 2015). While this could be

explained if the massive stellar companion had a slow
wind, this formalism neglects the effects of tides, which
are certainly relevant for these close-in systems (Levine
et al. 1993, 2000).

Even in the absence of winds, the orbital angular mo-
mentum changes because the tidal deformation is phase-
lagged with respect to the perturbing tidal forces, which
gives rise to a tidal torque that exchanges angular mo-
mentum between the orbit and the stellar spin. In gen-
eral dissipation leads to the circularization of the or-
bit and causes the stellar spins to align and synchro-

nize. The characteristic timescale for tidal circulariza-
tion (Hurley et al. 2002) can be written as

ττ ≈
2

21

R
3/2
1

(GM1)1/2q(1 + q)11/6ε
(a/R1)21/2, (32)

where ε = 1.592 × 10−9(M1/M�)2.84. For Vela X-1 we
derive ττ ≈ 2×105 yrs while for Cyg X-1 ττ ≈ 9×103 yrs.
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From the above discussion it is evident that the orbital
evolution of these systems will be driven by tides until
circularization. Once this equilibrium situation has been
achieved the tidal perturbations become stationary in
the corotating binary frame and the dissipation ceases.
At this stage, the orbit primarily evolves with the change
in the moment of inertia of the massive companion as
these changes are mediated to the orbit through the ac-
tion of tides.

As the star’s moment of inertia increases over the
course of its evolution, more spin angular momentum is
required to keep it tidally synchronised to the orbit. As
this angular momentum flows from the orbit into stellar
rotation, the orbit decays (Levine et al. 2000). This or-
bital decay is exacerbated by winds which carry away the
rotational angular momentum of the mass-losing star, as
the surface of a tidally synchronised star may have a sig-
nificant additional specific angular momentum relative
to its bulk orbital angular momentum. We consider this

latter effect, in the absence of tides, in Appendix B.
An understanding of the roles of winds in altering the

orbital evolution in these systems is thus highly sensitive
to the exact evolutionary state of the companion and is

beyond the scope of this work. For example, MIST stel-
lar evolution models (Paxton et al. 2011, 2013, 2015;
Choi et al. 2016; Dotter 2016) for a star with a zero-

age main-sequence mass of 43.4 M� star show that its
moment of inertia can grow on a timescale as long as
I1/İ1 ≈ 3.6×107yr during the main sequence or as short

as I1/İ1 ≈ 1.5× 106 yr at the end of the main sequence
when the supply of hydrogen in the star’s core is nearly
exhausted. This timescale is comparable to M1/Ṁ1 for
Cyg X-1 and illustrates the relevance of winds in driv-

ing the evolution of binaries with main sequence com-
panions, as in the case of Cyg X-1 (Miller-Jones 2020).
Measuring the change in the orbital period of Cyg X-1

could thus help understand the interplay between winds
and tides and could help uncover the mass loss attributes
of the system.

6. SUMMARY

We present a suite of simulations of stellar winds in
a binary system using a simplified version of the line
driven wind formalism developed by Castor et al. (1975).

We ran simulations with varying wind velocity, mass
ratio, wind velocity profile and gas adiabatic index. We
used these simulations to study the resultant density
structure around the binary and the long term impact
on the binary’s orbit. Our key findings are:

• The interaction between the wind and the binary
creates a spiral pattern in the density distribution.
The spiral appears as a result of gravitational fo-

cusing from the companion, where a denser wake
forms behind the companion (see Figure 3). The
angle and thickness of the wake depends primar-
ily on the ratio between the wind velocity at the
location of the companion and the orbital velocity
as well as on the mass ratio.

• The higher density wake exerts a torque on the bi-
nary, which alters its orbit by transporting angular
momentum from the stars to the gas (see Figure
6). The resultant torque is largest for slow winds
and high companion masses.

• By comparing the measured torque to the analytic
estimate derived in Section 2.3, we show that the
drag measured in the simulations is systemically
larger than predicted by theory. We then use the
results of the simulations to construct an approx-
imate formula for the angular momentum loss in
equation 29. Comparing our results to previous

work shows that the fit works well for wind ve-
locities down to approximately 90% of the orbital
velocity, below which differences in the wind ac-

celeration mechanism and differences in gas den-
sity across the Bondi radius become crucial to the
eventual result (see Figure 9).

• Other wind parameters that alter the measured
drag are the equation of state of the gas and the ra-
dial velocity slope of the wind within the accelera-

tion region. We discussed these in Appendix C and
Appendix A. More compressible equations of state
result in denser and more clumpy density wakes,

while a change in the velocity slope induces a mo-
mentum gradient across the wake. However, the
wind velocity and mass ratio are predominantly

responsible for changes in the angular momentum
loss and orbital evolution.

• Finally, we have applied our formalism to the or-
bital evolution of Vela X-1 and Cygnus X-1 in or-
der to compare the effects of winds and tides in
high mass X-ray binaries. We find that tides domi-
nate the orbital evolution of Vela X-1 (as indicated
by current measurements), while no period deriva-
tive measurements have been reported for Cygnus

X-1.

Any future study of this problem should refine the
treatment of the wind launching mechanism, which de-

pends sensitively on the star’s power output. But
adding this complexity will make it more challenging to
construct generalized prescriptions that can be imple-
mented in binary population studies covering a wider
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Figure 10: Wind profiles for simulations with f=1. Same as figure 2.

parameter space. With the simple approximation given
in equation 3 we hope to begin the refinement of the
treatment of angular momentum loss through winds in

binary population studies. This will allow us to build
a deeper understanding of the orbital evolution of bina-
ries, which is key when predicting the number of com-

pact binaries currently present in our Galaxy as well as
providing direct tests of the formation, evolution, mass
transfer stability and merging for all types of binaries.
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APPENDIX

A. WINDS WITH VARYING VELOCITY SLOPES

In order to investigate the impact of the radially varying wind density we present simulations done with same f = 1
and q = 1. These models change the size of the donor star s and its luminosity, Γe, to make the velocity gradient
across the position of the companion different. We also calculate drag forces on the binary. The 1D solutions are
plotted in figure 10.

We use the same grid setup for these simulations as in section 4.1. The outcomes of the three simulations are
visualized in Figure 11. The figure shows a slice of density in the x′, y′-plane across the full computational domain.
The differences in velocity profiles yield different large scale structures, with the flatter profile Γe = 0.95 having a more
closed spiral structure. The structure inside the wake is slightly different close to the companion, though the overall

shape is similar.
Figure 12 shows average angular momentum lost from the binary over three periods, same as figure 7, but plotted

as a function of the velocity gradient df/dr across one Ra. For different velocity slopes there is also different gradients
in density and in momentum. These gradients are calculated by taking radial derivatives of the equation 24 and
multiplying by the Ra to get the momentum difference across the wake. We also divide by the wind velocity f , to get
fractional change.

Figure 12 shows that the drag is larger for steeper gradients. The steeper gradients also results in larger density

variation across the Bondi radius, which has been found to increase the drag force in wind tunnel simulations (De
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Figure 11: Density slice in the x, y-plane across the full computational domain for simulations with velocity profiles

from figure 10.
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Figure 12: Calculated drag for simulations with the same velocity at the companion, but different velocity slopes.
The different velocity slopes give different momentum gradients across the accretion radius of the companion. The
dashed gray line indicate the value expected from equation 29.

et al. 2020; MacLeod et al. 2017). And the larger gradient means the spiral tail is less tightly coiled around the binary.
We find that these trends can relate to the differences we observe in Figure 7 in γdrag relative to the BHL prediction.
Our q = 3 models have shallower velocity gradients than q = 1 or q = 1/3 (due to the smaller value of s and the
position of the companion being further down the wind profile). These q = 3 yield lower normalized drag (relative to
the nominal BHL prediction, equation (29)), while the q = 1/3 models exhibit somewhat higher velocity gradient and
elevated drag.

Further study is needed to understand this effect, but these experiments do explain the variation in our simulation

results and some of the differences observed between the models of various authors (as discussed in Section 5), especially
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Figure 13: Density in the orbital plane comparing simulation F (left) with new simulations Ω, F (right) with a
corotating donor star.

at low wind velocities. While observations to access complete wind velocity profiles are quite challenging (e.g. Smith

2014), a simplified approach that applies a characteristic wind velocity profile might provide access to this second-order
correction.

B. WINDS FROM A COROTATING DONOR STAR

In this section we will address the change in flow morphology and drag when the donor star is corotating with the

orbit. We run a new simulations Ω, F . It has the same parameters as simulation F from table 1, but we run this
simulation in a corotating reference frame. This means that two extra source terms are added to the total acceleration
from equation 13

aext = a1 + a2 + a1i + acen + acor, (B1)

where acen = −Ω×Ω× r is the acceleration due to the Coriolis force and acor = −2Ω× v is the acceleration due to
the centrifugal force. The wind is still lunched radially without adding any rotation on the surface, so in a corotating
reference frame this is equivalent to a donor star with spin synchronized to the orbit.

Figure 13 shows mid-plane density for simulations F and Ω, F . The wake structure is similar in both cases. In
the case with rotation the gas has an additional specific angular momentum jgas = r2

in × Ω, but to make a visible
difference this extra angular momentum would have to be comparable to the specific angular momentum of the binary,

jbin = M1M2

(M1+M2)2
a2 ×Ω. The difference in angular momentum thus depends on the mass ratio and the relative size of

donor star and the separation of the binary.
Despite the lack of a clearly visible difference in the wake, there is a small difference in the measured drag. For F

we get γdrag = 0.69+0.08
−0.1 and for Ω, F we get γdrag = 0.62+0.15

−0.09, meaning that the simulation with a corotating donor
may have a smaller value of drag, but the difference is within the measurement uncertainty. Saladino et al. (2019)
similarly find that the transport of angular momentum from the binary is smaller in simulations with a corotating
donor. They also find that the difference is smaller for faster winds. The wind is more symmetric between the two
stars, so the measured drag due to asymmetry in outflow is smaller. But the gas ejected from a spinning star carries
an extra amount of angular momentum matching the stellar surface. The total angular momentum loss should then
include this spin angular momentum loss

γloss = γdonor + γdrag + yspin, (B2)

where

γspin =
2/3R2

star

M1M2a2
. (B3)

For the corotating simulation the new total angular momentum loss is γloss = 1.9, compared to a non-rotating star
where γloss = 1.7.

The difference in measured drag likely depends on the mass ratio and the donor star size compared to the orbit,
because it will change the time the orbit is able to torque the emitted wind. Investigations with varying stellar size

would be needed to more fully understand how stellar rotation will change the angular momentum transport in winds.
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Figure 14: Density in the orbital plane of simulations with q = 1, Γe = 0.4 and s = 3 (f = 1.8), and varying
adiabatic exponents in the equation of state. The shape of the wake is similar for all values γad. The lower value of
γad gives a more compressible and clumpy flow. Values of γdrag are 0.48+0.07

−0.08, 0.249+0.007
−0.009 and 0.204+0.001

−0.001, respectively,
for γad = 1.1, 4/3 and 5/3 with errors as the 31.8th to 68.2th percentile range about the median.

C. WINDS WITH DIFFERENT γAD

The equation of state of the wind is expected to be different for different donor stars. Here we test the simplest

variation of the equation of state by using different values for our adiabatic index. In figure 14 we plot three simulations.
All simulations have q = 1 and Γe = 0.4 (f = 1.8). The first column has adiabatic index γad = 1.1, the second column
has γad = 4/3 and the third column has γad = 5/3. A smaller adiabatic index allows for more compression for both

the fast wind the slow wind case. This leads to more structure in the wake for low adiabatic indices, though the shape
of the spiral is the same regardless of the adiabatic index.

We have calculated γdrag following the same method as in section 4.3. The drag is higher for lower γgas, where
more material is able to gather close to the companion in a symmetric structure. The overall difference is a factor of

approximately 2.5 across the range of γad that we study. We also include uncertainties taken as the 31.8th to 68.2th
percentile range about the median. There is a clear pattern from the flow variability seen in this uncertainty, as the
lower value of γgas give larger uncertainty. The larger variations with γ = 1.1 indicate how important gas clumping

can be for the measured drag, and suggests further study of the variations with different equations of state.

D. NUMERICAL RESOLUTION STUDIES

In this section we investigate the dependence of our results on the size of the companion’s softening radius rsoft

and the levels of AMR in the grid resolution, which affects the spatial resolution near the companion. The studies

presented in this section have q = 1, Γe = 0.9, and s = 3.
We use gravitational softening around the companion to avoid divergent acceleration, as described in section 3.2.

This is set with rsoft. In Figure 15 density and γdrag are depicted for variations of rsoft where the minimum value is 4
cells in size for our standard resolution (see section 4). We ran tests with rsoft = [0.008, 0.015, 0.03, 0.06]. We choose
to run the test simulations for our slowest wind velocities, which have the greatest interaction with the companion.
Across this factor of 7.5 in softening radius, we observe only ±5% difference in γdrag, assuring us that this is not a
primary driver of our measurements.

The spatial resolution set by the level of AMR around the companion object can also change the distribution of the
gas. We test 1, 2, and 3 levels of AMR around the companion. The result is shown in figure 16. The large scale flow
structure is similar in all cases, so the average measured γdrag is also similar. Only the finer structure of the flow is
clearer for higher levels of AMR. We use 2 levels of AMR for our production runs.
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Figure 15: Density in the orbital plane of simulations with q = 1, Γe = 0.9 and s = 3 (f = 0.75), and varying values
of the softening radius rsoft of the companion. The flow structure changes close to the companion for the smallest
value of rsoft. The simulation on the left has γdrag = 1.32+0.16

−0.17, the middle simulation has γdrag = 1.39+0.14
−0.18 and the

right simulation has γdrag = 1.45+0.13
−0.13. The simulations in the main text have rsoft = 0.03 and γdrag = 1.40+0.19

−0.19. The
subscripts and superscripts give the 31.8th to 68.2th percentile range about the median.
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Figure 16: Density in the orbital plane for simulations with q = 1, Γe = 0.9 and s = 3 (f = 0.75), and varying levels
of AMR. The simulation on the left has γdrag = 1.42+0.13

−0.18, the middle simulation has γdrag = 1.40+0.19
−0.19 and the right

simulation has γdrag = 1.41+0.17
−0.14. The subscripts and superscripts again give the 31.8th to 68.2th percentile range

about the median.
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