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Abstract
We consider a singular perturbation for a family of analytic symplectic maps of
the annulus possessing a KAM torus. The perturbation introduces dissipation
and contains an adjustable parameter. By choosing the adjustable parameter,
one can ensure that the torus persists under perturbation. Such models are com-
mon in celestial mechanics. In field theory, the adjustable parameter is called
the counterterm and in celestial mechanics, the drift. It is known that there are
formal expansions in powers of the perturbation both for the quasi-periodic
solution and the counterterm. We prove that the asymptotic expansions for the
quasiperiodic solutions and the counterterm satisfy Gevrey estimates. That is,
the nth term of the expansion is bounded by a power of n!. The Gevrey class
(the power of n!) depends only on the Diophantine condition of the frequency
and the order of the friction coefficient in powers of the perturbative parame-
ter. The method of proof we introduce may be of interest beyond the problem
considered here. We consider a modified Newton method in a space of power
expansions. As is custumary in KAM theory, each step of the method is esti-
mated in a smaller domain. In contrast with the KAM results, the domains where
we control the Newton method shrink very fast and the Newton method does
not prove that the solutions are analytic. On the other hand, by examining care-
fully the process, we can obtain estimates on the coefficients of the expansions
and conclude the series are Gevrey.
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1. Introduction

Hamiltonian systems with small dissipation appear as models of many problems of physi-
cal interest. Notably, dissipation is a small effect in astrodynamics of planets and satellites
[MNF87, Cel13] !. In the design of many mechanical devices, eliminating friction is a design
goal which is never completely accomplished. Hamiltonian systems with friction also appear
as Euler—Lagrange equations of discounted functionals which are natural in finance and in the
receding horizon problem in control theory. In such a case the limit of zero discount (equiv-
alent to the limit of zero friction) is of interest. See [Ben88, DFIZ16, ISM11, MHER95] for
different studies of the zero dissipation limit in calculus of variations and in control.

When the friction is small, it is natural to study such systems using perturbation theory.
Nevertheless, adding a small friction is a very singular perturbation, and periodic/quasi-
periodic orbits may disappear for arbitrarily small values or the perturbation. In contrast
with Hamiltonian systems that often have sets of quasi-periodic orbits of positive measure
(KAM theorem), for dissipative forced systems, there are few periodic or quasi-periodic orbits.
These quasi-periodic orbits of a fixed frequency are known to persist only if one can adjust
parameters in the system [BHS96, Mos67, Sev99]. As discussed very clearly in [Mos73],
the number of parameters needed is affected by the geometric properties of the systems
considered.

In recent times, for some particular types of dissipative systems—the conformally sym-
plectic systems, see definition 1—there is a very systematic KAM theory [CCdIL13] based
on geometric arguments. The examples mentioned above (Hamiltonian systems with friction
proportional to the momentum and Euler—Lagrange equations of exponentially discounted
variational principles) are conformally symplectic. This theory, once we fix a frequency,
predicts the changes of parameters and the changes in the solutions needed to obtain a
quasi-periodic solution of the prescribed frequency.

The goal of this paper is to study the singular perturbation theories in which the small
parameter also introduces dissipation.

There are several studies of the singular perturbation theories in dissipation which are par-
ticularly relevant for us: the paper [CCdIL17] shows that if one fixes a Diophantine frequency
w (see definition 11), considers a Hamiltonian system—not necessarily integrable—with a
quasi-periodic solution of frequency w, and introduces a conformally symplectic perturbation
(see definition 1), then there is a (unique under a natural normalization) formal power series
expansion for the quasi-periodic solution of frequency w and for the drift parameter. These
series are very similar to the Lindstedt series of classical mechanics. The paper [CCdIL17]
also showed that the formal Lindstedt series is the asymptotic expansion of a true solution
defined in a complex domain of perturbation parameters that does not include any ball around
zero (giving an indication that the power series may be divergent). The paper [BC19] studied
numerically these Lindstedt series in a concrete example and the possible domain of analytic-
ity of the function (using Padé as well as non-perturbative methods). The numerical studies in
[BC19] lead to the remarkable conjecture that, in the cases examined, the formal power series
giving the quasiperiodic solution and the forcing are Gevrey (see definition 9).

In this paper, for some class of analytic maps (we require that the system is conformally
symplectic and that the nonlinearity is a trig. polynomial) we show that the conjecture in
[BC19] is true and that the series obtained are indeed Gevrey. The Gevrey class can be bounded

I A problem in astrodynamics which motivate us is the spin orbit problem describing approximately the motion of an
oblate planet, subject to tidal friction, in a Keplerian orbit [Cel91].
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depending only on the Diophantine condition of the frequency w (and the order of the friction
in the dissipation). See theorem A.

The Gevrey class of functions has received a lot of interest recently since those functions
are related to many deep theorems of dynamical systems (KAM, Nekhoroshev). Similar theo-
ries (e.g. hypoellipticity) also admit Gevrey classes as natural regularity. This paper goes in a
different direction. Even if we start with an analytic problem—indeed polynomial!—several
objects of interest are only Gevrey. The phenomenon that analytic problems have only Gevrey
solutions has appeared in other contexts in dynamics, notably in the study of singular pertur-
bations [CDRSS00], the regularity of attractors and fast-slow systems [Bae95, CD91, FT89].
Closer to us, in dependence on parameters of solutions of nonlinear problems, [Lin92, Sau92],
dependence of KAM tori in the frequency [Pop00], or in the theory of parabolic manifolds
[BFM17, BHOS].

We note that showing that a perturbative expansion is Gevrey allows to obtain good bounds
of the error of a finite sum [BDMOS]. It also allows the use of resummation methods to extract
better results for the series, [CGGGO07], and it gives insights on the analyticity domains. Indeed,
in the mathematical physics literature, there has been considerable interest in the Gevrey
nature of perturbation theories, often called factorial bounds, Borel summability, etc [FMRS87,
GBDO05, GG84]. We hope that introducing a new method for these questions can have interest
in other motivations.

The method of proof we introduce may be of interest beyond the problem considered here
and we hope that there are other applications. We consider a Newton method in the space of
power expansions. As in KAM theory, each step of the quadratically convergent method is
estimated in a domain smaller than the domain of the previous steps. In contrast with KAM
theory, the domains where we control the results shrink very fast to a point, so that, at the end
we do not obtain any analytic function. On the other hand, by examining carefully the process,
we obtain estimates on the coefficients of the expansions.

Our hypothesis that the nonlinearity is a trigonometric polynomial ensures that the coeffi-
cients of order N do not change after log,(NV ) steps of the Newton method, so that one can use
Cauchy estimates in the domain that is under control after log,(N) steps to obtain estimates on
the Nth coefficient.

We hope that the hypothesis that the nonlinearity is a trigonometric polynomial can be
removed at the price of estimating the change of the coefficients in subsequent iterations, but
a proof would require a new set of estimates that—if indeed possible—would lengthen the
exposition and obscure the main ideas.

The Newton method acting on power series is patterned after the Newton method used in
[CCdIL13]. This Newton method takes advantage of remarkable cancellations related to the
geometry and introduces the corrections to the torus additively (rather than making changes
of variables). The fact that the Newton method in [CCdIL13] does not involve changes of
variables makes it possible to lift it to formal power series. We will present full details
later.

For simplicity in the treatment, we will deal with maps since the geometric arguments are
simpler. The same arguments apply for differential equations, but they are more elaborate.
Besides adapting the proof of maps to the case of ODE’s, one can deduce rigorously the results
for differential equations from the results for maps by taking time-7 maps. Note that in this
case, the fact that the nonlinearity in the time-7 map is a trig. polynomial is difficult to express
in terms of the original ODE. This is another reason why we would like eventually to get rid
of that hypothesis.
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1.1. A preview of the main results

A model to keep in mind is the so-called dissipative standard map f., : T x R — T x R
given by

Fop () = (x + AE)Y + pe — eV (), AE)y + pe — eV (x). (1.1)

In (1.1), the physical meaning of A(e) = 1 — &%, a € N, is dissipation and p_, called the drift
parameter, has the physical meaning of a forcing. Our assumption on the nonlinearity amounts
to V being a trigonometric polynomial. The model (1.1) is indeed conformally symplectic in the
sense of definition 1 (see below). The map (1.1) is the model that was used in the numerical
experiments in [BC19]. The model (1.1) can be thought as a numerical time step—using a
Verlet-like method—of the spin—orbit problem

x=y
V= —puy+ A4V (x). (1.2)

Note that for ¢ = 0 and p, = 0, the map (1.1) is integrable. The integrability of the map
at € = 0 does not play any role in the theoretical results in [CCdIL17], the only assumption
needed in [CCdIL17] is that the map for e = 0 is symplectic and has an invariant torus. For the
numerical study in [BC19], the fact that the map for ¢ = 0 is integrable leads to much more
efficient algorithms. In this paper, we will not use explicitly the integrability for £ = 0, but
this seems to be the only case where it is possible to verify the assumption on the nonlinearity
being a trig polynomial (yet another reason to try to get rid of that hypothesis).

The main results of this paper are theorems A—C. Theorems A and B establish the Gevrey
character of the formal expansions for the drift parameter y:,. and for the quasi-periodic orbit of
fixed frequency w, K., of the map (1.1). The rigorous formulation of these theorems is given
in section 3, the statements of the main results can be better understood after some prelim-
inary definitions and remarks are given (see section 2). Here we give an informal statement
summarizing our main results:

Given a Diophantine frequency w, the coefficients of the formal power series expansions
S Kue" and Y p,e" of the quasi-periodic orbit and the drift parameter, respectively, satisfy
the following Gevrey estimates

K < CR'n™/" || < CR"n(T/a)",

where T depends on the Diophantine type of w (see definition 11) and « is the order of the
dissipation \() = 1 — &%, Moreover, the formal series Y K jej and Y jej are asymptotic
expansions of geometric objects K., and pu., with respect to €. Quantitative estimates are
formulated in theorem C.

1.2. Organization of the paper

The paper is organized as follows. In section 2 we collect some standard definitions and we
also define the function spaces in which the iterative procedure takes place. Also, in the same
section we present some geometric identities which allow us to solve the linearized equations
of the modified Newton method. In section 3 we state theorems A—C, which are the main
results of the paper and establish the Gevrey character of the formal expansions of the quasi
periodic orbits.
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The proof of theorem A is a consequence of theorem B. The proof of theorem B is done
through the use of a quasi Newton method. In section 4 we formulate the iterative step of this
Newton method, while in section 5 we provide estimates for the corrections and the new error
at one step of the method. In section 6, using a KAM like argument, we give estimates for any
step of the Newton like procedure and, with them, the proofs of theorems B and C are given.
Finally, in the appendix A, we verify that the hypothesis HTP1 and HTP2 of theorem B are
satisfied by the family of maps considered in theorem A.

2. Preliminaries

In this section we introduce the notations, collect some standard definitions including the
Banach spaces and their norms that enter in this paper. This section should be used as a
reference.

2.1. Symplectic properties

Let M = T¢ x B, B C R?; endowed with an exact symplectic form €2. Note that the manifold
M is Euclidean (i.e. the tangent bundle is trivial) and we can compare vectors in different
tangent spaces. This is crucial in KAM theory.

We denote by J the matrix associated to the symplectic form €2, i.e. in coordinates we have
Q. (u,v) = (u,J(x)v) where (-,-) denotes the inner product for any u,v € T, M. Note that J
depends on the choice of the inner product.

Definition 1. We say that a diffeomorphism defined on a symplectic manifold (M, ) is
conformally symplectic when

Q=20

for a number A\, where f* denotes the standard pull back on forms.

The map (1.1) is conformally symplectic with the conformal factor A(¢) = 1 — ¢ and the
standard symplectic form {2 = dx A dy on the cylinder T x R.

2.2. Banach spaces of analytic functions

2.2.1. Analytic functions on the torus. Given p > 0 we define the complex extension of the
d-dimensional torus as

T4 = {z € C?/2%|Re(z)) € T, Im(z))| < p}

and denote by A, as the C-vector space of analytic functions defined int(TZ) which can be
extended continuously to the boundary of 'H‘;{. A, is endowed with the norm

llgll, = sup g
0€T%

which makes it into a Banach space.
For vector valued functions, g = (g}, &>, - - - » 84), We define the norm

2 2 2
lell, = /gl + g2l + -+ llgall?
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and for d| X d, matrix valued functions, G, we define

dy dy

IGI, = sup | > | D lIGull, v

veRD =1\ ;=1 \ j=1

We will also need to work with functions of two variables. Denoting B-(0) C C the open
ball with center zero and radius +y in the complex plane, define

A, ={K:B,(0) = A, | Kisanalyticin B,(0)
x and can be extended continuously to B, (0)}
endowed with the norm

K], = sup K,
lel<y

It is well known that with the norms ||-||
algebras.

To discuss analyticity properties, we will need to deal with complex values of all the argu-
ments. For physical applications, we need mainly real variables. Hence, it will be important
that the functions we consider have the property that they yield real values for real arguments.
The functions that satisfy this property (real valued for real arguments) is a closed (real) sub-
space of the above Banach spaces. All the constructions we use have the property that when
applied to real valued functions, they produce real valued functions.

Note that we can think of functions A, as analytic functions on B,(0) taking values on a
space of analytic functions of the torus. This point of view is consistent with the interpretation
that we are considering families of problems and we are seeking families of solutions.

For typographical reasons from now on we will use the following notation. Given K € A4,
we use the notation K.(0) = K(0, ) .= (K(¢))(6).

and ||-|| , the spaces A, and A, are Banach

Py

Definition 2. Let B a Banach space. Given an analytic function g : B,(0) € C — B, and
n >0, we say g(e) ~ O (|e|") if and only if there exists C > 0 such that

@Il < Clel"

for ¢ small enough. Equivalently, g(¢) ~ O (|e|") if and only if g(e) = >~ gie* for & small
enough and g; € 5.

2.2.2. Cauchy estimates. We recall the classical Cauchy inequalities, see [SZ65].

Lemma 3. Given any 0 < § < p and any function f € A, with range in C**, then there
exists a constant C = C(d) such that

IDfN, 5 < € £l @1
where Df denotes the derivative of f. We also have

|Fil < e 1],
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where |k| = |ky| + |ka| + - - - + |ko| and fy denotes the Fourier coefficient of f with index k.

Remark 4. We point out that inequality (2.1), comes from the classical Cauchy inequality

106,8ll,-5 < 07" ligl,»

for any scalar function g € A,. If f is a vector valued function, as in lemma 3, the inequality
(2.1) follows from the definitions of the norms at the beginning of the section.

As mentioned above we will be working with functions depending upon two variables. The
following are Cauchy inequalities in the second variable, ¢.

Lemma 5. For any 0 < r <y and any function f € A, such that f.(0) =~ f.(0)"
we have

1
1£all, < S H1F 1L

Proof. By Cauchy integral formula

la 1 0.9 1 [Tf0,re?)
ﬁl(e) - n! dgﬂ f(e’ E)L_O a 27” ‘g‘zl’ E’H—l d B 27Tr” 0 el'HdJ dd)’
thus, | £,(0)] < %SFf\f(ﬁ, o)l and ||full, < I £1],- 0

Corollary 6. Assume that A € A, issuchthat A. = Y72\ A" Leta,b € N such that
N < a < b < ooand denote A“Y = Zi’:aHA”s". Then, for all 0 < r < 1 we have

1

ot
HZ&QLbW|pJ7 < 1 47r|| Hmw'

Remark 7. Note that the estimate in corollary 6 only depends on «, associated with the order
of the first term in the expansion of A,

2.3. Formal power series

2.3.1. General definitions. Formal power series expansions are just expressions of the form
> “ae”,
n

where a, belong to a Banach space, sometimes a, are just scalars.

Formal power series are not meant to converge nor to represent a function. However, when
the coefficients a, belong to an algebra, the series can be added, multiplied (using the Cauchy
formula for product; note that for a fixed degree, computing the coefficients involves only a
finite sum) or substituted one into another.

One can form equations among formal power series. The meaning is, of course, that the coef-
ficients on each side should be the same. This is extremely useful in many areas of mathematics,
notably combinatorics. See [Car95, Cos09] for more details on formal power series.
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Many perturbation expansions in physics or in applied mathematics are based precisely
into formulating the solutions of the equations of motion as formal power series and requiring
that the equations of motion are satisfied in the sense of power series. Notably, the Lindstedt
series were in standard use in astronomy even if they were only shown to converge for some
frequencies in [Mos67].

2.3.2. Asymptotic expansions. For formal power series, a notion weaker that convergence of
the series to a function is that the series is asymptotic to a function.

Definition 8. Given a set D for which 0 is an adherent point, we say that a formal power
series Y a,e", with coefficients a, in a Banach space X, is an asymptotic expansion to a
function ¢ : D — X when for all N € Ny, there exists Cy such that for any p > 0

N
sup Zana” — de)|| < CypV T

c€DJel<p || =0

If the domain D does not include any ball centered at zero, even if the function ¢ is analytic
and bounded on D, this does not imply that the series converges.

Note that different functions may have the same asymptotic expansions. The Cauchy
example

#(e) = exp(—c2) 2.2)
has an identically zero asymptotic expansion on a domain
Ds = {e: |Arg(e)| < d}, (2.3)

when 6 < /4.

Note that the definition of asymptotic involves the domain D. A series may be asymptotic
to a function in a domain but not in a larger domain. For example the zero series is asymptotic
to the the Cauchy example 2.2 in the domains Dj; as in (2.3) when 6 < 7/4, but not when
d>m/4

2.3.3. Gevrey formal expansions. Given a formal power series, even if it diverges, it is inter-
esting to study how fast the coefficients grow. The following definition captures some speed
of growth that is weaker than convergence, but which nevertheless appears naturally in many
applied problems.

Definition 9. Let 3, p > 0. We say that a power series expansion f = Y f,(f)e", with
fn € A,, belongs to a Gevrey class (53, p) if and only if there exist constants C > 0, R > 0, and
no € N such that

I.full, < CR*2™" for n > n, (2.4)

and we denote f € gg .
Similarly, we say that a power series expansion 1 = >~ u,e", with g, € C?, belongs to
a Gevrey class [ if and only if there exist constants C > 0, R > 0, and ny € N such that

|1tn] < CR'n™  for n > ny, (2.5)

and we denote u € Go.
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Remark 10. It is well known that (2.4) in definition 9 is equivalent to the inequality
£l < CR'(n)?  forn > noy

o0 fu(0)
n=0 (n!)?

which, in turn, implies the series >
convergence.

This remark makes a connection with the theory of Borel summability. If a series is Gevrey,
under some extra conditions, the iterated Borel transform produces a function that is analytic
in a sector and gives rise, by means of a variant of the Laplace transform, to a function to which
the series is asymptotic. See [CGGGO07, Cos09].

¢" converges in A, with positive radius of

2.3.4. A property from number theory. In KAM theory, some number theoretical properties
of frequencies play an important role.

Definition 11. Letw € R, 7 > 0. We define the quantity v = v(w; 7) as
W(w, ™)'= sup [ — 17 k|7
kezd\{0}

We say that w is Diophantine of class 7 and constant v = v/(w, 7), whenever v~! < co. We
use the notation w € D(v, 7).
Note that if w € D(v, 7), then |e™*“ — 1| > v|k| 7.

2.4. Quasi-periodic orbits

A quasi-periodic sequence {x,},cz of frequency w € R? in a Euclidean space is a sequence
which can be expressed in terms of Fourier series.

Xy = E eka-wn)ACk _ K(nw),
kezd

where K(0) = >, 70€>™ 5.

We can think of the function K as an embedding of the torus T¢ into phase space. If w
does not have any resonances (i.e. k - w # 0 for k € Z%\{0}, which can always be arranged by
reducing d if there is one), then {wn},cz is dense on the torus. The map K is often called the
hull function.

If x, is an orbit of a map, x,1 = f(x,) we see that K(nw 4+ w) = f(K(nw)). Since {wn},cz
is dense, this is equivalent to

K0 +w) = f(K(0)) V0 € T 2.6)

Hence, we see that the set K(T¢), the image of the standard torus under the embedding K is
invariant under f. So, it is customary to describe quasi-periodic solutions as invariant tori.

The problem of given a map finding a quasi-periodic solution of frequency w can be for-
mulated as finding an embedding K solving (2.6). The equation (2.6) will be our fundamental
tool to characterize quasi-periodic orbits.
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2.5. Set-up of the problem. The invariance equation

In this section, we describe informally the geometric set up and the geometric meaning of the
formulation of our problem. The precise formulation of the main results of this paper theorems
A and B will be presented in section 3.

We will be mainly concerned with an analytic family of maps f. , : M — M, such that

£2,0= 200,

where ¢ € C is a small parameter, € A C C? is an internal parameter (the drift parameter),
and A\(e) =1 — &“.

A good example to keep in mind is the dissipative standard map presented in (1.1). Note
that, for e = 0 and for each p, the maps fj, are symplectic because A(0) = 1.

The main assumption in the main theorem, theorem B, is that the map fj ,,, has an invariant
torus in which the motion is a rotation of frequency w which is Diophantine (see definition 11).
Note that the drift parameter, 1, is chosen to guarantee the persistence of a quasi periodic orbit
of a given frequency w, so we also consider ;1 = (..

Following the discussion in section 2.4 and, in particular (2.6), we see that finding a quasi-
periodic orbit for f., is equivalent to finding families of embeddings K. and families of
parameters /. in such a way that

fs,y; o K.(0) = K.(0 + w). 2.7

Equation (2.7) should be interpreted as, given the family f; , and the frequency w finding
-, K.. For this work, the sense in which (2.7) is meant to hold is the meaning of formal power
series (the coefficients of £” on both sides of (2.7) are identical for all n, as it is customary in
the study of Lindstedt series).

Note that the equation (2.7) is highly underdetermined. If 4, K. is a solution, changing
into  + o, we obtain that j., K. is also a solution where K.(f) = K.(6 + o.). This change of
variables has the physical meaning of choosing a change of origins in the torus.

2.6. Automatic reducibility

As it is noted in [CCdIL13], a very useful property of conformally symplectic systems is that
solutions to equation (2.7) satisfy the so-called automatic reducibility, that is, in a neighbor-
hood of an invariant torus, one can find a system of coordinates in which the linearization of
the evolution has almost all the coefficients constant.

Lemma 12. Let f,: M — M, such that, f;Q =)0, and K:T4— M such that
f. o K(0) = K(0 + w) withw an irrational vector. Denoting N' = (DKTDK) " and the 2d x d
matrix V(0) = J~' o K()DK(O)N(0), then, the 2d x 2d matrix

M(9) = [DK()|V(0)] (2.8)
satisfies
Id S
Df, o KOMO) = M0 + w) (0 )\(Id)> , 2.9)
where 1d € R?*¢ and S(0) is an explicit algebraic expression involving DK, Df,, J o K, and,

e

N see (2.12).
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The proof of lemma 12 is given in [CCdIL13]. The argument is as follows, taking derivative
in equation (2.7) one has Dfﬂ o Ky(0)DKy(0) = DKy(0 + w) which gives the first column in
(2.9). The second column comes from the fact that the conformally symplectic property, f7,£2 =
AQ, implies that the invariant torus given by equation (2.7) is Lagrangian. Then, using the
conformally symplectic geometry the second column can be obtained.

Remark 13. As pointed out in [CCdIL13] if K is an approximate solution of (2.7), that is,
fuoK(0)— KO+ w) = E(0) (2.10)

then the relation (2.9) will hold with an error, R, that can be estimated in terms of the error,
E(0), of the invariance equation, that is

Df, o KOM(B) = M(6 + w) (1(;1 SA(I%)) + R(), @2.11)

with

S(0) = P(O + w) ' Df o K(0)J ' o K(O)P(0)
—N@O+w)'TO + wN@ + w)A
P(0) = DK(O)N(0),
T'(0) = DK(0)"J~! o K(0)DK(0). (2.12)

Moreover, denoting Ey (/) = DK(0)"J o K(§)DK(0) as the error in the Lagrangian character
of the torus, one has

R(O) = [DE(@) ‘V(G + W)(BB) — Md) + DK(O + w)(S(O) — S©6))|, (2.13)

where
V() = J " o K(O)DK(O)N(0) (2.14)
B(0) — \ld = —E.(0 + w)S(0) (2.15)
S(0) — S(0) = —N(0 + w) 'T(0 4+ w)N (0 + w)(B(O) — \d). (2.16)

We note that (2.15) and (2.16) can be considered as equations for B and S , since they determine
uniquely these quantities. As it is pointed out in [CCdIL13], this system have non vanishing
diagonal terms and the upper diagonal terms are small. Thus, the system of equations (2.15)
and (2.16) can be solved and one can bound the size of B— AMldand S — S by a constant times
the size of Er. Precise estimates are given in lemma 39. The derivation of the formulas in
(2.12)—(2.14) can be found in [CCdIL13].

Remark 14. Observe that when considering K, 1, satisfying (2.7) and a perturbation K.,
. (which could be given in terms of formal power series), equation (2.11) is also satisfied by
K., i but with all the expressions depending on ¢ (small enough), that is,
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D o KOMO) =m0+ (o i)+ RO

3. Statement of the main results

In this section we state the precise formulation of the main results, which give the Gevrey
character of the formal expansions of the solutions to equation (2.7). First we introduce a
normalization which guarantees the uniqueness of the solutions to equation (2.7).

3.1. Normalization and local uniqueness
The centerpiece of this work is the invariance equation
jéJ@ oK. =K.oT,, (3.1)

where T,(0) = 0 + w. Note that if (K, 1) is a solution of the invariant equation (3.1), then, for
any o € T¢, (Ko T,, ) is also a solution of (3.1), due to the fact that K o T, parameterizes
the same torus as K. So, in order to get uniqueness it is necessary to impose a normalization
condition.

Definition 15. Denote as Kj a solution of (3.1) for e = 0. We say that a torus with
embedding K is normalized with respect to Ky when

/T ) [My ' (0)(K(0) — Ko(0))] ,d6 = 0, (3.2)

where the subscript d indicates that we take the first d rows of the 2d x d matrix, and M is
constructed from Ky as in (2.8).

We also recall the following result ([CCdIL13], proposition 26) which shows that this
condition can be imposed without loss of generality for solutions that are close to one another.

Proposition 16. Let Ko, K be solutions of (3.1) and |K — Ko|| 1 be sufficiently small (with
respect to quantities depending only on M-computed out of Ko—and f). Then, there exists
o€ RY such that K =Ko T, satisfies (3.2). Furthermore,

o] < ClIK = Kol

where the constant C can be chosen to be as close to I as desired by assuming that f,, Ky, and
K, are twice differentiable, DK, DK, is invertible and |K — Ky || co is sufficiently small. The o
thus chosen is locally unique.

Remark 17. As it is noted in [CCdIL13] the normalization (3.2) works as well when K is
only a formal solution. Then, assuming that K| is a solution of equation (3.1), the normalization
condition (3.2) for a formal solution of (3.1) given as power series expansion Z;‘;OKH(G)s” is
equivalent to the conditions

/Tr | (M (0)K,(9)] ,d6 =0 (3.3)
foralln > 1.
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3.2. Main theorems

We start this section stating our first main theorem, theorem A. The proof of theorem A is
a consequence of theorem B. The proposition 57, given in the appendix A, shows that the
hypothesis of theorem B are satisfied for maps of the form (3.4). Theorem B states the same
results as theorem A but in a more general setting. In section 3.3 we state theorem C, which
establishes that the formal expansions in theorem A are also asymptotic to geometric objects.

Theorem A. Letw € D(v, 7). Consider the map f : T x R — T x R given by
fep(x,3) = (X + AE)Y + pe — €V (1), M@y + pte — eV (x)), (3.4)

where \(e) =1 — e, a € N, V(x) is a trigonometric polynomial, p. € C, and ¢ € C. Then,
there exists py > 0 such that the following holds

(a) There exist formal power series expansions K> = Z;iol( el and bl = ZJO-CZOM &l sat-
isfying f., o K = K(0 + w) in the sense of formal power series. More precisely, defining
KISM = ZI}IZOKJE-’ and plsM = Zl}lzoujsjfor any N € N we have

where Cy > 0. Moreover, if the K ;s satisfy the normalization condition (3.3), then the
expansions K™\, i1l are unique.

f <mo K£<N] _ KEKNJ oT,

£, s

< CyleMt, (3.5)
0

(b) The unique formal power series expansions, K'>! and !>, satisfying (3.5) and the nor-

malization (3.3) are such that K11 ¢ g;o/ ;‘2 and P> € G7/°, i.e. there exists constants L,
F, Ng such that

[1Kall g < LF"'nT/" and  |p,| < LF"n™/"  foranyn > Ny.

(3.6)

Remark 18. It is instructive to compare the results in theorem A with the numerical explo-
rations of [BC19] (see also [BC21]). In the case that A\(¢) = 1 — & and w is the golden mean,
theorem A gives that the expansion satisfies the Gevrey bounds with exponent 1/3. Of course,
theorem A gives only an upper bound and lower exponents could also be true. The numerical
results in [BC19] and [BC21] lead to the conjecture that the expansion Y K" has some well
defined asymptotics

IKa| )" < Cn. G.7)

The numerical values of the Gevrey exponent for several values of the frequency, Diophantine
with 7 = 1, were computed in [BC21] and the largest one found was 0.3.

The asymptotics (3.7) is compatible with the results in theorem A and indeed, the numerical
values of the exponents are close to the rigorous upper bounds in some cases.

We call attention that [BC19] contained an unfortunate typo and the results attributed there
to ||K,||!/" are actually results for ||n!K,]||'/", this is corrected in [BC21]. The paper [BC21]
also presents several other patterns in the series (refined versions of (3.7) including oscillations
of period 3, studies for other Diophantine numbers, etc). We hope that the method presented in
this paper can lead to studies of these phenomena, hitherto discovered only through numerical
exploration.
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We think that the argument in theorem A can be adapted to remove the hypothesis of V()
being a trigonometric polynomial (it may suffice that the iterative step involves a extra loss of
domain in the angle #). Since the method of proof is rather novel, we decided to follow the
advice ‘Premature optimization is the root of all evil’ [Knu98], and present the argument in its
simplest form so that it could, perhaps, be applied to other problems.

For the sake of completeness, before stating the main theorem B we will state a theorem
in [CCdIL17] which assures the existence of formal power series expansions satisfying (3.1)
up to any order for conformally symplectic systems. We note that the family of maps (3.4)
considered in theorem A satisfies the hypothesis of theorem 19.

Theorem 19 ([CCdIL17], theorem 12). Let M =T x B with B C R? an open, sim-
ply connected domain with smooth boundary; M is endowed with an analytic symplectic
form Q.

Let w € D(t,v) and consider a family £, of conformally symplectic mappings that satisfy

i, = Mo, (3.8)

with i € A, with A C C? an open set, \() =1 — e, o € Nand ¢ € C.

Assume that f,, depends analytically on (g, ) for € near to 0 and ;1 € A. Assume also
that for € = 0 the family of maps f, is symplectic and that for some value i, € A the map
fou, admits a Lagrangian invariant torus, namely we can find an analytic embedding K, €
A, (T, M), for some p > 0, such that

fo’#o e} K() = K() o Tw (39)

Furthermore, assume that the torus Ky satisfies the following hypothesis:
HND. Let the following non-degeneracy condition be satisfied:

det So 50(3011)_04-1501 £0
0 Ap

where the d x d matrix Sy is defined as
So(0) = No(0 + w) ' DKo(8 + w) "' Df 50 0 Ko(0)J " o Ko(0)DKo(9)No(6)
— No(® + w)"DKy(0 + w) "I~ 0 Ko(6 + w)DKo(8 + wINo(0 + w)

with N' = (DKE DKo)il, the d x d matrices Ay, A denote the first d and the last d rows
of the 2d x d matrix Ag = (Mo o T..)"" (D, fo, © Ko), where My is as in (2.8), (Boy)° is the

- \O
solution (with zero average) of the cohomology equation (Bo;,)0 —BopoT, =— (A()z) , where

(Bow)® = By — By and the overline denotes the average.
Then, we have the following

(a) There exist a formal power series expansions K™ = 3% (Kje/ and pl>) = 377 e/
satisfying (3.9) in the sense of formal power series. More precisely, defining KISV =
ZIJY:OK_,Ef and plsM = Zl}fzoujsjfor any N € Nand p > 0, we have

f‘ (<Nl O K£<N] _ KEKN] oT,

» < Cyle|V . (3.10)

Po
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for some 0 < py, < pand Cy > 0.
Moreover, if we require the K’s satisfy the normalization condition (3.3), then the
expansions K1, il are unique.

Note that theorem 19 does not assume that the case € = 0 is an integrable system, as it is
the case for the map (3.4), it suffices that the case ¢ = 0 is a symplectic system with a KAM
torus.

Remark 20. Denoting
EYO) = f J<m © KISM@) — KISV + w) (3.11)

then (3.10) can be written as

According to the notation introduced earlier, this means that EY ~ O (|e[N!) or EY =
Z;O:N 11E €’ for £ small enough. We denote

EN

N+1
o S Cvlel™ (3.12)

2N
(N.2N] __ =~
ENM = ) Eje
N

the truncated series.

The following theorem, theorem B, can be considered as an improvement of theorem 19
in the sense that it gives Gevrey bounds for the coefficients K, f; of the unique (under
normalization) formal power series expansions K>, ;s[>

Theorem B. Assume the hypotheses of theorem 19. Assume also that for any e, small
enough, and for any N € N we have:
HTP1. ESYZ’ZN], AQ{Q are trigonometric polynomials in 0 of degree at most aN, a € N.

Where EE,’YQ’ZN], Aé{z denote the d X 1 and d X d matrices, respectively, given by taking the
last d rows of the 2d x 1 matrix EN?N = (M_£<N] o Tw)flEgN’ZN] and the 2d x d matrix

~ -1 . . .
AV = (MEN] ) Tw) Dyf. i<m 0 KISN respectively. MISN) is as in (2.8) constructed from
KM,

HTP2. The d x d matrix
EY.(0) = DKISM(0 4 w)"J 0 KISM(0 4 w)DKISN (0 + w)
— D(f. i< © KEYM0)) T o (f. <m0 KISM(0))
x D(f. i< © KESN(6)) (3.13)

is a trigonometric polynomial of degree at most aN.
Then, the unique formal power series expansions, K!>' and p!>, satisfying (3.10) and (3.3)
are such that K e Q;({ 72 and M[OO] € G/ i.e. there exists constants L, F, Ny such that

1Kallp < LE'n™/O" and || < LF'n™/*"  foranyn > Ny.  (3.14)
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The proof of theorem B, given in section 6.2, is done by means of a Newton like method
which acts on finite powers series expansions (KISM, yISM) | this method is described in the
next section. We emphasize that this quasi Newton method takes advantage of the conformally
symplectic property (see definition 1) that maps like (3.4) satisfy.

We also point out that hypothesis HTP1 and HTP2 are natural for the maps considered in
theorem A. The verification of these hypothesis for the dissipative standard map is described in
detail in proposition 57 of the appendix A. In the general setting in which theorem B is stated,
the hypothesis HTP1 and HTP2 are needed to be able to get estimates, in balls with center at
the origin, for the solutions of the linear equations of the quasi Newton method.

3.3. Asymptotic estimates for invariance functions

The formal power series studied in this paper are asymptotic expansions of functions K., .
constructed in [CCdIL17]. The functions K., . are determined by the condition that they
satisfy the invariance equation (3.1) and the normalization (3.3). In this section we argue that
the same method we use to prove the Gevrey estimates also shows that the formal series defined
here are asymptotic to the functions K., p_ with very strong estimates in the remainder, see
theorem C.

We emphasize that the functions K., ji. are not constructed out of the asymptotic expansions
by complex analysis methods (Borel summation, resummation of series). They are obtained
from the requirement that they satisfy the invariance equation (3.1) and the normalization (3.3).
It is an interesting open question whether some resummation of the asymptotic expansions
studied here can produce the functions K., (..

The domain of definition of the functions K., p_ is rather subtle. In [CCdIL17], it is proved
that the domain of definition of K., p, contains a set G obtained by removing sequence of balls
that are dense on curves converging to the origin, in fact, it is rigorously showed that G is a
lower bound on the analyticity domain of the functions K., p.. We also point out that the set G
does not contain any ball centered at the origin. Indeed, the set G does not contain any sector
centered at the origin of width bigger than 7/« (but it does contain a bounded sector centered on
R* with opening <7 /), thus the width of the domain is not enough to apply many methods
of complex analysis related to Phragmén—Lindelof theory. In the other direction, the paper
[CCdIL17] contains arguments showing that for generic perturbations one should not expect
that the domain of analyticity contains the excluded balls (if the perturbation happens to be
identically zero one indeed obtains a larger domain). The paper [BC19] studies numerically
the maximal domain of definition of the functions K., p_ for the map (3.4) using a variety
of methods including Pade summation and continuation methods. Indeed [BC19] conjectured
that the series were Gevrey and this was an important motivation for this paper.

The set G is determined by asking that A(¢) satisfies a Diophantine condition with respect
to w, more precisely, given A € C we define

v=0o\w, )= sup |k — \THk|ITT (3.15)
kezd\{0}

and recalling that A(e) = 1 —&“
G=G0Awr,N)={c€C: AE;w D) — 1N <A}
={eeC: DNe)sw,T)<Ale|“VD} (3.16)

Remark 21. The meaning of the set G is that it is the set of ¢ € C for which the Diophantine
constant Z(A(¢); w, 7) is bounded by a power of |¢|.
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Hence, for all € € G the cohomology equation (4.3) can be solved with explicit bounds
which are not worse than negative power of ||, [CCdIL17]. The bounds for the cohomology
equation are the key ingredient in the estimates for the Newton step. Bounds not worse than a
negative power in || show that a Newton method converges when the initial error is bounded
by a high enough (positive) power of |¢].

Remark 22. We note that, for fixed w, the function 7 = v(A\(e);w, 7) is a lower semi-
continuous function of ¢, since it is the supremum of continuous functions. We also note that
if w € D(v, 7), then ¥(A0);w,7) = v~ > 0.

Remark 23. We point out that the set G does not contain any ball B; with center in &; such
that A\(&;) = e*™*“_ Since () = 1 — £, itis easy to construct a sequence of complex numbers
ex such that A(gy) = €™ and g — 0, therefore G does not contain any ball centered at the
origin. Indeed, in [CCdIL17], proposition 24, it is shown that ‘generic’ perturbations cannot
lead to a formal expansions of the functions K., p. around ;. Thus the functions cannot be
analytic at any &.

The argument in [CCdIL17] does not consider the case of non-generic perturbations (like
trigonometric polynomials), but it seems that the argument can be adapted.

The basic idea to prove the existence of the functions K., . is as follows: the formal power
expansions produces a sequence of polynomials which satisfy the invariance equation (3.1)
rather approximately in a ball. In the intersection of the ball with the set G, we can apply the a-
posteriori theorem, theorem 14 in [CCdIL17], and obtain a true solution of (3.1). Of course, the
detailed implementation requires taking into account several other issues such as the absence
of monodromy.

In this paper we will use a very similar technique. As a byproduct of the estimates used in
the proof of theorem B, we obtain that some truncations of the formal expansion satisfy the
invariance equation up to a very small error in appropriate balls with sufficiently small radius.
Then, in the intersection of the balls with the set G we will be able to apply theorem 14 in
[CCdIL17].

More precisely we have:

Theorem C. Define 3, = (27 ')/ *(a2"No)~"/°, with h € Ny. Assume the hypotheses of
theorem B and that for some 0 < & < p, one has that for all ¢ € G such that |e| < 7,
| ENo]],,y < Cv ' o(A(E),w, 7))P6H 7D, (3.17)

Let Y K¢/ and Zujaf the Gevrey formal expansion given by theorem B, and n €
(2"No, 2" INg] N N. Then, for any € € G such that |e| < Fuy1 there exist ., K. such that
fene 0 Ke = K. o T,,. Moreover, K., p. satisfy the inequalities

n
K. = >~ Kielllm s < 2(CDY'BY 1?0 (3.18)
=0
n ) )
e = > pjel| < &CDY'B" 7™, (3.19)
j=0
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where ¢ and C are uniform constants and D = V‘ﬁ(aNo)4Tpa(27+6d)2_(4T+12"), r=2"""and
B = 26‘r+6d.

Note that (3.18) can be understood as having super-exponentially small errors in domains
decreasing exponentially fast. It is also important to note that almost all constants in (3.18) are
given explicitly. We note that the hypotheses of theorem C are satisfied by the family of maps
(3.4), thus the same result is obtained for the family of maps considered in theorem A. The
proof of theorem C is given in section 6.3.

Remark 24. 1t is interesting to compare the inequalities (3.18) and (3.19) with the stronger
notion of Gevrey asymptotic expansion in sectors. Given a function g (possibly taking values
in a Banach space) analytic in an angular sector S and a formal power series g = >_ g;&', one
says that g is a o-Gevrey asymptotic expansion of g if for every closed subsector S C S there
exist ¢y, ¢; > 0 such that for any n > 0

n—1

llg: — Zgi5i|| < cocjn”"|el". (3.20)
=0

If one considers |¢| < n~7/“, as in theorem C, then (3.20), with o = 7/« implies that

n—1

lge = > gie'll < coch. (3.21)
i=0

Note that the estimates given in theorem C are estimates of the form (3.21), but in domains in
¢ that decreases as a power of n.

It would be interesting to know if some quantitative Harcnack inequalities could allow to
obtain control in uniform domains from the control in the small domains obtained.

Remark 25. The use of resummation methods usually allows one to obtain estimates of the
form (3.20). As it is mentioned above, the functions K. and . are not constructed out of the
asymptotic expansion by complex analysis methods, they are obtained from the requirement
that they satisfy the invariance equation (3.1) and the normalization (3.3). We think that, once
that the series is known to be Gevrey, resummation methods might be able to be applied to
obtain functions K. and i. satisfying (3.20). However, even if it is possible to construct such
a function K. by using resummation techniques, we are not sure if this function would be the
parameterization of a quasi periodic orbit, that is, we do not know if K. would satisfy the
invariance equation f. , o K. = K. o T,. The construction of a quasi periodic orbit through
the use of resummation techniques would be a valuable result.

4. lterative step of the quasi Newton method

The KAM procedure for the proof of theorem B is based on the application of a quasi Newton
method, which is described in section 4.2. Before describing this procedure we introduce two
types of cohomology equations that allow us to solve the linear equations, and obtain estimates,
of the modified Newton method. The estimates for each step of the method will be given in
section 5.
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4.1. Estimates for some cohomology equations

The iterative step described in section 4.2 depends on the solution of two cohomology
equations. The first equation, (4.1), is very standard in KAM theory. The estimate given in
lemma 26 is well known for the experts in KAM theory, we have decided to include a proof
here for the sake of completeness. The second type of cohomology equation we consider, (4.3),
it is more complicated to study due to the appearance of the factor A\(¢) = 1 — . This fac-
tor introduces some restrictions in the set of parameters, ¢, for which we are able to obtain
estimates.

4.1.1. Standard cohomology equation. The first cohomology equation we deal with is the
following

Pe(0) — (0 + w) = 1:(0). 4.1

Lemma 26 below, gives sufficient conditions to solve equation (4.1) and to obtain estimates of
its solutions. This estimates are very standard in KAM theory.

Lemma 26. Letw € D(v, 7). Assume that ) € A,, is such that deng(H)dH = 0. Then, we
can find a unique solution of (4.1), p., that satisfies [,¢-(0)d0 = 0. Moreover, if0 < § < p,
then ¢ € A,_s, and

lell,—s, < Co7'6= " In]l,,,

with C = C(d). Furthermore, n. ~ O (\5\‘) implies p. ~ O (|s|k)

Proof. Expanding (4.1) in Fourier series, the zero-mean-value solution is given by ¢.(0) =
Zkezd\{o}”‘%@ezmk'ﬂ. Then, using Cauchy estimates one obtains

1 —e2mikw

()
||§05||pﬂ>‘< Z %”ezﬂﬂ\om)&

kezd\{0}
< Z V71‘k|T||775||p672ﬂ-|k‘p6277(/]75>‘k|
kezd\{0}
< CV—] ”nE”ijTerflefZﬂ'éj
jeN
<Cv Tl 4.2)

The last line gives . ~ O (|e|¥) if . ~ O (|e[f) and taking supremum over & the result is
proved. (]

Remark 27. Equation (4.1) appears very often in KAM theory. When ¢ € R, the paper
[Riis75] contains estimates with a better exponent on ¢. That is, in the same situation of lemma
26, when ¢ € R, one can get ||¢.||,—5 < Cvé™"||n.|,.
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4.1.2. Parametric cohomology equation. The second cohomology equation we are interested
in is an equation for ¢. : T¢ — C, of the form

AE)pe(0) — (0 + w) = 1:(0), 4.3)

where 7. : T¢ — C and w € R are given, ¢ fixed.

Note that, as it is seen in lemma 29, solve equation (4.3) presents a small divisors problem.
In this case the small divisors depend on the variable ¢, that is, equation (4.3) is not expected
to have a solution when \(¢) = ¢*™*“_One approach that has been used to deal with the small
divisors in equation (4.3) (see [CCdIL17]) requires to remove a set from the complex plane, € €
C, where the denominators A(¢) — ¢>™*< are small. This gives rise to a set with a complicated
structure, G C C, of parameters, €, in which it is possible to find a solution, and estimates,
of equation (4.3). One of the properties of the set G described in [CCdIL17], is that it does
not contain any ball with center at the origin. This property is one of the reasons for which
we follow a different approach to deal with equation (4.3): to prove the Gevrey estimates in
theorem B we rely heavily on being able to obtain estimates of (4.3) for € in a ball centered at
the origin.

The following two lemmas allow us to obtain estimates in balls centered at € = O for the
solution, ¢_, of equation (4.3) whenever 7, is a trigonometric polynomial. If the degree of the
trig polynomial, 7, is aN, lemma 28 gives a relation between this degree and a domain in
which the solution, ¢, of (4.3) will be analytic in €.

Note that the requirement of hypotheses HTP1 and HTP2 in theorem B is due to the fact
that the quantities given in these hypothesis will be the right-hand side of equations of the form
(4.3).

Lemma 28. Letw € D(v,7), Ae) =1 ¢ a > 1,and a,N € N. If || < (g)‘/“(aN;T/n,
then, for k| < aN we have
- 1
A _ 2mikw > K )
O e e o
Proof.
eZﬂ'ik-w o /\(€)| > ‘eZﬁik-w o 1| o |1 o )\(E)‘ > |]:‘7— o |€|a
. v v v 1
“ (@N)™  2(aN)” 2 (aN)
O

Lemma29. LetAe)=1—-¢c"a>1,we€D,1); a,N €N, and define
v\ Ve 1
= (E) (@Ny /o’

Letn € A, such that fT,,nE(H)dH = 0 and assume that, for any €, n.(0) is a trigonometric
polynomial of degree aN in 0. Then, for any |e| < vy equation (4.3) has a unique solution,
p.(0), such that fT(,gaE(H)dH = 0. Furthermore, if 0 < § < p, then ¢ € A,_5.,, and

4l 5 < Cv™ " @NY 5

PN
Moreover, if - ~ O (|e|¥), then . ~ O (|e[*).
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Proof. Expanding, in Fourier series as n.(6) = >, <l guNﬁk(s)ez”ik‘G, the zero-mean-value
solution to (4.3) is given by

(p:(e) _ Z ﬁk(g) e2ﬂ'ik'0.

(E) _ eZﬂ'ik-w
0<|k|<aN

Using lemma 28 and Cauchy estimates, one obtains that for any |e| < vy

|T7(E)| wik-
el < > g amrale™ N, s

0<|k|<aN

<2aNy v Y i)l M
0<|k|<aN

< 2(aN)v! § [0 e~ 2mklip 2 lkl(o—0)
ip
0< k| <aN

aN
< Z(aN)leil ||775||pz jdflef277j6
j=I

< vl @Ny 6., (4.4)

Thus, [l¢ll, 5., < Cl/’l(aN)Té’d||77||p’w. The last claim comes from (4.4), that is

@ ~ O (le]*) if n. ~ O (le]"). O
4.2. Formulation of the quasi Newton method

Every step of the quasi Newton method starts with a solution of equation (3.1) up to order &".
That is, assume that

N N
KIM©) =YKy (0", plsN =" pr,e”
n=0 n=0
satisfy the normalization (3.3) and
£ y<m © KENIO) — KISM(0 + w) = EX(0)
with

EN

, < Cle|V+.

Remark 30. The first step of the Newton method could start with KISNol, ,[SM] | given by
theorem 19, for some N.

Newton’s method consists in finding corrections A, 0. to KISM and plSM such that the
linear approximation of equation (3.1) associated to KISV + A, uISN 4 5. reduces the error
up to quadratic terms. Taking into account that

fe,p,-l—o o (K+ A) - fe,u OK+ [Dfs,p‘ OK] A
+ [Dyfep 0 K] o + O(|A[1P) + Oo||*)
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the Newton equation is
(D yem oKV A = Ao T+ [Duf e oKV 0o = —EY. 45)

Equation (4.5) is not easy to solve due to the fact that Df JJ<m © KISM s not constant. Fol-

lowing an approach similar to that in [CCdIL13], we will not solve (4.5) exactly but we will
find approximate solutions that will reduce quadratically the error. The idea is to approximate
the solution of (4.5) using the geometric identities introduced in section 2.6. Considering the
change of variables

A, = MSVw, (4.6)

where MISM is as in (2.8) computed from KISM, Using (2.11) one obtains that (4.5) is
equivalent to

m<vop [ (1d S=Y T D KISV o — _EN _ RISV
10T | (o Meyta) We ™ Weo To| + (D, g o KI) 0. = —EY - RISMW,

“4.7)
where RISM is the error (2.13) and SIS is given in (2.12), both computed from KISV, That is

M_£ = [DK[<N] | J loK[<N]DK[<N]N[<N]} ~ O(|€|0) (4.8)

T —
SN = PEMTDf (o KISM~! o KISNIPISM

— AONISMTTIMAISN o[ |?) (4.9)

./\CK = [(DK[<M) DK;KN]TI ~ (’)(|5\°), (4.10)

PISN = pKISNI AN

TV = piISMT =1 o KISMpKISV, @4.11)

Since we expect both W. and RISV to be estimated by EY, see (5.5) and (5.15), the term
W_RLSM is quadratic in EV, thus, we expect that omitting this term in (4.7) will not change the
quadratic nature of the method.

In order to be able to get estimates of solutions of cohomology equations of the form (4.3)
instead of considering the whole error EY = 270: v E £/ we only consider a truncation of this
series, that is, we only consider EMV?M = Zfﬁ v EjEl.

Taking the above into account our quasi Newton step consists in solving the following

equation
Id SIsM
MSN o T € 1% W.oT
e Ofw {(0 Aeld) ¢ =0l

( ”f [<NJ OK[\I\/]) E(N2N] (4.12)
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Remark 31. The choice of the truncation E¥*"! in (4.12) has two very important implica-
tions for the proof of our result. The first one is that this will yield a new approximate solution
which reduces the error quadratically, as a function of €. Moreover, our model example, the
dissipative standard map (1.1), will satisfy hypothesis HTPI and HTP2 in theorem B due to
the fact that the truncation is made. See appendix A.

In order to construct a solution of equation (4.12), we follow a similar approach as in
[CCdIL13]. Defining

ENN = (MISM o Tw)’lEgNsZNJ ~ O(lg[Mh (4.13)

A= (MM o 1,)"'D, £ <m0 KISV~ O(el) (4.14)

and writing EM2V = (EQPM ECMYT where E*Y and XS are the first and last d rows
of the 2d x 1 matrix E.¥2V, Similarly, write AY = (AY,,AY,)" and W. = (W.,;, W-)". Then
(4.12) can be written in components as

Wei — WeyoT, = —SSMw., — EOPM - AY o, (4.15)

AEWep — WepoT, = —ENM — ANyo.. (4.16)

e — . 0 — .
Denoting W.; as the average of W.;, with respect to 6, and (Wg,,-) =W.;, — W, i=1,2;we
can divide the system above into two systems, one for the average and another one for the
no-average part, that is

<Ny — < 0 ZWN2NT _ %
0= —SYW; — sSEM(wL,)” — ENPM - AY o,

W, = —ENM _ AN g, (4.17)

(Wer)” = (Wer) o T = —(s5w,)° — (E%)" — (&Y,)o

M) (We2)’ = (Wea) o T, = — (Ei’f'z’m)o - (AZZ)OUE. (4.18)

In order to uncouple systems (4.17) and (4.18) we consider (Wg,z)o as an affine function of o,
due to (4.18). That is,

(WE,Z)O - (Ba,5)0 + (Bb,f)oas’ (419)

where (B,,,:)O and (Bb,e)o are defined as the solutions of

L,E

AO(Bar) — (Bur) o T = - (EY’ (4.20)

- 0
M) (Boe)® = (Bpe) o Ty = — (Agz) . 4.21)

Due to HTP1, and applying lemma 29, equations (4.20) and (4.21) can be solved and we can
get estimates in balls with center at ¢ = 0. Once that (4.20) and (4.21) are solved, and using
(4.19), system (4.17) can be written as
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F1d ar, o O

Remark 32. Dueto HND in theorem 19 the matrix in the left-hand side of (4.22) is invertible
ate = 0. By the continuity of the determinant, equation (4.22) can be solved for € small enough
and the inverse is analytic in €.

Thus, (4.19) and (4.22) yield 0. ~ O (Je|V*!) and W., = (W.,)" + Wo, ~ O (Je|VH). Tt
remains to find W, this can be done by solving the equation

(Wer)® = (Wey)® o Ty = — (s5VMw,)° — (Eg’””)o — (a¥) .. (4.23)

which can be done due to lemma 26. To fulfill the normalization condition (3.3) and obtain
uniqueness of the coefficients of the perturbative expansions, W_ ; is chosen as

-1
Wey=— < / [MO“(G)DKSN]]([w)
Td
x / (M5 ® (DKISV(W..)° 4+ VIS5 )| o, (4.24)
T d

where VISM = j=1 o KISMPDKISMNISM g the second column of the matrix MISM, see
remark 17.

Remark 33. If KISV satisfies the normalization (3.3), then the new approximation KISV
A, will satisfy (3.3) if the correction satisfies

/ M, (0)A(0)d) = 0.
Td

Since  A. = MISVIW. = DKISMIw,, + VISMW_, = DKISV ((WE,I)O + W—1> +
VISMW.,,  (424) follows from the fact that [, [My'DKISMW._ ;] df =
Jpa [Mg'DKISM] dOW ;. Note that the d x d matrix [i, [My'(O)DKISM(6)] d6 is invert-
ible, for ¢ small enough, due to the fact that DKEKN](H) is a perturbation of DKy(6) and
(M5 (0)DK(0)] , = Iaxa. because Mo(0) = [DKo(0)|Vo(6)].

This yields, W.q = (We1)" + Woy ~ O (Je/¥*+1) and thus
A, =MSMW. ~ O (M) and 0. ~ O (le[N). (4.25)

which means that A, = Z,O,O: N1 A,e"and o, = fo: v410,€". Finally, we take the corrections
as

2N 2N
AMM = N A" and oMM = Y gen (4.26)
n=N-+1 n=N-+1

Therefore, the new approximation is chosen as

KIS gISN 4 AVND g SOV SNy N2 4.27)

£
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Remark 34. Notice that, due to lemma 29, the solutions of (4.20) and (4.21) will satisfy
. 0 N
(Baz)” ~ OCe¥+) and (B,.)" ~ Ol’), because (E5™)" ~ O(V*1) and (41,) ~

O(le]®). Moreover, (4.22) implies that W.5 ~ O(le["*!) and 0. ~ O(|e|¥*!). Thus, W., ~
O(Je|"*1) and similarly W.; ~ O (|e|"*") which implies A, ~ O (|e[N*1).

4.3. Algorithm for the iterative step

The procedure described above leads to algorithm 35 for a given Diophantine vector w and
assuming that we are given an analytic family f. , . Some steps in the algorithm are denoted
as p < ¢, meaning that the quantity ¢ is assigned to the variable p.

Algorithm 35. Given KISV : T — M, ulSM € RY. We perform the following computa-
tions:

() EY + f. <m0 KISM _ gIsMo T,
(2) EN*M obtained from EY by truncation
(3) a. + DKM
AN [ ]
(5) V. <= J o KISV N
(6) M. < [a:|V.]
(D) e = M0 T)"
8) ECN — BB
) P: < a:N:
I ozETJ’l o KEKN]aE
S.« (P.oT,)'D f<m, © KISM =1 o KISMp,
—AMeYN.oT,) T.oT,(N.oT,)

AE A BeDufﬂ[ﬁN] o K£<M
(10) (B,Z,E)0 solves \(¢) (Ba,g)(’ — (Ba,f)‘) oT, = — (EQQZN])O

(By.) % solves \(¢) (By.:) 0_ (B;,,g)0 oT, = — (Agg) ’

(11) Find W., 0. by solving

S_E Sa (Bb)_0+ Z (m) — _SE (Ba,s) 0 - Eg’sz]
1d A o _ETm

(12) (W) = (Bas)’ + (By.) o

(13) Wp = (Wen)’ + Won ~ O (V)
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(14) (W.,)" solves (W.;)° = (W..)" o Ty,

= _(SEWE,Z)O - (EE,{VI’ZNDO - (~5,1)0
(15) Woy = — </qu My ] ld0> _]/w (M5 (e (Wer)” + VoWe2) | do

(16) Wey = (Wer)' + Wy ~ O (V)
(17) A, +— M.W.

(18) KIS2M ( KISNI L A(V2N]

LSENT L ISNT )

€

It is worth noting that all the operations in algorithm 35 could be implemented in a few lines
in a high level computer language.

Remark 36. Note that algorithm 35 involves only algebraic operations, compositions,
derivatives, truncations, and solving cohomology equations. This implies that if we start with
analytic functions then the output will be an analytic function.

Remark 37. Note that at each step of the iterative procedure obtained by the quasi New-
ton method the input will be polynomials of degree N in &, KISV = SV K, 27, and pl<M =
Zﬁ’zou”s”. The output will be polynomials of degree 2N in € given by

KISV KISV L AOND g [S2N] . ISND | (NN
€ ‘ € € € * () [ :

Since, by construction, AN*M ~ O (|e[N*1) and o™ ~ O (|e|N*1), the first N coeffi-
cients K1, K, ..., Ky of the expansion of K [S2M] will be the same coefficients of KISM and
they will not change for any of the next steps. The same also happens for the coefficients of
pLS2M This is a crucial step for proving theorem B, since due to the fact that the coefficient
up to order N do not change after log,(N) steps of the modified Newton method, one can use
Cauchy estimates in the domains given by lemma 29 after log, (V) steps to obtain estimates on
the Nth coefficient.

Remark 38. To iterate the modified Newton method in algorithm 35 it is needed that the
new error E2V obtained using the new approximations KIS?M = KISV 1 AWM apg  [S2V] —
pESM 4 oM satisfies E2V ~ O ([e|*M*!). This is a consequence of the fact that the new error
is quadratic in the original error, as an expansion on ¢, and this is verified in proposition 47.

5. Estimates for the iterative step

In this section we present the estimates for the corrections given by the Newton step described
in section 4, these estimates are obtained by following the steps in algorithm 35. Throughout
this section we consider maps in the spaces A, ,. In the following we will be dealing with
equations of the form (4.3) which, according to lemma 29, can be solved if

1/)1/(Y 1 5.1)

S = N AN
el < w (2 T
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where aN is the degree of the trigonometric polynomial in the right-hand side of (4.3).

5.1. Estimate for the reducibility error

The following lemma provides an estimate for the error in the approximate reducibility given by
RISM as in (2.13) computed from KLSV. The estimates are obtained by studying qualitatively
the geometric identities introduced in section 2.6 and taking into account the uniformity on the
variable ¢.

Lemma39. LetN € N,w € D(v,7)and f., : M — M be afamily of analytic conformally
symplectic maps, with f? ,Q = Xe)Q, p € A C C Let KISM € A, such that KISN - T —
M is an embedding for any |e| < ~yy. Assume also that, for any |e| < vy,

(a) K£<N] (’]I‘Z) C Domain( fE #[@q) and that there exist £ > 0 such that

dist (KEKN] (T) , @Domain( fwggm)) >€>0

dist (/LSN],GA) > &> 0.
(b) The approximate invariance equation holds
fosmo KISV — KISV o, = EY ~ O (|e|V)
(©)
v i aNy s HYEY <1 (5.2)
(d) HTP2 The d x d matrix
EN _(0) = DKESMO + w)"J 0 KISM(9 + w)DKISVM(9 + w)
= D(f. y<m o KEEM@) T o (f_ 1<m o KESM(0))
x D(f_ <m0 KESM(0) (5.3)

is a trigonometric polynomial of degree less than aN.

Then
RISM ~ O(leM) (549
and for any 0 < 6 < p we have

| RSN (5.5)

< v~ (aNy 5| EY

pP—=0N PN’

where C = C(d, ).

PN

DKI<N| LM || o RSN

PN’ ’ N’ |
Proof. Writing RISM in terms of KISM as in (2.13) yields
REM(9) = [DEY(6) | VISV + w) (B.(6) — Ae)Id)

+ DKM 1 w) (Ss(e) - sg@](a))}
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with
VISMI(@) = 7" o KISYI@)DKISMNISN (6) (5.6)
B.(0) — \©)ld = —E} (0 + w)S.(0) (5.7)
S:(0) — SISM(0) = — NIV +w) TIME + W)V
x (0 + w) (B(0) — A(e)Id), (5.3)
where
E} () = DK'SM(©)TJ o KISV(9)DKISM(6) (5.9)

is the pull back (KISM)*Q written in coordinates and I‘SN] as in (4.11). We recall that J is the
matrix associated to the symplectic form, see section 2. It is easy to estimate the first column
of RISM using Cauchy estimates, that is

|DEY EY

<Cs |

p=0 P

As it is pointed out in remark 13, (5.7) and (5.8) define a system of equations, for B, and S.,
which can be solved as long as E}_ is small enough. Thus, to obtain estimates for the second
column of RISM it is enough to get estimates of EY. The estimate for £} is obtained using that
f2,80 = Me)92. Note that Ef) . = (KISM o T,y Q) — (fE,MLSNJ o KISMY*Q) in coordinates and,

since (fs,uESNJ o KISV () = NKISM)*Q), we have that EY satisfies the equality

E)_oT,— NeE}. =Ej_. (5.10)
Then, by lemma 29 and HTP2 we obtain

ezl

< Cv Y (aNY 5§ ||Eg (5.11)

p—b.N ||P*5/ZWN ’

To get estimates for EN, we follow [CCdIL13]. If 4 and g are smooth maps with range in
M, the matrix corresponding to 2" — g*Q is

Dh"JohDh —Dg"JogDg = (Dh" —Dg")J o hDh —Dg"(J o h —J o g)Dh
+ Dg"J o g(Dh — Dg)

Using this formula with g = f_ <w © KISM h = KISM o T,, and Cauchy estimates one

obtains
IESN s < COEY, (5.12)
which yields EY_, EN,_ ~ O (|¢|"*") and, then, RISV ~ O (|e[¥+1) and
[RSM ., < Cv i @Ny s “HV]EN]| (5.13)

Note that when the matrix J is constant both HTP2 and the computations above are signifi-
cantly simpler than in the general case. O
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Remark 40. We emphasize that, if Ky satisfies KooT, — fo,, Ko =0 then
DKy(0)'J o KoDKy(0) =0 and Ky(T9) is a Langrangian manifold, see [CCdIL13]. This
implies that the spaces range (DK (#)) and range (J 1o Ko(0)DKy(0)) are transversal and this
condition makes M((6) a linear isomorphism. Note that if Eﬁ in (5.9) represents the error of
the Lagrang1an character of KISV, then, if EY is small enough the spaces Range(DKLSM(6))
and Range(J ' o KISM(9)DK! [<N](6)) will be transversal and the matrix MLSM will define a
linear isomorphism. This transversality will be obtained if (5.2) is satisfied and it is given by
(5.11) and (5.12).

5.2. Estimates for the corrections

In this sections we obtain estimates for the corrections AN?N and ¢®¥-2¥1  this estimates are
obtained by following the steps in algorithm 35. First, lemma 41, we obtain estimates for the
corrections A, 0. and then, using Cauchy estimates, we obtain estimates for the truncations
AW2N 5 (N2N] corollary 42.

Consider C C C4/74 x C? the complexification of M = T x B.

Lemma 41. Letae N, 0 < p <1, and 6 such that 0 < 2§ < p. Assume that for any
e € C, such that |e] < vy, I sm :C — C is an analytic conformally symplectic map with

f [<N]Q ). Assume also that KISNY € A, is such that KISV : Td C4/74 x C4is

an embeddmg Assume also that for any |e| < vy we have the following:

(a) KM (']I‘Z) C Domain(f,_ ,i<n)) and that there exist § > 0 such that
dist (KISM (T4) , ODomain(f. <)) = & > 0
dlst( [SM 8A) >¢

(b) HND. The following non-degeneracy condition holds:

[<N] [<N]
det [ SIS (Bye)” + AT, £0
e'ld AY,

~ 0 ~ 0
(¢) For any N € N, the matrices (Eg{vf’”) and (A’E‘f2> defined in (4.13) and (4.14), are
trigonometric polynomials of degree less or equal than aN.

Then, for any 0 < r < 1 we have

W. ~ O (e, o.~0O (e (5.14)
ar
W, 5,y < Cv > @N)y76- 0 — - | o (5.15)
and
sup |o.| < Cv='(aN)" 6~ d ! H EV| . (5.16)
le|<rm o

o NI T and TV

is defined in (5.20).
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. (N.2N] 0 N 0 . . .
Proof. Given that (E(C2 ) and (Aa,z) are trigonometric polynomials, by lemma 29,
(4.20), and (4.21); B, and B, satisfy the following estimates

IBall, 5, < Cl/_l(aN)Té’dHE(ZN’ZN]
o P-IIN
< Cv7H@NyT s | BN (5.17)
PIYN
and similarly
- T s—d
1Bolly gy < Cv @Y S |AT]], (5.18)

Taking into account that W, = (W2)° + W3 and (W5)°? = (B,)® + o(B»)°, to have estimates for
W, we need estimates for W, and o. Now, according to (4.22) we have

S N | -
[<N] [<N] 0. 3 [<N] 0 _ [(N2N]
<W5,2> _ ( € Se (Bb,s) +A15\fl) x <_ € (Bu,e) _Es,l ) , (519)

Oc £1d AY, —EM
denoting

S - . -1
[<N] [<N] U

N= ° c (Blj’L) +AC and
e'1d AV,

TN = sup TV (5.20)

le|l<rw

from (5.19) we have

O¢|, ‘WE,Z

<7(

S0 (Bc)° + BT + [EEF]) ~ 0 (M) 520

which yields o. ~ O (|e[V*!') and W.; ~ O (|e[N"!) because (Bu,f)o ~ O (|eM!) and
ESFNQN] ~ O (|E|N+1).
Thus

W2 < T ([$59 (Ba)| +

B+

o E7))

=,

<CTN<]

(Ba)"[, = B2, + |
p—0 p

7-(N,2N]
EE’Z H )
p

for any 0 < § < p. Thus, using (4.13) and (5.17) we obtain

sup [Woo| < Cv'aN)To || EMM| (5.22)
le[<rvw PIIN

sup |o.| < Cv'(aN) 67 HE(N’QN]HWN- (5.23)
lel<rv "

For (W»)? = (B,)" + o(B,)° we have
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H(Wz)oprﬁ,rﬂ,fN g H(Ba)Opré‘,r",’N +‘ |Sgp ‘O—| H(Bb)oHﬂ*O‘J"/N
€ XN
< Gy aNy s |
+ Cl/iz(aN)ZTéizd ‘ |AN Hp,rﬂ,’N HE(NJN] Hp,rﬁ,’N ’
< Cv™*(aNy 7§~ || N2 ||pm. (5.24)
Thus, combining (5.22) and (5.24) we get
IWall, s,y < Cv2(@Ny?7a 2| [EM2NY| (5.25)
The estimates for (W;)? come from (4.23) and lemma 26, i.e.
||(Wl )O||p72§,r’\,’N < CV7157(T+‘1) [||S[<N] ||p*5,r’)’N || W2 HP*&W'N
7(N.2N1 N
Rl
< Cplg Tt MSKN] sz(aN)zr(;fdeE(N,zN]
PN PN
<V~ ! (N.2N]
a7 e,
+ AN, v Ny BN
that is,
|| (Wl )0 | | p—28,ryN < CV?3(aN)2T67(T+3d) ||E(N’2N] “p,r’yN : (526)
Finally, the estimate for W, comes from (4.24), that is
s (Wil < € (Ul gy + W2l )
< Cv 3 (aN)> = T HD || VAN J (5.27)

Putting together (5.25)—(5.27), and using the Cauchy estimates in corollary 6 yields the claimed
estimate for W. O

Corollary 42. Assume the hypothesis of lemmas 39 and 41, forany0 < § < pand 0 < r <

1 we have
||A(N,2N]H < Cl/73(aN)2T57(T+3d) N+ HENH (5.28)
by (1 _ r1/2)2 PN ’
AN+
HSllp |e™ M| < v (aN)T§ ¢ mHENHW. (5.29)
e[<rv
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Moreover,
Ay < Cv 3 (aNyZs D FINH I1EY| (5.30)
p=8ry (1 —rl/2)2 PN .
FaN+1
| ‘SEE |e@V>I| < cv Ny 6 mHENHmw' (5.31)
EISIIN

Proof. Using the Cauchy estimates as in corollary 6 and the estimates in lemma 41 one
obtains
SN+

HA(zN’W]prﬁ,rz“ﬁN < HHAprﬁ,r‘;’N

PN 27 s—(743d) PN N
—3 T s—(743
<C1_ru (aN)"6 l—rHE |/mvv
M 27 s—(r+3d) || pN
_ —3 75— (743
= C(1 — r)QV (aN)"o HE HMN
and
J2NHI
sup o] < 0 sup |o.|
lel < ~ Flel<rw
2N-+1 | J rN—I—l N
_ e
< . rCl/ (aN)" 6 11— rHE ’ o
1 g N
_ - TS
=Cv '(aN)'$ a _r)ZHE [
The other estimates are obtained similarly. O

5.3. Nonlinear estimates for the quasi-Newton method

The quasi-Newton procedure in algorithm 35 can also be described using a convenient operator
notation. Defining the error functional

ElKes pe] = fep. o Ke — Koo Ty (5.32)

and assuming A and o are small enough, the Taylor expansion of E[K + A, i + o] is given by

EIK + A, u+ 0] =E[K, u]l + DiELK, p]A + D2E[K, plo + RIA, 03 K, u], (5.33)
where the Frechet derivatives are given by

DiEIKe, 1A = (Dfep oK) Ac = Ac o T, (5.34)

DyE[K.., peloe = (Dyfep. 0 K)o (5.35)

and R is the remainder of the Taylor expansion. Note that E[KISM, y[SN] = EN | with this
notation the classic Newton method would consist in finding a correction (AXN-M, ,(V:2NT)
such that

E[K:[QV], M£<N]] + DIE[K_£<N],M£<N]]A§N’2N]
+ DL E[KISN, SN 02N = 0, (5.36)
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As it was explained before, in section 4.2, the corrections we construct with algorithm 35 do
not satisfy (5.36) but they solve an approximate equation (4.12). The following lemmas give
estimates for the error functional evaluated in the corrected unknowns. First, lemma 45, we give
estimates for the error E[K'SM + A, uISN! 5] and then, using Cauchy estimates, we obtain
the estimates for the error evaluated in the truncated corrections, E[KISN 4 ANV [SVT
o™-2N1], proposition 47.

Remark 43. We emphasize that to be able to compute E[K + A, p + o] we need both A
and o to be small enough, so the compositions in (5.32) are well defined. In particular A and
o need to satisfy ||A|[, |o] < £ and we need to choose the domain loss. In section 6, lemma 51,
we give smallness conditions on the initial error which will guarantee that the compositions
will be defined at any step of the iteration. This is very standard in KAM theory.

Lemma 44. Assume O < r < 1 and 0 < § < p. Then, under the hypothesis of lemmas 39
and 41 one has

EIKISN, pISVT 4 Dy EIRISV, WISMA, 4+ DLEIKESY, pSM o, ~ O (V) (5.37)

and
H S[K[SN],MKN]] + DIE[K[SN],M[SN]]A + DzS[KKN],MKN]]U H

PN N —4 3r 7(T+4d+1)”N+] N
< 7 IIEY,,, + Cviams T IE"]

p—0.ry

(5.38)

2
PN’

Proof. Note that with the operator notation introduced at the beginning of this section we
have E(KISM, uIsMy = EN_ Using (2.11) and taking into account that A. = MISMW. and that
W. satisfies (4.12) we have

EIKISV SN 4+ Dy EIKISY, JISMNAL + DL EIKESN, pl S0,
=E' + (Df. jem o KEM) AL — AL o T,
+ (Dufg,uléNJ o KEKN]) 0. — R£<N] (M[<N])71AE

+ RSN (MEN])AAE

Id SV -1
_ N [<N] € [<N]
=EY 4+ MSMoT, <0 NOId (MISMY AL

— Ao Ty + (Dyf. y<m o KISV o,
+ REM(MESM) A,
= EY — EMNM 4 RSMw
_ EfN’OO] +R£<N]Wg ~QO (|€|2N+1) i (5.39)

where ECNV->l = %% | E,e". Note that the order of ¢ in the last line follows from the

definition of E¥->1 (5.4), and (5.14).
Then, using the Cauchy estimates of corollary 6, lemmas 39 and 41 one obtains
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Hg[K[iN],MKN]] _l_D]g[KKN],MKN]]A —I—ng[KKN],/,LKN]]UH

=01
< ||E(2N’w]||p76,mN + ||R[<N]“p Ar’yN ||P*5J‘"
AT 4 3r (r+4d+1)rN EN
< 7 IEY,, + Cv ey e L

O

Lemma 45. Assume O < r < 1 and 0 < § < p. Then, under the hypothesis of lemmas 41
and 39 we have

EEKEM + AL, plSM 4+ 6.) ~ O ([N (5.40)
and
Hg[KKN] A ’u[gN] +0]H < PNt HEN| + CV*G(aN)4T5*(2T+6(I)
’ p=brn S ] — PON
x :7 | (5.41)
where C = C (HDKKN]HMN, o ||Dif#l<NJ o pﬁw)-

Proof. Note that R[KISM, ulSMIUA_ 5.] in (5.33) can be estimated using Taylor estimates
for the remainder, that is

2
IR, < € (A3 + o

2) , (5.42)

where C is a constant depending on the norms of the second derivatives of f., evaluated at
KISV and pl<N
€ € N

Since f., is assumed to be analytic it is natural to expect the quantities

V) 2 [<N] 2 ¢ [<Nol

|D Fusw - HD”‘]‘M[SN] oK Hmw to be close to HD [ asng o KIS

) , at the first step of the iterations. For now, we assume that C is
PO YN,

uniform constant. In section 6, lemma 51, we give sufficient conditions on the initial error of

the iteration that imply that C can be taken as an uniform constant during all the iterations.

Note that (5.42) yields R. ~ O (|e|*V*2). This, together with (5.37), gives (5.40). More-
over, taking sup with respect to € one obtains

POIN

||R|‘p7(5,r7 = <||A||p 0. rYN + sup 0|2>

lel<rn

2
C<! ML W5 v s Iolz)
\ N

|EY]

PIIN

2N+2
<C (V_6(aN)476_(27+6d> a— |
—r

)2
72N

1—r)2|

N rQN 1Y )

PIYN

< szﬁ(aN)M(S’(zT*Gd’( | NHMN
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,where in the third line we use the inequalities in lemma 41. Finally, this inequality, lemma 44,
and (5.33) give the result. O

Note that the estimates above are done for the analytic functions A and o. It is only left to get
the respective estimates for the truncations A" and ¢™-2N1 which are an easy consequence
of the Cauchy inequalities and are given in the following propositions.

Proposition 46. Assume the hypothesis of lemmas 39 and 41, for any 0 < § < p and 0 <
r < 1 we have

EIKISM, pISM 4+ Dy ELRISM, ISV AN2N

+ ng[KggN], MEQN]]O.EN,ZN] ~ O (‘E|2N+1) (543)
and

Hg[K[éN]’M[éN]] + Dlg[K[éN], M[éN]]A(NJN] 4 ng[KléNl, M[éN]]O.(N,ZN] pré,rny
AN+

a gl

+1
+ Cu(aNyT 5D er_ - HEN’

g CV73(aN)2T67(T+3d) ‘EN’

PN

(5.44)

2
PN’

Proof. Recalling the notation A“>1 =37 A, (0)e" we have that ANV 4 ACNT —

A. Also remember that EN = E[KISM | ,ISM] then, using the linearity of the Frechet deriva-
tives one obtains

E[K[<N] M[éN]] =+ Dlg[K[éN] M[éN]]A(NlN] +D25[K[<N] ‘u[éN]]O.(N,zN]
3 » Me £ > Me 5 £ > Me £
= EIKIN, S + DI EIKISY, pSYIAL + DyE[KISY, s Mo
= DiEKIEM, pSMAGND — Dy g[KISM, pl sV )
= EIKISN, S + DI KISV, pSTAL + Dy E (KIS, piS Mo
— (Df.yuem o KISV ABNS 4 ABNS o 7,

_ (D;zfg,,,lSNJ o KFN]) U&(_ZN,OO]

which implies (5.43). Moreover, using the relation above and the estimates in Proposition 44
and Proposition 42 one gets
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[ EIKIS), SN 4 Dy EIKISN pISNANN) ., e[ KISN) [V 15N |

pP—0,rN
< ||5[K[<N],M[<N]] +D15[K[<N],M[<N]]A +ng[K[éNJ,M[él‘f]]a||p7&mw
(2N, 0] (2N,¢]
+C(HA pro',r’yN_‘_ ‘Sup |U |)
£ \ IN
r2N+l r
< - HENH o 4 CV74(CIN)3T(5 (t4+4d+1) - ’
3 27 s—(r+3d paN N
- T S—(7 )
+ Cv=>(aN)*"é 4= APy 1EY][,.,
—1 a1
+ Cv~ ' (aN)"p Ty |E
3 27 ¢ (14+3d) paNtl
— T o—(7
N+

+Cv 4(aN)'§75 (T+4d+1)- H N

1-

PN

O

Proposition 47. Assume the hypothesis of lemma 39 and 41, for any 0 < 6 < p and 0 <
r < 1 we have

£ [KEN] + ASFN’ZN],N&N] + UQN’QN]] ~ QO (|E|2N+l) (5.45)
and

Hg[K[SN] 4 A(N,2N]’M[<N] +U(N,2M]’|

p—0,rYN
3
< Cv-Hanyrs ot |E
= (1-— r1/2)2
+ Cl/76( N)4T67(2T+6d)LH N| (5 46)
a (1 _ rl/2)4 PN’ :
where C = C(d,HMKN]H ., (MKN])_IH , HN[SN]H , HDK[SN]H ,T), the con-
PN PN PN PN

stant C also depends on the norms of the ﬁ;lst and second derivatives of f, evaluated at
KISV and pl<M,

Proof. The expansion (5.45) follows from using the same argument as in the proof of lemma
45. We also have

HR [K[SN] R M[SN] s A(N’ZN] ) J(NqZN]:I Hp*é‘,r’YN

<e(lam v, + o o)
|

~|\ "N
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2

< C (v %aNyrs oD S IEY||?
= (1 _ rl/2)4 p—0.rYN

72( N)ZT *Zdﬂ EN 2
+v “(a P (1—r1/2)4|| prtirw ’

Combining this estimate with (5.44) in proposition 46 one gets (5.46). O

6. Iteration of the quasi-Newton method

We start this section giving the choice of parameters which quantify the loss of regularity at
any step of the quasi Newton method. Lemma 51 will guarantee that the Newton method is
well defined at any step. We note that we have loss of domain in both the variable on the torus,
0, and the variable of the perturbation, e. In contrast with the regular KAM theory we end up
losing much more domain in €, so that at the end we do not have any € domain.

6.1. The iterative procedure

We denote by # € N the number of steps of the quasi Newton method. We consider

5= 2f22 and  ppiii=py— O = % forh > 1, 6.1)

where p,, denotes the radius of analyticity in the variable 6 at step A, that is, at step 7 we will be
considering functions in the space A, . Note that p, = p’ can be the one given in theorem 19.
Since at any step we double the number of coefficients of the Lindstedt expansions, we have,

N, :=2"N, (6.2)

and
- v\l/e 1 vy 1/e 1
== () vy = () g ©

where o € N is the exponent in A(¢) = 1 — €%, a € N, and Ny € N is a fixed constant to be
chosen later. Note that 7y, is the radius of the domain of analyticity in the variable ¢ at step A,

that is, at step 4 we will be considering functions in the space A, 5,. Also note that

/e, (6.4)

Denoting Ky := KISMl and p := p!S™I, for h > 1 we have

Vhp1 =2

K = KIsNol + A®No-M] 4+ AWn-1:Ni]

= M[SNO] + o®No-Nl N oNi-1:Ni 1 (6.5)
Furthermore, denoting

Ay = ANl and gy = oMMl for b >0 (6.6)
we have that, for 2 > 0

K/1+1 = Kh + A/, and Hht1 = pp + Op. (67)
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Finally, denote also

en=|1EK malll,, 5, = [|E™]] , ~ (6.8)

dp = ||Ah||ﬂh+la’_7h+l (6.9)

o= DA, 51, (6.10)

spi=sup |op(e)]. (6.11)
lel<An41

Remark 48. We emphasize the dependence of 7, in Ny, note that 7, — 0 as N, — oo
(h — 00). This implies that this quasi Newton method will not converge in any Banach space
A,, 7, because the domains in € shrink to 0, however, at each step we get estimates in balls
with positive radius, ;. An analysis of these bounds will provide us with estimates of the coef-
ficients of the expansion. Note also that to start with ey < 1 we require Ny sufficiently large
in the formal power series in theorem 19.

Note that with this new notation the estimates in corollary 42 can be written as

R B 1 Nh

dy < Cv~>(aNy)' s, “*3")(%) e (6.12)
R B l Nh

vy < ChV73(aNh)275/, (T+3d+l)<ﬁ> en (6.13)
R 1 Nh

sp < Cpv ' (aNy)T 5, <2—/) en, (6.14)

where C, is an explicit constant depending in a polynomial manner on || M, |

M|

Phn’ i Prvn’

(I P [IDK, || o and Tj,. Moreover, the nonlinear estimate (5.46) given in proposition 47
implies
- e 1)
ene1 < Cu SNy 5, @ )<2/> (en+ej) (6.15)
where Cj, is a constant which also depends explicitly on (|5 ]] o’ ||Mh_ : || onin’ (N o’
”DKh H/}hﬂ"?h’ and 7;'

Remark 49. In the following we will denote C a constant depending on v, 7, d, &, po, |J"
and that is a polynomial in || M| My Hpo 500 [INVGl | DKo ||
denote

s

, and To. We will also

£0:70° P00’ | £0-70

C;, = max (C‘h, é‘,,) .

In lemma 51, we give smallness conditions so that C;, < C for every h > 0. Since we are
working with expansions near to (K'SNol_ ;[SNoly it is natural to expect that the quantities
1 . 1
”Mh”phs;?h’ Mh ||/)/,,"\T’h’ ||Mt||/}hs;‘?h’ ”DK,T”phs;?h’ and 771 will be close to ||M0||p0s;‘70’ i MO |‘{)0,’~70’
[Noll ., 5,0 IPKoll,, 5, and To, respectively. For now, we assume that C is large enough, for
instance C > 2C,. Here M;, = M'SNil| N, = NSVl and T, = 7™ as in (4.8), (4.10) and
(5.20).
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Considering this uniform constant C on (6.15), and taking N sufficiently large, yields e¢;, <
1 for any 4 > 0, and inequality (6.15) implies

B _or 1 Nh
enp1 < Cv%aN,)* s, +6d><2r/a> en. (6.16)

Remark 50. Due to remark 49 and the definitions of 0y, p,, N5, and 7;; the inequality (6.16)
can be rewritten as

2I1N0
-6 4r —Qr6d)n—@r+12d) (i 67+6d [ ]
enp1 < Cu8(alNy)*™ p, BT Hodp-trHzd (oh) <2T/a> e,

or
enr1 < CDB"?Nogy, (6.17)
where

D — V76(aN0)47'p6(27’+6d)27(4T+12d)’ = 277'/(1 and B — 26T+6d'

Lemma 51. Assume that 2> H3D+1CppyNo < %, BrMo < 1, N3"ep < 1, and
-3 27 —(743d+1)~274+6d+2
Cv " (aNo)“" p, 2 ey < 1.

Then, for all integers h > O the following properties hold:
* [(pL; h)]

||Kh — K()H < EKNgTe() < £

Phh

sup  |pn — pol < £uNgeo < €
el <A1
with lx = Cv=3a> p, THP22746d gpd ¢, = Cv='a™2%py ¢
o [(p2; h)]

2 h
e, < (CD)”B” A2 = DNo g

o [(p3; W]
c,<C

Remark 52. Note that by (3.12) we have ey ~ O(N, /™), due to the fact that we esti-

T/

mate ¢y in a ball with radius 79 ~ O(N,, '"). So the assumptions on the smallness of Nye, are

satisfied.

Proof. Note that (p1; 0), (p2; 0), and (p3; 0) are trivial.

Let us now prove (pl,H + 1), (p2,H + 1), and (p3, H + 1) assuming they are true for 7 =
1,2,...,H. Noticing that 2/ < 2/*! — 1, for any j > 0, and assuming that N is large enough
such that 2°“*CDBrN < 1 and Br < 1, we have
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||KH+1 — KOH = HA(NO’NIJ 4o AWNENE]

PHA1TH+1 PHA1THA1

H
<D d;i <D TN TN,
—

J

< Cl/73(aszo)ZTpa(T+3d)22T+6d2(T+3d)jr2]N0 ej

M= 1M

~.
Il
(=}

< CV73(aNO)ZTpa(T+3d)22T+6d

H
. i ) i
x Y 2niN ((CDYBT g, )
=0

< CV—3(aNO)QTpa(T+3d)22T+6d

H
. .2 i1
« Z 23@+ni(cpypl f2T Do g
J=0
g Cl/73(aN0)2Tpa(T+3d)22T+6d

H
x Z 23(d+7)j(CD)ij2 72 No o
Jj=0

< Cl/73(ClNo)sza(T+3d>22T+6d€0

H
x Y (2“0 cpBr)’

J=0
< CV73(aNO)QTpa(T+3!l)22T+6deO

< 14 KN g T €q.
Similarly,

No.N Nu.N,
sup |UH+1_MO‘: sup |0(0 1]+_,.+0-(H H+1]|
le|<Am+1 lel<Am+1

H H
ZSJ' < Z (A:jl/il(aNj)Téjid}’Njej
j=0

Jj=0 J

N

H
> cv(a2/Ny) py 2 72'No
j=0

N

x ((cDyB Do,

H
< Cvl(aNo) pg 22y @Y
j=0

x (CD)'B” f®'"'~Dhog,
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H
< CvHaNo)py 122y @7y
=0

x (CD)/BY r¥ Mg,

H
< Cv N aNo) py*2%e0 Y _ (27 CDBr)’
=0

Thus, taking Ny large enough, which makes ¢; small, we get KKNgTeo < &and {,Njey < €.
Since (p;; H 4+ 1) is true, we use the estimate (6.17) given in remark 50, which is a
consequence of the nonlinear estimates given in proposition 47, that is

ent1 = ||EK + A, pn + op)| < CDB'?"Nog, (6.18)

Ph41Th+1
where D, B, and r are as in remark 50. This yields,
et < CDBhrthOe;,
< DB ((CDY B r®' =D,
< (CD)h—H Bh2+h r(2’1+‘—1)N0 eo

2 ol
< (CD)IZ+1B(/1+1) r(2 I)Noeo

which yields (p,, H + 1).
In order to prove (p;; H + 1) note that

NG = Nolly, 5, < CIDKy — DKol , 5, (6.19)
1My — Mol|,, 5, < CIIDKy — DKoll,, 5, (6.20)
" = M5, 5, < CIDKy = DKol -, (6.21)
|Th — To| < C||DKy, — DKo | (6.22)

PrAn’

where C is a uniform constant. The above inequalities come from the fact that M, A, and 7,
are algebraic expressions of DK, Df. ,,, and D, f. ., ; see (4.8), (4.10), (4.9), (5.20). Then,

||DKH+1 *DK(JH = ||DA(N0’N|] 4. +DA(NHsNH+1]||

PHA+1-VH+1 PHA1THA1

H
< dj < Z évjyf,%(aNj)276;(7+3d+l)rNjej
0

J

<

X

CV73(a2jNO)2Tpa(T+3d+1)

M= 10

~.
Il
=}

i 2J
% 227’+6d+22(‘r+3d+l)jr2 Noej
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< CV—3(aNO)ZTpa(T+3d+1)22T+6d+2

H
% Z 2(3d+37+1) jrzf'NO
j=0

x ((CD)J’BJ’2 ey *“NOeO)

< CV73(aNO)2Tpa(T+3d+1)22T+6d+2

H
; iR (i
% Zz(3d+37+l)J(CD)/BJ e 1)Noeo
Jj=0
< CV73(aNO)2Tp6(T+3d+1)22T+6d+2

H
. P
X E 2(3d+3T+l)j(CD)JBj rZJNOeO
=0

< Cl/_3(aNo)sz(;(T+3d+1)22T+6d+2e‘0

H
X (23d+3T+1CDBrNO)j
j=0

J

< CV73(aN0)2Tp(;(T+3d+1)22T+6d+2€0’

where the sum is bounded as in the previous estimates. Taking ¢ small enough, such that
CCv3(aNo)*"p, (TH3d D22 +6d42, < 1, we are able to verify (p3; H + 1) because Cp is
an algebraic expression of My, Ny, and Ty; and taking C > 2C,, for example. O

6.2. Proof of theorem B

For this proof we inherit all the notation introduced throughout this section.

Proof. Note that theorem 19 assures the existence of the Lindstedt series satisfying (6.2).
That s, given Ko € A, and p10 € A C C satisfying fo ,,, © Ko = Ko o T, and HND, there exists
po < p and power expansions KISV and p!SM such that

for any N > 0. This expansion is unique under the normalization condition (3.3).
If KISM and plSM satisfy hypothesis HTP1 and HTP2 then, we can choose Ny such that

KISMI and SN satisfy the hypothesis of lemmas 39 and 41. Also, N needs to be large
enough such that 23D CDBAN < 1, BrYo < 1, (xNTey < &, £,Njey < & and

< CyleM*!

fg ,}§NJ ° KSN] o KEKN] oT,

Po

ECV73(aN())ZTpa(T+3d+1)22T+6d+260 < l,

then lemma 51 can be applied and this allows us to iterate the quasi Newton method described
in algorithm 35. That is, we can construct the unique formal power series as follows
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KISNol - AMo2Nol 4 A@No2Nol . 0 AC"No2"TINo) (6.23)
€ € € € .
plSNol ) (o 2T ) ONo-22No] g MNG2TENGT (6.24)

Note that by definition of 7, we will have 7, =r"%, , where r=2"7/% and
3o = 27V apl/a(aNg)~7/*, see (6.4). Before giving the detailed computations, note that
Fp = @2 'wva )V 2"Ny)"/* and if n € (2"No,2"T'No] NN then, using the notation
¢ = (2 'wa ")"2, one has

G ™" = "Q"NG) T/ s /e, (6.25)

A(2,1N0’211+1N0]
()

Recalling the notation A, := , we also note that (6.12), and lemma 51 imply

that
o3 27 s—(T43d
||Ah||/?h+15h+1 < Cpv " (alNy) T6h (T )rNheh
_ 27, _ +3d) oh
< Cv 3 (a2"Ny) ™ (py1242) 70 N
x (CD)Y'B" r@"~Nog,
that is
h2 2/1+1N
||Ah||ph+15’h+1 < Leg r o, (6.26)

where ¢y =2¥134CDB >1 and the constant term in (6.26) given by L=
Cl/73 (aNo)ZT(pgl22)(T+3d>r’N0 €o.

Using the observations above together with Cauchy estimates yield the Gevrey estimates.
More precisely, note that for n € (2"Ny, 2"'Ny| NN, the coefficient K,, of the expansion
(6.23) belongs to the correction Ay, then using Cauchy estimates and (6.26), we obtain

1Kullzp < (T )I\Ahll

"h+l

( h+1) r)h+15h+1

N

(/Z+170)7’1Lch2 r2h+1N0

_ an —(h+1D)n+2"t1N,

_ _ h+1
L 7 . Im n+2"T Ny

n

Lc 'yorh

LC N0(21/a —1/a T/a)n(N 7'/“) " T/a) hn

N

LF (th )le/a
LF"n (T/a)n

N

where F = ¢o2'/*v=1/2q7/*_ The estimates for j, are obtained in a similar way. O
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6.3. Proof of theorem C
Proof. Denoting KIS":= 37" Kje/ and
E!=f. q<n o KIS — KIS o T,
If for all € € G such that || < o,
1EX,, < Cvin(N(e), w, 7)26* 7T (6.27)

then, by theorem 14 in [CCdIL17] one obtains that there exist unique functions K. and p_,
defined in € € G N By, , (0) satisfying,

Yh+
IKIS™ — K|l 5 < ComNe),w,m) 16 2 THI||EL | o (6.28)
<2025+ En| . (6.29)
|M£<n] - M€| < 6||E”||p705,/h+1’ (6.30)

where (6.29) follows from the fact that 7(\(¢);w,T) is lower semi-continuous and that
7(\0); w, T) = v~!, see remark 22. The Cauchy estimates in corollary 6 imply that, if n €
(2hN0, 2’1+1N0] N N then

2"N,
||E”||ﬂ/;5,’h+1 < Czr"||E 0”/’/15//1 (6.31)
then, using the notation e, ;== ||E2hN0 [l 5,5, and the estimate (p2, h) in lemma 51, that is e, <
(CD)Y!'B" 12" ="Nog one has from (6.29) that for any £ € G N B, . (0)
< S 2o 2(rtd
||K€[ " Ks”%o,(; <2Cv°0 o )||En||/11p’7h+|
2N,
< ar"|[ETT, 5,
< E(CD)hthrHVZhNO
and
< _
|M£ " pe| < C”E"”r)hﬁhﬂ
- 2 h
< C(CD)hB/I }’”}’2 NO.
O
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Appendix A. The case of the dissipative standard map of theorem A

A.1. Verifying HTP1 and HTP2 for the dissipative standard map
Consider the dissipative standard map f. . : T x R — T x R given by
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feue (6, 9) = (x + Ay + pe — eV(x), M)y + pe — eV(x)), (A1)

where V(x) is a trigonometric polynomial. In this section we verify that maps like (A.1) satisfy
HTP1 and HTP2 of theorem B. For the sake of simplicity in the exposition we do it for the
case \(€) = 1 — &3. The general case for @ € N is done by very similar computations, fixing
the value of o = 3 allows an easy analysis of the Lindstedt series.
Note that one has f7 €2 = A\(e)S2 for the symplectic form €2, ;) = dx A dy, so it is confor-
mally symplectic. One can write the map as
Xn41 = Xp +yn+l

Y1 = MEYn + pre — V(Xy)
equivalently
Xn41 — (1 + )\(5)))(:,1 + )\(6)xnfl — e + 8V(-xn) - 0 (A2)

Considering a parametric representation of the variable x, € T as x, = 0, + u.(0,), 6, € T;
where u. : T — R is a one-periodic function and assuming that 6, varies linearly, i.e. 0,4 =
0, + w, then, (A.2) becomes

(0 + w) — (1 + Me)u(0) + AMe)u(0 —w) + (1 — Me))w — pe + V(O + u(6)) = 0.
(A.3)

If u. satisfies (A.3) it is easy to check that K. : T — T x R, given by

K.(0) = (w + u(0) — u(6 — w)

satisfies f.,. o K.(§) = K(0 + w). Therefore, the problem of finding Lindstedt series for
quasiperiodic orbits for the map f; ,,_ is equivalent to find asymptotic power series to a solution,
(ue, p12), of (A.3).

Using M) = 1 — &3, equation (A.3) becomes

0 +w)— 2 —Hu0) + (1 —eHu(0 —w) +*w — . + V@ +u(0) =0.  (A4)
Introducing the operator
L,u(0) = u(d + w) — 2u(d) + u(f — w),

and expanding in power series on &, ie. u-(0) => " u,(0)e" and p. =Y 7 pnE"
equation (A.4) becomes

2
D Low(0) — ) € — Lous(0) — i3 + uo(0) — ug(0 — w) — w) &’
k=0

+ > Lowr(0) =+ 1w 3(0) — w30 —w)) e = =" S 1(O)". (A'5)
k=1

k=4
Remark 53. When V(0) is a trigonometric polynomial, the coefficients S, can be computed
as follows. Note that Vi(0) = f, >k satisfies the relation
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in(G + u.(0)) = 27rikiu€(9)vk(0 + u.(0)). (A.6)
de de

Thus, considering

Vi(0 + u(0)) = Y _ Sk(0)e"

n=0

and (A.6) the coefficients S satisfy the following relation

(n+ DSy, = 2mik(d + Dupy 1Sk (A7)
(=0

and SK(0) = fre*™*_ Furthermore, if V(0) = Z\klézt} re?™0 — Z‘klgavk(e) is a trigonometric
polynomial of degree a, considering

V(O +u(0)) =Y Su(0)e",

n=0
the coefficients S,(6) are given by

Su(0) = Sk,

k| <a

where S* is given by (A.7).

Remark 54. Note that if 77 is a trigonometric polynomial and ¢ is a solution of the equation
L, = n then, ¢ is a trigonometric polynomial of the same degree as 7. This is due to the fact
that the Fourier coefficients of ¢ satisfy ¢, = mﬁk' Note that the equation L, =7
has a solution if [;7(0)dd = 0, and this solution is unique if we impose the normalization

Jrp(B)dt = 0.

Proposition 55. IfV(0), in (A.1), is a trigonometric polynomial of degree a, then u,(0) is
a trigonometric polynomial of degree an. Furthermore, S,_(0) is a trigonometric polynomial
of degree an.

Proof. Equating the terms of same order in equation (A.5) one gets that for order zero 1, = 0
and uo(f) = 0. For order 1 we have,

Loui(0) — py = —So(0).

So, taking 1, = 0, u; becomes a trigonometric polynomial of degree a, because Sy(f) =
V(0). Now, for order 2 we have

Louy(0) — pa = —S1(0),

if y1, =0 the right-hand side is $1(0) = 3, S1(0) = 2mit1 ()Y < kS;(0) which is a
trigonometric polynomial of degree 2a, thus u; is a trig polynomial of degree 2a. For order
three we have

L,uz(0) — p3 +w = —8,(0),
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here we take 113 = w and u3 is a trig polynomial of degree 3a because

$2(0) = ) S56) = miur(0) > kS| (0) + 2mius(6) > kS§(6)

lk|<a k| <a k|<a

is of degree 3a; then u3(6) is of degree 3a. Finally, for n > 4, assume the claim is valid for any
m < n then, the equation of order n is

qun(e) = fn — u,,,3((9) + M”,:;(Q - w) - Snfl(e)-

So, taking pt, = [S,—1(0)d0, u, can be found and has degree an since, S, = Z‘kK”S,’j,l
and each Sﬁ7 | has degree an due to (A.7). Note u,_3 has degree (n — 3)a. O

Corollary 56. IfV(0), in (A.1), is a trigonometric polynomial of degree a, then for any fixed
€ the sum Zf:lzoun(O)a” is a trig polynomial of degree aN in 0.

Note that in this case

N
04> un(B)c"
KIsN() = v : (A8)
WA > (Ua(0) — (0 — w))e"
n=0
and using equation (A.5) we have
Ngy - (<N [<N] o (S L
EYO)=fuam o KIEVO) - KM@ +w) = 3 ({7 o)) e
n=N-+1 "7

and therefore, for any fixed £, E¥-?V1(0) is a trigonometric polynomial of degree 2aN. More-
over, in this case the matrix MISM(9) = [DKISM(6)[7-! o KISM(O)DKISM(GINISM ()] is
given by

N N
LY u® NSO 0 - w) - w0)e*

M£<N] 0) = N k=0 k=0

N
> w0 — w0 —wpet  NISVO) (1 +3° u;(e)gk>
k=0

k=0

where NTSM () = ((1 4 S ()N + (0 (ul(0) — (6 — w))sk)2) o So,

N N
(WVEsMoT,) (1 +) w0+ w)ek> (Mo T,) >~ (0 + w) — uO))e*

(MM o Tw)*' _ N k=0 k=0
> w(6) — w0+ w)et N ACE
k=0 k=0

which implies that ESYZ’QN] is a trigonometric polynomial of degree 3aN. Remember that E S’VZ’QN !

is the second row of the vector EN*V = (MISM o T,,) ~'EW2N Note that J = <_01 (1)> .
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1 - -
Furthermore, wehave D, f <wi(x,y) = < ) , then the second row, AV ,, of the vector AN =
Efle 1 €, €

(MSMoT,) ]Du fosmo KISM s a trigonometric polynomial of degree aN.
The following proposition summarizes the computations presented above and assures that
hypothesis HTP1 and HTP2 of theorem B are satisfied for the dissipative standard map.

Proposition 57. Forany N € N, if V(0) in (A.1) is a trigonometric polynomial of degree a,
then Eg’zm is a trigonometric polynomial of degree 3aN, AQ{Q is a trig polynomial of degree
aN, and

EN_(0) = DKM + )T 0 KISMG 4+ w)DKEM(6 + w)
— D, e 0 KIS0 T o (7, 1 0 KIEM(0))

x D(f. i< o KESM(9) (A.9)

is a trigonometric polynomial of degree 2aN.

Proof. TItis only left to prove the last claim. Note that E?’LE(G) is the expression in coordinates

of (KISMo T, )*Q — (f.a<m© KISMY*Q). Now, using the fact that f.,, is conformally sym-

plectic we have (f_ J<m© KISV Q = KISMT O = A(e)KISM'Q, which means that, in
Elte Euple

coordinates

E},.(0,2) = DKISM(0 + w) " o KISM(0 + w)DKISM(0 + w)
— XMe)DKISM(@)TJ o KISM(9)DKISM(9) (A.10)

which is a polynomial of degree 2aN due to the fact that J is a constant matrix and

N
1+ Z u, ()"
DKSN](G) _ . n=0
D 0) — (6 — w))e"
n=0
is a trigonometric polynomial of degree aN. |

A.2. Uniqueness

Note that for € = 0, My = I. Also note that the coefficients of the expansion (A.8) are given
by

_ u,(60)
Kn(e) = <un(6) _ un(G o w)> forn > 1.

Therefore, the normalization condition

/T[MO"K”(&)] o =0
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in this case has the form

/ Uun(0)d6 = 0,
T

which is satisfied by the construction of the u/,s. Thus, the expansion given in (A.8) is the only
one which satisfies the normalization condition.
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