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ARTICLE INFO ABSTRACT

Article history: According to WHO, 15 millions babies are born preterm each year globally. Preterm
Received 29 October 2021 infant (born before 37 weeks of gestation) are at a significantly higher risk of medical and
Received in revised form 16 June 2022 surgical morbidity in comparison to babies born at term (around 37 weeks). Innovative
252?&;(; in?;geui;??ust 2022 solutions are warranted to meet the increased requirements of Neonatal Intensive Care

g Unit (NICU) with rising number of preterm babies. Various kinds of vital signs such

MSC: as heart rate (HR), respiration rate (RR) or blood oxygen level (SpO;) are monitored
0000 in NICU. Considering the fact the lungs develop in the last few weeks of gestation,
1111 preterm babies in NICU demands sophisticated technology to monitor respiration and

events related to the respiration. Current technologies rely on the indirect measurements

ﬁftye ‘fr?entjf):fThings from thoracic impedance or other invasive techniques for RR monitoring. This poses
IoT discomfort and risk of infections to babies. Also, the delivery of parental and clinical
NICU care is largely impacted by a large number of monitoring cables placed on the babies.
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To address this requirements, we have developed an Internet-of-Things (IoT) based
smart textile chest belt called “NeoWear” to monitor RR and detect apnea events in
babies. The NeoWear is a wearable system consisting of a sensor belt, a wearable
embedded system, and an edge computing device. The sensor belt comprised of a
pressure sensors made of smart-textile and an Inertial Measurement Unit (IMU) to
monitor movements. These sensors are connected to a micro-controller equipped with
wireless communication capabilities called as a wireless embedded system (WES). The
WES wirelessly connects with an edge computing device (ECD) using an MQTT-based
[oT networking architecture. ECD is capable to offer signal processing and computing
services to detect RR and apnea events. Simulation experiments using a high-fidelity,
programmable NICU baby mannequin and five healthy adults were conducted to test
the efficacy of the NeoWear System. Our findings shows an average error of 0.89
BrPM in respiration rate measurement and ~97 percent accuracy in apnea detection
on baby mannequin. Our experiments also demonstrated that how the movements of
the baby mannequin affected the respiration signal during apnea episodes and when
breathing rate increased to 40 breaths per minute. In addition, the changes on human
respiration data showed a meaningful increase for slow, normal and fast breathing. We
also computed computation and communication latencies and they were found to be
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~66 and 22 ms, respectively. Our preliminary results are promising showing the efficacy
of NeoWear to measure respiration and related events for babies.
© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Annually ~15 million babies are born premature (i.e. before 37 completed weeks of gestation) across the globe
according to the reports from World Health Organization (WHO) [1]. Approximately one million preterm babies suffer
morbidity before the age of 5 years as a result of preterm birth and complications related to the preterm birth [2].
These preterm babies requires to be continuously monitored in the specialized Neonatal Intensive Care Units (NICU). NICU
provides services to monitor vital signs of neonates such as heart rate (HR), respiration rate (RR), blood oxygen saturation
(SpO,), and other medical parameters under a specialized hospital environment [3]. For monitoring these parameters,
NICUs often use conventional sticky electrodes. These electrodes can cause skin injuries to babies due to adhesives. Also
it causes hassle with long wires, and false alarms due to loosely connected electrodes or drying contacts. Specifically,
monitoring respiration is challenging because existing solutions uses indirect methods to measure thoracic impedance or
other invasive techniques posing discomfort and the risk of infections to babies [4].

Advancement in Smart-textile and IoT technologies draws an attention towards electrodes and a number of wires
used in NICU. New solutions can be explored and applied to NICU settings for addressing the challenges of respiratory
monitoring in NICU. In this paper, we present a smart textile monitoring platform integrated with an loT-based edge
computing architecture called NeoWear (providing sensing and computing services). Fig. 1 shows a concept diagram of
neonatal chest belt made of comfortable smart textiles integrated with textile pressure sensors that are specially designed
to detect subtle movements such as expansion and contraction of the chest in preterm babies and measure respiration
and related events for babies.

NeoWear system (shown Fig. 2) consists of two subsystems: (1) a wearable embedded system (designed to acquire and
communicate the sensor time-series data from the chest belt) and (2) an edge computing device (designed to receive the
time-series data, perform signal processing services, and visualize RR parameters and alarms onto a touchscreen monitor).
To the best of our knowledge, NeoWear is the first kind of NICU technology built upon smart textiles connected with IoT-
based edge computing services. We developed a textile pressure sensor pad in-lab using an industrial embroidery machine.
We carefully identified the location for the pressure sensors on the chest belt such that the subtle chest movements can
be captured continuously. Sensor location is important to detect critical events such as apnea episodes efficiently. We
developed a local Message Queuing Telemetry Transport (MQTT) networking framework and integrated it with the edge
computing device for real-time data communication. We also designed and deployed signal processing and computing
services such as peak detection, RR calculations, and the detection of apnea episodes for the edge computing device.

This paper makes the following scientific contributions in the areas of testing the feasibility of NeoWear to monitor
respiration and related events of babies:

o We investigated the performance of the NeoWear on a high fidelity NICU training baby mannequin with different
breathing rates to evaluate the performance of sensors, computing services, and overall IoT system. Specifically, we
applied different movement to the programmable baby mannequin and investigated effects of these movements on
the respiration monitoring done using the NeoWear system.

e A comparative analysis was conducted to compare the results of the NeoWear system with the state-of-the-art
methods. This comparison showed efficacy of NeoWear system to monitor respiration and related events.

e A study involving human participants was conducted to understand the effects of living situations on the perfor-
mance of the NeoWear system.

This paper is an extended version of work published in [5]. We extend our previous work by adding the analysis of
movement artifacts on the breathing rate. Further, this extension involved study design (involving human participants),
IRB approvals, human subject recruitment, human subject on boarding, collecting data from subjects and analyzing the
data to evaluate the system. We also show comparison of the proposed system with the state-of-the-art results found in
other literature.

2. Background and state-of-art
2.1. Neonatal Intensive Care Unit (NICU)

The NICU admits premature babies who are born before 37 weeks gestation age, mature babies born with birth weight
less than 5.5 pounds, and/or full term babies who have serious medical conditions such as breathing difficulties, heart
problems, or birth defects [3]. Monitoring physiological signals in NICU is cumbersome and involves handling wires and
sticky electrodes. One of the major challenges in NICU medical monitoring is to accurately monitor respiration rate.
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Fig. 2. An overview of the proposed smart textile sensor system for NICU.

Particularly, there is no reliable and user-friendly method to detect respiratory rate of preterm babies in NICU. The
conventional airflow sensors used for RR monitoring are not well tolerated by preterm babies because this technology is
invasive [6]. For this reason, the RR is often monitored indirectly from thoracic impedance measurement. However, such
indirect methods are prone to artifact and thus, not clinically accurate [7]. Further, studies have shown that the prevalence
of neonatal skin injuries is as high as 43 percent in the NICU [8,9]. Measurement of thoracic impedance requires sticky
adhesive-based electrodes to be placed on the skin of the preterm babies. These sticky electrodes can be harmful to
underdeveloped skin of the preterm babies as they can cause skin breakdown, irritation, and stripping [10]. Another
disadvantage is that these electrodes are significantly vulnerable to motion artifacts. Baby’s cry, holding or moving the
baby or other routines of NICU nurses and families can cause artifacts and false alarms [11].

Further, NICU is often filled with long monitoring wires around the babies that often create physical and psychological
barriers for nurses and parents to access babies [12,13]. Such barriers can significantly hinder timely delivery of parental
and clinical care. In addition, when the nurses and/or families hold the baby, the movement of wires (that connect the
electrodes to the bedside monitors) could degrade signal quality and cause lack of accuracy in the output. The long wires
make it harder for nurses to perform routine tasks on babies in NICUs, including changing the diaper or clothes, feeding,
and cleaning. For these reasons, there is a need to develop a new system that can wirelessly monitor the physiological
signals of babies and offer soft, wire-free sensor interfaces that does not hinder the routine operations in the NICU.

2.2. Internet of things and smart textiles for NICU

Recent advancements in technology can potentially address the challenges of medical monitoring in the NICU.
Particularly, IoT-based infrastructure can be deployed in the NICU environment to reduce the number of wires lying
around the babies that can lead to improved parental and clinical care delivery. E-textiles can be used in conjunction with
the IoT infrastructure to offer a soft and comfortable way to develop medical wearables. The e-textile components can be
integrated within different medical wearables related to surgery (e.g. bandages), hygiene (e.g. medical uniforms), drug-
release systems (e.g. smart bandages), biomonitoring (e.g. ECG, EEG, EMG, thermal), and therapy/wellness (e.g. electrical
stimulation, physiotherapy) [14].

Researchers have also explored smart textile for monitoring the new born babies. Hariyanti et al. designed a wearable
fiber optic respiration sensor using optical fiber and integrated it into an elastic material [15]. The sensor was placed
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on the baby’s diaper and the changes in the intensity of light received by the photodiode was monitored to extract the
respiration rate. The system was tested on a ventilator machine and performanced with an error of 0.25 breaths per
minute (BrPM). Raj et al. developed a RR monitoring system using a 3-axis accelerometer placed on baby’s body [16]. The
system was compared with direct observation and had a correlation coefficient of 0.974 between measured and observed
values of RR. Chen et al. developed a smart vest including Polydimethylsiloxane-Graphene (PDMS-Graphene) sensors for
respiration signal; textile-based dry electrodes for ECG signals; and IMU sensors. They compared their PDMS-Graphene
sensor with PSG and calculated r value as 0.977 [17]. Roudjane et al. designed a t-shirt with spiral fiber antenna sensors
to monitor respiration rate by sensing the changes on thoracic volume [18]. They compated their system with spirometry
as the gold standard. They found the error as £2 bpm. Rossol et al. developed an algorithm to detect respiration rate
from camera footage [19]. To record the respiratory movements, they used micromotion and stationarity detection (MSD)
method. They also compared their algorithm with hospital standard and found a good correlation with r equals 0.948.

Researchers have also explored IoT-based infrastructure for monitoring the babies. For example, Jabbar et al. developed
an loT-based baby cradle integrated with sound, temperature, humidity sensors along with auto-swinging support, web
camera, and musical toy [20]. Data from these sensors was monitored and based on that actions were taken to swing the
cradle along with adjusting the cradle temperature and humidity. Researchers have also explored loT-based infrastructure
to predict the status (crying, calm etc.) of the babies. Fahmi et al. developed an IoT-based smart incubator system for NICU
monitoring involving a microphone-based system [21]. They trained the algorithm with forty pre-recorded baby voices
which were successfully classified into five categories: burping, hungry, sleepy, pain, and uncomfortable to make the
system listen to the baby.

Researchers have also tried to extend IoT-based services to cloud-based data management and data processing. As
an example, Singh et al. developed a system which integrates a Beaglebone and Intel Edison based IoT system with
NICU biomedical devices aimed towards cloud-based data management and data analytics [22]. Their system included
machine-data integration (MDI), clinical interface for NICU and data analytics engine. Also, Bastwadkar et al. designed
a cloud-based big data Health Analytics as a Service (HAaaS) framework to analyze the NICU data in the cloud [23].
They aimed to ease the load of data acquisition on low resource setting NICUs by decoupling the data collection, data
acquisition and data transmission components from the software-as-a-service part. The transmitted data was analyzed
in Artemis cloud and the results were sent back to the healthcare organization providing HAaaS. Researchers have also
used such cloud services designed for patient monitoring to aid the clinical decision making. Ahouandjinou et al. offered
a hybrid, intelligent and ubiquitous patient monitoring system called Automatic Detection of Risk Situations and Alert
(ADSA) to overcome false alarms and lack of visualization [24]. Their system included several layers to provide support
services to healthcare providers aiding clinical decision-making. Lorato et al. offered a system which monitors the RF
pixels in thermal videos and classifies the respiration rate according to them [25]. They tested their system on 9 infants
and reached 73% sensitivity for sensing the obstructive apnea. Lorato et al. also offered another method to classify the
short cessation of breath to detect longer apnea [26]. They tested their algorithm on 5 babies with 91 annotated cessations
of breathing. Their algorithm detected the cessation of breath with 93% accuracy. Lee et al. developed an algorithm which
detects the apnea from chest impedance monitoring [27]. They offered a new algorithm which removes the cardiac signal
from the chest impedance to provide more robust monitoring of apnea. Monasterio et al. offered an algorithm which is
based on multimodal analysis framework using electrocardiogram, impedance pneumogram and photoplethysmographic
signals to reduce the false alarms for apnea [28]. They tested their algorithm on 27 neonatal babies and achieved 100%
accuracy on the training set and 90% accuracy on validation set. Uddin et al. developed an algorithm which detects the
sleep apnea from nasal airflow and pulse oximetry [29]. They tested their algorithm on 988 polysomnography records.
Their results showed an agreement between estimated and scored apnea where the correlation coefficient is 0.95.

In general, most of the existing literature offering IoT-based architectures for NICU monitoring is aimed to utilize
machine learning and artificial intelligence based methods to enhance the neonatal monitoring capabilities. Those who
used e-textile for baby monitoring, did not integrate such systems with the IoT infrastructure. Many other studies
monitored baby voices, temperature, and moisture using IoT. However, none of them focused on monitoring vital
physiological parameters such as respiration rate while taking advantage of IoT infrastructure. Also, the existing literature
added more physical elements (sensors) to the NICU environment and did not focus on reducing the wire complexity in
the existing NICU setup. Motivated by this challenges, in our research, we focused on combining smart e-textiles and IoT
technologies to offer a novel approach for adhesive-free, wireless, and wearable respiration monitoring technology which
can be a promising solution for physiology monitoring in clinical settings such as NICU.

3. Materials and methods

The NeoWear consists of an e-textile pressure sensor pad integrated in a chest belt, a wearable embedded system,
and an edge computing device housing signal processing algorithms. The e-textile chest belt is designed to detect chest
expansion and contractions during the respiration cycle. The wearable embedded system acquires data from the sensors
mounted on the chest belt and transmits this data wirelessly to the edge computing device that processes the data through
a signal processing services and visualizes the resulting parameters.
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Fig. 3. Wearable embedded system.

3.1. E-textile chest belt for respiration monitoring

The e-textile chest belt consisted of a textile base material and Velostat material as sensing element. The Velostat
material is a non-woven sheet of polymeric material composed of polyolefins impregnated with carbon black to make
it electrically conductive with piezoresistive property [30]. The Velostat material was sandwiched between two layers of
textiles. We chose soft-denim material as the textile base. The Velostat material was integrated with the denim fabric
using an industrial embroidery machine (ZSK JGVA 0109, ZSK Stickmaschinen GmbH). We used silver-plated conductive
threads to integrate Velostat material with base fabric. The signal carrying conductive tracks were also created on the
denim fabric using the conductive threads. We used snap-connectors to connect the wearable embedded system with the
textile-based sensors. We also integrated an IMU sensor (SEN-13944, SparkFun Electronics) in the chest belt to monitor
the chest movement through IMU data as a secondary measure. The objective of the IMU data was also to identify and
remove motion artifacts from the pressure sensor data.

3.2. Wearable Embedded System (WES)

The WES comprised a microcontroller unit with wireless communication capabilities, an analog-to-digital converter
(ADC), and a signal conditioning circuit (Fig. 3). In our application, we chose an ESP32-based microcontroller (Sparkfun
Thing Plus, Sparkfun Electronics) to design the wearable embedded system. The board came with in-built WiFi communi-
cation capabilities for wireless data transmission. The pressure sensors were integrated with the WES using a 16-bit ADC
(ADS1115, Adafruit). Since piezoresistive pressure sensors change their resistance as the pressure is applied, we used a
resistor divider circuit as an interface between pressure sensors and the ADC to scale the analog signals. We also interfaced
the IMU sensor with WES through I>C communication protocol. The ESP32 board is programmed using Visual Studio Code
- Platform IO software. The program allowed us to sample the IMU and pressure sensor data at 125 Hz.

3.3. MQIT data communication

Message Queuing Telemetry Transport (MQTT) is a subscribe-publish messaging protocol that is commonly used in
lIoT applications. The lightweight nature and minimal memory usage enables MQTT clients to be utilized in resource-
constrained settings such as wearables [31] discussed in this manuscript (i.e., NeoWear). MQTT is also used to secure the
information, e.g. the private and sensitive information of the patients [32,33].

Since the MQTT protocol (using the current communication library [34]) requires payload to be sent as an unicode
character array, the pressure sensor data and IMU data was converted into a comma separated value (CSV) formatted
character array (the values in the array separated with comma) [35]. We chose Async-MQTT client library due to its non-
blocking MQTT publish method which allows the ESP32-based WES to send sensor payloads over WiFi at 125 Hz [34].
The payloads were received by the edge computing device which runs a Mosquitto MQTT broker service [36]. As shown
in Fig. 4, the Raspberry Pi hosted the MQTT broker and collected data from MQTT client which was running on the WES.

3.4. Edge Computing Device (ECD)

The ECD was a Raspberry Pi based portable computing system running on an quad core ARM processor. The ECD is
equipped with built-in wireless communication capabilities. Particularly, we used the MQTT connection shown in Fig. 4
to link the ECD with the WES. A client python script uses the Paho-MQTT library to receive incoming payloads in the
base topic to which WES device publishes [37]. The comma separated value array payloads are decoded to UTF-8 and
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appended to a python list object which was then stored as a CSV file every two seconds. A portable 7 LCD screen (Fig. 5)
with SmartiPi Touch 2 Case was used as a tabletop monitor to display the data graphs, breathing rates and critical events.
The signal processing computing services included filtering and feature extraction as discussed below.

e Filtering: The raw data acquired from the chest belt includes movement and high frequency noise. We used a moving
average filter to remove the noise from the signal. We chose moving average filter in our architecture due to its
simplicity considering the implementation on the embedded system. The moving average filter was delay adjusted
with window size of 15 samples for different breathing rate detection and 200 samples for critical event detection.

e Peak Detection: The breathing process, inhalation and exhalation, generated peaks in the data. Each breathing
movement corresponded to one breathe. We employed an adaptive peak detection algorithm to detect these peaks
in the pressure data using windowing. The algorithm finds the local maxima in the signal and finds peaks in the
window according to the local maxima [38].

e Feature Extraction - Extraction of Instantaneous RR: The instantaneous respiration rate was extracted by computing
the time difference between two successive peaks. The equation mentioned below was used for calculation (T is the
time difference between two consecutive peaks. RR = 60000/T

e Detection of Apnea Episode: Apnea can be defined as cessation of breathing. The apnea detection was based on the
instantaneous respiration rates. After the instantaneous RR was calculated, a threshold was set. The RR values below
the threshold were detected and labeled as apnea by the algorithm.
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(a) (b)

Fig. 6. (a) Tory — the high-fidelity mannequin and (b) e-textile sensor placement on Tory.

4. Experimental setup and procedure

Our aim was to design a respiration monitoring system that can monitor the respiration of premature babies in the
NICU and detect critical episodes such as apnea. To evaluate the performance of such a system, we designed a physical
simulation experiment setup using a high-fidelity programmable baby mannequin named Tory (Tory S2210, Gaumard
Scientific Company Inc.) shown in Fig. 6(a). We also conducted experiments with healthy adults to monitor the respiration
of humans.

4.1. Experimental setup

4.1.1. Experiments on baby mannequin

The baby mannequin Tory was borrowed from the Simulation Program at the Women and Infants Hospital. Tory is a
life-like mannequin and is typically used in training NICU nurses. Tory can be programmed to offer physical simulations of
chest/limb movements and apnea episodes. The chest belt was placed on Tory as shown in Fig. 6(b). Tory was programmed
using a software called UNI to simulate different breathing rates (number of breaths per minute), breathing types (normal
and periodic breathing which includes random changes in breathing rates) and duration (time duration for simulation).

4.1.2. Experiments on healthy adults

The chest belt mentioned in Section 3.1 was re-designed and adjusted for healthy adults to fit the adult size. From our
experiments with the baby mannequin, we realized that the placement of the sensors is important. The sensors need to
be on the middle and two sides of the chest as shown in Fig. 7 and they must be on the same place for every participant.
It is known that every adult has different sizes of the chest area. For this reason, we designed the chest belt that can
be adjusted to different chest sizes. To place the sensors on the same place among different participants, we decided to
adjust the length of the fabric between the sensors. To sense the movement of the thoracic area, the chest belt was placed
under the chest as shown in Fig. 7. The data were collected from five participants with three different body sizes (1 extra
large, 2 large, 2 medium) The participant demographics was discussed in Section 4.2.4.

4.2. Experimental protocols
To evaluate the system, we developed a set of experimental protocols as following:

4.2.1. Variations in breathing rates (Baby mannequin)

To simulate slow, normal and fast breathing, breathing rates from 20 BrPM to 60 BrPM were applied to Tory
incrementally. Particularly, we chose to simulate 20, 35, 40, 45, 60 BrPM scenarios ranging from low breathing rate to
highest breathing rate often seen in newborns.
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l 3 Pressure Sensors 1

Fig. 7. Chest belt for adult data collection.

Table 1
Experimental protocol for variations in breathing rates.
Experiment BrPM Duration (min) Total duration (min)
20 5
20 to 35 1
35 15
35 to 40 1
Variations in breathing rates 40 15 59
40 to 45 1
45 15
45 to 60 1
60 5
35 1
35t0 0 1
0 1
0 to 40 1
Apnea 40 1 9
40 to 0 1
0 1
0 to 45 1
45 1

4.2.2. Critical event detection (Baby mannequin)

Apnea is a critical event when a baby stops breathing for some period of time, minimum of 20 seconds [39]. It is
utmost essential to detect this event that could lead to death or major medical condition to the baby. To simulate the
apnea episodes in our experiments, the breathing rate was programmed to simulate 0 BrPM and applied to Tory between
35, 40 and 45 BrPM breathing rates. Details of each experiment protocols are indicated in Table 1.

4.2.3. Extraction of movement noise (Baby mannequin)

To analyze the noise coming from the movements, Tory was programmed to perform arm movements. In experimental
protocol, three different breathing rate (35, 40 and 45) and apnea simulation was used with and without the movement.
The movement periods was labeled by using a switch. The switch sent value “1” when there was a movement and value
“0” when there was no movement. Details are shown in Table 2.

4.2.4. Participant characteristics for healthy adults

Table 3 shows the participant characteristics. We included five healthy participants (P.1-P.5, Mean(SD) = (29.4 + 6.37)
years) in our study involving 2 male and 3 female participants. The participants were recruited locally. The study protocol
was approved by the University of Rhode Island Institutional Review Board (protocol number is 1785106-6).
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Table 2
Experimental protocol for movement noise.
Experiment BrPM Movement Duration (min) Total duration (min)
35 No 5
35 Yes 5
0 No 5
L . . 0 Yes 5
Variations in breathing rates 40 No 5 40
40 Yes 5
45 No 5
45 Yes 5
Table 3
Participant demographics.
Participant Gender Age Chest size
P. 1 Male 38 Extra large
P. 2 Female 34 Large
P. 3 Male 30 Large
P. 4 Female 25 Medium
P. 5 Female 20 Medium

4.2.5. Experimental protocol for healthy adults

In this study, we aimed to monitor the changes in human respiration. To distinguish the different respiration rates, a
breathing protocol similar to Tory was followed. Participants were asked to come to the lab. Then the chest belt was put
on their chest. Participants then asked to perform 10 deep breaths (~45 s), 10 normal breaths (~35 s), 10 fast breaths
(~15 s) while they are standing. The whole experiment took ~105 s.

5. Results and discussions
5.1. System evaluation

One of our aims was to evaluate the feasibility of our system to capture the respiration rate using the chest belt and
the edge computing system with satisfactory accuracy level. For this, we deployed signal processing algorithms on the
edge computing device. This section describes the performance of various signal processing algorithms.

5.1.1. Preprocessing of the raw signal — Baby mannequin

The changes in the output of the pressure sensors was successfully captured in our experiment. The raw signal coming
from the pressure sensors (shown in Fig. 8(a)) was filtered using a moving average filter to remove the unwanted noises.
Fig. 8(b) shows the filtered signal. As can be seen from Fig. 8, the moving average filter was able to remove the noise
artifacts from the raw signal. The Signal to Noise Ratio (SNR) was found to be 10.79 dB for raw signal and 11.79 dB for
the filtered signal. The moving average filter was able to improve the SNR by 10 percent. Since a higher SNR number
means clearer signal, the preprocessing ensured good quality signal for further processing.

5.1.2. Preprocessing of the raw signal — Healthy adults

The raw signal coming from the pressure sensors (shown in Fig. 9(a)) was filtered using a moving average filter to
remove the unwanted noises. Fig. 9(b) shows the filtered signal. As can be seen from Fig. 9, the moving average filter was
able to remove the noise artifacts from the raw signal.

5.1.3. Respiration change detection — Baby mannequin

The ECD was enabled to compute breathing rate from the pressure sensor data. We used a peak detection algorithm
(described in Section 3.4) to capture the respiration peaks from the filtered data. The outcome of the peak detection
algorithm is shown in Fig. 10. Based on the peaks found by the peak detection algorithm, the ECD extracted the respiration
rate by computing the inter peak interval. According to our experimental protocol (discussed in Section 4.2.1) five different
RR were simulated using Tory. We computed Mean Absolute Error (MAE, shown in Table 4) between the measured RR
and the simulated RR. We could find from MAE and Fig. 11 that the respiration rates measured using the ECD were closely
matching with the simulated RR values.

In our analysis, we observed that higher breathing rates are more susceptible to noise. It can be seen from Fig. 11,
the feature extraction algorithm was not able to calculate 60 BrPM episode. Since Tory’s chest movements are dependent
on automated signals coming from software, the height of the chest increases as the respiratory rate increases. For this
reason, the chest pushes the pressure sensors and creates separate pressure change independent from actual respiration.
Also, we have noticed the software simulated breathing rates were not exactly followed by the Tory’s hardware. We found
loss of breathing simulation events (on Tory’s hardware) in the normal breathing setting, which may lead to additional
noise in the data and errors in benchmarking.
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Fig. 8. Pressure data coming from the sensors on Tory. (a) Raw data and (b) Filtered data.

Table 4
Mean absolute error.

Breathing rate (BrPM)

Mean absolute error (BrPM)

20 0.32
35 0.88
40 0.95
45 143

5.1.4. Respiration change detection — Noise analysis
According to our experimental protocol(discussed in Section 4.2.3), three different RR including the movements were

simulated using Tory. Fig. 12 showed that the respiration rates measured using the ECD were closely matching with the
simulated RR values.

We also observed that the movement noise affected the apnea episode and 40 BrPM breathing rate mostly. When we
checked the log file provided by Tory’s software, it was seen that the movement during these episodes created instant
movements (which was shown as shallow breathing in the log file) and these movements caused the increase in between
10-15 (apnea) and 25-30 (40 BrPM) minutes when they corresponded with movement.

5.1.5. Critical event detection — Apnea
Apnea can be defined as cessation of breathing. We aimed to detect respiration related clinical events such as apnea

using the ECD. For this, Tory was programmed to simulate apnea events. We employed an apnea detection algorithm on
the ECD (discussed in Section 3.3). This algorithm successfully detected apnea episodes. Fig. 13 shows the comparison
between the apnea detection done by the ECD and the simulated apnea episodes. We computed accuracy, sensitivity and
specificity for the apnea detection. The accuracy, sensitivity, and specificity values were found to be 96.94, 96.53, and 100,
respectively. Overall, we could see a good agreement between the simulated apnea episode and detected apnea episode.
To increase the accuracy of apnea detection algorithm and distinguish motion events and apnea events, we are planning
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Fig. 9. Pressure data coming from the sensors on healthy adults. (a) Raw data and (b) Filtered data.
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Fig. 10. The outcome of peak detection algorithm.

to perform experiments on simulating the baby motion and apnea at the same time and include IMU sensor data in the
algorithm.

5.1.6. Respiration change detection — Healthy adult
According to our experimental protocol (discussed in Section 4.2.5) three different breathing types were collected from

five participants. The breathing rates were calculated according to the total time for performing 10 breaths. It is obvious
that the breathing rate is not constant on human as it does on the baby mannequin as can be seen in Fig. 14. For this
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Fig. 15. Average values of different breathing types.

reason, the maximum, average and minimum values were calculated for each participant. The average of those values
were shown in Fig. 15.

During the data collection, we realized that the data contained sudden spikes. Since the conductive thread is not
insulated, the small movements coming from the human body creates those spikes and causes noisy signal. For this
reason, we realized that extracting the RR from no-breathe signal was really hard and needed more sensitive algorithm.
In addition, it was seen that the data collection code lagged while publishing 125 Hz data and caused data loss. For this
reason, we reduced the sampling rate to 64 Hz for human data collection.

5.2. IoT performance evaluation

5.2.1. Communication latency

Latency is one of the important aspects related to IoT infrastructure. The performance of the IoT infrastructure depends
on the responsiveness of a system or network. Higher amounts of latency can lead to delayed responsiveness and degrade
the system performance. Particularly, in mission critical applications such as NICU, we need to measure and optimize the
latency to identify the critical events in the NICU and generate timely-alarms. In our case, the communication latency
refers to the time delay between the time when data is sent from the WES (ESP32 board) and the time when the data
is received by ECD (Raspberry Pi). To calculate this time difference, a digital output pin on ESP32 board was assigned to
become high (provides 3.3 V output) when the data was sent. Also, on Raspberry Pi, a digital output pin was assigned
to become high when the data was received. Those two pins were connected to two different channels of a digital
oscilloscope. When those pins turned high, the signals were captured by the oscilloscope and the time difference between
them was calculated as shown in Fig. 16. The communication latency for the data to reach from the WES to ECD was tested
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Fig. 16. Communication delay between ESP32 and Raspberry Pi.

four times. The maximum latency was 27.80 ms while the minimum latency was 15.22 ms. The average communication
latency was also found to be 22.33 ms. It is acceptable to monitor the normal breathing events but needs to be improved
to monitor time-critical events such as apnea. In addition, it should be considered that when the number of channels
increases, the probability of more latency also increases demanding better optimization techniques.

5.2.2. Computational latency

In our present research, we aim to detect critical events related to respiration rate, such as apnea. The detection of such
critical events depends on the collection and processing of RR data. High amounts of processing time can lead to delays in
the detection of apnea and may result in severe medical repercussions. Particularly in our case, the computational latency
refers to the time difference between the time when the data processing begins and the time when it ends. To calculate
the computational delay, a time stamp was saved at the beginning of data processing, another time stamp was saved at
the end of data processing and the difference between those time stamps was calculated. The edge computing device
receives data every 2 s in a batch of 250 samples for Tory and 128 samples for healthy adults (resulting from updated
sampling rate of 64 Hz). The ECD processes this data at every 2 s intervals. To estimate the average processing time, all
the batches were combined (resulting in 438 600 samples) and processed. The computational delay was found 0.669 s for
processing 2-s batches (250 samples) and 67.9 s for processing combined batches (438 600 samples). In addition to data
length, the complexity of algorithm also effects the computational latency. It can be seen that more complex algorithms
will take more time to compute.

5.2.3. Comparison with state-of-the-art

We also compared the efficacy of our system with existing literature. For this, we compared the accuracy, sensitivity
and specificity of our study with the state-of-the-art. Table 5 shows the comparison between previous studies and our
study.

As can be seen from Table 5, our system performed better than the state-of-the-art as far as the sensitivity, specificity
and accuracy are concerned. The studies mentioned in the state-of-the-art mostly focused on developing more robust
algorithms to extract the respiration rate from external sensors such as thermal cameras [25,26], chest impedance [27],
electrocardiogram [28,29]. During our literature survey, we noticed that, to accurately measure the respiration events,
a robust sensing mechanism is as equally important as the robust algorithm. Following this, we created the respiration
sensing belt and the data collection/processing setup in our lab. Further, we also learned from our literature survey that
indirect measurement methods (such as thermal cameras [25,26], electrocardiogram [28,29] etc.) to measure respiration
might not be the best choice to capture critical events such as Apnea. Thus, in our design we chose to measure the chest
movements using pressure sensors to capture the respiration related events. We have also incorporated IMU in our chest
belt to improve the system performance with further developments. Also, we gave attention to the fact that the long
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Table 5

Comparison between state-of-the-art.
Study Accuracy (%) Sensitivity (%) Specificity (%)
Cay et al. (This Study) 96.94 96.53 100
Lorato et al. [26] 93.16 76.32 94.39
Lee et al. [27] 90.64 86.68 91.5
Lorato et al. [25] 94.35 73.39 98.26
Uddin et al. [29] 90.7 98.9 60
Monasterio et al. [28] 90 86 91

duration respiration monitoring in real-life settings would require a solution which is user-friendly and easily adoptable.
Thus, we chose to use an e-textile-based solution to create our system which does not need any adhesive to stick to the
body [27] and it is comfortable enough to be used for long hours for unobtrusive respiration monitoring. Further, the
algorithms that we designed for our system to compute respiration and detect apnea were also tailored to suit our sensor
characteristics such as amplitude, noise and range of the output signal.

As a result of our design choices, Table 5 shows that on-body sensors which are dedicated to the respiration rate
monitoring offer better accuracy than the other sensors which are used to extract the respiration rate as the secondary
measurement. Overall, we found that our system (NeoWear) takes advantage of in-lab designed sensors, data acquisition
system which is dedicated to respiration rate extraction as the primary measurement, and edge computing device which
works in harmony with each other to offer better results compared to other literature.

6. Conclusions and future work

In our present work, we have designed an IoT enabled e-textile-based respiration monitoring platform called NeoWear.
We developed a wire-free sensor belt, a wearable embedded system, and an edge computing device. We evaluated
the performance of the NeoWear system using a high-fidelity baby mannequin called Tory. Our preliminary results are
promising and show the potential of the NeoWear system to be used as a tool to monitor vital physiological parameters
such as respiration rate in the NICU.

The initial promising results also lead us to make more experiments on the comparison between traditional sensing
systems for respiration monitoring. The system will be tested with existing solutions to evaluate its accuracy and
reliability.

One of the limitations of our current work is the integration of IMU sensor within the signal processing computing
services for human data collection. We collected data from pressure sensors and IMU in the experiments with baby
mannequin. We have included the IMU sensor as a secondary measure to detect respiration rate and critical episodes
such as apnea. IMU data was also used to detect the motion artifacts from pressure sensor data. The results showed that
our system could detect the movement and the noise coming from the movement could be removed from the respiration
signal. Since our experiments with baby mannequin shows promising results, in future, we plan to add an IMU sensor
to the adult chest belt. We will analyze the IMU data coming from human and define the noise profile from the data
of motion artifacts. This will improve our algorithm to provide quality data and synchronize the critical event detection
using IMU and pressure sensor data to improve the accuracy of the system.

Another limitation that we faced was the drawback of MQTT because of low-power system and high sampling rate.
We realized that increased distance with low-power settings and the high sampling rate caused data loss and increased
the latency on MQTT connection. To overcome this limitation, the sampling rate was decreased. This demands further
investigations to explore different communication methods for NeoWear in future.

In real-life settings such as hospitals, authors have conducted pilot focus-group studies involving hospital NICU visits
and interviewing nurses to understand the requirements. The NeoWear setup is designed around the idea that a nurse
can monitor multiple babies under his/her observation. Understanding developed from nurses’ interviews showed that
each nurse can handle up to 5 babies in a single room. The current NeoWear setup is designed to handle one node
(i.e., WES) in the current settings. However, this setup can be expanded to add more nodes (multiple WESs) by expanding
the MQTT based protocols. Further, in future, security mechanism can be integrated in the MQTT protocols to ensure the
confidentiality and integrity of information.

In addition, we observed that the baby mannequin Tory has limitations on the higher breathing rates (>45) due to his
mechanical system. The mechanical system is not following the simulated respiration rate exactly. However, NeoWear
focuses on detection of critical event i.e., Apnea which is 0 BrPM. Thus, the current interest of the NeoWear system is
focused more towards lower respiration rate compared to higher respiration rate. In future, application of NeoWear can
be extended to explore critical conditions related to higher respiration rate.

Also, to provide more reliable apnea detection, we will upgrade our data processing with a sliding window detection
algorithm. This algorithm will create a window according to the base signal and compare the data inside the window based
on the threshold. We are also planning to create a supervisor algorithm that will monitor the outcome of the instantaneous
peak detection algorithm. According to the number of missing peaks, the system will create different alarms. These alarms
will be incorporated in the GUI using an Apnea Detection Bar that will be a colored display to offer alarm severity.
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In the future, we are interested in conducting a thorough fault tolerance analysis on hardware system, software and
firmware, networks, and power sources since NICU is a mission-critical operation with a minimum margin for failures
and errors, especially when time-critical events like apnea need to be handled.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential
competing interests: Gozde Cay reports financial support was provided by Republic of Turkey Ministry of National
Education.

Kunal Mankodiya reports financial support was provided by National Science Foundation.

Data availability
The authors are unable or have chosen not to specify which data has been used.
Acknowledgments

The authors would like to thank Sarah Leighton, Madeline Setear, Isabella Lapolito, and Yagnesh Gohil for their
contributions. Gozde Cay is supported by Turkish Ministry of National Education for her PhD research.

References

[1] Preterm birth, 2018, URL https://www.who.int/en/news-room/fact-sheets/detail/preterm-birth.

[2] S.R. Walani, Global burden of preterm birth, Int. J. Gynecol. Obstet. 150 (1) (2020) 31-33.

[3] I Murkovié, M.D. Steinberg, B. Murkovi¢, Sensors in neonatal monitoring: current practice and future trends., Technol. Health Care Off. ]. Eur.
Soc. Eng. Med. 11 (6) (2003) 399-412.

[4] KR. Johnson, ].I. Hagadorn, D.W. Sink, Alarm safety and alarm fatigue, Clinics in Perinatology 44 (3) (2017) 713-728.

[5] G. Cay, D. Solanki, V. Ravichandran, L. Hoffman, A. Laptook, J. Padbury, A.L. Salisbury, K. Mankodiya, Baby-guard: An IoT-based neonatal
monitoring system integrated with smart textiles, in: 2021 IEEE International Conference on Smart Computing (SMARTCOMP), 2021, pp.
129-136, http://dx.doi.org/10.1109/SMARTCOMP52413.2021.00038.

[6] R.Joshi, B. Bierling, L. Feijs, C. van Pul, P. Andriessen, Monitoring the respiratory rate of preterm infants using an ultrathin film sensor embedded
in the bedding: a comparative feasibility study, Physiol. Meas. 40 (4) (2019) 45003.

[7] J. Jorge, M. Villarroel, S. Chaichulee, G. Green, K. McCormick, L. Tarassenko, Assessment of signal processing methods for measuring the
respiratory rate in the neonatal intensive care unit, IEEE ]. Biomed. Health Inf. 23 (6) (2019) 2335-2346.

[8] C. Lund, Medical adhesives in the NICU, Newborn Infant Nurs. Rev. 14 (4) (2014) 160-165.

[9] D.L. August, K. New, RA. Ray, Y. Kandasamy, Frequency, location and risk factors of neonatal skin injuries from mechanical forces of pressure,
friction, shear and stripping: a systematic literature review, ]. Neonatal Nurs. 24 (4) (2018) 173-180.

[10] L. McNichol, C. Lund, T. Rosen, M. Gray, Medical adhesives and patient safety: state of the scienceconsensus statements for the assessment,
prevention, and treatment of adhesive-related skin injuries, J. Wound Ostomy Cont. Nurs. 40 (4) (2013) 365-380.

[11] P. Marchionni, L. Scalise, I. Ercoli, M.L. Palazzi, V.P. Carnielli, Effect of limbs’ motion on pulse oximetry in preterm infants, in: 2016 IEEE
International Symposium on Medical Measurements and Applications (MeMeA), IEEE, 2016, pp. 1-6.

[12] T. Li, M. Matsushima, W. Timpson, S. Young, D. Miedema, M. Gupta, T. Heldt, Epidemiology of patient monitoring alarms in the neonatal
intensive care unit, J. Perinatol. 38 (8) (2018) 1030-1038.

[13] R. Nazari, F. Moradi Koosha, S. Rezaie, N. Akbari, A. Qolizadeh, Z. Sabzi, Experiences of the mothers of infants hospitalized in the neonatal
intensive care unit (NICU), ]. Neonatal-Perinatal Med. (Preprint) (2020) 1-9.

[14] V. Mecnika, M. Hoerr, 1. Krievins, A. Schwarz, Smart textiles for healthcare: applications and technologies, Rural Environ. Edu. Personal. 7 (2014)
150-161.

[15] K. Hariyanti, F.N. Aisyah, KV.AW. Nadia, RW. Purnamaningsih, Design of a wearable fiber optic respiration sensor for application in NICU
incubators, in: AIP Conference Proceedings, Vol. 2092, AIP Publishing LLC, 2019, p. 20002.

[16] A.A. Raj, S.P. Preejith, V.S. Raja, J. Joseph, M. Sivaprakasam, Clinical validation of a wearable respiratory rate device for neonatal monitoring,
in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, pp. 1628-1631,
http://dx.doi.org/10.1109/EMBC.2018.8512548.

[17] H. Chen, S. Bao, C. Lu, L. Wang, J. Ma, P. Wang, H. Lu, F. Shu, S.B. Oetomo, W. Chen, Design of an integrated wearable multi-sensor platform
based on flexible materials for neonatal monitoring, IEEE Access 8 (2020) 23732-23747.

[18] M. Roudjane, S. Bellemare-Rousseau, E. Drouin, B. Bélanger-Huot, M.-A. Dugas, A. Miled, Y. Messaddeq, Smart T-shirt based on wireless
communication spiral fiber sensor array for real-time breath monitoring: Validation of the technology, IEEE Sens. ]. 20 (18) (2020) 10841-10850,
http://dx.doi.org/10.1109/JSEN.2020.2993286.

[19] S.L. Rossol, J.K. Yang, C. Toney-Noland, J. Bergin, C. Basavaraju, P. Kumar, H.C. Lee, Non-contact video-based neonatal respiratory monitoring,
Children 7 (10) (2020) http://dx.doi.org/10.3390/children7100171, URL https://www.mdpi.com/2227-9067/7/10/171.

[20] W.A. Jabbar, H.K. Shang, S.N.L.S. Hamid, A.A. Almohammedi, R.M. Ramli, M.A.H. Ali, [oT-BBMS: Internet of things-based baby monitoring system
for smart cradle, IEEE Access 7 (2019) 93791-93805.

[21] F. Fahmi, W. Shalannanda, 1. Zakia, E. Sutanto, Design of an loT-based smart incubator that listens to the baby, in: IOP Conference Series:
Materials Science and Engineering, Vol. 1003, 2020, http://dx.doi.org/10.1088/1757-899X/1003/1/012153.

[22] H. Singh, G. Yadav, R. Mallaiah, P. Joshi, V. Joshi, R. Kaur, S. Bansal, S.K. Brahmachari, iNICU - integrated neonatal care unit: Capturing neonatal
journey in an intelligent data way, ]J. Med. Syst. 41 (8) (2017) http://dx.doi.org/10.1007/s10916-017-0774-8.

[23] M. Bastwadkar, C. McGregor, S. Balaji, A cloud based big data health-analytics-as-a-service framework to support low resource setting neonatal
intensive care unit, in: ACM International Conference Proceeding Series, 2020, pp. 30-36, http://dx.doi.org/10.1145/3418094.3418130.

[24] A.S. Ahouandjinou, K. Assogba, C. Motamed, Smart and pervasive ICU based-IoT for improving intensive health care, in: 2016 International
Conference on Bio-Engineering for Smart Technologies, BioSMART 2016, 2017, pp. 1-4, http://dx.doi.org/10.1109/BIOSMART.2016.7835599.

16


https://www.who.int/en/news-room/fact-sheets/detail/preterm-birth
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb2
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb3
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb3
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb3
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb4
http://dx.doi.org/10.1109/SMARTCOMP52413.2021.00038
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb6
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb6
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb6
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb7
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb7
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb7
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb8
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb9
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb9
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb9
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb10
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb10
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb10
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb11
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb11
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb11
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb12
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb12
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb12
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb13
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb13
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb13
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb14
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb14
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb14
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb15
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb15
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb15
http://dx.doi.org/10.1109/EMBC.2018.8512548
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb17
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb17
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb17
http://dx.doi.org/10.1109/JSEN.2020.2993286
http://dx.doi.org/10.3390/children7100171
https://www.mdpi.com/2227-9067/7/10/171
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb20
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb20
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb20
http://dx.doi.org/10.1088/1757-899X/1003/1/012153
http://dx.doi.org/10.1007/s10916-017-0774-8
http://dx.doi.org/10.1145/3418094.3418130
http://dx.doi.org/10.1109/BIOSMART.2016.7835599

G. Cay, D. Solanki, M.A.A. Rumon et al. Pervasive and Mobile Computing 86 (2022) 101679

[25]

[26]
[27]
[28]
[29]

[30]
[31]

[32]
[33]
[34]
[35]
[36]
[37]
[38]

[39]

I. Lorato, S. Stuijk, M. Meftah, D. Kommers, P. Andriessen, C. van Pul, G. de Haan, Automatic separation of respiratory flow from motion
in thermal videos for infant apnea detection, Sensors 21 (18) (2021) http://dx.doi.org/10.3390/s21186306, URL https://www.mdpi.com/1424-
8220/21/18/6306.

I. Lorato, S. Stuijk, M. Meftah, W. Verkruijsse, G. de Haan, Camera-based on-line short cessation of breathing detection, in: 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW), 2019, pp. 1656-1663, http://dx.doi.org/10.1109/ICCVW.2019.00205.

H. Lee, C.G. Rusin, D.E. Lake, M.T. Clark, L. Guin, T.J. Smoot, A.O. Paget-Brown, B.D. Vergales, ]. Kattwinkel, ].R. Moorman, J.B. Delos, A new
algorithm for detecting central apnea in neonates, Physiol. Meas. 33 (1) (2011) 1-17, http://dx.doi.org/10.1088/0967-3334/33/1/1.

V. Monasterio, F. Burgess, G.D. Clifford, Robust classification of neonatal apnoea-related desaturations, Physiol. Meas. 33 (9) (2012) 1503-1516,
http://dx.doi.org/10.1088/0967-3334/33/9/1503.

M.B. Uddin, C.M. Chow, S.H. Ling, S.W. Su, A novel algorithm for automatic diagnosis of sleep apnea from airflow and oximetry signals, Physiol.
Meas. 42 (1) (2021) 015001, http://dx.doi.org/10.1088/1361-6579/abd238.

Velostat. URL https://www.adafruit.com/product/1361.

Z. Yang, Q. Zhou, L. Lei, K. Zheng, W. Xiang, An IoT-cloud based wearable ECG monitoring system for smart healthcare, J. Med. Syst. 40 (12)
(2016) 286, http://dx.doi.org/10.1007/510916-016-0644-9.

A. Mishra, A. Kumari, P. Sajit, P. Pandey, Remote web based ECG monitoring using MQTT protocol for IoT in healthcare, Development 5 (04)
(2018) 1096-1109.

A.LK. Nisha, K. Janani, G.R. Devi, S. Meivel, Blynk and MQTT based smart hospital system, Int. J. Disaster Recovery Bus. Contin. 11 (1) (2020)
69-79.

M. Roger, async-mqtt-client. URL https://github.com/marvinroger/async-mgqtt-client.

0. Message, Q. Telemetry, T. Mqtt,

R.A. Light, Mosquitto: server and client implementation of the MQTT protocol, ]J. Open Sour. Softw. 2 (13) (2017) 265.

Paho MQTT. URL http://www.eclipse.org/paho/clients/python.

F. Scholkmann, J. Boss, M. Wolf, An efficient algorithm for automatic peak detection in noisy periodic and quasi-periodic signals, Algorithms 5
(4) (2012) 588-603, http://dx.doi.org/10.3390/a5040588, URL https://www.mdpi.com/1999-4893/5/4/588.

Sleep apnea. URL https://www.mayoclinic.org/diseases-conditions/sleep-apnea/symptoms-causes/syc-20377631.

17


http://dx.doi.org/10.3390/s21186306
https://www.mdpi.com/1424-8220/21/18/6306
https://www.mdpi.com/1424-8220/21/18/6306
https://www.mdpi.com/1424-8220/21/18/6306
http://dx.doi.org/10.1109/ICCVW.2019.00205
http://dx.doi.org/10.1088/0967-3334/33/1/1
http://dx.doi.org/10.1088/0967-3334/33/9/1503
http://dx.doi.org/10.1088/1361-6579/abd238
https://www.adafruit.com/product/1361
http://dx.doi.org/10.1007/s10916-016-0644-9
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb32
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb32
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb32
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb33
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb33
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb33
https://github.com/marvinroger/async-mqtt-client
http://refhub.elsevier.com/S1574-1192(22)00097-9/sb36
http://www.eclipse.org/paho/clients/python
http://dx.doi.org/10.3390/a5040588
https://www.mdpi.com/1999-4893/5/4/588
https://www.mayoclinic.org/diseases-conditions/sleep-apnea/symptoms-causes/syc-20377631

	NeoWear: An IoT-connected e-textile wearable for neonatal medical monitoring
	Introduction
	Background and state-of-art
	Neonatal Intensive Care Unit (NICU)
	Internet of things and smart textiles for NICU

	Materials and methods
	E-textile chest belt for respiration monitoring
	Wearable Embedded System (WES)
	MQTT data communication
	Edge Computing Device (ECD)

	Experimental setup and procedure
	Experimental setup
	Experiments on baby mannequin
	Experiments on healthy adults

	Experimental protocols
	Variations in breathing rates (Baby mannequin)
	Critical event detection (Baby mannequin)
	Extraction of movement noise (Baby mannequin)
	Participant characteristics for healthy adults
	Experimental protocol for healthy adults


	Results and discussions
	System evaluation
	Preprocessing of the raw signal — Baby mannequin
	Preprocessing of the raw signal — Healthy adults
	Respiration change detection — Baby mannequin
	Respiration change detection — Noise analysis
	Critical event detection — Apnea
	Respiration change detection — Healthy adult

	IoT performance evaluation
	Communication latency
	Computational latency
	Comparison with state-of-the-art


	Conclusions and future work
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


