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Abstract
A continuous Galerkin method based approach is presented to compute the seismic normal
modes of rotating planets. Special care is taken to separate out the essential spectrum in
the presence of a fluid outer core using a polynomial filtering eigensolver. The relevant
elastic-gravitational system of equations, including the Coriolis force, is subjected to a mixed
finite-element method, while self-gravitation is accounted for with the fast multipole method.
Our discretization utilizes fully unstructured tetrahedral meshes for both solid and fluid
regions. The relevant eigenvalue problem is solved by a combination of several highly parallel
and computationally efficient methods. We validate our three-dimensional results in the non-
rotating case using analytical results for constant elastic balls, as well as numerical results for
an isotropicEarthmodel fromstandard “radial” algorithms.Wealso validate the computations
in the rotating case, but only in the slowly-rotating regime where perturbation theory applies,
because no other independent algorithms are available in the general case. The algorithm and
code are used to compute the point spectra of eigenfrequencies in several Earth and Mars
models studying the effects of heterogeneity on a large range of scales.
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1 Introduction

Planetary normalmodes are instrumental for studying the dynamic response to sources includ-
ing earthquakes along faults and meteorite impacts, as well as tidal forces [35, 88]. The
low-angular-order eigenfrequencies contain critical information about the planet’s large-
scale structure and provide constraints on heterogeneity in composition, temperature, and
anisotropy, while rotation constrains the shapes as well as possible density distributions of
planets. The effect of rotation on the seismic point spectrum of the Earth is well under-
stood and has been observed for decades [108,Fig.1]. The observation of spectral energy
of low-frequency toroidal modes in vertical seismic recordings of the 1998 Balleny Islands
earthquake [155], is a manifestation of the three-dimensional heterogeneity and anisotropy
of the mantle structures and rotation.

For a review of Earth’s free oscillations, we refer to [145]. Current standard approaches
to computing the seismic point spectrum and associated normal modes have several lim-
itations. Assuming spherical symmetry for non-rotating planets, the problem becomes
one-dimensional and the computation of normal modes in such models using MINEOS [91,
143] is still common practice; these are then typically used in perturbation-theory and mode-
coupling approaches to include lateral heterogeneities. Full-mode coupling methodology
utilizing normal modes in a spherically symmetric model as a basis has been adopted to
studying Earth’s interior for decades [3, 32, 34, 39, 40, 60, 61, 87, 90, 106, 107, 114, 134,
142, 144, 146]. This methodology is of Rayleigh–Ritz type, and is justified under the assump-
tion that the space inwhich the normalmodes lie contains thementioned basis, which requires
spherically symmetric fluid–solid and surface boundaries. Here, we remove this limitation.
Moreover, a separation of the essential spectrum needs to be carefully carried out, which has
been commonly ignored in the “radial” algorithms. We discuss the mode-coupling approach
and the conditions under which it applies in Appendix B.

To simulate seismic waves in strongly heterogeneous media, the spectral-element method
(SPECFEM) [77, 80] has been widely used for more than two decades. We mention the
software package SPECFEM3D_globe [78, 79], which is capable of modeling relatively
high-frequency waveforms in an entire planet while suppressing the perturbation to the grav-
itational potential. Other implementations of SPECFEM [21–23] have been developed with
alternative numerical approaches pertaining to the fluid outer core. In principle, seismic eigen-
frequencies show up by taking a discrete Fourier transform of numerical solutions; however,
it is a major computational challenge to control the accuracy at very long time scales. We
note that in SPECFEM3D_globe, the fluid displacement is replaced by a scalar potential,
which results in a non-symmetric system of discretized equations. Moreover, the (square of
the) Brunt-Väisälä frequency is assumed to be zero. Rotation in the fluid regions is unnatu-
rally introduced by means of an additional vector (cf. [79,(16) and (17)] and [22,(30)]). In
addition, current SPECFEM3D_globe does not include the incremental gravitational field,
which limits its usage for relatively higher frequency wave propagation.

One may view the computational approach developed in this paper as forming a bridge
between SPECFEM3D_globe, and the mode-coupling approaches derived from modes in a
spherically symmetric model, involving finer scale heterogeneity and higher seismic eigen-
frequencies. Our approach facilitates the studies of the highly heterogeneous crust models
and complex three-dimensional models through the planetary spectrum, as well as the natu-
rally efficient computation of seismograms from many different sources. Naturally, we also
include the Coriolis force and centrifugal potential and formulate it as a nonlinear eigenvalue
problem. We can accommodate arbitrarily shaped fluid–solid boundaries which becomes

123



Journal of Scientific Computing (2022) 91 :67 Page 3 of 52 67

increasingly important at higher rotation rates. In our formulation, the rotation rate might
spatially vary, which is relevant to the future computation of normal modes in gas giants in
our solar system.

In this paper, we revisit the work of [18]. Buland and collaborators encountered several
complications that we overcome by characterizing and separating the essential spectrum
using a polynomial filtering eigensolver and introducing a new formulation that properly
models the elastic-gravitational system without simplifications. In our proposed formula-
tion, the displacement, the proper orthonormal condition and the symmetry of the system
for non-rotating planets are preserved. We apply fully unstructured meshes to model fully
heterogeneous planets, and the mixed finite-element method (FEM) to discretize the elastic-
gravitational system. Our method can handle fully heterogeneous planetary models easily,
and guarantee that accurate solutions lie in the space to which normal modes associated
with the seismic point spectrum belong. In a previous paper [124], we introduced a highly
parallel algorithm for solving the generalized eigenvalue problem resulting from our analysis
for Cowling approximation using P1 mixed FEM. We achieved high parallel computational
and memory scalabilities with demonstrated performance on modern supercomputers. In the
following paper [125], we extended our algorithm using P2 mixed FEM for better accuracy
and discussed the reproducibility of our codes reported from several universities during the
student cluster competion at the supercomputing conference.

Self-gravitation manifests itself in the incremental gravitational potential as the density
changes with displacement. We utilize the Green’s solution of Poisson’s equation and treat
the self-gravitation as an N -body problem. We then apply the fast multipole method (FMM)
[53, 56, 148], which reduces the algorithmic complexity significantly, to compute both the
reference gravitational and the incremental gravitational potentials. Alternatively, one can
apply a finite-infinite element method [20, 151] for modeling unbounded domain problems to
approximate the far-field of Poisson’s equation. More recently, the spectral-infinite-element
method [51] has beendeveloped to incorporate gravity.While our eigensolver [124] only takes
matrix-vector products, any suitable schemes, including FMM or infinite-element methods,
can be used in our computational framework.

To include rotation in the elastic-gravitational system through the Coriolis force and
the centrifugal potential, in this work, we utilize extended Lanczos vectors computed in a
non-rotating planet—with the shapes of boundaries of a rotating planet and accounting for
the centrifugal potential—as a truncated basis to properly facilitate reduction to one of the
equivalent linear forms of the quadratic eigenvalue problem (QEP). Here, the separation of
the essential spectrum comes into play again and the normal modes computed are guaranteed
to lie in the appropriate space of functions. The reduced system can be solved with a standard
eigensolver.

We present and validate our three-dimensional computations using constant elastic balls
and an isotropic preliminary reference Earth model as non-rotating planets with standard
radial codes. The computational accuracy for rotating planets is illustrated and tested but
only in the regime where perturbation theory applies as no other independent algorithms are
available in the general case. We use our algorithm and code to compute the point spectra of
eigenfrequencies in several Earth and Mars models, acknowledging relatively low rotation
rates, studying the effects of heterogeneity on a large range of scales. The Mars models are
relevant to the InSight (Interior exploration using Seismic Investigations, Geodesy and Heat
Transport) [7, 89]mission. It is expected that a set of eigenfrequencies is observable [16, 105].
Here, we select one Mars model [73] from the set of blind tests [27, 135] and combine it with
the topography [130, 154] and a three-dimensional crust [11, 54] to create a realistic Mars
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model. We compute the low-angular-order eigenfrequencies and study the general effects of
rotation and heterogeneity combined.

The outline of this paper is as follows. In Sect. 2, we revisit the form and physics of the
elastic-gravitational system of a rotating planet and establish the weak formulation of the
system with a separation of the essential spectrum using a polynomial filtering eigensolver.
In Sect. 3, we discuss the hydrostatic equilibrium of a rotating fluid outer core in the pres-
ence of the gravitational and the centrifugal forces. In Sect. 4, we introduce the Continuous
Galerkin mixed FEM and obtain the corresponding matrix equations. In Sect. 5, we study
the computation of the reference gravitational field and the perturbation of the gravitational
field using the FMM. In Sect. 6, we validate the computational accuracy of our work for non-
rotating Earth models and quantify the effect on the point spectrum from three-dimensional
heterogeneity. In Sect. 7, we illustrate the computational accuracy of our proposed method
and show several computational experiments for different planetary models, including stan-
dard Earth andMars models as well as related effects due to rotation and a three-dimensional
crust. In Sect. 8, we discuss the significance of our results and directions of future research.

2 The Elastic-Gravitational Systemwith Rotation

In this section, we present a modified elastic-gravitational system of equations of a rotating
planet to deal with the separation of the essential spectrum in the weak form [38] (see [35]
for the strong formulation).

2.1 Natural Subdomains and Computational Meshes

Following the notation in [38], a bounded set X̃ ⊂ R
3 is used to represent the interior of the

Earth, with Lipschitz continuous exterior boundary ∂ X̃ . The exterior boundary ∂ X̃ contains
fluid (ocean) surfaces ∂ X̃F and solid surfaces ∂ X̃S. We subdivide the set X̃ into solid regions
�S and fluid regions �F. The fluid regions contain the liquid outer core �OC and the oceans
�O. The solid regions can be further subdivided into the crust and mantle �CM and the inner
core �IC. We use � to represent the interfaces between these subregions. In summary,

X̃ = �S ∪ �F ∪ � ∪ ∂ X̃ , ∂ X̃ = ∂ X̃S ∪ ∂ X̃F, �S = �CM ∪ �IC, �F = �OC ∪ �O.

The interior interfaces can further be subdivided into three categories: interfaces between two
fluid regions�FF, interfaces between two solid regions�SS, and interfaces between fluid and
solid regions �FS. We can subdivide �FS into two major interfaces: internal interfaces �FS

int
and the bottom interface �FS

O of the oceans. The internal interfaces include the interfaces
between the lower mantle and the outer core �CMB, which is known as the Core-Mantle
Boundary (CMB); the interface between the outer core and the inner core is denoted as
�ICB, which is known as the Inner-Core Boundary (ICB). Thus,

� = �SS ∪ �FF ∪ �FS, �FS = �FS
int ∪ �FS

O , �FS
int = �CMB ∪ �ICB.

In Fig. 1, we illustrate the concepts of the main mathematical symbols for the geometry used
in this work. Since a general terrestrial planet may contain multiple complex discontinuities
associated with different geological and geodynamical features, utilization of a flexible, fully
unstructured tetrahedral mesh would be natural.We discretize the major discontinuities using
triangulated surfaces that are generated via distmesh [110] and then build up the Earth
model using an unstructured tetrahedral mesh via TetGen [126]. In Fig. 2, we illustrate the
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Fig. 1 Conceptual figure of the geometry of a planet using Earth as an example. The red, black and grey lines
indicate the outer boundary ∂ X̃ , the fluid solid boundaries�FS, and interfaces only in the solid or fluid regions

(a1) (a2)

(b1) (b2)

Fig. 2 Illustration of different meshes. (a1) Three triangularized surface meshes; (a2)A tetrahedral mesh with
100k elements that is generated from (a1); (b1) Seven triangularized surface meshes; (b2)A tetrahedral mesh
with one-million elements that is generated from (b1). The light surfaces in (b1) and (b2) denote the CMB

interfaces andmesheswith one hundred thousand and onemillion elements. These techniques
showgreat flexibility and can providemodelswithmultiple resolutions. In Fig. 3, we illustrate
a three-dimensional Earth model built on a tetrahedral mesh. In Fig. 3a, we show the Moho
interface that is constructed using an unstructured triangular mesh. The color shows the depth
and the black lines are the edges of the triangles. In Fig. 3b,we illustrate the three-dimensional
VP model based onMIT’smantle tomographic results [19] and crust 1.0 [81]. The coremodel
is based on the Preliminary Reference Earth Model (PREM) [44].

We also use aMarsmodel as an example to illustrate our construction of a terrestrial planet.
The topography of Mars was measured by the Mars Orbiter Laser Altimeter (MOLA) [130,
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Fig. 3 A three-dimensional Earth model built using MIT tomographic results [19] and crust 1.0 [81]. a A
triangluar mesh built for the Moho interface. The color indicates the depth below the reference surface of the
Earth. The bottom of the Tibet Plateau is shown. b MIT mantle VP model built on a tetrahedral mesh. The
VP model and the contours of dVP/VP (%) are shown

ecafretnieltnam-tsurC(b)yhpargopoT(a)

Fig. 4 Illustration of a the topography and b the crust–mantle interface of the Mars using MOLA and gravity
data [54, 130, 154]

154] with high accuracy. The thickness and density of the Martian crust were constructed
with the help of the works of [11, 54]. In Fig. 4a, we illustrate the topography of Mars using
data from MOLA [130]; in Fig. 4b, we show the crust–mantle interface of Mars using data
provided by [54]. In Fig. 5a–c, we illustrate VP , VS and ρ0 of Mars integrating a radial model
[73] with a three-dimensional crust as shown in Fig. 4. In Fig. 6a, b, we illustrate the axial
spin mode, � × x , and the centrifugal acceleration, −∇ψ , of the Mars model, respectively.

2.2 The Basic Equations

Given the reference density ρ0 and the gravitational constant G, we let �0 denote the gravi-
tational potential which satisfies,

��0 = 4πGρ0, (1)
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(a) VP (b) VS (c) ρ0

Fig. 5 Illustration of a VP , b VS , and c ρ0 of our Mars model with a three-dimensional crust shown in Fig. 4

(a) (b)

Fig. 6 Illustration of a the axial spin mode, � × x , and b the centrifugal acceleration with z as the rotational
axis, −∇ψ , of the Mars model shown in Fig. 5. The directions of the z-axis in both a and b are shown

and S(u) denote the Eulerian perturbation of the Newtonian potential associated with the
displacement u,

�S(u) = −4πG∇ · (ρ0u). (2)

To include the centrifugal force, we introduce the centrifugal potential

ψ(x) = −1

2

[
�2x2 − (� · x)2] , (3)

where � ∈ R
3 is the angular velocity of rotation. Here, we only consider planets rotating at

a constant rate. For differential rotation, additional consideration needs to be included, see
[133] for reference.

We form the gradient,

g′ = g − ∇ψ = −∇(�0 + ψ), (4)

where the reference gravitational field

g = −∇�0. (5)

The initial stress T 0 satisfies the mechanical equilibrium given by the static momentum
equations,

∇ · T 0 = −ρ0g′. (6)
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Table 1 Boundary conditions for a hydrostatic planet (cf. [35,Table 3.4])

Boundary types Linearized boundary conditions

Free surface, ∂ X̃ T 0 · ν = 0; ν · TL1 = 0

Solid–solid interfaces �SS [ν · TL1]+− = 0; [T 0 · ν]+− = 0; [u]+− = 0

Fluid–solid interfaces �FS [T 0 · ν]+− = 0; [u · ν]+− = 0

And fluid–fluid interfaces �FF [ν · TL1]+− = ν[ν · TL1 · ν]+− = 0

All interfaces � & ∂ X̃ [S(u)]+− = 0; [∇S(u) · ν + 4πGρ0u · ν]+− = 0

The elastic-gravitational system of a rotating non-hydrostatic terrestrial planet has the form

− ω2ρ0u + 2 iωρ0R�u = ∇ · T L1 − ∇ · (u · ∇T 0) − ρE1∇�0 − ρ0∇S(u), (7)

where ω denotes the angular frequency; R�u = � × u; ρE1 = −∇ · (ρ0u) denotes the first-
order Eulerian density perturbation and T L1 = ϒT 0 : ∇u denotes the incremental Lagrangian
Cauchy stress. The elasticity tensor, ϒT 0

i jkl , attains the form,

ϒT 0

i jkl = ci jkl + 1

2
(−T 0

i jδkl + T 0
klδi j + T 0

ikδ jl − T 0
jlδik + T 0

jkδil − T 0
il δ jk),

where c denotes the elastic stiffness tensor. In fact, (6) does not determine the entire tensor
T 0. It is common practice to invoke the hydrostatic assumption when T 0

i j = −p0δi j ; then

ϒT 0

i jkl reduces to ci jkl . Under the hydrostatic assumption, we reduce (7) into

ω2ρ0u − 2 iωρ0R�u = −∇ · (c : ∇u) − ∇(ρ0u · g′) + ∇ · (ρ0u)g′ + ρ0∇S(u). (8)

The boundary conditions for the system (8) governing a hydrostatic planet are summarized
in Table 1.

2.3 TheWeak Formulation

We let us denote displacement in the solid regions and u f denote displacement in the fluid
regions. We treat the solid and fluid parts differently and then deal with S(u) globally. We
use v to denote test functions and denote vs and v f for the solid and fluid test displacements,
respectively. The mass term from the first and the second term of (8) take the form

bH (u, v) =
∫

�S
(vs · us)ρ0 dx +

∫

�F
(v f · u f )ρ0 dx, (9)

and

cr (u, v) =
∫

�S
vs · (� × us)ρ0 dx +

∫

�F
v f · (� × u f )ρ0 dx, (10)

respectively. We note that the coercivity of the original weak form of the right-hand side of
(8), identified as aoriginal(u, v) in [38,(3.5)], is not apparent. The early work by Valette [136],
which is written in French, analyzed this problem in a proper mathematical space while the
details can be found in a preprint of a book chapter [38]. In the work of [38], it is revisited and
a proper form, a2(u, v), for the weak formulation is introduced. The coercivity of a2(u, v)

is established in [38,Sections 5.2 and 6]. The equivalence, that is, a2(u, v) = aoriginal(u, v)

under the boundary conditions (cf. [35,Table 3.1]), is proven in [38,Lemma 4.1].
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In this work, we will study a2(u, v) under the hydrostatic assumption. The right hand side
of (8) can be written in the form

a2(u, v) =
∫

�S
(∇vs) : (c : ∇us) dx +

∫

�FS
S{(vs · g′)(νs→ f · us)[ρ0] f } d�

+
∫

�S
S
{
(∇ · vs)(g′ · us)ρ0 − us · (∇g′) · vsρ0 − us · (∇vs) · g′ρ0} dx

+
∫

�F
ρ0N 2 (g′ · v f )(g′ · u f )

‖g′‖2 dx +
∫

�FF
(g′ · ν)(v f · ν)(u f · ν)[ρ0]+− d�

+
∫

�F
κ(∇ · v f + ρ0κ−1g′ · v f )(∇ · u f + ρ0κ−1g′ · u f ) dx

− 1

4πG

∫

R3
∇S(v) · ∇S(u) dx, (11)

where N 2 = (∇ρ0/ρ0 − g′ρ0/κ) · g′ signifies the square of the Brunt-Väisälä frequency;
νs→ f denotes the normal vector at the fluid–solid boundary pointing from the solid to the fluid
side; the symmetrization operationS is defined asS{L(u, v)} := 1

2 (L(u, v) + L(v, u)), for
any bilinear form L(u, v). The first integral over �F is responsible for the inertial or gravity
modes, and the second integral over �F yields the acoustic modes. The integral over �FF

generates Kelvin modes that occur at boundaries with density jumps. To solve the basic
equation (8), we combine (9) with (11) and obtain the system

a2(u, v) = ω2bH (u, v) − iωcr (u, v). (12)

However, it is computationally infeasible to obtain the accurate normal modes from the
direct discretization of (12) due to the existence of spurious oscillations [74]. We discuss
various approaches in Sect. 2.3.1 and note that the solution needs to be restricted to the
space associated with the seismic point spectrum. In Sects. 2.3.2, 2.3.3, 2.3.4 and 2.3.5, we
present our scheme to deal with the fluid–solid and fluid surface boundary conditions, fluid
regions, solid regions and perturbation of the gravitational potential and field, respectively.
In the Sect. 2.4, we introduce the mathematical spaces associated with the seismic point and
essential spectra and their separation using a polynomial filtering eigensolver.

2.3.1 Choice of Physical Variables for Fluid Regions Without Rotation

To study planetary normalmodes, we include the linear elasticity, compressible fluids, and the
fluid–solid and free-surface boundary conditions. Discretization of the standard formulation
leads to computational difficulties, since the non-seismic modes from the compressible fluid
may pollute the computation of the point spectrum. In this paper, we use a displacement-
pressure formulation and later substitute the pressure term using an equivalent formula.

Here, we review different approaches pertaining to the above-mentioned separation of
the essential spectrum for non-rotating bodies and then include the rotation. The natural dis-
placement formulation for a non-rotating bodywill result in a symmetric eigenvalue problem.
However, the drawback is the existence of spurious oscillations [74]. Several finite-element
methods have been developed for modeling the fluid regions with fluid–solid interaction: a
displacement formulation [59], a pressure formulation [29, 152], a displacement-pressure
formulation [139], and a velocity potential formulation [48, 104]. However, the pressure for-
mulation leads to a non-symmetric eigenvalue problem [29, 152], and the velocity potential
formulation [48, 104] leads to a quadratic eigenvalue problem.
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In the engineering community, several approaches have been designed to resolve this issue.
A penalty method [59] has been applied by imposing an irrotational constraint. However, the
study by [103] has shown that this penalty method has issues dealing with a solid vibrating in
the fluid cavity, which is the case in this paper. A four-node elementwith a reduced integration
using a mass matrix projection technique [25] has been designed to eliminate the spurious
modes. A method using different elements for solid and fluid regions was proposed for two-
dimensional [14] and three-dimensional cases [13]when non-physical spuriousmodes appear
[12]. The displacement/pressure formulation [139] has been developed via introducingmixed
elements; still, the fluid–solid coupling needs additional consideration [13, 14].

Compared with the above-mentioned engineering problems, we encounter a more com-
plicated system (8) with different boundary conditions (cf. Table 1). Due to the presence of
the reference gravitational field and the incremental gravitational field, the essential spectrum
of the elastic-gravitational system is more complicated than the one of the elastic systems
with fluid structures in the engineering problems. In the geophysical community, the pres-
sure formulation [78, 79, 101] has been commonly used, which is based on replacing the
displacement by a scalar potential in the fluid regions. It results in non-symmetric stiffness
and mass matrices for a non-rotating body. An alternative approach [21–23], using several
additional variables to represent the fluid displacement, also leads to a non-symmetric sys-
tem. To preserve the necessary symmetry and guarantee the correct orthonormality condition
for the eigenfunctions or normal modes, we note that the fluid displacement must be kept in
the formulation.

2.3.2 Fluid–Solid and Fluid Surface Boundary Conditions

In this work, to deal with fluid–solid and fluid surface boundary conditions we applied a
similar approach [139] with no any penalty terms by augmenting the system of equations
(cf. (11)) and introducing an additional variable, p, according to

− pκ−1 = ∇ · u f + ρ0κ−1g′ · u f in �F. (13)

Here, κ signifies the compressibility of the fluid. Imposing the fluid–solid boundary condition[
ν f →s · u f − ν f →s · us]∣∣

�FS = 0 naturally with the introduction of the additional variable
p, we obtain the weak form for (13),

0 = −
∫

�F
v p pκ−1 dx +

∫

�F

[
(∇v p) · u f − v p(g′ · u f )ρ0κ−1

]
dx

−
∫

�FS
v p(ν f →s · us) d� −

∫

∂ X̃F
v p(ν · u f ) d�, (14)

for all the test functions v p , where ν f →s denotes the normal vector at the fluid–solid boundary
pointing from the fluid to the solid side. Due to the hydrostatic equilibrium,we note that ν|

∂ X̃F

is parallel to g′. Using the boundary condition,

[ν · (κ∇ · u f )]|
∂ X̃F = 0, (15)

we have the relation

(ν · u f )|
∂ X̃F = −‖g′‖−1(g′ · u f )|

∂ X̃F = (ρ0‖g′‖)−1 p|
∂ X̃F . (16)
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We using (16) to rewrite (14)

0 = −
∫

�F
v p pκ−1 dx +

∫

�F

[
(∇v p) · u f − v p(g′ · u f )ρ0κ−1

]
dx

−
∫

�FS
v p(ν f →s · us) d� −

∫

∂ X̃F
(ρ0‖g′‖)−1v p p d� =: cg([u, p], v p). (17)

A short-hand notation cg([u, p], v p) in (17) is introduced for simplification. In this work,
since we only consider planets with a solid surface, the integral over ∂ X̃F will be omitted.
But it will be needed while including the oceans, or dealing with gas giants, such as Saturn
or Jupiter.

2.3.3 Fluid Regions

We use (13) in (11) and obtain
∫

�F
κ(∇ · v f + ρ0κ−1g′ · v f )(∇ · u f + ρ0κ−1g′ · u f ) dx

=
∫

�F
[(v f · ∇ p) − (v f · g′)pρ0κ−1] dx −

∫

�FS
(v f · ν f →s)p d�. (18)

Since

−
∫

�FS
(v f · ν f →s)p d� =

∫

�FS
(vs · νs→ f )p d�, (19)

we include the right-hand side of (19) in the contributions from the solid regions. Thus, we
obtain the contributions to a2(u, v) in (11) from the fluid regions,

a f
2 ([u, p], v) =

∫

�F
ρ0N 2 (g′ · v f )(g′ · u f )

‖g′‖2 dx +
∫

�F
v f · (∇ p − g′ pρ0κ−1) dx

+
∫

�FF
(g′ · ν)(v f · ν)(u f · ν)[ρ0]+− d�. (20)

2.3.4 Solid Regions

For the solid regions, we add the right-hand side of (19) to the terms related to the solid
regions in (11) and obtain

as2(u, v) =
∫

�S
(∇vs) : (c : ∇us) dx

+
∫

�S
S{(∇ · vs)(g′ · us)ρ0 − us · (∇g′) · vsρ0 − us · (∇vs) · g′ρ0} dx

+
∫

�FS
S{(vs · g′)(νs→ f · us)[ρ0] f } d� +

∫

�FS
(vs · νs→ f )p d�. (21)

2.3.5 Perturbation of the Gravitational Potential and Field

Here, we discuss the contribution of the perturbation of the gravitational potential S(u). Since
the test functions are divided into test functions on solid and fluid regions, we have
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aG(u, v) = − 1

4πG

∫

R3
∇S(v) · ∇S(u) dx =

−
∫

�S
∇ · (ρ0vs)S(u) dx −

∫

�SS∪∂ X̃S
(ν · vs)S(u)[ρ0]+− d�

−
∫

�F
∇ · (ρ0v f )S(u) dx −

∫

�FF∪∂ X̃F
(ν · v f )S(u)[ρ0]+− d�

−
∫

�FS

{
(ν f →s · vs)S(u)[ρ0]s + (νs→ f · v f )S(u)[ρ0] f

}
d�, (22)

where [ρ0]s denotes the solid density along the fluid–solid boundary. One can set up S(u) as
an independent variable and apply the finite-infinite element method to approximate (2), but
here we follow a different approach.

Making use of Green’s function [35,Chapter 3, (3.98)], we have

S(u) = G
∫

X̃

∇′ · (ρ0(x ′)u(x ′))
‖x − x ′‖ dx ′ + G

∫

�∪∂ X̃

ν(x ′) · u(x ′)[ρ0(x ′)]+−
‖x − x ′‖ d�′. (23)

Again, we separate the displacement u into us and u f , and rewrite (23) as

S(u) = G

{∫

�S

∇′ · (ρ0(x ′)us(x ′))
‖x − x ′‖ dx ′ +

∫

�F

∇′ · (ρ0(x ′)u f (x ′))
‖x − x ′‖ dx ′

+
∫

�SS∪∂ X̃S

ν(x ′) · us(x ′)[ρ0(x ′)]+−
‖x − x ′‖ d�′ +

∫

�FF∪∂ X̃F

ν(x ′) · u f (x ′)[ρ0(x ′)]+−
‖x − x ′‖ d�′

+
∫

�FS

[ρ0(x ′)]sν f →s(x ′) · us(x ′) + [ρ0(x ′)] f νs→ f (x ′) · u f (x ′)
‖x − x ′‖ d�′

}
. (24)

Although we impose νs→ f · u f = νs→ f · us along the fluid–solid boundaries, we keep the
construction of the incremental gravitational potential S(u) as described in (24). This is to
preserve the symmetry of the bilinear form as we substitute (24) into (22).

Since the Green’s solution is known, we apply the FMM to evaluate S(u) for a given
displacement u via (24). The utilization of this approach is computationally attractive, but
requires that the eigensolver can solve for the interior eigenpairs via matrix-vector multipli-
cations.

2.3.6 Summary

To restrict the system to the computational domain, we can rewrite (11) as

a2([u, p], v) = as2(u, v) + a f
2 ([u, p], v) + aG(u, v). (25)

We obtain the complete formula for the rotating hydrostatic planetary model (9), (10), (25)
and (17):

{
a2([u, p, S(u)], v) = ω2bH (u, v) − 2 iωcr (u, v),

cg([u, p], v p) = 0.
(26)

A matrix representation can be derived from (26). In practice, we replace p in a2 by
p(u f , us

�FS) via solving the constraint cg([u, p], v p) = 0 in (17) and obtain

a2([u, p(u f , us
�FS), S(u)], v) = ω2bH (u, v) − 2 iωcr (u, v). (27)
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The corresponding orthonormality condition is that, for an eigenpair (ω(i), u(i)), any other
eigenpair (ω( j), u( j)) satisfies

bH (u(i), u( j)) − 2 i(ω(i) + ω( j))
−1cr (u

(i), u( j)) = δi j , (28)

which is consistent with [35,(4.82)].

2.4 Hilbert Space for the Elastic-Gravitational System

We introduce the space for the displacement field [38,Definition 5.4]

E =

⎧
⎪⎨

⎪⎩
u ∈ L2(X̃ , ρ0 dx) :

⎧
⎪⎨

⎪⎩

us = u|�S ∈ H1(�S)

u f = u|�F ∈ H(Div,�F, L2(∂�F))

[u · ν]+− = 0, along�FS

⎫
⎪⎬

⎪⎭
, (29)

where

H(Div,�F, L2(∂�F)) = {u f ∈ L2(�F) : ∇ · u f ∈ L2(�F), u|∂�F · ν ∈ L2(∂�F)}.
L2(X̃ , ρ0 dx) denotes a weighted L2 Hilbert space with

L2(X̃ , ρ0 dx) :=
{
u :

∫

X̃
|u|2ρ0 dx < ∞

}
;

〈u, v〉L2(X̃ ,ρ0 dx) :=
∫

X̃
(u · v)ρ0 dx .

We write H = L2(X̃ , ρ0 dx) subject to the constraint
∫
X̃ uρ0 dx = 0 removing rigid-body

translations; E is densely embedded in H [37].
To describe the essential spectrum, we introduce operator T in [136,Section 4] and [37],

Tu f = ρ0[∇ · u f + ρ0κ−1g′ · u f ]. (30)

The adjoint, T ∗, of T is given by

T ∗ϕ = − 1

ρ0 ∇(ρ0ϕ) + ρ0κ−1g′ϕ, (31)

where ϕ has the interpretation of potential. A subspace, H2, of H associatedwith the essential
spectrum is defined by the constraints

us = 0, Tu f = 0 and u f · ν = 0 on �FF ∪ �FS ∪ ∂ X̃F.

In fact, u f can be decomposed according to Ran(T ∗)⊕Ker(T ), following the decomposition

H = H1 ⊕ H2, (32)

where spaces H1 and H2 are associated with the point and essential spectrum, respectively.
The space H2 is designed precisely to extract, via projections, the “subseismic” approxi-
mations to the full system of governing equations for a contained rotating, compressible,
inhomogeneous, self-gravitating fluid. The rigid boundary condition, u|�F · ν = 0 on
�FF ∪ ∂ X̃F, is consistent with a rigid mantle and rigid inner core as u|�S = 0.

In fact, ∀u ∈ H2, we obtain p = 0 and for Cowling approximation, we have

as2(u, v) + a f
2 (u, v) =

∫

�F
ρ0N 2 (g′ · v f )(g′ · u f )

‖g′‖2 dx, (33)
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where as2 and a
f
2 are defined in (21) and (20), respectively. For the incremental gravitational

potential in (2), we have

�SH2(u) = −4πG∇ · (ρ0u f ) = −4πG

[
ρ0N 2 (g′ · u f )

‖g′‖2
]

. (34)

Combining (33) and (34), we note that (27) will be reduced to
∫

�F
ρ0N 2 (g′ · v f )(g′ · u f )

‖g′‖2 dx − 1

4πG

∫

R3
∇SH2(v) · ∇SH2(u) dx

= ω2bH (u, v) − 2 iωcr (u, v). (35)

Thus, restricting ∀u ∈ H2, the associated spectrum of (35) will essentially depend on to N 2

and the rotating rates.
In this work, we solve for the eigenvalues and eigenfunctions of (27) inside a target

frequency interval [ f1, f2], where

f2 > f1 � |�| +
[
|�|2 + max

(
0, N 2

sup

)]1/2
, (36)

where N 2
sup denotes the supremum of the square of the Brunt-Väisälä frequency. We note

that inequality (36) holds true for most planets because the minimal seismic normal mode
frequency is typically much larger than the upper bound of the associated spectrum of (35),
which is the right hand side of (36). For instance, themaximumof theBrunt-Väisälä frequency
of the Earth is around 50 µHz and |�| is 7.3 µHz while the minimal seismic normal mode
frequency is around 0.3 mHz.

A well-designed polynomial filter applied with the eigensolver, will have the effect of
boosting up the eigenvalues inside the interval [ f1, f2] while lessening the rest of the spec-
trum, including the part associated with H2.

Remark 1 It is important to understand the need for polynomial filtering in this context.
First note that eigensolvers like ARPACK [83] or subspace iteration, e.g., [120], compute
eigenvalues of amatrix onone endof the spectrum.After discretizetion, the essential spectrum
will give rise to a large number of eigenvalues near zero. Computing the (discrete) eigenvalues
in the interval [ f1, f2]will be numerically challenging unless the small eigenvalues associated
with the essential spectrum are eliminated. In numerical linear algebra, this is termed an
interior eigenvalue problem in that the target eigenvalues of the discretized problem are
located well inside the spectrum. If we use a standard package like ARPACK [83] we could
compute these eigenvalues starting from the smallest ones until we reach the desired interval
[ f1, f2], which would be prohibitive because of the large cluster near zero caused by the
essential spectrum. Alternatively, we could compute them from the largest ones down. This
would also entail computing a large number of unwanted eigenpairs. Finally, we could also
use a shift-and-invert strategy [109] within ARPACK. This requires using a direct solver with
a very large matrix and is impractical in our context due to the large memory requirement.
The advantage of polynomial filtering is that it eliminates the unwanted eigenvalues and
allows the eigensolver to focus on those that are amplified, namely those in [ f1, f2].
In Sect. 3, we study the hydrostatic equilibrium of the liquid regions with rotation and derive
a proper density distribution. In Sect. 4, we introduce the mixed FEM to construct the system
without the perturbation of the gravitational field. In Sect. 5, we utilize FMM to compute the
gravitational field and the perturbation of the gravitational field and then obtain the complete
matrix formula for (27).
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Table 2 Bulk parameters of Earth and Mars; ε̇(re) denotes the derivative of ε at a = re , and ε
hyd
(re)

and εobs
(re)

denote the computed hydrostatic ellipticity and observed ellipticity, respectively

Parameters � (s−1) re (km) g(re) (m/s2) ε̇(re) ε
hyd
(re)

εobs
(re)

Earth 7.2921e−5 6371.0 9.80 3.05e−5 > 0 3.34e−3 3.35e−3

Mars 7.0882e−5 3389.5 3.71 −8.98e−5 < 0 N/A 5.89e−3

3 Hydrostatic Equilibrium of the Liquid Core with Rotation

In this section, we discuss the hydrostatic equilibrium with rotation and how it constrains
the shape of the boundaries and the density distribution in planets. Rotating fluids have been
extensively studied [24, 57, 149]. The outer core’s properties have been studied through seis-
mic normalmodes since the 1970s [43, 44, 52], but alsowith bodywaves [72, 98].Muchmore
recently, an alternative radial outer core model has been proposed using the parametrization
of the equation of state for liquid iron alloys at high pressures and temperatures, inferred from
eigenfrequency observations [69]. Furthermore, we mention models for the core ofMars [73,
112] albeit ignoring rotation.

To reach the hydrostatic equilibrium, the prepressure p0 satisfies

∇ p0 = ρ0g′, (37)

where g′ is defined in (4). Well-posedness requires that

∇ρ0 ‖ g′ ‖ ∇ p0 in �F and g′ ‖ ν along �FS ∪ ∂ X̃F; (38)

see [38,Lemma 2.1] for details about the functional properties of ρ0, p0 and g′.
The derivation of Clairaut’s equation [26], and Radau approximation are put in the context

of a general scheme imposing (38) in [35,Chapter 14.1]. The bulk parameters of Earth and
Mars are listed in Table 2. While the hydrostatic assumption seems to apply to Earth with
reasonable accuracy, the derivative of the ellipticity at re, ε̇(re), ofMars appears to be negative,
whence this assumption fails to hold [15, 41].

To constructmodels of liquid planet interiors, such as Jupiter and Saturn, equations of state
and theory of figures are commonly used for calculating a self-consistent shape and grav-
ity field [70]. We refer to [94] for a review on modelling Jupiter’s interior using equations
of state and multiple mission data. Since Radau assumptions break down for fast rotating
plants [138,Fig.3], we refer to [66, 95] for constructing Saturn’s interior using the concen-
tric Maclaurin spheroid method to match the Cassini measurements. The condition (38) is
satisfied along with other conditions.

4 The Continuous Galerkin Mixed Finite-Element Method

In this section, we employ the Continuous Galerkin mixed FEM [9, 17, 47, 67, 153], for
discretizing our system without the perturbation of the gravitational field. We thus obtain
a matrix representation for the corresponding weak forms. The incremental gravitational
potential will be introduced in the discretization in Sect. 5.2.
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4.1 The Continuous Galerkin Mixed Finite-Element Approximation

Given a shape regular finite-element partitioning Th of the domain X̃ , we denote an element
of the mesh by Kk ∈ Th and a boundary element by El ⊂ ∂Kk and have

X̃ ≈
NK⋃

k=1

Kk, � ∪ ∂ X̃ ≈
NE⋃

l=1

El ⊆
NK⋃

k=1

∂Kk,

where NK denotes the total number of volume elements and NE denotes the total number of
interior and exterior boundary elements. Furthermore, we let K S

k and K F
k be elements in the

solid and fluid regions, respectively. Similarly, ES
l , E

F
l and EFS

l denote boundary elements
on the solid �SS ∪ ∂ X̃S, fluid �FF ∪ ∂ X̃F and fluid–solid �FS discontinuities, respectively.
We have

�S ≈
NS
K⋃

k=1

K S
k , �F ≈

NF
K⋃

k=1

K F
k ,

�FS ≈
NFS
E⋃

l=1

EFS
l , �SS ∪ ∂ X̃S ≈

NS
E⋃

l=1

ES
l , �FF ∪ ∂ X̃F ≈

NF
E⋃

l=1

EF
l

with

NK = NS
K + NF

K , NE = NS
E + NF

E + NFS
E ,

where NS
K and NF

K denote the total number of volume elements in the solid and fluid regions,
respectively, and NS

E , N
F
E and NFS

E denote the total number of boundary elements on the
(interior/exterior) solid, fluid andfluid–solid boundaries, respectively. In the above, h signifies
the maximum value of diameters of all the elements.

Since we separate out the fluid and solid regions, we divide the finite-element partitioning
accordingly into

Th = T S
h + T F

h , �FS
h = T S

h ∩ T F
h ,

where T S
h , T

F
h and �FS

h denote the partitioning of the domains �S, �F and boundary �FS,
respectively. We then introduce Eh as the finite-element space corresponding with the dis-
placement space E in (29),

Eh =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uh :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ush ∈ Vs
h := {

vsh ∈ H1(�S) : vsh |K ∈ Pps (K ), K ∈ T S
h

}
,

u f
h ∈ V f

h :=
{
v
f
h ∈ H(Div,�F, L2(∂�F) :

v
f
h |K ∈ Pp f (K ), K ∈ T F

h

}
,

∫

EFS
[uh · ν]+−v

p
h d� = 0 for all EFS ⊂ �FS

h ,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(39)

and Vp
h as the finite-element space for p,

Vp
h := {

v
p
h ∈ H1(�F) : v

p
h |K ∈ Ppp (K ), K ∈ T F

h

}
.

Here,Pps (K ) andPp f (K ) are the spaces of polynomials of degrees ps and p f , respectively;

Ppp (K ) is the space of polynomials of degree pp . Though the u f
h is discretized as u f

h ∈
H1(�F), the constraint equation (13) restricts u f

h ∈ H(Div,�F, L2(∂�F). By the Galerkin
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method, the finite-element solutions, uh , and the test functions, vh , both lie in Eh and Vp
h .

We note that the polynomial degree pp does not need to be equal to p f . We apply non-
conforming finite elements across the fluid–solid boundaries. The fluid–solid transmission
condition in the definition of E has been replaced by the condition

∫
EFS [uh ·ν]+−v

p
h d� = 0 in

the definition of Eh . The fluid–solid transmission condition holds in the form of a boundary
integration.

In this work, we chose to use a low-order FEM. Though the polynomial filteringmethodol-
ogy applies equally to discretization based on both the low-order and higher-order methods,
analyzing whether a higher-order formulation would improve the overall complexity and
performance of our current approach is not straightforward; we leave this for a future study.
For standard elliptic PDEs related eigenvalue problems, some results have been obtained
using the higher-order methods [36, 62, 76, 93, 99].

For low-degree polyomials we show, in the next subsection, that these conditions are
compatible through our formulation. Such a compatibility was analyzed and discussed by
[12, 14, 17]. Several numerical studies [13, 25, 74, 104, 150] have been performed using
similar non-conforming schemes along the fluid–solid boundaries. For the general theory
and analysis of the mixed FEM, we refer to [17].

4.2 Matrix Formulae

We introduce nodal-based Lagrange polynomials, {�si }, {� f
i }, {�pi }, on the respective vol-

ume elements K ∈ T S
h , T

F
h . We set Nps = (ps + 1)(ps + 2)(ps + 3)/6, where Nps is the

number of nodes on a tetrahedron for the ps-th order polynomial approximation. We have
similar expressions for Np f and Npp . We write

(ush) j (x) =
Nps∑

i=1

(ush) j (xi )�
s
i (x), (40)

(u f
h ) j (x) =

Np f∑

i=1

(u f
h ) j (xi )�

f
i (x), (41)

ph(x) =
Npp∑

i=1

p(xi )�
p
i (x), (42)

for x ∈ K ; similar representations hold for vsh , v
f
h , v

p
h , respectively. We collect the values

of ush , u
f
h , ph and vsh , v

f
h , v

p
h at all the nodes, {xi }, in the vectors ũs , ũ f , p̃ and ṽs , ṽ f , ṽ p ,

respectively. We can then construct the corresponding submatrices, Asg , A f , Ap , Adg, AT
dg,

EFS, ET
FS, Rs , R f , Ms and M f , see Table 3, in a standard way summarized in Appendix A.

5 Self-gravitation as an N-body Problem

Self-gravitation can be treated as the solution of an N-body problem. We discretize the entire
planet intomany elements and consider them as individual bodies. The gravitational potential
and field are then computed through the interaction between these bodies. We note that FMM
is an ideal candidate for solving an N-body problem. FMM reduces the complexity of the
N-body problem from O(N 2) to O(N log N ) or even O(N ) [55]. We apply the FMM [53,
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Table 3 Implicit definition of the matrices. In the above,
∫
�S = ∑NS

K
k=1

∫
KS
k
,
∫
�F = ∑NF

K
k=1

∫
KF
k
and

∫
�FS =

∑NFS
E

l=1

∫
EFS
l

Operations Physical meanings Corresponding formulae

(ṽs )HAsgũ
s Solid stiffness matrix with gravity

∫

�S
∇vsh : (c : ∇ush) dx

+
∫

�FS
S
{
(vsh · g′)(νs→ f · ush)[ρ0] f

}
d�

+
∫

�S
S
{
(∇ · vsh)(g′ · ush)ρ0

−ush · (∇g′) · vshρ0 − ush · (∇vsh) · g′ρ0
}
dx

(ṽ f )HA f ũ
f Buoyancy term

∫

�F
ρ0N2 (g′ · v

f
h )(g′ · u f

h )

‖g′‖2 dx

+
∫

�FF
(g′ · ν)(v

f
h · ν)(u f

h · ν)[ρ0]+− d�

(ṽ p)HAp p̃ Fluid potential −
∫

�F
v
p
h phκ−1 dx −

∫

�FS
v p(ν f →s · us ) d�

(ṽ f )HAdg p̃ Fluid stiffness matrix with gravity
∫

�F

[
v
f
h · (∇ ph) − (v

f
h · g′)phρ0κ−1

]
dx

(ṽ p)HATdgũ
f Constraint with gravity

∫

�F

[
(∇v

p
h ) · u f

h − v
p
h (g′ · u f

h )ρ0κ−1
]
dx

(ṽs )HEFS p̃ Fluid–solid boundary condition
∫

�FS
(vsh · νs→ f )ph d�

(ṽ p)HET
FSũ

f Fluid–solid boundary condition
∫

�FS
−v

p
h (ν f→s · ush) d�

(ṽs )HRs ũ
s Coriolis force in �S

∫

�S
vsh · (� × ush

)
ρ0 dx

(ṽ f )HR f ũ
f Coriolis force in �F

∫

�F
v
f
h · (� × u f

h

)
ρ0 dx

(ṽs )HMsũ
s Solid mass matrix

∫

�S
(vsh · ush)ρ0 dx

(ṽ f )HM f ũ
f Fluid mass matrix

∫

�F
(v

f
h · u f

h )ρ0 dx

56] to calculate the reference gravitational potential in Sect. 6.1. We employ ExaFMM [148],
a massively parallel N-body problem solver, to solve for the perturbation of the gravitational
potential.

5.1 Reference Gravitational Potential and Gravitational Field

For calculating the reference gravitational potential and field, we need to evaluate two inte-
grals [35,(3.2) and (3.3)]. The N-body problem of gravitation requires the evaluation of

�0(xi ) = −G
NK∑

k=1

1

‖xi − rk‖
∫

Kk

ρ0
k dx (43)
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for the potential in (1) and

g(xi ) = −G
NK∑

k=1

xi − rk
‖xi − rk‖3/2

∫

Kk

ρ0
k dx (44)

for the field in (5). Here, xi denotes the location of the target vertex and rk denotes the
barycenter of element Kk .

5.2 Incremental Gravitational Potential

For calculating the incremental gravitational potential, we need to evaluate (23) containing
both the volume and boundary integral terms. Given the finite-element partitioning, Th , we
approximate S(uh) in (2) via

Sk2(uh) = G
∫

Kk2

∇ · (ρ0
k2

(x)uh(x))

‖rk2 − x‖ dx +
NK∑

k1=1
k1 �=k2

G

‖rk2 − rk1‖
∫

Kk1

∇ · (ρ0
k1uh) dx

+
NE∑

l1=1

G

‖rk2 − rl1‖
∫

El1

(ν · uh)[ρ0
l1 ]+− d� (45)

and

Sl2(uh) = G
∫

El2

ν(x) · uh(x)[ρ0
l2
(x)]+−

‖rl2 − x‖ d� +
NE∑

l1=1
l1 �=l2

G

‖rl2 − rl1‖
∫

El1

(ν · uh)[ρ0
l1 ]+− d�

+
NK∑

k1=1

G

‖rl2 − rk1‖
∫

Kk1

∇ · (ρ0
k1uh) dx, (46)

where k1 and k2 label the elements Kk1 and Kk2 , Sk2(uh) is the incremental gravitational
potential S(uh) at the barycenter of Kk2 , l1 and l2 label the triangular elements El1 and El2 ,
rl1 and rl2 denote the barycenters of El1 and El2 . The first terms in (45) and (46) indicate the
self-contribution.

Since the variation of ∇ · (ρ0
k2

(x)uh(x)) is small on element Kk2 , we simplify the first
term in (45) according to

G
∫

Kk2

∇ · (ρ0
k2

(x)uh(x))

‖rk2 − x‖ dx � G

∫
Kk2

∇ · (ρ0
k2
uh) dx

|Kk2 |
∫

Kk2

1

‖rk2 − x‖ dx,

where |Kk2 | denotes the volume of element Kk2 . We let

1

Rk2
= 1

|Kk2 |
∫

Kk2

1

‖rk2 − x‖ dx,

and obtain

G
∫

Kk2

∇ · (ρ0
k2

(x)uh(x))

‖rk2 − x‖ dx � G

Rk2

∫

Kk2

∇ · (ρ0
k2uh) dx . (47)
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Similarly, we simplify the first term in (46) according to

G
∫

El2

ν(x) · uh(x)[ρ0
l2
(x)]+−

‖rl2 − x‖ d� � G

Rl2

∫

El2

(ν · uh)[ρ0
l1 ]+− d�, (48)

with

1

Rl2
= 1

|El2 |
∫

El2

1

‖rl2 − x‖ d�,

where |El2 | denotes the area of the boundary element El2 . Note that Rk2 in (47) and Rl2 in
(48) can be precomputed on each element and surface. The second and third terms in (45)
and (46) may be evaluated via FMM.

Table 4 Implicit definition of the submatrices for perturbation to the gravitational potential

Operations Physical meanings Corresponding formulae

Cs ũ
s N bodies in �S

∫

�S
∇ · (ρ0ush) dx,

∫

�FS
(ν f→s · ush)

[
ρ0
]s

dx,
∫

�SS∪∂ X̃S
(ν · ush)

[
ρ0
]+
− dx

C f ũ
f N bodies in �F

∫

�F
∇ · (ρ0u f

h ) dx,
∫

�FS
(νs→ f · u f

h )
[
ρ0
] f

dx,
∫

�FF∪∂ X̃F
(ν · u f

h )
[
ρ0
]+
− dx

S(Cũ) Solution for Poisson’s equation G
∫

X̃

∇′ · (ρ0(x ′)uh(x ′))
‖x − x ′‖ dx ′

+G
∫

�∪∂ X̃

ν(x ′) · uh(x ′)[ρ0(x ′)]+−
‖x − x ′‖ dx ′

(ṽs )HCT
s (SCũ) Incremental gravitational field in �S

∫

�S
∇ · (ρ0vsh)S(uh) dx

+
∫

�FS
(vsh · ν f →s )S(uh)[ρ0]s dx

+
∫

�SS∪∂ X̃S
(vsh · ν)S(uh)[ρ0]+− dx

(ṽs )HCT
f (SCũ) Incremental gravitational field in �F

∫

�F
∇ · (ρ0v

f
h )S(uh) dx

+
∫

�FS
(v

f
h · νs→ f )S(uh)[ρ0] f dx

+
∫

�FF∪∂ X̃F
(v

f
h · ν)S(uh)[ρ0]+− dx
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5.2.1 Solid Planets

For solid planets, we substitute (47) and (48) into (45) and (46), respectively. To evaluate
(22) for a solid planet, we need to compute

asG(ush, v
s
h) = −

NK∑

k2=1

∫

K S
k2

(∇ · (ρ0
k2v

s
h)
)
Sk2(u

s
h) dx

−
NE∑

l2=1

∫

ES
l2

(ν · vsh)Sl2(u
s
h)[ρ0

l2 ]+− d�. (49)

We add (49) into the matrix representation and obtain

ω2Msũ
s − 2 iωRsũ

s − (
Asg − CT

s SsCs
)
ũs = 0, (50)

whereCsũs evaluates Sk2(u
s
h) and Sl2(u

s
h), Ss solves the N-body problem for the solid planet,

andCT
s SsCsũs evaluates (49); the submatrix Asg and its correspondingweak formula is shown

in Table 3, and the submatrices Cs,CT
s , S and their corresponding weak formulae are shown

in Table 4. Here, of course, Asg , Cs and CT
s do not include terms related the fluid–solid

boundaries �FS.

5.2.2 Planets with Fluid Regions

For a planetwith fluid regions,we also substitute (47) and (48) into (45) and (46), respectively.
To ensure the Hermitian property of the system, we carefully treat the fluid–solid boundary
terms and evaluate the incremental gravitational potential S(uh) via (24) and obtain the
volume integral contributions

Sk2 (uh) = G

Rk2

∫

Kk2

∇ · (ρ0
k2uh) dx

+
NS
K∑

k1=1
k1 �=k2

G

‖rk2 − rk1‖
∫

K S
k1

∇ · (ρ0
k1u

s
h) dx +

NS
E∑

l1=1

G

‖rk2 − rl1‖
∫

ES
l1

(ν · ush)[ρ0
l1 ]+− d�

+
NF
K∑

k1=1
k2 �=k2

G

‖rk2 − rk1‖
∫

K F
k1

∇ · (ρ0
k1u

f
h ) dx +

NF
E∑

l1=1

G

‖rk2 − rl1‖
∫

EF
l1

(ν · u f
h )[ρ0

l1 ]+− d�

+
NFS
E∑

l1=1

G

‖rk2 − rl1‖
∫

EFS
l1

{
(ν f →s · ush)[ρ0

l1 ]s + (νs→ f · u f
h )[ρ0

l1 ] f
}
d�, (51)

and boundary integral contributions

Sl2(uh) = G

Rl2

∫

El2

(ν · uh)[ρ0
l2 ]+− d�

+
NS
K∑

k1=1

G

‖rl2 − rk1‖
∫

K S
k1

∇ · (ρ0
k1u

s
h) dx +

NS
E∑

l1=1
l1 �=l2

G

‖rl2 − rl1‖
∫

ES
l1

(ν · ush)[ρ0
l1 ]+− d�
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+
NF
K∑

k1=1

G

‖rl2 − rk1‖
∫

K F
k1

∇ · (ρ0
k1u

f
h ) dx +

NF
E∑

l1=1
l1 �=l2

G

‖rl2 − rl1‖
∫

EF
l1

(ν · ush)[ρ0
l1 ]+− d�

+
NFS
E∑

l1=1

G

‖rl2 − rl1‖
∫

EFS
l1

{
(ν f →s · ush)[ρ0

l1 ]s + (νs→ f · u f
h )[ρ0

l1 ] f
}
d�. (52)

With (51) and (52), we have the full solution for the incremental gravitational potential. To
evaluate (22) for a planet with fluid regions, we need to compute

aG(uh, vh) =

−
NS
K∑

k2=1

∫

K S
k2

(∇ · (ρ0
k2v

s
h)
)
Sk2(uh) dx −

NS
E∑

l2=1

∫

ES
l2

(ν · vsh)Sl2(uh)[ρ0
l2 ]+− d�

−
NF
K∑

k2=1

∫

K F
k2

(
∇ · (ρ0

k2v
f
h )
)
Sk2(uh) dx −

NF
E∑

l2=1

∫

EF
l2

(ν · v
f
h )Sl2(uh)[ρ0

l2 ]+− d�

−
NFS
E∑

l2=1

∫

EFS
l2

{
(ν f →s · vsh)Sl2(uh)[ρ0

l2 ]s + (νs→ f · v
f
h )Sl2(uh)[ρ0

l2 ] f
}
d�. (53)

We derive the matrix representation with (53) and obtain

ω2Mũ − 2 iω R̃�ũ − (
AG − EG A−1

p ET
G − CTSC

)
ũ = 0, (54)

with

AG =
(
Asg 0
0 A f

)
, R̃� =

(
Rs 0
0 R f

)
, M =

(
Ms 0
0 M f

)
,

ET
G = (

EFS Adg
)
, C = (

Cs C f
)
,

where Cũ = Csũs + C f ũ f evaluates (51) and (52) to get Sk2(uh) and Sl2(uh), S solves the
N-body problem, andCTSCũ evaluates (53); the submatrices Asg , A f , Ap , Rs , R f , Ms , M f ,
EFS, Adg and their correspondingweak formulae are shown inTable 3 and the submatricesCs ,
CT
s ,C f ,CT

f , S and their corresponding weak formulae are shown in Table 4. The construction

of submatrices Cs , CT
s , C f , CT

f can be found in A.4. We note that Ap is always symmetric
positive definite since κ is always positive. We note that (54) is the discretization of (27).

6 Computational Experiments for Non-rotating Planets

In this section, we first show the computational accuracy of our algorithm for the reference
gravitational field using FMM in Sect. 6.1. We then illustrate computational experiments
yielding planetary normal modes with or without perturbation of the gravitational potential.
In this section and Sect. 7, two supercomputers, Stampede2 (an Intel cluster) at the Texas
Advanced Computing Center and Abel (a Cray XC30 cluster) at Petroleum Geo-Services
are utilized for the computational experiments. Intel Xeon Skylake CPUs with 48 cores and
192 GB memory per node, and Intel Omni-Path interconnect are equipped in Stampede2,
while Intel Xeon E5-2698v3 CPUs with 64 cores and 256 GB memory per node, and Aries
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Table 5 Errors in the gravitational calculation of a constant density ball

# of elements 116,085 1,136,447 2,019,017 3,081,551 4,035,022

MSE of �0 2.133e−6 7.452e−8 1.784e−8 1.545e−8 1.430e−8

MSE of g 1.102e−3 1.848e−4 1.156e−4 8.781e−5 7.363e−5

Table 6 Errors of three-layer approximations in the gravitational calculation

# of elements 5800 57,490 503,882 1,136,447 2,093,055 5,549,390 7,825,918

MSE of �0 3.604e−3 2.635e−4 4.071e−5 2.092e−5 1.354e−5 4.059e−6 2.396e−9

MSE of g 5.805e−2 5.479e−3 7.320e−4 3.218e−4 2.068e−4 9.524e−5 5.609e−5

interconnect are equipped in Abel. Details about the hardware and software configurations,
as well as the time consumption can be found in [124, 125]. Both weak and strong parallel
scalabilities are demonstrated in both papers using different models and finite-element orders
as the proposed algorithms ultilize the highly-parallel matrix-vector multiplications only.

6.1 Computational Accuracy for the Reference Gravitational Field

In this subsection, we illustrate the computational accuracy for the reference gravitational
field using FMM.We useMean Squared Error (MSE) tomeasure the errors between the result
computed using FMM with its highest accuracy (∼ 10−10) and the semi-analytic solution.
Though the errors come from both discretization and FMM, we expect that the errors largely
come from the discretization when the number of elements is small. We begin with a simple
constant-density ball. In Table 5, we show the FMM solution for a gravitational field of a
constant density ball and a comparison with the closed-form solution. We note that FMM
provides an accurate solution for this example.

We use PREM to build our Earth models on unstructured meshes with different sizes. In
Table 6, we show the approximation errors of different three-layer models, which contain
two major discontinuities (CMB and ICB) when compared with the semi-analytical solution.
In Fig. 7, we show the comparison of the gravitational field computed via FMM with the
semi-analytical solution in PREM.

In Table 7, we show the approximation errors of different seven-layer models which
contain six major discontinuities (Moho, top of Low Velocity Zone (LVZ), bottom of LVZ,
660, CMB and ICB) with the semi-analytical solution.

We demonstrate that our computational scheme provides an accurate computation for
both the gravitational potential and field. The accuracy can, of course, be improved via mesh
refinement. Indeed we are able to obtain g with enough accuracy for calculating the normal
modes.

6.2 Computational Accuracy for Non-rotating Planets

In this subsection, we do not consider rotation and study the computational accuracy with
existing algorithms for spherically-symmetric planets. Let the angular velocity of rotation
� = 0, without loss of generality, we write (54) and its pure solid planet version (50) in the
form of generalized eigenvalue problems:
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Fig. 7 Comparison between the semi-analytical and FMM solutions: (a1) FMM gravitational potential; (a2)
comparison in the radial direction; (b1) FMM gravitational field; (b2) comparison in the radial direction

Table 7 Errors of seven-layer approximations in the gravitational calculation

# of elements 2,031,729 5,018,249 8,043,617 12,479,828 16,560,615

MSE of �0 2.333e−7 4.485e−8 1.286e−8 9.785e−9 5.548e−9

MSE of g 1.926e−4 8.606e−5 5.186e−5 4.036e−6 3.394e−5

Aũ = ω2
N Mũ, (55)

where A represents Asg − CT
s SsCs in (50) or AG − EG A−1

p ET
G − CTSC in (54) and ωN

denotes the frequency for the non-rotation planets. Since the explicit formation of A with
self-gravitation requires excessive storage, it is necessary to solve (55) via a matrix-free
scheme, where A, M and M−1 are only accessed through matrix-vector multiplications. We
combine several efficient parallel approaches to solve (55) with a matrix-free scheme.
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Table 8 Test cases with self-gravitation for different solid models using P1 elements for the frequency range
[0.1, 1.0] mHz

Exp. #elm. Size of A #surf. Size of Ss [ f1, f2] (mHz) (deg,#it) #eigs

C1p1 5123 2727 392 5515 [0.1,1.0] (14,192) 70

C2p1 21,093 10,644 956 22,049 [0.1,1.0] (25,232) 92

C3p1 39,273 19,131 956 40,229 [0.1,1.0] (34,252) 92

C4p1 105,115 51,933 3608 108,723 [0.1,1.0] (50,252) 92

C5p1 495,099 242,721 14,888 509,987 [0.1,1.0] (108,272) 92

In thiswork,we utilize polynomial filtering techniques [49, 85, 119] as these do not involve
solving linear systemswith the indefinite matrices. Here, the bulk of computations are carried
out in the form of matrix-vector products. The polynomial filtering technique is ideally suited
for solving large-scale three-dimentional interior eigenvalue problems because it significantly
enhances the memory and computational efficiency without any loss of accuracy [124]. In
this paper, we adopt the polynomial filtering algorithms recently developed in [84, 85, 124]
due to their simplicity and robustness on a prescribed interval [ f1, f2]mHz. The details about
our parallel algorithms and their performance can be found in [124].

We show the convergence of our numerical formulation and approach for constant elastic
balls and PREM. The constant balls have a radius of 6,371 km, density ρ0 = 5.51 × 103

kg/m3, P-wave speed VP = 10.0 km/s and S-wave speed VS = 5.7735 km/s. The PREM used
in our tests is modified in an isotropic model without attenuation, with VP = (VPV +VPH )/2
and VS = (VSV +VSH )/2. The ocean layer in PREM is replaced by crust. In the work of [92],
a good agreement of the one-dimensional solution based on the classical approach MINEOS
[91] and a radial FEM [147] is demonstrated. The discretization of the radial FEM code is
described in Appendix B. In this work, we show our three-dimensional results are in a good
agreement with the one-dimensional solutions.

6.2.1 Solid Models with Self-gravitation

We present our results for purely solid models with self-gravitation. In Tables 8 and 10, we
list the number of elements ‘#elm.’ as well as the problem sizes (labeled as ‘size of A’ for
the solid cases and ‘size of AG ’ and ‘size of Ap’ for the Earth examples), the number of
surfaces ‘#surf.’, the size of Ss or S, and the target frequency interval in milliHertz (labeled
as [ f1, f2] (mHz)), the degree of the polynomial filter ‘deg’, the number of the Lanczos
iterations required ‘#it’, and the number of the normal modes computed ‘#eigs’.

Since the pure solid models do not generate any essential spectra, we can directly compute
the lowest-frequency normal modes. We note that the length (λmax − λmin) of the spectrum
grows with the size of the problem determined by the discretization.

In Table 9, we show the convergence results for different solid models using P1 elements,
that is, the finite-element polynomial orders ps = p f = pp = 1 are used throughout this
work. Through comparison with 1D results, we observe that our computational results do
converge. We accept relative differences of about 0.1%.

In Table 10, we list test cases for different solid models using P2 elements, that is, the
finite-element polynomial orders ps = p f = pp = 2 are used throughout this work. From
experiments C1p2 to C5p2, we double the number of elements and obtain proper convergence
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Table 9 Convergence tests with self-gravitation for different solid models in Table 8 with self-gravitation for
P1 elements

Exp. 0T2 0S2 1S1 0S0 0T3 0S3 1S2 0T4 0S4

C1p1 0.3724 0.4178 0.4600 0.5105 0.5881 0.6322 0.6900 0.7973 0.8359

C2p1 0.3653 0.4112 0.4511 0.5053 0.5692 0.6052 0.6708 0.7587 0.7791

C3p1 0.3643 0.4103 0.4502 0.5053 0.5665 0.6017 0.6680 0.7527 0.7721

C4p1 0.3622 0.4089 0.4472 0.5035 0.5612 0.5932 0.6622 0.7424 0.7526

C5p1 0.3612 0.4086 0.4460 0.5035 0.5587 0.5899 0.6596 0.7374 0.7445

1D 0.3607 0.4087 0.4456 0.5040 0.5574 0.5885 0.6582 0.7348 0.7406

Table 10 Test cases with self-gravitation for different solid models using P2 elements for the frequency range
[0.1, 1.0] mHz

Exp. # of elm. Size of A #surf. Size of Ss [ f1, f2] (mHz) (deg,#it) #eigs

C1p2 19,073 75,888 956 20,029 [0.1,1.0] (44,512) 92

C2p2 40,378 170,025 3608 43,986 [0.1,1.0] (58,492) 92

C3p2 80,554 335,103 5924 86,478 [0.1,1.0] (81,492) 92

C4p2 152,426 645,687 14,888 167,314 [0.1,1.0] (129,492) 92

C5p2 334,193 1,360,140 14,888 349,081 [0.1,1.0] (200,492) 92

Table 11 Convergence tests with self-gravitation for the solid models in Table 10 using P2 elements

Exp. 0T2 0S2 1S1 0S0 0T3 0S3 1S2 0T4 0S4

C1p2 0.3619 0.4100 0.4473 0.5094 0.5594 0.5908 0.6605 0.7376 0.7439

C2p2 0.3610 0.4090 0.4459 0.5042 0.5579 0.5889 0.6587 0.7355 0.7413

C3p2 0.3609 0.4089 0.4463 0.5042 0.5577 0.5888 0.6585 0.7352 0.7410

C4p2 0.3608 0.4088 0.4456 0.5041 0.5575 0.5886 0.6583 0.7349 0.7408

C5p2 0.3608 0.4087 0.4456 0.5041 0.5575 0.5885 0.6583 0.7349 0.7407

1D 0.3607 0.4087 0.4456 0.5040 0.5574 0.5885 0.6582 0.7348 0.7406

results in Table 11. We show that even with about 330,000 elements, we are able to achieve
four-digit agreement.

6.2.2 PREMwith Self-gravitation

Here, we include a liquid outer core using PREM and the presence of the essential spectrum.
In Table 12, we show test cases for PREM. We roughly double the number of elements from
E1p1 to E7p1. In Table 13, we argue convergence by comparing with 1D results. For PREM
with self-gravitation, we accept relative differences that are less than 0.1%.

6.3 Fully Heterogeneous Models

Here, we study the effects of heterogeneity on the normal modes. In Sects. 6.3.2 and 6.3.1,
we study the effects of the crust and upper mantle, and shape of the CMB, respectively.
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Table 12 Test cases with self-gravitation for different Earth models E1p1–E8p1 using P1 elements for the
frequency range [0.1, 1.0] mHz and Earth model E8p2 using P2 elements for the frequency range [0.3, 1.5]
mHz

Exp. # of elm. Size of AG Size of Ap #surf. Size of S [ f1, f2] (mHz) (deg,#it) #eigs

E1p1 9721 7590 887 2304 12,025 [0.1,1.0] (187,392) 64

E2p1 20,466 14,736 974 4956 25,422 [0.1,1.0] (182,372) 72

E3p1 42,828 30,384 3171 8172 51,000 [0.1,1.0] (342,452) 83

E4p1 83,354 63,225 5298 22,104 105,458 [0.1,1.0] (745,452) 88

E5p1 157,057 96,852 6771 22,104 179,161 [0.1,1.0] (747,492) 88

E6p1 303,218 164,673 10,077 22,104 325,322 [0.1,1.0] (685,492) 88

E7p1 639,791 361,587 21,824 60,288 700,079 [0.1,1.0] (685,492) 88

E8p1 1,972,263 1,086,702 70,429 150,288 2,122,551 [0.1,1.0] (1565,492) 88

E8p2 1,972,263 8,400,630 522,705 150,288 2,122,551 [0.3,1.5] (1185,1051) 268

Table 13 Convergence tests with
self-gravitation for different
Earth models in Table 12

Exp. 0S2 0T2 2S1 0S3 0T3

E1p1 0.3284 0.3953 0.4179 0.5242 0.6241

E2p1 0.3229 0.3921 0.4149 0.5077 0.6146

E3p1 0.3177 0.3884 0.4113 0.4932 0.6062

E4p1 0.3166 0.3842 0.4090 0.4903 0.5980

E5p1 0.3137 0.3845 0.4085 0.4863 0.5962

E6p1 0.3126 0.3840 0.4080 0.4768 0.5945

E7p1 0.3116 0.3834 0.4073 0.4742 0.5933

E8p1 0.3112 0.3829 0.4067 0.4721 0.5920

E8p2 0.3106 0.3826 0.4063 0.4708 0.5912

1D 0.3107 0.3826 0.4062 0.4709 0.5912

6.3.1 Shape of the CMB

Here, we study the effects of the CMB. Long-wavelength topography of the CMB was
proposed by [30, 97]. Many studies [8, 28, 42, 45, 46, 50, 82, 102, 111, 113, 122, 131, 132]
were later performed to model the topography of the CMB.

In Fig. 8, we show the topography of the CMB from the result by [132].We use a triangular
mesh to model the shape with ellipticity combined. In Table 14, we show the information
of the experiment CMB8, which indicates a PREM-like model with the mentioned CMB
embedded. In Fig. 9, we illustrate the splittings of modes 1S7 and 1S8 due to the non-
spherically symmetric CMB. Since the modes 1S7 and 1S8 are sensitive to the change of the
CMB, the splittings of these modes are quite clear.

6.3.2 Heterogeneity of the Crust and Upper Mantle

Self-gravitation is important for the normal modes with frequencies lower than 5.0 mHz or
so [71]. However, in this subsection, we restrict ourselves to models without perturbation
of the gravitational potential for computational efficiency. We reduce the full generalized
eigenvalue problem (55) into Cowling approximation
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Fig. 8 Shape of the CMB using the result of [132]. The values in the color bar indicate the variations in
kilometers

Table 14 Test case with self-gravitation for an Earth model with a non-spherically symmetric CMB using P2
elements

Exp. # of elm. Size of AG Size of Ap #surf. Size of S [ f1, f2] (mHz) (deg,#it) #eigs

CMB8 2,007,479 8,711,940 633,358 177,352 2,184,831 [1.5,2.0] (3591,1251) 350

(AG − EG A−1
p ET

G)ũ = ω2
CMũ, (56)

where ωC is the frequency for Cowling approximation.
In Table 15, we show three different Earth models using the Cowling approximation.

We construct two three-dimensional Earth models using MIT’s mantle tomographic results
[19] and crust 1.0 [81]. The core model is based on PREM. The mantle seismic reference
wave speeds are based on AK135 [72]. One model is obtained by combining MIT’s mantle
tomographic model and PREM for the core and density. The other one replaces PREM’s
crust by crust 1.0, which is shown in Fig. 3. In the first three rows of Table 15, we show the
information of three different tests for these three different Earth models. Since with similar
degrees of freedom, the largest eigenvalue of theMITmodel with the three-dimensional crust
is much larger than these of the other two models, we expect that significant mode coupling
and splitting occur [1, 2, 10, 40, 68, 75, 100, 116, 146].

We visualize different modes. The normal modes computed in the two MIT models are
non-degenerate. In Fig. 10, we compare different modes computed in the three models in the
frequency range [2.0, 2.5] mHz. Since the background models have only slight differences,
some of the eigenfrequencies are similar amongst PREM and the MIT models. We illustrate
most of the modes computed in PREM. In Fig. 10a, we observe that, even at low frequencies,
weak mode splitting occurs for surface wave modes, including 2S8, 0S13, 0T14 and 1T7. We
also report that no coupled modes are observed in [2.0, 2.18] mHz. In Fig. 10b–d, we show
the different modes in [2.18, 2.28], [2.28, 2.38] and [2.38, 2.48] mHz, respectively. The
splitting of most surface wave modes becomes larger with increasing frequency. However,
since modes like 1S10 (strong at the core-mantle boundary) in Fig. 10a, 0c4 (an inner core
toroidal mode) and 3S5 (an ICB Stoneley mode) in Fig. 10c, are not sensitive to the crust
and upper mantle structure, no clear splitting is observed. We observe coupled modes in
Fig. 10b–d computed in the MIT model with the three-dimensional crust. The eigenfunction
of one mode in Fig. 10b shows that 0S14 and 2T2 are coupled. The 0T15 and 8S1 near 0S14 and
2T2 are isolated multiplets. The eigenfunctions of the two modes in Fig. 10c show that 1S11
and 0T16 are coupled. The 0S15 near 1S11 and 0T16 is an isolated multiplet. These coupled
modes are interesting because 1S11 is clearly sensitive to the core-mantle boundary and the
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Fig. 9 Splittings of the modes (a2) 1S7 and (b2) 1S8 due to the non-spherically symmetric CMB shown in
Fig. 8, are illustrated in (a1) and (b1), respectively

fundamental Love mode 0T16 illustrated can be measured at the surface. The left mode in
Fig. 10d is a 0S16 and 1T9 coupledmode. The right mode in Fig. 10d is a 6S2 and 0T17 coupled
mode. This mode is also very interesting because 6S2 illustrated is an inner core mode and
the fundamental Love mode 0T17 illustrated can be detected at the surface. Since the relative
wave speed variations of the MIT tomographic model vary roughly from −1.4% to 1.4% in
the upper mantle and the crust’s thickness is small, strong mode coupling occurs only to two
modes. In this frequency range [2.0, 2.5] mHz, the width of each multiplet is small and no
significant coupling between three or more modes is observed.

Table 15 Test cases for four different Earth models using the Cowling approximation

Exp. # of elm. Size of AG Size of Ap [ f1, f2] (mHz) (deg,#it) #eigs

E9p2 4,094,031 17,469,666 1,181,103 [2.0, 2.5] (4054,1892) 528

MIT_2016May 4,048,932 16,578,945 879,067 [2.0, 2.5] (2674,1912) 520

MIT+crust 1.0 4,044,225 16,550,922 878,808 [2.0, 2.5] (6984,1912) 550
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(a)
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Fig. 10 Comparisons between different Earth models in the Cowling approximation. The results from PREM
without ocean, the MITmodel, and theMITmodel with a three-dimensional crust are shown using blue+, red
◦ and yellow ×, respectively. The superscripts P , M on the mode symbols denote PREM and MIT models,
respectively. a–d Comparison for different modes in [2.0, 2.18], [2.18, 2.28], [2.28, 2.38] and [2.38, 2.48]
mHz, respectively. (b1), c1, c2, d1, and d2 illustrate mode coupling by 0S14 and 2T2, 1S11 and 0T16, a different
1S11 and 0T16 pair, 0S16 and 1T9, and 6S2 and 0T17 computed from the MIT model with a three-dimensional
crust, respectively
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7 Computational Experiments for Rotating Planets

In this section, we include the rotation and study its effects on normal modes. To simplify
(54) and (50) without any loss of the generality, we extend (55) and derive a standard form
for the QEP,

ω2Mũ − 2 iω R̃�ũ − Aũ = 0. (57)

We note that R̃� = −R̃T
�, that is, 2 i R̃� is Hermitian. The eigenfrequencies are real and

come in pairs (ω,−ω).
To solve the QEP of the original form, the QEP is often projected onto a properly chosen

low-dimensional subspace to facilitate the reduction to a QEP directly of lower dimension,
such as in the Jacobi–Davidson method [127, 128]. The reduced QEP can then be solved by a
standard dense matrix technique. Both Arnoldi- and Lanczos-type processes [64] have been
developed to build such projections of the QEP. A subspace approximation method [65] was
presented via applying perturbation theory to the QEP. A second-order Arnoldi procedure [6]
was developed to generate an orthonormal basis for solving a large-scale QEP directly. We
note that the above mentioned methods typically utilize a shift-and-invert scheme for solving
the interior eigenpairs. These techniques become impractical for eigenvalue problems of the
size of ours due to the high memory costs.

Instead, we can utilize extended Lanczos vectors from solving the generalized eigenvalue
problem (55) through the polynomial filtering method. We then approximate the solution ũ
using the basis computed from

AXe = MXe�e, (58)

where Xe stands for the Ritz vectors of the linear system and �e denotes a diagonal matrix
whose diagonal is a collection of ω2

N in (55). We take me eigenvectors spanning a subspace
and let ũe = Xeye approximate ũ in (57), where ye is complex. We apply

(
XT
e 0
0 XT

e

)

to an equivalent form of (57),
(
0 A
A 2 i R̃�

)(
ũ

ωũ

)
= ω

(
A 0
0 M

)(
ũ

ωũ

)
.

Making use of XT
e AXe = �e, we obtain
(

0 �e

�e 2 i XT
e R̃�Xe

)(
ye

ωe ye

)
= ωe

(
�e 0
0 I

)(
ye

ωe ye

)
. (59)

It is apparent that if R̃� = 0, we have ωe = ωN = �
1/2
e . The system (59) can be solved

with a standard eigensolver such as the one implemented in LAPACK [5]. Here, we study
the spectra of two models: Earth 1066A [52] and a Mars model [73]. We use 23.9345 hours
[4] and 24.6229 hours [86] as Earth’s and Mars’ rotation periods, respectively. With a large
me and a relatively small �, the numerical solution ωe is close to ω in (57). The numerical
accuracy can further be improved via solving (57) exactly.
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Table 16 Numerical parameter values pertaining to the testing of computational accuracy and estimating the
cost in different models

Exp. # of elm. Size of A Size of Ap Size of S [ f1, f2] (mHz)

Constant (C3kp1) 3129 1821 0 3521 [0.35,0.85]

Earth (E3kp1) 3330 2760 392 4242 [0.3,0.86]

Mars (M2kp1) 1887 1677 145 2539 [0.4,1.14]

Mars (M8kp1) 8020 7557 152 12,436 [0.4, 1.14]

Earth (E40kp1) 42,828 30,384 3171 51,000 [0.1,1.5]

(a) (b) (c)

Fig. 11 Tests with three different small models for the low-frequency seismic eigenfrequencies. The numerical
parameters of the tests are given in Table 16

7.1 Computational Accuracy

For small models, we are able to compute the full mode expansion associated with the
point spectrum using (59). In Table 16, we list the numerical parameter values pertaining
to the testing of computational accuracy and estimating the cost in different models: The
number of elements (labeled as # of elm.), size of Ap , size of A, size of S and the target
frequency interval in milliHertz (labeled as [ f1, f2] (mHz)).

In Fig. 11a–c, we illustrate the computational accuracy of tests in three different models,
C3kp1, E3kp1 and M2kp1, respectively, on the lowest seismic eigenfrequencies using P1
elements. We compare the differences in the eigenfrequencies between the full mode expan-
sion and a 200 mode expansion. The differences are about 5×10−6 mHz, which is two digits
below the accuracy of common normal mode measurements.

In Fig. 12a, b, we show the computational accuracy of M8kp1 on [0.4, 1.14] mHz as
well as the error distribution. In Fig. 12a, we show that even with a 100 mode expansion,
the differences are as low as 1 × 10−5 mHz. In Fig. 12b, we show that with a 1000 mode
expansion, the differences are further reduced to about 1 × 10−6 mHz.

7.2 Benchmark Experiments for Earth Models with Rotation

Over the past two decades, a significant number of observational studies have been carried
out to the rotation effects on the Earth’s normal modes [96, 100, 108, 118, 121, 155]. Our
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(a) (b)

Fig. 12 Tests for computational accuracy of a Mars model using different numbers of mode expansion

computational approach can aid and complement such studies through accurate and con-
sistent simulations generating even relatively high eigenfrequencies. Here, we perform a
benchmark experiment of Earth model 1066A [52] against a perturbation calculation [33]. In
the perturbation calculation, the eigenfrequency perturbations δωm have the following form

δωm = ω0(a + bm + cm2), −l ≤ m ≤ l, (60)

where ω0 denotes the eigenfrequency of the unperturbed spherically symmetric model, l
denotes the angular order in the spherical harmonic expansion, and a, b and c are the relevant
coefficients. The values of a, b and c for different radial modes can be found in [35,Table
14.1]. In Table 17, we list the numerical parameters of the Earthmodels in the benchmark test.
The models E1Mp1 and E2Mp2 used to compute ω0 represent spherically symmetric ones
without rotation. Experiments EE1Mp1 and EE2Mp2 represent elliptic Earth models and are
used to compute eigenfrequencies with our proposed method. The ellipticities of the Earth
models are computed by solving Clairaut’s equation (cf. Sect. 3). Since the eigenfrequencies
of the Slichter modes [129] are close to the upper bound of the essential spectrum and
the convergence of the proposed algorithm is relatively slow, we set f1 = 0.04 mHz and
use experiments E1Mp1 and EE1Mp1 to compute the Slichter modes using P1 elements.
Experiments E2Mp2 and EE2Mp2 are used to compute other modes using P2 elements. In
Fig. 13, we show the comparison between the perturbation and our methods. The values of
the computed eigenfrequenies of our method agree with the perturbation results in as much
as that the relative differences are commonly less than 0.3 µHz. The degree of agreement is,
of course, model dependent. The eccentricity in the Earth model is so small that the second-
order perturbation is accurate within the typical error of our numerical computations. Higher
rotation rates would increase the eccentricity and let the second-order perturbation loose
accuracy.

7.3 Mars Models

Here, we present our computational results for Mars models. The interiors of the Mars
models are based onmineral physics calculations [73]. In Table 18, we list threeMars models
labeled as M2Mp2, EM2Mp2 and TM2Mp2 which represent a spherically symmetric Mars
model without rotation, a spheroidal Mars model with rotation, and a spheroidal Mars model
with a three-dimensional crust and rotation using P2 elements. The shape of the spheroidal

123



67 Page 34 of 52 Journal of Scientific Computing (2022) 91 :67

Table 17 Numerical parameters of the Earth models used in the benchmark experiments

Exp. # of elm. Size of A Size of Ap Size of S [ f1, f2] (mHz)

Earth (E1Mp1) 1,011,973 537,198 31,849 1,074,577 [0.04,1.5]

Earth (E2Mp2) 2,015,072 8,569,197 530,721 2,165,360 [0.2,1.5]

Earth (EE1Mp1) 1,003,065 533,064 31,688 1,065,629 [0.04,1.5]

Earth (EE2Mp2) 2,002,581 8,520,432 528,124 2,153,109 [0.2,1.5]

(a)

(b)

(c)

Fig. 13 Comparison of the results from a perturbation calculation and our proposed method, which are shown
using symbols • and ×, respectively. a, b and c illustrate comparisons of 0Sl , 0Tl and 1Sl modes, respectively

Mars model’s core-mantle boundary is computed by solving Clairaut’s equation. Since Mars
presumably is not hydrostatic as discussed in Sect. 3, its solid region is estimated via a linear
interpolation using the ellipticities of the core-mantle boundary (ε = 4.19 × 10−3) and the
surface (ε = 5.89 × 10−3). Model TM2Mp2 is illustrated in Fig. 5.

In Fig. 14,we showeigenfrequencies computed in differentMarsmodels listed inTable 18.
Symbols •, ◦ and × represent the eigenfrequencies computed in Mars models M2Mp2,
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(a) (b)

(d)(c)

Fig. 14 Eigenfrequencies of different Mars models. a, b, c and d illustrate eigenfrequencies in different
frequency windows. Symbols •, ◦ and× represent the eigenfrequencies computed fromMars modelsM2Mp2,
EM2Mp2 and TM2Mp2 in Table 18, respectively. The x-axis indicates the indexes of eigenfrequencies with
ascending order. The horizontal dashed lines represent the eigenfrequencies of a spherically symmetric Mars
model computed with a one-dimensional solver

EM2Mp2 and TM2Mp2 (cf. Table 18). The horizontal dashed lines represent the eigenfre-
quencies of a spherically symmetric Mars model computed with a one-dimensional solver
[91, 147]. Mode splitting is apparent due to ellipticity, rotation and heterogeneity in three
dimensions. The three-dimensional crust does not have a clear influence on the lowest
eigenfrequencies associated with 0S2, 0T2, 1S1, 0S3, 0T3, 1S2 and 0S4 in Fig. 14a. The

Table 18 Numerical parameters for the Mars models

Exp. # of elm. Size of A Size of Ap Size of S [ f1, f2] (mHz)

Mars (M2Mp2) 1, 996, 773 8, 967, 684 579, 338 2, 257, 801 [0.2,2.0]

Mars (EM2Mp2) 2, 001, 619 8, 984, 532 579, 667 2, 262, 143 [0.2,2.0]

Mars (TM2Mp2) 2, 008, 654 8, 289, 927 323, 810 2, 158, 366 [0.2,2.0]
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Fig. 15 Illustration of a subinterval in Fig. 14d. The x-axis indicates the indexes of eigenfrequencies with
ascending order. Splitting of modes 2S4, 0S8, and 0T8 due to the three-dimensional crust. The maximum
difference between the eigenfrequencies is 5.2 µHz

three-dimensional crust has a noticeable effect on the surface wave modes, such as 0T6, 0T7,
0T8, 0S6, 0S7 and 0S8, as expected. In Fig. 15, we show the eigenfrequencies in a subinterval
of the interval used in Fig. 14d. Here, we note the splitting of modes 2S4, 0S8 and 0T8 and
highlight the effects of the three-dimensional crust. The maximum difference between the
eigenfrequencies in Fig. 15 is 5.2 µHz, which, in principle, can be detected. There is no
mode-coupling observed in these experiments.

In Fig. 16, we plot the branch 1Sl as well as the corresponding incremental gravitational
fields ∇S(u). The superconducting gravimeters are expected to contribute to normal mode
seismology [31, 58, 117, 137, 141]. We anticipate that both the seismic and gravity measure-
ments of these modes could help to estimate the size of the Martian core.

8 Conclusion

In this work, we propose a method to compute the normal modes of a fully heterogeneous
rotating planet. We apply the mixed finite-element method to the elastic-gravitational system
of a rotating planet and utilize the FMM to calculate the self-gravitation. We successfully
separate out the essential spectrum by using a polynomial filtering eigensolver and thus,
are able to compute the normal modes associated with seismic point spectrum. To solve the
relevant QEP, we utilize extended Lanczos vectors computed in a non-rotating planet—with
the shape of boundaries of a rotating planet and accounting for the centrifugal potential—
spanning a subspace to reduce the dimension of an equivalent linear form of the QEP. The
reduced system can be solved with a standard eigensolver. We demonstrate our ability to
compute the seismic normal modes with and without rotation accurately. We then study the
computational accuracy and use a standard Earth model to perform a benchmark test against
a perturbation calculation. We carry out computational experiments on various Mars models
and illustrate mode splitting due to rotation, ellipticity and heterogeneity of the crust. The use
of modern supercomputers enables us to capture normal modes associated with the seismic
point spectrum of a fully heterogeneous planet accurately. The computational efficiency can
be further improved by using acceleration techniques. The extension to include viscoelastic
relaxation (for a review, see [115]), in particular Maxwell and Burger models, leads to a
nonlinear rational eigenvalue problem, which is tractable at current subject of research.
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(a1) (a2) (a3)

(a4) (a5) (a6)

(b4) (b5) (b6)

(b1) (b2) (b3)

Fig. 16 Visualization of 1Sl branch of aMarsmodelwith a three-dimensional crust and rotation fromTM2Mp2
experiment. The light ball indicates the position of the core-mantle boundary. (a1)–(a6) illustrate themodes 1S1
to 1S6, respectively. The unit in the color of (a1)–(a6) is meter. (b1)–(b6) illustrate the perturbed gravitational
field ∇S(u) of the modes 1S1 to 1S6, respectively. The unit in the colorbar of (b1)–(b6) is millimeter
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A Construction of Orthonormal Bases and Submatrices

Here, we introduce three-dimensional polynomial bases {ψ s
n}Nps

n=1, {ψ f
n }Np f

n=1 and {ψ p
n }Npp

n=1
while addressing the fact that the Lagrange polynomials are not orthogonal to one another.
We suppress superscripts s, f , p in the notation in the remainder of this subsection. To
simplify the computations, we introduce reference volume and boundary elements. That is,
we introduce a mapping that connects any element K to the reference tetrahedron defined
by

I = {r = (r1, r2, r3) : r1 ≥ −1, r2 ≥ −1, r3 ≥ −1, r1 + r2 + r3 ≤ −1}.
Likewise, we introduce a mapping that connects any boundary element E to the reference
triangle defined by

I2D = {t = (t1, t2) : t1 ≥ −1, t2 ≥ −1, t1 + t2 ≤ 0}.
We note that any two tetrahedra are connected through an affine transformation, x → r , with
a constant Jacobian, J , which is the determinant of (∂r x). For the local approximation on the
reference element I, we have

u j (r) =
Np∑

n=1

(û j )nψn(r) =
Np∑

i=1

u j (ri )�i (r).

The vector fields are treated component-wise in our discretization. This yields the expression
V û j = u j , where the generalized Vandermonde matrix takes the form of Vin = ψn(ri ) with
i, n as indices of nodal points. Here, {ψn} is a polynomial basis that is orthonormal on I. We
later introduce submatrices of V . We then evaluate derivatives and mass matrices according
to

∂xi = (∂xi r j )D j , D j = (∂r jV)V−1, M = V−TV−1,

whereD j andM are the derivative matrix and the mass matrix on the reference tetrahedron.
More details of the constructions of J , V , D j and M can be found in [63,Chapter 10.1].
Thus, we introduce

Vs, V f , Vp, Ms, M f , Mp and Ds
j , D f

j , D p
j .

We employ the notation

Ds
i = (∂xi r j )Ds

j , D f
i = (∂xi r j )D

f
j , Dp

i = (∂xi r j )D
p
j ,
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reflecting the mapping of the derivatives from the reference tetrahedron to the target element.
We follow a similar approach for boundary elements and introduce

M2D
s , M2D

f and J 2D,

where M2D
s and M2D

f are the mass matrices for solid and fluid boundary elements, respec-

tively; J 2D denotes the Jacobian, which is the determinant of (∂t x) on the boundary element.
The construction of the mass matricesM2D

s andM2D
f on the reference triangle I2D is similar

to the construction of M [63,Chapter 6.1].

A.1 Submatrices: Asg, Af, Ap,Ms,Mf, Rs and Rf

We extract ũs |Kk , ũ
f |Kk and p̃|Kk from ũs , ũ f and p̃, respectively, by restricting the nodes

to the ones of element Kk . In a similar fashion, we extract ṽs |Kk , ṽ f |Kk and ṽ p|Kk on any
element Kk . For the evaluation of matrix Asg in Table 3 we need to evaluate the submatrices
on element Kk through

∫

K S
k

∂xi (v
s
h) j (ci jmn∂xm (ush)n) dx = (ṽsj |Kk )

H[Jk(Ds
i )

Tcki jmnMsDs
m]ũsn |Kk , (61)

∫

K S
k

∂xi (v
s
h)i g

′
j (u

s
h) jρ

0 dx = (ṽsi |Kk )
H[Jk(Ds

i )
Tρ0

kMs Dg′
j
]ũsj |Kk , (62)

∫

K S
k

−(ush)i∂xi g
′
j (v

s
h) jρ

0 dx = (ṽsi |Kk )
H[−Jkρ

0
k D∂xi g

′
j
Ms]ũsj |Kk , (63)

∫

K S
k

−(ush) j (∂x j (v
s
h)i )g

′
iρ

0 dx = (ṽsi |Kk )
H[−JkDs

jMsρ
0
k Dg′

i
]ũsj |Kk , (64)

where cki jmn , ρ
0
k and Jk denote the stiffness tensor, density and the Jacobian on element Kk ,

respectively; Dg′
i
and D∂xi g

′
j
denote the diagonal matrices whose diagonal entries are g′

i and

∂xi g
′
j , respectively. For the evaluation of the boundary integration in Asg , we need to evaluate

the submatrix on element EFS
l through

∫

EFS
l

(vsh)i g
′
iν

s→ f
j (ush) j [ρ0] f d� = (ṽsi |El )

H[J 2Dl ρ0
l Dg′

i
M2D

s ν
s→ f
j |El ]ũsj |El , (65)

where ρ0
l and ν

s→ f
j |El denote the density and normal vector on the boundary element EFS

l ,

respectively, upon extracting ṽsi |El and ũ
s
i |El .We can dealwith the integral over�FF similarly.

We then evaluate the submatrices for A f , Ap , Ms , M f in Table 3 and obtain

∫

K F
k

ρ0N 2
g′
i (v

f
h )i g′

j (u
f
h ) j

‖g′‖2 dx = (ṽ
f
i |Kk )

H[Jk Dg′
i /‖g′‖ρ0

k N
2
kM f Dg′

j /‖g′‖]ũ f
j |Kk , (66)

∫

K F
k

−v
p
h phκ

−1 dx = (ṽ p|Kk )
H[−Jkκ

−1
k Mp] p̃|Kk , (67)

∫

K S
k

(vsh)i (u
s
h)iρ

0 dx = (ṽsi |Kk )
H[Jkρ0

kMs]ũsi |Kk , (68)

∫

K F
k

(v
f
h )i (u

f
h )iρ

0 dx = (ṽ
f
i |Kk )

H[Jkρ0
kM f ]ũ f

i |Kk , (69)
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where Dg′
j /‖g′‖ denotes a diagonalmatrix whose diagonal entries are g′

j/‖g′‖ and N 2
k denotes

the square of the Brunt-Väisälä frequency on element Kk . We also obtain the rotation com-
ponents Rs and R f ,

∫

K S
k

εi jm(vsh)i (u
s
h) jρ

0 dx = (ṽsi |Kk )
H[εi jm Jkρ

0
kMs]ũsj |Kk , (70)

∫

K F
k

εi jm(v
f
h )i (u

f
h ) jρ

0 dx = (ṽ
f
i |Kk )

H[εi jm Jkρ
0
kM f ]ũ f

j |Kk , (71)

where εilm denotes the Levi-Civita symbol.

A.2 Submatrices: Adg and ATdg

Here, we discuss the integration between the different variables. For the inner products
between u f

h and ph for Adg and AT
dg in Table 3, we evaluate the mass matrices Mp f and

M f p ,

Mp f = (V−1
p (I f ))

TV−1
f (Ip), M f p = (V−1

f (Ip))
TV−1

p (I f ),

where we refine the notation to indicate submatrices of V; V(I ) denotes the submatrix of V
formed by columns indexed by I ⊆ {1, . . . , Np}. The selection of submatrices is based on
the polynomial construction [63,(10.6)]. For instance, if the polynomial orders used for both
u f
h and ph are the same, i.e., p f = pp , I f = Ip = {1, . . . , Np f }; if pp = 1 and p f = 2,

we have Npp = 4, Np f = 10 and I f = {1, 2, 3, 4}, Ip = {1, 2, 4, 7}. It is apparent that
Mp f = MT

f p .
Evaluating Adg inTable 3 requires the evaluation of the submatrices on element Kk through

∫

K F
k

(v
f
h ) j (∂x j ph) dx = (ṽ

f
j |Kk )

H[JkM f pD
p
j ] p̃|Kk , (72)

∫

K F
k

(v
f
h ) j g

′
j phρ

0κ−1 dx = (ṽ
f
j |Kk )

H[Jk Dg′
j
ρ0
k κ

−1
k M f p] p̃|Kk , (73)

where κ−1
k denotes the inverse of the bulkmodulus on element Kk . To evaluate AT

dg in Table 3,
we also need to evaluate the submatrices on element Kk through

∫

K F
k

(∂x j v
p
h )(u f

h ) j dx = (ṽ p|Kk )
H[Jk(Dp

j )
TMp f ]ũ f

j |Kk , (74)

∫

K F
k

v
p
h g

′
j (u

f
h ) jρ

0κ−1 dx = (ṽ p|Kk )
H[Jkρ0

k κ
−1
k Mp f Dg′

j
]ũ f

j |Kk . (75)

A.3 Submatrices: EFS and ETFS

For EFS and ET
FS , similar to Sect. A.2, we introduce two new indices to constructM2D

ps and

M2D
sp on the boundary elements associated with the fluid–solid boundary. The selection of

the submatrix is based on [63,Chapter 6].M2D
ps = M2D

sp
T
holds true as well. To evaluate ET

FS

in Table 3, we need to compute the submatrix on boundary element EFS
l through
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∫

EFS
l

(vsh) jν
s→ f
j ph d� = (ṽsj |El )

H[J 2Dl ν
s→ f
j M2D

sp ] p̃|El , (76)

upon extracting p̃|El on boundary element EFS
l . To evaluate EFS in Table 3, we need to

evaluate the submatrix on boundary element EFS
l through

∫

EFS
l

v
p
h ν

f →s
j (ush) j d� = (ṽ p|El )

H[J 2Dl ν
f →s
j M2D

ps ]ũsj |El , (77)

upon extracting ṽ p|El on EFS
l .

We are now able to build all the submatrices for the evaluation of the integrals in Table 3.
We then assemble the global matrices from all these submatrices using standard techniques
similar to those in [9, 67].

A.4 Construction of the Submatrices for the Perturbation of the Gravitational
Potential

Similar to the previous subsections, we construct the submatrices in Cs in Table 4,
∫

K S
k

∂xi (ρ
0(ush)i ) dx = (1|Kk )

H[JkMsDs
i ρ

0
k ]ũsi |Kk , (78)

∫

EFS
l

ν
f →s
i (ush)i

[
ρ0]s d� = (1|El )

H[J 2Dl ν
f →s
i [ρ0]slM2D

s ]ũsi |El , (79)

∫

ES
l

νi (u
s
h)i
[
ρ0]+

− d� = (1|El )
H[J 2Dl νi ([ρ0]+−)lM2D

s ]ũsi |El , (80)

and the submatrices in CT
s ,

∫

K S
k

[∂xi (ρ0(vsh)i )]Sk(uh) dx = (ṽsi |Kk )
H[Jkρ0

k (D
s
i )

TMs Sk(ũ)]1|Kk , (81)

∫

EFS
l

ν
f →s
i (vsh)i Sl(uh)

[
ρ0]s d� = (ṽsi |El )

H[J 2Dl ν
f →s
i M2D

s [ρ0]sl Sl(ũ)]1|El , (82)

∫

ES
l

νi (v
s
h)i Sl(uh)

[
ρ0]+

− d� = (ṽsi |El )
H[J 2Dl νiM2D

s ([ρ0]+−)l Sl(ũ)]1|El , (83)

where 1 denotes a vector of all ones. The construction of the submatrices in C f and CT
f is

the same. We are now able to build all the submatrices for the evaluation of the integrals in
Table 4.

B Full Mode Coupling

Concerning the Galerkin approximation, we can use different, nonlocal bases of functions
in the appropriate energy space, for example, the spectral-Galerkin method [123]. In this
appendix, we consider the use of the eigenfunctions of a spherically symmetric, non-rotating,
perfectly elastic and isotropic (SNREI) reference model as a basis in this method. This has
been implemented by [39, 40, 142, 144], and named the full mode coupling approach. An
immediate drawback of using this basis, however, is that the fluid–solid boundaries need to
be spherically symmetric, as these are encoded in these basis functions.
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We let ukm represent the eigenfunctions associated with eigenfrequencies, ωk , in terms of
spherical harmonics, Ym

l , that is,

ukm = UkmPlm + VkmBlm + WkmClm (no summation over m),

where k is the multi-index for the eigenfrequency; m = −l,−l + 1 . . . , l − 1, l is the index
corresponding with the degeneracy with l denoting the spherical harmonic degree;Ukm, Vkm
andWkm are the three components of eigenfunctions and are functions of the radial coordinate;
Plm , Blm and Clm are the vector spherical harmonics, see [35,(8.36)] for their definition. In
addition, pkm needs to be introduced to constrain the solution, cf. (13) [37,Subsection 3.3].
Since ∇ · ukm(x) can be expanded using Ym

l (x) [35,(8.38)] and ukm(x) · g(r) can also be
expanded using Ym

l (x) for the radial models, we let pkm = PkmYm
l with

Pkm = −κ(r)

[
∂rUkm + r−1(2Ukm −√

l(l + 1)Vkm)
]

+ ρ0
(r)g(r)Ukm,

where ρ0
(r), κ(r) and g(r) denote the radial profiles of the density, bulk modulus and reference

gravitational field of a radial model, respectively. Similarly, the incremental gravitational
potential of the radial models takes the form, skm = SkmYm

l , where Skm is also a function in
the radial coordinate. In the following, l and m are fixed.

In a SNREI model, for the computation of the toroidal modes, we only need to consider
a solid annulus comprising the mantle and the crust. We exemplify the computations with
the spheroidal modes and let U ′

km , P
′
km and S′

km be test functions for Ukm , Pkm and Skm
following the Galerkin method. We let the X̃(r) be the 1D interval of the radial planet and
have X̃(r) = �S

(r) ∪ �F
(r), where �S

(r) and �F
(r) denote the 1D intervals for the solid and fluid

regions, respectively. Given a regular finite-element partitioning T (r)
h of the interval X̃(r), we

denote an element of the mesh by Lq ∈ T (r)
h and have X̃(r) = ⋃NL

q=1 Lq , where NL denotes

the total number of 1D elements. Furthermore, we let LS
q and LF

q specifically be elements in
the solid and fluid regions and have

�S
(r) =

NS
L⋃

q=1

LS
q , �F

(r) =
NF
L⋃

q=1

LF
q ,

where NS
L and NF

L denote the numbers of 1D elements in the solid and fluid regions, respec-
tively. We let �FS

(r) denote the fluid–solid boundary points in the radial interval. We introduce

the finite-element solutions,Us
km;h ,U

f
km;h , V

s
km;h , V

f
km;h , Pkm;h and Skm;h , and test functions,

Us′
km;h , U

f ′
km;h , V

s′
km;h , V

f ′
km;h , P

′
km;h and S′

km;h . We set NpU = (pU + 1)/2, where NpU is

the number of nodes on a 1D element for the pU -th order polynomial approximation. We
have likewise expressions for NpV , NpP and NpS . As in Sect. 4.2, we introduce nodal-based

Lagrange polynomials, �Ui , �
V
i , �

P
i , �

S
i , on the respective 1D elements L ∈ T (r)

h , and write

Us
km;h(x) =

NpU∑

i=1

Us
km;h(xi )�

U
i (x), U f

km;h(x) =
NpU∑

i=1

U f
km;h(xi )�

U
i (x), (84)

V s
km;h(x) =

NpV∑

i=1

V s
km;h(xi )�

V
i (x), V f

km;h(x) =
NpV∑

i=1

V f
km;h(xi )�

V
i (x), (85)
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Pkm(x) =
NpP∑

i=1

Pkm(xi )�
P
i (x), Skm(x) =

NpS∑

i=1

Skm(xi )�
S
i (x), (86)

for x ∈ LS and x ∈ LF, respectively; similar representations hold for Us′
km;h , U

f ′
km;h , V

s′
km;h ,

V f ′
km;h , P

′
km;h and S′

km;h , respectively. We note that the fluid–solid boundary points coincide
with nodes.

As in Sects. 4 and 5, we collect the “values” of Us
km;h , U

f
km;h , V

s
km;h , V

f
km;h , Pkm;h and

Skm;h at all the nodes, in vectors Ũ s
km , Ũ

f
km , Ṽ

s
km , Ṽ

f
km , Ṽkm and S̃km , respectively, and collect

the values ofUs′
km;h ,U

f ′
km;h , V

s′
km;h , V

f ′
km;h , P

′
km;h and S′

km;h at all the nodes, in “vectors" Ũ
s′
km ,

Ũ f ′
km , Ṽ

s′
km , Ṽ

f ′
km , P̃

′
km and S̃′

km , respectively. We let

ũ(r)
km = ((Ũ s

km)T, (Ṽ s
km)T, (Ũ f

km)T, (Ṽ f
km)T)T,

ũskm = ((Ũ s
km)T, (Ṽ s

km)T)T, ũ f
km = ((Ũ f

km)T, (Ṽ f
km)T)T,

Table 19 Implicit definition of the matrices in (87) (no summations over k and m). Since the construction

of A(r)
sg is standard, we refer to [35,(8.43) & (8.44)] and [147,(3.1)]. In the above,

∫
�S

(r)
= ∑NS

L
q=1

∫
LSq

and

∫
�F

(r)
= ∑NF

L
q=1

∫
LFq

Operations Physical meanings Corresponding formulae

(Ũ s′
km )TA(r)

sg Ũ
s
km Solid stiffness matrix [147,(3.1)]

(Ũ f ′
km )TA(r)

f Ũ f
km Buoyancy term

∫

�F
(r)

U f ′
km;hU

f
km;h N

2
(r)ρ

0
(r)r

2 dr

+[ρ0(r)]+−g(r)U
f
km;hU

f ′
km;hr

2|
�FF

(r)

(P̃ ′
km )TA(r)

p P̃km Fluid potential
∫

�F
(r)

P ′
km;h Pkm;hκ−1

(r) r
2 dr

(ũ f ′
km )TA(r)

dg P̃km Fluid stiffness matrix
∫

�F
(r)

U f ′
km;h(∂r Pkm;h + ρ0(r)g(r)κ

−1
(r) Pkm;h)r2 dr

+
∫

�F
(r)

√
l(l + 1)Pkm;hV f ′

km;hr dr

(P̃ ′
km )TA(r)

dg
T
ũ f
km Constraint

∫

�F
(r)

(
∂r P

′
km;h + ρ0(r)g(r)κ

−1
(r) P

′
km;h

)
U f
km;hr

2 dr

+
∫

�F
(r)

√
l(l + 1)P ′

km;hV
f
km;hr dr

(Ũ s′
km )TE(r)

FS P̃km Fluid–solid boundary condition −Pkm;hUs′
km;hr2|�FS

(r)

(P̃ ′
km )TE(r)

FS
T
Ũ s
km Fluid–solid boundary condition −P ′

km;hUs
km;hr2|�FS

(r)

(Ũ s′
km )TM(r)

s Ũ s
km Solid mass matrix

∫

�S
(r)

(
Us′
km;hUs

km;h + V s′
km;hV s

km;h
)

ρ0(r)r
2 dr

(Ũ f ′
km )TM(r)

f Ũ f
km Fluid mass matrix

∫

�F
(r)

(
U f ′
km;hU

f
km;h + V f ′

km;hV
f
km;h

)
ρ0(r)r

2 dr
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Table 20 Implicit definition of the matrices in (87) (no summation over k and m). In the above,
∫
�S

(r)
=

∑NS
L

q=1
∫
LSq

and
∫
�F

(r)
= ∑NF

L
q=1

∫
LFq

. In the Poisson’s equation, the computation of the integral
∫∞
0 requires

special treatment, see [147,Chapter 3.2.2]

Operations Physical meanings Corresponding formulae

(S̃′
km )TC(r)

s ũskm Density changes in �S
(r)

∫

�S
(r)

(∂r S
′
km;h)Us

km;hρ0(r)r
2 dr

+
∫

�S
(r)

√
l(l + 1)S′

km;hV s
km;hρ0(r)r dr

(S̃′
km )TC(r)

f ũ f
km Density changes in �F

(r)

∫

�F
(r)

(∂r S
′
km;h)U f

km;hρ0(r)r
2 dr

+
∫

�F
(r)

√
l(l + 1)S′

km;hV
f
km;hρ0(r)r dr

(S̃′
km )TS(r) S̃km Poisson’s equation (4πG)−1

∫ ∞
0

(∂r S
′
km;h∂r Skm;hr2

+l(l + 1)S′
km;h Skm;h) dr

(ũs
′
km )TC(r)

s
T
S̃km Incremental gravitational field in �S

(r)

∫

�S
(r)

Us′
km;h(∂r Skm;h)ρ0(r)r

2 dr

+
∫

�S
(r)

√
l(l + 1)V s′

km;h Skm;hρ0(r)r dr

(ũ f ′
km )TC(r)

f
T
S̃km Incremental gravitational field in �F

(r)

∫

�F
(r)

U f ′
km;h(∂r Skm;h)ρ0(r)r

2 dr

+
∫

�F
(r)

√
l(l + 1)V f ′

km;h Skm;hρ0(r)r dr

and obtain the resulting eigenvalue problem (cf. (54))

(A(r)
G − E (r)

G A(r)
p

−1
E (r)
G

T − C (r)T(S(r))−1C (r))ũ(r)
km = ω2

k M
(r)ũ(r)

km, (87)

where

A(r)
G =

(
A(r)
sg 0
0 A(r)

f

)

, E (r)
G =

(
E (r)
FS

A(r)
dg

)

, C (r)T =
(
C (r)
s

T

C (r)
f

T

)

,

M (r) =
(
M (r)

s 0
0 M (r)

f

)

, E (r)
G

T =
(
E (r)
FS

T
A(r)
dg

T
)

, C (r) =
(
C (r)
s C (r)

f

)
,

in which A(r)
sg , A

(r)
f , A(r)

p , E (r)
FS , E

(r)
FS

T
, A(r)

dg , A
(r)
dg

T
, M (r)

s , M (r)
f , C (r)

s
T
, C (r)

f

T
, S(r), C (r)

s and

C (r)
f , are given in Tables 19 and 20. We note that the matrices in (87) are obtained using

separation of variables with spherical harmonics in (54). We substitute

P̃km = −A(r)
p

−1
E (r)
G

T
ũ(r)
km

upon solving (17) and

S̃km = (S(r))−1C (r)ũ(r)
km
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Table 21 Implicit definition of the matrices in (88) for the Cowling approximation

Operations Physical meanings Corresponding formulae

(y′)TA(c)
G y Stiffness matrix

∑

km

∑

k′m′
y′
k′m′

{∫

�S
∇uk′m′;h : (c : ∇ukm;h

)
dx

+
∫

�FS
S
{(
g · uk′m′;h

) (
νs→ f · ukm;h

)
[ρ0] f

}
d�

+
∫

�S
S

{ (∇ · uk′m′;h
) (

ρ0ukm;h · g
)

− ρ0uk′m′;h · (∇g) · ukm;h

−ρ0ukm;h · (∇uk′m′;h
) · g

}
dx

+
∫

�F
ρ0N2

(
g · uk′m′;h

) (
g · ukm;h

)

‖g‖2 dx

+
∫

�FF
(g · ν)(ukm;h · ν)(uk′m′;h · ν)[ρ0]+− d�

+
∫

�F
κ
(
∇uk′m′;h + ρ0κ−1uk′m′;h · g

)

(
∇ukm;h + ρ0κ−1ukm;h · g

)
dx

}
ykm

(y′)TM(c)y Mass matrix
∑

km

∑

k′m′
y′
k′m′

{∫

�S
uk′m′;h · ukm;hρ0 dx

+
∫

�F
uk′m′;h · ukm;hρ0 dx

}
ykm

upon solving (2). We only need to invoke a finite-element basis in the radial coordinate. We
note that the resulting system can be solved via a standard eigensolver, such as LAPACK [5].

As mentioned above, we may consider the finite-element solution denoted as {ukm;h}
as an alternative basis. Since {ukm;h} is a global basis for the general problem, we have no
separation in the solid andfluid components andno longer have thefluid–solid boundary terms
in the system. Following the Galerkin method, we then consider an expansion for the general
solution uc = ∑

km ykmukm;h and the corresponding test functions vc = ∑
k′m′ y′

k′m′uk′m′;h .
We introduce sc and its corresponding test functions vsc for self-gravitation. We have sc =∑

km zkm Skm;h and vsc = ∑
k′m′ z′k′m′ Sk′m′;h . Assuming that all the discontinuities in a fully

heterogeneous model coincide with the ones in the reference radial model and the fluid outer
core, the eigenfuncions represented by the mentioned expansions lie in H1 ⊂ E (cf. (32))
for the fully heterogeneous problem while the constraint equation disappears. We let y, y′, z
and z′ be the “vectors" with components ykm , y′

k′m′ , zkm and z′k′m′ , respectively, and obtain

(A(c)
G − C (c)TS(c)−1

C (c))y = ω2M (c)y, (88)

as the counterpart of (54). Here, A(c)
G , M (c), C (c)T, S(c) and C (c), obtained via substituting

the above-mentioned expansion of uc in (54), are given in Tables 21 and 22.
If all the discontinuities in a fully heterogeneous model with a fixed fluid outer core coin-

cidewith the reference radialmodel,we note that thematrix elements in (88), Tables 21 and 22
are similar to [142,(A1)], which describe mode coupling in non-radial models. However,
Woodhouse [142,(A1)] includes additional terms accounting for changes in the fluid–solid
boundaries while in the previous work [144,(42)], perturbation theory is used to compute
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Table 22 Implicit definition of the matrices in (88)

Operations Physical meanings Corresponding formulae

(z′)TC(c)y Density changes in X̃
∑

km

∑

k′m′
z′k′m′

{∫

�S
sk′m′;h∇ ·

(
ρ0ukm;h

)
dx

+
∫

�SS∪∂ X̃S
sk′m′;hν · ukm;h

[
ρ0
]+
− d�

+
∫

�FS
sk′m′;hν f →s · ukm;h

[
ρ0
]s

d�

+
∫

�FF∪∂ X̃F
sk′m′;hν · ukm;h

[
ρ0
]+
− d�

+
∫

�F
sk′m′;h∇ · (ρ0ukm;h) dx

+
∫

�FS
sk′m′;hνs→ f · ukm;h

[
ρ0
] f

d�

}
ykm

(z′)TS(c)z Poisson’s equation
∑

km

∑

k′m′
z′k′m′

{∫

R3
(∇sk′m′;h) · (∇skm;h) dx

}
zkm

(y′)TC(c)Tz Incremental gravitational field in X̃
∑

km

∑

k′m′
y′
k′m′

{∫

�S
∇ · (ρ0uk′m′;h)skm;h dx

+
∫

�SS∪∂ X̃S
[ρ0]+−ν · uk′m′;hskm;h d�

+
∫

�FS
[ρ0]sν f →s · uk′m′;hskm;h d�

+
∫

�FF∪∂ X̃F
[ρ0]+−ν · uk′m′;hskm;h d�

+
∫

�F
∇ · (ρ0uk′m′;h)skm;h dx

+
∫

�FS
[ρ0] f νs→ f · uk′m′;hskm;h d�

}
zkm

the eigenfrequency changes in terms of the unperturbed eigenfunctions; both calculations
violate the condition that normal modes need to remain in E and in H1.
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